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PONDEROMOTIVE EFFECTS IN COLLISIONLESS PLASMA: 

A LIE TRANSFORM APPROACH 

John R. Carya) and Allan N. Kaufman 

Department of Physics and Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

ABSTRACT 

A new method for the kinetic analysis of ponderomotive 

effects in collisionless plasma is presented. This method 

involves the application of Lie-transform perturbation tech-

nique to the Hamiltonian formulation of the Vlasov equation. 

Basically, a new system, in which the high frequency oscillations 

are absent, is found. In this system 

the distribution function evolves according to a pon-

deromotive Hamiltonian, which is the Kinetic generalization 

of the ponderomotive potential. It is shown that the pondero-

motive Hamiltonian can easily be determined from the well-

known linear susceptibility. This formalism is used to 

calculate several new results. Among these results are the 

general formula for the quasi-static density perturbation 

produced by a hot magnetoplasma wave, a generalization of 

previous formulae for the laser-generated quasi-static mag-, 

netic field, and the general formula for the ponderomotive 

gyrofrequency shift produced by an electromagnetic wave 

propagating at an arbitrary angle. 

a) Current address: Institute for Fusion Studies, University 
of Texas, Austin, Texas 78712. 



I. INTRODUCTION 

Collisionless plasma theory has developed toward the 

idea that a collisionless plasma consists of two entities, 

waves and the background through which the waves travel. In 

the oscillation-center forrnalism1 - 6 the waves consist of the 

electromagnetic fields plus the oscillating portion of the 

particle motion. The background consists of pseudo­

particles (particles from which the wave mo'tion has been 

removed) and the equilibrium, slowly varying fields. In 

this picture, plasma evolution comes from the interaction 

of waves and the background. Waves are produced by unstable 

particle distributions or are injected by antennas or lasers. 

These waves may heat the particles via resonant interactions, 

or they may redistribute the particles via ponderomotive 

effects. This changes the background and, hence, the wave 

evolution. In this paper we discuss one aspect of this 

interaction, ponderomotive effects, i.e., the change in the 

background caused by the wave. In a future_paper we discuss 

how the change in the background affects wave propagation. 

The ponderomotive interaction deserves special study, 

because it has had enormous impact on plasma physics. Pon-

deromotive forces have been proposed as a method for confin-

7-9 ing or enhancing the confinement of plasma. Pondero-

t . ff lt h . f 1 d. t. 10 mo 1ve e ects a er t e propagat1on o aser ra 1a 1on 

11 and may affect radiofrequency heating of plasma. Pondero-

motive effects also play a role in parametric decay 

12 processes. 
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In the past, some of the analyses of ponderomotive 

effects have been ad hoc. For example, in the derivation 

of the ponderomotive potential, the cold-plasma limit is 

used, but then the response to the ponderomotive potential 

is taken to be given by the Boltzmann factor, a hot plasma 

result. In par~,_ this is reasonable, as long as the phase 

velocity of' the high-frequency wave is large, and the charac­

teristic velocity of the slow perturbations is small. How­

ever, a very basic question remains. Why should the plasma 

respond to a low-frequency ponderomotive potential via the 

Boltzmann factor? After all, the ponderomotive potential is 

not identical to a real potential. In addition, the system, 

a plasma in the presence of a large amplitude wave, is far 

from thermodynamic equilibrium. 

To answer these questions,it seems necessary tore-

address the problem via a rigorous analysis of the Vlasov­

Maxwell equations. One method is to average the Vlasov­

Maxwell equations order by order. 13 , 14 The result is that 

the time-averaged distribution function obeys a diffusion/ 

Vlasov equation. The equations are sufficiently complicated so 

that solving by inspection is difficult. 

In this paper, an alternate method for rigorously 

analyzing ponderomotive effects in a collisionless plasma is 

presented. A transformation is introduced which relates the 

particle distribution, f, to another function, F, the 

oscillation-center distribution. The transformation is 

chosen so that F has no rapid variations. The evolution of 

-3-



F is given by Liouville's equation, in which the Hamiltonian 

contains a te~m that depends only on the amplitudes of the 

high-frequency fields. This term, the ponderomotive 

Hamiltonian, is the kinetic generalization of the pondero-

motive potential. Since the evolution of F is given by 

Liouville's equ~tion (no diffusion terms are present), solu­

tions can easily be,obtained by inspection. Once the solu­

tion for F is known, one may use the transformation to 

determine the physical distribution, f. 

The transformations used are Lie transforms, first 

introduced by Hori. 15 They were later modified by Deprit16 

and Dragt and Finn. 17 Deprit's version of Lie transform 

theory was further improved by Dewar, 3 (for a review see 

Ref. 17). In this work, we use the Deprit-Dewar type of 

Lie transforms, because we have found them well suited to 

the discovery of new, general theorems. 

Specifically, we show how the use of Lie transforms 

has led to a general relation, 4 Eq. (38), between the 

ponderomotive Hamiltonian and the linear susceptibility of 

Vlasov plasma. This relation is very powerful, since it 

implies the immediate knowledge of a nonlinear quantity, 

the ponderomotive Hamiltonian, upon performing the linear calcu-

lation of the plasma susceptibility. Furthermore, this 

relation leads to another very general result, Eq. (72), 

the nonlinear density perturbation produced by a wave packet 

in Vlasov plasma. (The cold plasma result was reported 

1 . 18) ear ~er. 
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Our use of Lie transforms also allows transparent cal-

culations of complicated results. For example, we show that 

the laser-generated magnetic fields of Bezzerides et a1. 19 , 20 

arise very simply as a result of the momentum dependence of 

the ponderomotive Hamiltonian and the Lie transform. The 

ponderomotive gyrofrequency shift, which was previously21 

calculated in the special case of an electrostatic wave pro-

pagating across the magnetic field, is generalized here for 

electromagnetic waves propagating in arbitrary directions 

by simply taking the derivative of the ponderomotive Hamil-

tonian with respect to the magnetic moment. 

This analysis fits well into the wave-background picture 

mentioned in the first paragraph. The wave part of this 

formalism consists of the rapidly varying electromagnetic 

field and the Lie transform. The background consists of the 

slowly varying fields, the oscillation-center distribution, 

and the ponderomotive forces. This interpretation holds 

even in detail. For example, we show that the wave momentum 

. d . h . . 22 . f b'l' assoc1ate w1t a g1ven spec1es ar1ses rom 1 1near, 

slowly varying terms in the transformation, as it should, 

since the transformation and wave momentum are objects asso-

ciated with the waves. 

We now give a brief outline of this paper. In Sec. 

II we discuss the notations used and the canonical formula-

tion of the Vlasov equation. We also summarize the Lie-

transform methods which will be used throughout this paper. 

In Sec. III we discuss very generally the application of 
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Lie transforms to the Vlasov equation. We show how the 

linear response is obtained, and we prove a general relation 

between the linear response and the ponderomotive Hamiltonian. 

In Sec. IV we discuss the details of ponderomotive theory 

for unmagnetized particles. We derive the ponderomotive 

Hamiltonian and use it to derive a general formula for the 

quasi-static,second-order, density perturbation produced by 

a wave. In Sec. V we discuss the ponderomotive theory of 

magnetized particles. We derive the ponderomotive Hamil­

tonian for magnetized particles, and we use this ponderomo­

tive Hamiltonian to derive the ponderomotive guiding center 

drifts and the ponderornotive gyrofrequency shift experienced 

by the particles. 
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II. NOTATION AND BACKGROUND 

Throughout this paper, we employ units such that 

c = 1, except when certain notable formulae are given. In 

addition, in most of this paper we use units such that the 

particle mass m is unity. We will restore the particle 

mass whenever w~ are dealing with more than one particle 

species. 

To study the Vlasov equation, we use the Hamiltonian 

formalism. We denote the six independent phase space vari-

ables by z = (q,p). - In this formulation, the distribution 

function f(q,p,t) gives the particle density in phase space. --
The evolution of f is determined by Liouville's equation 

af at + {f,h} = o , ( 1) 

in which the braces · · denote the Poisson bracket. 

The Hamiltonian h is that of a particle in an electromag-

netic field described by vector potential A and scalar 

potential ¢: 
~ 

h ( ~ '. ~, t) = ( 1 + I I: - e~ ( ~, t) I 2) + e ¢ ( ~, t ) . ( 2) 

To make the fields self-consistent, we introduce the 

charge density function, r(x;z,t) = eo(x q) , so that 

p(~,t) = ~ d 6
z r(~;~,t) f(~,t) ( 3) 

Similarly, we introduce the current density function, 

n(x;z,t) = ev(q,p,t)o(x- q) , where 
,..,...,,......, ~~,...., 
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and 

v(q,p,t) = [p- eA(q,t)]/y(q,p,t) 
~ ~,....., ~ 

2 1/2 
y(q,p,t) = [1 + IP - eA(q,p,t) I ] 

,....., ""'""' """""" I""'>.J ~ l""'oJ 

in order to have 

j (x,t) n(x;z,t} f(z,t) . 
-"""' 

(4) 

(5) 

In performing perturbative calculations, we introduce 

an ordering in some small parameter, determined by the 

specific problem. To denote order, we use subscripts, rather 

than a formal parameter. As usual, the order of a product 

of terms is the sum of the orders of the factors. Thus, 

the distribution and the fields are written 

f :::: fo + fl + f2 + e ... • (6a) 

A= ~0 +~ + ~2 + . . . (6b) 

and <P = <Po + <Pl + <P2 + . . . (6c) 

Furthermore, Eqs. (6b) and (6c) determine the ordering 

of the Hamiltonian and the velocity. In zero~h order we 
2)1/2 

have h0 = y0 + e<P 0 , where y0 = (1 + 1£- e~0 1 . The 

lowest order velocity is ~O = ah0;a~ . 

terms are found by expanding Eqs. (2} 
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and ( 4) : 

(7a) 



{7b) 

( 7c) 

{ 8a) 

-1 
Y2 =- eyo [~2 - ~~0-~2] 

~ e 2Yo-
2 [Yo~1-~1 + 2~1Yo"~1- 3YQ<Yo"~1) 2 ]' (Sb) 

-1 2 -2 . 
~3 =- eyo <~3- YoYo"~3) - e Yo <yo~1·~2 + ~1Yo·~2 

1 3 -3 
+ ~2~0·~1- 3~o·~1~0·~2> - 2 e Yo [- ~1~1·~1 

2 3' 
+ 3~1(~·~1) + 3~Yo·~1~1·~1- 5~o<~·~1) ] · (Be) 

From these expressions, we find the current densities of 

various orders: 

00 00 

ev o (x-q) 
,..._f). "' "" 

(9} 

-9-



The higher order quantities in Eqs. ~7) and {8) may 

be separated into two types of terms. For example, h2 may 

be separated into terms which are linear {A) in the electro-

magnetic potentials 

{10) 

and a portion which is nonlinear {v) in the. electromagnetic 

potentials of lower order 

{11) 

Similarly,we can talk about the linear and nonlinear parts 

of the current operator and the velocity. 

An additional numerical subscript that a quantity may 

have denotes the harmonic number. This arises in the final 

sections where we assume the first-order fields.have a dis-

tinguishable frequency. Then,the higher order quantities, 

such as h2 , may have terms at the zeroth harmonic {i.e., 

they are slowly varying) , which are denoted by the second 

numerical subscript 0, and terms at twice the fundamental. 

Thus, we write h2 = h20 + h22 · 

Two objects central to Hamiltonian theory are Poisson 

brackets and canonical transformations. When using these, 

we employ the operator notation of Dewar3 (with some minor 

modifications) . The symbol L , where g is a function of 
g 

phase space, denotes an operator whose action on another 

phase function f is given by L f = {g,f} . L is called g g 
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the Lie operator associated with g. Using this notation, 

Jacobi's identity is [Lg,LfJ = L{g,f} , where the 

brackets denote the commutator. Now consider canonical 

transformations, which can be described by a set of func-

tions Z(z,t) that give the new functions in terms of the old. 
"" "' 

Corresponding to this transformation, we introduce a cano-

nical transformation operator, T, whose ac~ion on a phase 

function f is given by (Tf} (Z,t) = f(Z(z,t),t) . 
"" ,..., ...... 

Another object of importance to Hamiltonian theory is 

the time development transformation. Suppose we solve 

Hamilton's equations of motion to find the trajectories 

z(z,t,t1 )·, i.e.,the function z gives the location at timet --
of a particle which was at z at time t 1 • Since Z(z,t,t1 ) is 

""-
a canonical transformation, we can define a corresponding 

operator S (t,t'), whose action on a function g (.z) is given by 
"' 

[S(t,t1 )g] (z,t,t1
) - g(Z(z,t,t1 )] ( 12) --

From continuity we note that Z(z,t,t) = z, and S(t,t) =I, 

the identity operator. To find the relationship between this 

operator and the Hamiltonian h(~,t), one can differentiate 

Eq. (12) to obtain 3S(t,t1 )/3t =- S(t,t1 )Lh(t') 

Knowledge of the trajectories or, equivalently, the 

time development operator, S, allows one to immediately 

solve the inhomogeneous Liouville equation 

~ + {f h} = at ' g ' ( 13) 
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which occurs again and again in Hamiltonian perturbation 

theory. The solution to Eq. (13) is found by introducing 

the auxiliary function f 1 defined by f(t) ~ S(t1 ,t)f1 (t,t1 ). 

Insertion of this expression into Eq. (13) yields a 

differential equation for f 1 which can be integrated imme-

diately. The result is 

f(t) 

(14) 

This method of solution is known as finding f by integrating 

g along the trajectories of h. 

In the important special case where the Hamiltonian is 

time-independent, S(t,t1
) depends only on the time difference: 

S(t,t1 ) = S(t-t1 ,0}. In this case we define S(t} ~ S(t,O}. 

A prerequisite to performing perturbative ·calculations 

is a detailed knowledge of the unperturbed system. Thus, we 

assume a detailed knowledge of the unperturbed Hamiltonian 

h 0 , its time development operator s0 (t,t1
), and the unper­

turbed distribution function f 0 , which satisfies the homo­

geneous Liouville equation, af0;at + {f
0

,h
0

} = 0 . According 

to Eq. (8), the time development of f
0 

is given by 

-1 
f 0 (t} = s0 (t,t0 )f0 Ct0 > • 

As mentioned in the introduction, we will use canonical 

transformations to find a new system where the Hamiltonian 

is more easily solved. Thus, in addition to the physical 

distribution f and Hamiltonian h, we will have a transformed 

oscillation-center distribution F, whose evolution is given 
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by the oscillation-center Hamiltonian, K, via 

3F 
dt + {F,K} = 0 . (15) 

To find the transformation law for the distribution, we use 

the fact that the new distribution evaluated at the new 

point equals the old distribution evaluated at the old point: 

F[~(~)] = f(z). In operator theory this statement is -
f = TF ( 16) 

To distinguish physical quantities from oscillation center 

quantities, we adopt the following convention: quantities 

associated with the physical particles are denoted by lower 

case letters,quantities associated with the oscillation cen-

ters are denoted by upper case letters. 

The transform T is a. Lie transform, which can be written 

as an ordered series. 

( 17) 

Furthermore, the terms of this 

series are composed of the Lie operators associated with an 

infinite series of functions, w1 (~,t), w2 (~,t) .... 

convenience, we denote the Lie operator of w as L . 
n n 

third order, the relations between the T 's and the 
n 

-13-
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Through 

17 L 's are 
n 

( 18a) 

(l8b) 



(18c) 

Hence, the new variable Z. and the old variable z. are 
~ ~ 

related by 

(19) 

through second order. [One can easily verify via Poisson 

bracket calculation that Eq. (19) gives a canonical trans-

formation through second order for arbitrary functions w
1 

and 

w2. ] 

In order to transform back to the original system, we 

will also need to know the inverse transformation: 

(20) 

We find T -l from T by replacing L by - Lm and inverting n n m 

the order of application: 

-1 
Ll Tl = (2la) 

-1 1 + !_ L2 
T2 = 2 L2 2 1 ( 2lb) 

-1 1 + 1 1 + !_ L3 T ·= 3 L3 6 LlL2 + 3 L2Ll . 3 6 1 (2lc) 

The final ingredient needed for the implementation of 

Lie transform theory is the Hamiltonian K for the new system. 

Through third order, the equations are 

-14-



(22a) 

' { 22b} 

K -
1 ( aw2· 

{w2,ho}) h2 + 
1 

(h1 + K1) (22c) 2 at"'+ = 2 L1 ' 2 

1 ( 3w3 ) 1 
K3 - 3 a:t + {w3,h0} = h3 + 3 L1 (2h

2 
+ K

2
) 
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III. LINEAR SUSCEPTIBILITY OF VLASOV PLASMA AND ITS 

RELATION TO THE PONDEROMOTIVE HAMILTONIAN 

The ponderomotive Hamiltonian (the kinetic generalization 

of the ponderomotive potential), together with the slowly 

varying fields, determines the time-averaged motion of particles 

in a high frequ~ncy wave. The linear susceptibility of the 

plasma gives the rapidly varying response of these particles 

to the wave. In the past, these two quantities, the linear 

susceptibility and the ponderomotive potential, have been 

regarded as unrelated, and as a result, these quantities were 

calculated separately. In this section we prove a relation 

between the ponderomotive Hamiltonian and the linear suscepti­

bility. The importance of this relation is that it allows 

the immediate deduction of one quantity from the knowledge 

of the other. 

The calculation of the linear response using Lie trans­

form methods is the first step in proving the theorem. The 

calculation in any order proceeds in a standard manner: 

1) Examine Eq. (22b) to choose the transformation. 

2) Solve the evolution equation ( 15) for F. 3) Obtain 

the distribution function f by applying the transformation 

to F. 4) Use f to calculate the current density and charge 

density. 

In choosing the transformation we assume that the per­

turbation is a rapid oscillation, and thus, it may be entirely 

transformed away. That is, we choose K1 = 0, reducing 

Eq. (22b) to aw1;at + {w1 ,h
0

} =- h 1 . This equation may be 
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solved for w1 by using the method of integration along orbits 

(see Sec. II) 

t 

w1 (t) = - J dt' s~1 (t,t' )h1 (t') 
( 2 3) 

-co 

In obtaining Eq.· · ( 1) we have assumed that the perturbation 

h1 and, hence, the transformation function ~l vanish at 

t = -oo 

Next,we solve the evolution equation for F. Since 

K1 = 0, we have 

(24) 

to first order. We see that F may be any solution of the 

unperturbed system. To d~termine F, we look ahead to the 

transformation. Through first order Eqs. ( 16) ' ( 17) ' 

and (18) give f = F- {w1 ,F}. 

In order to have f = f 0 when w1 = 0, we must choose the 

particular solution F = f 0 6f Eq. (24). Hence, the first 

order part of the distribution is given by 

( 25) 

Finally, we calculate the current density and charge density. 

From Eqs. ( 3 ) , ( 5) , and (18) we find 

( 26) 
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and 

(27) 

Now,we discuss the ponderomotive Hamiltonian, which arises from 

Eq. (22b). For K1 = 0, this equation reduces·to 

(28) 

We break up this equation by transforming away the rapidly 

varying terms and keeping the slowly varying terms in K2 • 

In particular, 

(29) 

where the angular brackets and the subscript t 2 denote an 

average, possibly local, over the variable t 2 . Hence, K2 is 

an orbit average of the terms on the right side of Eq. (28) 

As a result, w2 must be the orbit integral of the fluctuating 

part of the right side of Eq. (28). 

As explained in Sec. II, the second-order part of the 

oscillation-center Hamiltonian, can be written as the sum of 

two terms, K2 = K2 A + K2v . The second term, K2v, is non­

linear in the lower-order potentials. 
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. Both K2 A and K2v 

affect the slow motion of the particles. In particular, 

from K2v we can determine how the rapidly varying first­

order fields affect the average motion of the particles. 

Thus, K2v is called the ponderomotive Hamiltonian. 

To find the connection between the ponderomotive Hamil-

tonian and the linear response, we consider the quantity 

Obviously, Wean be calculated if the linear response is known. 

However, W can also be calculated from the ponderomotive 

'lt . 4, 6 Ham:t on:tan. This can be seen by inserting the linear 

response {26) and (27} ~nto Eq. (29} . and changing the 

variable of integration over phase space via the time-

development transformation. Doing this we obtain 

a relation between the ponderomotive Hamiltonian and the 

linear response. Indeed, by functional differentiation one 

can use the following equation to obtain the ponderomotive 

Hamiltonian from the linear response 

-19-



- j l (X , t) • Al (X , t) ] ) 
~,._ .......,I""'W t (33) 

This relation is known as the K-x theorem, since it 

relates the ponderomotive Hamiltonian, K2 v~ to the linear 

response, which is given by the linear susceptibility X· 
~ 

4 This theorem was first presented by Cary and Kaufman. 

More recently, Johnston and Kaufman6 have shown that this 

relation is one of a family of similar relations which con-

nect Kn to the (n-l)th response. 

A particularly useful special case of this result is 

the case of a time-independent, homogeneous background state 

in the presence of an oscillation with a slowly· varying 

amplitude 

~l (~,t) = ~l (~,t)exp(i~:~-iwt} + c.c. (34) 

We choose the radiation gauge, ~l = 0 and 

, ( 35} 

where A1 ~ E1/iw . Since the background is time-independent 

and homogeneous, we know that the current is given by 

where ;[_1 

obtain 

~ wx(~,w} ·~l/4~i. 
~ 

(36) 

Combining these equations we 

-20-



(37) 

where ~ is the Hermitian part of ~· 
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IV. PONDEROMOTIVE EFFECTS IN UNMAGNETIZED PLASMA 

A. The Unperturbed System 

The medium under study is a relativistic, homogeneous, 

unmagnetized plasma. Thus, the zeroth-order potentials, 

!o 

and ~ 0 , vanish. The zeroth-order Hamiltonian is 
2 1/2 

= (1 + p) ·,and the zeroth-order velocity is 
2 1/2 

= Ef(l + p ) As is well known, in this case the 

action of the time-development operator is given by 

B. Linear Theory via Lie Transforms 

{38) 

Although the linear theory of unmagnetized plasma is 

well known, we present a brief discussion of it for three 

reasons. First of all, the linear theory for this formalism 

must be known before the nonlinear theory can be done. 

Second , this discussion allows us to introduce Lie trans-

forms on a familiar problem. Finally, in discussing the linear 

theory we quantify our assumptions. For example, we say 

specifically what is meant by the exclusion of resonant 

particles. 

The main assumption of this work is that the system is 

dominated by a single high-frequency wave with slowly varying 

amplitude. That is, the first-order vector potential has the 

form, (35) We use the radiation gauge for the first-

order fields, so that ~l vanishes. 

To find the response to this potential, we follow the 

standard method of the last section. We first analyze the 
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transformation equation (22b) , in which the first-order 

Hamiltonian 

(39) 

appears. We note that h
1 

is rapidly varying and, hence, may 

be transformed away. Thus, we insert K1 = 0 and h 1 from 

Eq. ( 39} into Eq. (22b). We solve the resulting equation 

via integration along a trajectory, i.e., we use Eq. ( 14) 

with the time development operator of Eq. (38) • We obtain 

- e exp(ik•q-iwt): 
""' ,..,_ 

0 

~d" ~0 ·~1 <~+~"·tt")exp[i(~·~0 -w)"J + c.c. ( 40) 
-oo 

(The integral is regularized in the usual way by giving w a 

small positive imaginary part.) To calculate the integral 

of Eq. (40) , we repeatedly integrate by parts. 

w
1 

(q,p,t} = -- - ie k·v - w 
- -0 

- v • 
-0 

n 

~g) J exp(ik•q-iwt) -
(41) 

At this point in the calculation, we see what approximations 

are involved. First, we neglect the terms in the sum in Eq. 

(41) which are of higher-order in (3/3t + ~0 ·3/3~}/(w - ~·~0 ), 
thereby obtaining the simpler result 
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k•v - w ""' ....... o 
+ c.c. (42} 

Thus, we are excluding resonant particles by making the approxi-

mation 

A more basic approximation is also made as soon as we 

undertake the perturbation calculation; we are assuming that 

the higher-order terms are small. Specifically, this means 

that a second-order term, such as {w1 ,h1 }, must be small compared 

with a corresponding first-order term, such as h1 • In 

the present case, we find that {w1 ,h1
} is small·er than h

1 
by 

the factor le~·f/(w- ~-~0 > 2 1. Hence, we are assuming 

2 I e~: V < w - ~. ~o > I < < 1 < 4 4 > 

Physically, Eq. (44) implies that the position oscillation 

of a particle about its unperturbed trajectory is much smaller 

than a scale length of the oscillation. 

The second step in the calculation is the determination 

of the oscillation-center response. Since K1 = 0, there is 

no oscillation center force, and the oscillation centers 

follow the unperturbed orbits. This implies F(q,p,t) = 
"' "' 

g(~- ~0t,~), where g is any arbitrary function. In the 

present work, we specialize to the case where the unperturbed 
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distribution is uniform and, hence, F = f 0 (£). 

The third step in the calculation is the application of 

the Lie transform to the oscillation-center distribution to 

obtain the physical distribution as in Eq. (41). We find 

+ c.c. { 45) 

We note that we have kept terms in the gradient of the ampli-

tude in this equation, whereas we neglected such terms in 

Eq. (42) . This is valid for the following reason. In neglect-

ing terms containing amplitude gradients in Eq. (42} , we were 

making the approximation (43} . To neglect such terms in 

Eq. (45), we would have to make the additional approximation 

<< lkl (46) 

Finally, we insert f 1 into Eq. (5) to obtain the first-

order current. Integrating over q, we obtain 

2 J 3- [afo ;n) ~o~o·~l 
Il(~,t) =- e exp(i~·~-iwt) d p a~ • (k- .v ~·~o-w 

+ fo(~l- Yo:'Co"~1>1Yo] + c.c. (47 > 

To find the linear susceptibility, x(k,w) = 4nia(k,w)/w, 
~,......., ::::=:::"' 

(a is the conductivity tensor) from Eq. (47) , we specialize 

to plane waves, for which v~1 = a~1;at = 0, and the electric 

-25-



field amplitud~ £1 is given by f 1 = iw~1 . Restoring species 

labels and ordinary units, and integrating by parts, we 

obtain 

s X (~,w) = 
~ 

+ 
(k2 ,,,2/c2) Y.oYo - ~.~~ 

~Yo + Yo~ 
w - k•v - -a 

( 48) 

To obtain the better known nonrelativistic result (Ref. 23, 

p. 45), we must set Yo= 1 and ~O =Elms' and we must neglect 

the quantity w2;c2 in the last term, which arises from the 

relativistic dynamics. A more detailed.discussion of this point is 

given in Ref. 24, Chap. 8. 

c. Oscillation Center Evolution Equations 

Through second order, we can describe the oscillation 

center picture as follows. The ponderomotive Hamiltonian 

and the slowly varying background electromagnetic fields 

determine the evolution of the oscillation-center distribution. 

The oscillation-center distribution and the Lie transform 

determine the physical particle distribution. The physical 

particle distribution determines the charge and current dis-

tributions. Finally, the charge and current densities deter-

mine the evolution of the slowly varying fields, thus complet-

ing the loop. 

In order to analyze the transformation equation (22c) , 

we must first know the structure of the second-order, self-
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consistent, electromagnetic potentials which appear in 

Eq. (22c) through h
2

, as in Eq. (7b). Since the last 

(22c) is bilinear in two quantities 

with phase i (k • x - wt) , it follows that this term can be --
written as a sum of two terms, one, which is slowly varying, 

and another, ~hich varies at twice the frequency. Thus, we 

anticipate that the second-order, self-consistent, electro-

magnetic potentials have the same structure: 

(49a) 

(49b) 

Of the two types of terms on the right-side of 
. 

Eq. (22c), those varying with twice the frequency may be 

transformed away, i.e., equated to the terms containing w2 on 

the left side of Eq. ( 22c). The remaining terms are equated 

to the second-order, oscillation-center Hamiltonian, 

(The subscript 0 on the Poisson 

brackets means that only the zeroth harmonic is kept.) 

This oscillation-center Hamiltonian may be separated 

into two terms, K2 O = K2 .AO + K2vO, as discussed in Sec. 

The first term depends linearly (.A) on the second-order, 

II. 

electromagnetic potentials: K2 .AO = -ey0 ·~20 + e¢ 20 . The 

second term depends nonlinearly (v) on the lower order 

electromagnetic potentials. 
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'(50) 

This second term is called the ponderomotive Hamiltonian, 

since it determines the influence of the rapidly varying 

fields on the slow evolution of the backgrqund. We defer 

calculation of K2vO until the next section. 

The oscillation-center Hamiltonian determines the evo-

lution of the oscillation-center distribution via the second-

order Liouville equation 

This equation cannot be S?lved in general. We will discuss 

some special solutions in later subsections. However, note 

that the rapid variation has been removed, and that there is 

no fake diffusion in this equation. 

To determine the distribution in physical space, we trans-

form back. Inserting F into Eq. ( 16) , we obtain 

Several physical phenomena are present in this equation. For 

example, upon time averaging we find that the slowly varying 

part of f, 

(53) 
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has two contributions, the oscillation-center distribution, 

plus the time average of the transformation. As we shall see 

in Sec. IVE, the last term in Eq. (53) .leads to fake 

diffusion. The term {w
1

,F} in Eq. (52) contains the modi-

fication in the linear response due to the change in the 

oscillation-center distribution. Finally, f contains terms, 

(f) 2 = ~{w1 ,{w1 ,F}} 2 - ~{w2 ,F}, which vary at twice the phase. 

From the distribution in physical space, we determine 

the slowly varying charge and current densities 

<p(x,t)> = Po + P2o = e J d 3
p < fC;:,r_, t)) 

<j(x,t)> = ~0 + j20 = e J d 3
p <~(~'I:' t) f (;:,£_' t)) . 

"" - -
Inserting Eqs. ( 8) 1 ( 9) , and (52) into Eqs. (54), 

we obtain 

and 

~20 = efd3p (~of(F- fol + ~{wl,{wl,F}}ol 

-<~{wl,F})+ ~20F) . 

(54a} 

(54b) 

(55a) 

(55b) 

In a multispecies plasma, we would have to sum the charge and 

current density contributions from each of the species. 

Finally, we complete the loop with Maxwell's equations, 

which, in the Coulomb gauge, are 
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(56a) 

2 11 ~20 (56b) 

Thus, we have a complete set of equations describing the 

slowly varying evolution of the background. In fact, upon 

combining these equations with the zeroth-order equations, we 

obtain a unified theory of the evolution of the background 

plasma including ponderomotive effects. 

D. Explicit Form of the Ponderomotive Hamiltonian 

There are two ways to calculate the ponderomotive Hamil-

tonian. The first way is.to deduce the expression for the 

ponderomotive Hamiltonian from the linear susceptibility and 

the K-x theorem. The second way is to compute the Poisson 

bracket and perform the average as in Eq. (50). In this 

section we show that the first method gives the ponderomotive 

Hamiltonian quickly and with little effort. However, the 

second method allows one to see the approximations involved. 

Given our usual form for the first-order electric field, 

Eq. (34), we note that the linear susceptibility, Eq. ( 48) , 

and the K-x theorem, Eq. (37), combine to produce the relation 
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-1 ( • y I 
0 ~ 

kv" + vok 
+ ~ "' "' 

w - k•v 
. -.:..,0 

(57) 

By functional differentiation with respect to f
0

(p), we can 

reduce this expression to 

J d3q 
2 

Jd
3

x 
* K2v0 (~, !i::' t) 

e 
~1 (~, t) = -2 

mw 

~0 + ~0~ 
2 

2 2 ) • y-l(I + 
)[o:Z.o<k - w /c ) 

+ 111 E1 (x,t) 
0 ~ w - •v 

(w - k·v ) "' "' _;:,.a 
"' ...... o 

(58) 

In this expression, we have two quantities with equal spatial 

integrals. Therefore, the difference of these two quantities 

is a function with vanishing integral, i.e., a derivative. 

Thus, we deduce the formula 

e2 * -1 ( = -2 ~1 (~It) • y 0 I + 
mw ~ 

2 2 2 ) + ~0~0 (k - w ~c ) • 

(w - k•v ) - ........ o 

for the ponderomotive Hamiltonian. 
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To derive the well-known ponderomotive potential7 from 

the ponderomotive Hamiltonian, we must perform the following 

operations on K2vo· We must take the nonrelativistic limit, 

we must assume ~·~o(E) << w, and we must restore units. Thus, 

we obtain the usual formula for the ponderomotive potential, 

<I> (x,t) = e 2 jEj 2
/mw2 • Therefore, the usual results are valid 

p -
only for particles which move slowly compared with the spe~d of 

light and the wave phase velocity. In contrast, the pondero-

motive Hamiltonian is also valid for particles moving faster 

than the phase velocity of the wave as long as the basic 

approximation (43) holds. 

We can also relate our result to that of Vedenov, et al-;. 25 

To do so we first assume that the field is longitudinal, i.e., 

~l and k are parallel. Secondly we take the nonrelativistic 

limit; we set m~0 = £and y 0 = 1, and we neglect the w2;c2 

term as discussed in Sec. IVB. This time we obtain 

m(w - k•p/m) 
-'""' 

Vedenov, et al. obtained this expression in Ref. 25. However, 

they interpreted this quantity as a velocity dependent potential, 

from which the particle acceleration was determined via 
. 

mv = - ~K2 vo· We note that this interpretation cannot be 

correct since it violates Liouville's theorem; the divergence 

of the flow, (3/8x) ·x + (a;av) ·v, does not vanish. - ,..., 

Finally, we examine the validity of our result, Eq. (59). 

As we noted in deriving this result, it is valid when the terms 
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in the gradients of the amplitudes may be neglected. To see 

exactly what this means, we calculate K2vO via Eq. (50). 

As this is a long calculation, we present only the result, 

2 
~Yo<k 

(w -

( 60) 

We note that Eq. (60) does indeed reduce to Eq. (59) if 

we set ~l = ~1/iw, and we neglect the gradient of the amplitude. 

Thus, in order for the result (59) to be valid, we must have 

la~1;atl << lw~1 1. In addition, we must be able to neglect the 

second term in Eq. (60). This is certainly possible when the 

approximation (46) holds. However, suppose the wave has large 

phase velocity 

1~:~0/w I << 1 , (61) 

and the plasma is nonrelativistic, 1~0/cl << 1. In this case 

the approximation (46) need not be invoked, since the second 

term in Eq. ( 6 0) is small by virtue of assumption {43). 

E. Wave Momentum Fake Diffusion 

It is well known that the time-averaged momentum and 

energy of nonresonant particles increases in the presence of a 

. '11 . 13 , 26 '"" . h' h k grow1ng osc1 at1on. u!ese 1ncrements, w 1c are nown 
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22 
as the wave momentum and wave energy, are caused by fake 

d 'ff . 13,14 
~ us~on. 

In the present theory, fake diffusion can be singled out 

by neglecting the response to the ponderomotive Hamiltonian, 

i.e., setting F = f 0 . This, for example, implies that the 

second-order change in the time averaged distribution is given 

We note that this formula is 

consistent with the interpretation. As the wave amplitude 

increases, so does w1 and, hence, f 20 . If the wave dies away, 

f 20 vanishes. In this case we see that fake diffusion comes 

from the bilinear terms in the Lie transform. 

Fake diffusion effects also arise because of the difference 

between canonical momentum and kinetic momentum. For example, 

if we calculate the local kinetic momentum density ~20 neglect-
. 

ing the second-order, self-consistent fields and K2 , we obtain, 

from Eq. (52) ' 

~20 = f d3p (< r_ - e~) f) t -
= f d3p (£ ~{w1 ,{w1 ,£ 0 JJ 0 + <~{w1 ,£ 0 J)). (62) 

In fact, a calculation of the wave momentum via Eq. (62) 

gives the well known result: 26 the momentum calculated via 

fake diffusion equals the wave momentum which is calculated 

f k 1 d f th 1 . t'b'l't 22 rom a now e ge o e ~near suscep ~ ~ ~ y. 
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F. The Self-Consistent, Quasistatic Response 

The evolution of the oscillation center distribution is 

said to be quasi-staticwhenthe terms in the oscillation cen­

ter equations that contain time derivatives are negligible. 

Physically, this means that the oscillation centers are in 

equilibrium with their Hamiltonian. Mathematically, this is 

valid when the thermal speed of the particles is so great that 

they can cross the wave packet before it evolves significantly. 

In this section we obtain rigorous, quasi-static,self­

consistent solutions for the density perturbation and magnetic 

field produced by the wave. We show that the Boltzmann re­

sponselO,ll to the ponderomotive potential is only approximately 

valid. In fact, when the kinetic corrections are kept, we 

obtain a simple and general formula for the density perturbation. 

Secondly, we note that the wave-generated magnetic field, as 

derived by Bezzerides et al., 19 , 20 is simply the response to 

the momentum dependence of the oscillation-center Hamiltonian 

and the Lie transform. 

Upon neglecting the time derivative in Eq. (51) , we find 

that the oscillation-center distribution can be any function 

of the oscillation-center Hamiltonian, F = g(h0 + K20 ). How­

ever,this solution must reduce to the unperturbed distribution, 

when the wave amplitude vanishes. This requirement implies 
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g[h
0

(£)] = f
0

(£). Thus, we deduce that the quas~static solu­

tion for the oscillation-center distribution is 

( 6 3) 

We note that the unperturbed distribution must be isotropic 

for this procedure to be valid. 

To understand the physics involved in ·neglecting the time 

derivative in Eq. (51), we consider its linearized form 

( 64) 

where 

(65) 

From the approximate solu~ion, (63), we find 

( 66) 

If we insert Eq. (66) into Eq. (64), we find that the two 

Poisson brackets cancel. Hence, Eq. (66) is a good solution 

when the first term in Eq. (64) is small relative to either 

of the other terms, i.e., I (df0/dh0 ) (aK20;at) I << I (df
0
/dh

0
) 

~0 ·VK20 j. This condition is satisfied for the vast majority 

of the particles when 

( 67) 
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where vT is the thermal speed of the particles. Physically, 

this means then the particles must be able to cross the wave 

packet before it changes significantly. 

For simplicity, we will henceforth use the linearized 

solution { 6 6) • However, we note that this linearization 

does not follow from the ordering introduced in Sec. IVB. 

There, the approximation is given by Eq. {44). Here, we are 

making an independent approximation. For Maxwellian f 0 , the 

approximation needed for the linear solution to be valid is 

K20/T << 1, where T is the temperature of the distribution. 

The quasi-static approximation also implies that we can 

neglect the time-derivatives in Maxwell's equations, since 

(67) implies that motions are slow compared with the speed of 

light. Thus, Eqs. (56b) reduces to 

\j X ~2Q - { 68) 

1. The Quasi-static Density Perturbation 

We ar~ now prepared to calculate the self-consistent 

density perturbation. We take f 0 Maxwellian, since this case 

gives particularly simple results. Then, Eq. (66) yields 

F 2 = - f
0

K20/T. Inserting this result into Eq. {55a) , we 

find the density perturbation to be given by 

-37-
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We can neglect the term containing ~20 since it is an odd 

moment of an isotropic distribution. Furthermore, we can 

neglect the last term. A quick calculation shows that if 

where the terms represented by O(VA) can be neglected on the 

basis of either (61). or (46) as discussed in Sec. IVD. 

If we now use the K-x theorem in the form ( 59 . ) , the evalua-

tion of the remaining terms in ( 69 ) is trivial. We obtain 

upon restoring species labels. 

We now assume a two-species plasma, and that the wave-

packet is large compared. with a Debye length, implying quasi­

neutrality. (These assumptions are not necessary, but their 

use leads to a more attractive result.) Quasi-neutrality and 

Eq. (70) together imply 

(71) 

where x = xe +xi. This equation can be further simplified 

using Faraday's law, ~ x ~l = w~1/c, and the linear propaga­

tion equation, x·E = -E - k x ~.1/w. The result is 
-1 -1 ·-~ 

(72) 
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Ad . t' f ld 1 t d 1' 18 er1va 1on or co p asma waves was repor e ear 1er. 

As we shall show in Sec. V, this result also applies 

in Vlasov magnetized plasma. Hence, the use of the K-x 
theorem explains why Eq. (71) and Eq. (72) have appeared 

. d . . h 1' 10,11,27 aga1n an aga1n 1n t e 1terature. 

2. The Quasi- s'tatic Magnetic Field 

To calculate thequasi-static magnetic field produced by 

the wave, we begin by finding the second-order current density 

Combining Eqs. (8) ,· {25), {52), and (66) and keeping 

terms up to only second order, we obtain 

- ey~l < (~ -~0~0-~1) {wl,fO}) 

+ 2~:-::o. ~ - 3:-::o <:-::o. ~1 l 2) fo] . (73} 

For simplicity, we first evaluate the current density in 

the case where the gradient terms may be neglected, i.e., 

where either approximation (46) or approximation (61) applies. 

Since this evaluation is tedious, we only present the result, 

j 20 = o(VA), that is, the second-order current vanishes to 

zeroth order in the gradient of the amplitude. At first glance, 

this result seems surprising. After all, in the last section 
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we showed that fake diffusion leads to wave momentum and, 

hence (at least for nonrelativistic particles), wave current. 

It seems to be quite a coincidence that the ponderomotive 

effects and the fake diffusion effects cancel to lowest order. 

However, further inspection shows that this fact is 

implied by charge conservation. We note that the structure 

of the theory is such that a calculation of ~2 vO must result 

in an expression of the form 

t 
m=l 
n=l 

* an (k,w,f0)A (x,t)A (x,t) ;vmn ,..., m ,.., n ....., 

In the quasi-static limit \/• j = 0, which implies 

~ atrnna(AmA:)/3xt = o 
trnn 

for any A, since A is arbitrary. (A need not be self--
consistent; the wave could be externally driven.) Thus, a 

must vanish, and j 20 must be the curl of some quantity in -
order for its divergence to vanish. 

Thus, to find j 20 , we must re-evaluate ( 73·) keeping 

the terms containing amplitude gradients. For simplicity, 

we use the approximation ~-~0 <<wand 1~0 1 << 1 in this 

calculation. By this procedure, Eq. ( 73 ) reduces to 

* \1 X ( - i ~l ( ~ 1 t) X ~l ( ~ 1 t) J 

upon restoring species labels. We note that \1 • ~20 vanishes 

identically. We also note that only the electron current 
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contributes significantly because of the presence of the mass 

in the denominator of this expression. 

To calculate the induced magnetic field, we use Ampere•s 

law, (68). This yields 

V X { ~Q -

in which -e0 is the charge of the electron. From this we 

deduce 

~20 = 

where the quantity U is determined from V • ~20 = 0 to be 

* 
U(x,t) = 

V"• Cfl (~" ,t) X £1 (~" ,t}] 
lx - x>j - -

This expression for B20 is the general three-dimensional 

result. It reduces to the result of Bezzerides, et a1. 19 , 20 

in the one-dimensional case, and to the result of Mora and 

Pellat,
28

'
29 

which is valid when U vanishes. 

Finally, we would like to say how the cold-fluid calcu-

30 
lation by Speziale and Catto of the wave-generated magnetic 

field fits into the present theory. With some work, one can 

show that the results of Speziale and Catto are obtained by 

neglecting the ponderomotive Hamiltonian in Eq. (73). Thus, 

(as pointed out by Mora and Pellat) the results of Speziale 

and Catto are applicable for the short-time response, before 

the particles have had time to equilibrate with the pondero-

motive force. 
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V. PONDEROMOTIVE EFFECTS IN MAGNETIZED PLASMA 

A. The Unperturbed System 

The unperturbed, nonrelativistic Hamiltonian for a 

particle in a uniform magnetic field is h
0 

where the vector potential can be taken to 
A 

the magnetic field ~O = B0z. 

2 = ~[!2_-e~o(~)J ' 
A 

be A (q)=q B0y for 
"'0 .._ X 

For convenience we introduce new canonical pa~rs, (yg,pg) 

and (~, ~), to describe motion perpendicular to ~o· 

qx = p /0. + g 
1: 

(2~/0.) 2 sin 1J; 

1: 
Px = ( 20.~) 2 cos ~ 

1: 
qy = Yg + ( 2l,l/0.) 2 cos ~ ' 

Py = p g 

The variable Q = eB0 in these equations is the signed gyro­

frequency. Note that particles with positive (negative) Q 

must have positive (negative) lJ. 

the unperturbed Hamiltonian is h 0 

In terms of these variables, 

2 = 0.l,l + ~p z 

The interpretation of these variables is well known. The 

x guiding center position is xg = pg/0.. The y guiding center 

position is Yg· [To denote the vector guiding center we use 

fg = (xg, Yg' qz). To denote the vector gyroradius we use 
A 1: A 1: 

~ = x(2lJ/0.) 2sin ~ + y(2l.l/0.) 2cos ~.] The gyrophase is~' and 

the action (magnetic moment divided by the charge) is ~· For 
1: 

convenience, we will sometimes use the gyrospeed v = (2l,10.) 2
• 

In terms of these variables, the zeroth-order, time-development 

transformation is given by 
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To calculate the response, we will need the charge and 

current density operators. The charge density operator is 

r(~;~) = eo(~-£g-f). For the nonrelativistic Hamiltonian, the 

current density·operator is 
00 

n(x;z,t) =L: ev o (x-r -1;} , 
-n "'-g ,..., 

n=O 

where v = -eA for n > 0, and -n -n 

A A A A 

in terms of the unit vectors u± = (x ± iy)//2 and uz = z 

B. Linear Theory Via Lie Transforms 

(75) 

(76) 

As in the unmagnetized case, we must give a brief presenta-

tion of the linear theory of a magnetized particle in a modu-

lated wave before proceeding to the nonlinear theory. The 

calculation is analogous to the one in Sec. IV. We integrate 

h 1 to find w1 . From w1 and f 0 we compute f 1 . From f 1 we 

compute the linear response. 

Without loss of generality, we take the wave vector of 

perturbing field to be in the x- z plane: ~l(~,t) = 

~1 (~,t) exp(ikxx + ikzz- iwt) + c.c. As before, we use the 

radiation gauge, ¢1 = 0, for the first-order fields. 

For the given vector potential, the first-order Hamiltonian 
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+ p {; ) z z 

· ~1 <rn+ ~_,t) exp[ik x +ik (v/n)sin~+ik q -iwt)+ c.c. 
~ ·- X g X Z Z 

00 

= -e """'u*· A1 (r +t;.,t) exp(ik x +in~ +ik q -iwt)+ c.c., L..J-n - "'<J- x g. z z 
n=-oo 

where the vector ~ is defined by 

v A v A A 

__ ~2 Jn+l(kxv/n)u++-- J 1 <k vjn)u +p J (k vjn)u v..:: 12 n- x - - z n x z 

We note that ~ is an invariant of the unperturbed Hamiltonian. 

To find the first-order term, w1 , of the Lie transform, 

we must integrate h 1 along a trajectory 

/rrJ 
-oo 

As in the unmagnetized case, we calculate this integral by 

repeatedly integrating by parts 

00 * I exp ( ikxxg +in1/J+ik2 q 2 -iwt} nil + ;:Pz - w 

x t[nn+k ~- w (~t + Pz ~qz + n ~~)Jm 
m=O z z 
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Here,we see that the basic approxiamtion needed for pondero-

motive theory to apply is that the amplitude, A, must vary slowly -
along an unperturbed trajectory: 

(78) 

Since the minimum of lw-k p -nnl for all n is less than n, the z z 

approximation (78) implies that 

(79) 

The reason the approximation ( 79 ) must hold is that we are 

averaging over a gyroperiod. If ( 79) did not hold, then the 

gyroperiod would be a long time period. Hence, magnetic effects 

would be unimportant, and the unmagnetized theory would be used. 

Equation (79), which can be written in the form, 

(80) 

also implies that the gyroradius, v/n, must be small when com-

pared with the scale length of the wavepacket. To see this, we 

note that since ~01 oscillates sinusoidally along a trajectory, 

Eq. ( 80) can just as well be written 
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( 81) 

In combination, Eqs. ( 80 ) and ( 81 imply I ca;at+p a;aq > z z 
, from which the small gyro-

radius assumption follows. 

In any case, the approximation, ( 78) 7 allows us to truncate 

the series in Eq. ( 77 ) to obtain the expression, 

* 00 U •A (q,t) 

L: 
,...,..n. -., ~ 

{82) 
wl ::::: -ie exp(ik x +in¢+ik q -iwt) + c.c. 

X g Z Z n~+k p -w z z n=-oo 

for the first-order term of the Lie transform. 

To first-order, the oscillation-center distribution equals 

the unperturbed distribution. For a homogeneous, time-independent 

system, the unperturbed distribution is a function of ~ and p z 
only. Hence, F = f 0 (pz'~). Inserting f 0 and w1 into Eq. ( 25 ), 

we obtain the first-order distribution 

00 

[~ (k -i _a ) ap z aq z z 

exp[ik x +in¢+ik q -iwt] = -e _______ x~g~ ______ z __ z ____ _ 
n~+k p -w z z n=-oo 

+ :fo ( n-i (v/n} cos ¢ }- + i (v/~) sin ¢ }- )] 
~ qx qy 

* Xu •Al(q,t) + c.c . ........ n ~ -., 
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Finally, we insert this expression for f
1 

and the current 

operation in Eq. ( 75 ) into Eq. ( 27 ) to obtain the first-order 

current density response. Neglecting the amplitude gradients, 

we obtain,for the linear susceptibility (Ref. 23, p. 51)' 

d d ) ~J.l + kz -"'­a apz 

* ] u u 
-n -n 

w - k p - n~ z z 

C. Oscillation-Center EVolution Equations 

The oscillation-center picture for magnetized particles 

is analogous to that of unrnagnetized particles except for the 

existence of non-zero w20 .. 

( 83) 

We begin by dividing Eq. 22b) into linear and nonlinear 

parts. Here we only keep the zeroth harmonic terms, since the 

second harmonic terms may all be transformed away. We obtain 

1 1 
K2v0 - 2(aw2vO;at + {w2vO'hO}) = h2v0 + 2{wl,hl} and 

1 
K2v0- 2(aw2AO;at + {w2AO'h0})= h2A0' where h2A0 =- e(~-e~)-~20 

1 2 
+ e~20 and h2v0 = <2 e ~1·~1> · 

We first analyze the second-order linear terms. Using 

Eq. ( 76), we obtain the following expression for h 2 A0 : 

=- (~ -it/! A e u 
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Using the small gyroradius approximation, this becomes 

h2AO =- (~ e-iWu + ·~ eiWu+ + epzaz)'~o(£g,tl + e$20(~,t) 

( 85 

We use this result to select K2A.O and w2A.O". As usual, the terms 

which vary slowly along an orbit are equated to K2A.O' 

The remaining part of h
2

A.
0 

is equated to the terms containing 

w2A.O" Integrating along a trajectory, we find 

1 _ (iev -i~A 2 w2A.O - --- e u_ 
n/2 

- -- e u • r iev . i~ A ) A ( t) 
n/2 + ..... 20 -g' 

{ 86 ) 

( 87 ) 

By a similar procedure we can calculate K2vo and w2vo· 
However, we defer the calculation of K2vO until the next section 

where we use the K-x theorem. We defer the calculation of w20 

altogether since it will not be needed in this paper. In any case, 

the point has been made that the basic difference between the mag-

netized and unmagnetized cases is the presence of nonzero w20 . 

The remaining aspects of the oscillation-center picture for 

magnetized particles are identical to the unmagnetized case. The 

oscillation center distribution evolves according to Eq. (51 }. 

The physical distribution is found using Eq. (52 }. Of course, 

now the time-averaged physical distribution is given by 
' 

(f)
0 

= F + ~{w1 ,{w1 ,F}} 0 - ~{w20 ,F} , since w20 does not vanish. 
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Hence, the slowly varying charges and currents are given by 

( 8 8 ) 

and 

~20 = J ct 6 z[no<~;·:_,tl(F- f 0 + ~ {w1,iw1 ,FJJ 0 -} {w20 ,FJ) 

-< !2J. (~;~,t) {w1 ,F)>+ ;)_20F J ( 89 ) 

D. The Ponderomotive Hamiltonian for a Magnetized Particle 

Upon inserting the magnetic susceptibility, Eq. 

the K-x theorem, Eq. ( 37 ~~we obtain the relation 
~ 

83 ) , into 

* ~1 (~, t) 

[~ 
00 

+2: 
n=-oo 

90 ) 

In writing this relation we have used the fact that K2v cannot 

depend on ~ since it is an orbit average. By functionally differ-

entiating Eq. ( 90 ) with respect to f
0 

and integrating with res­

pect to ~~ we obtain 
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L + k a ) 
d'J.l z apz 

In this expression we have two quantities with equal integrals. 

As in the unmagnetized case, we argue that the integrands must 

be equal except for terms of the order of the amplitude gradient. 

( 91 ) 

Thus, we have obtained the ponderomotive Hamiltonian for a mag-

netized particle. 

From our experience with the unmagnetized case, we know that 

the validity of Eq. ( 91 ) rests on the approximation ( 46) plus 

the approximations used in deriving the linear response. Speci-

fically, ( 78) must hold, and, as shown in Sec. VB, this implies 

that the gyroradius must be small in comparison with the scale 

length of the wave packet. 
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To reduce Eq. ( 91 ) to previously known results, we must 

take the limits k v;n << 1 
X 

A 2 2 
gives K2v = luz·f1 1 /w + 

the usual result for the ponderomotive potential for cold, mag-

. d . 1 7 net1ze part1c es. 

At this point we discuss how the ponder·omoti ve Hamil toni an 

affects the motion of the particles. We recall that the Lie-

transform expressions are functional relationships. Hence, the 

ponderomotive Hamiltonian for an oscillation center, 

(Xg,Yg,Qz,'l!,N,Pz), is found by simply substituting those vari­

ables for (xg,yg,qz'~'~'pz). 

The implications of the ponderomotive Hamiltonian for 

parallel motion are similar to those of the unmagnetized case . 

• 
The oscillation center feels a force, Pz = -aK2v/8Qz, which is 

proportional to the parallel gradient of the ponderomotive 

Hamiltonian. In addition, the parallel velocity and the momen-

tum differ by the momentum derivative of the Hamiltonian, 
. 
Q - P = 3K2 /3P • The ponderomotive Hamiltonian also predicts z z v z 

that magnetized guiding centers will experience ponderomotive 

drifts, x = -(aK2 /3Y )/DandY = (aK2 ;ax )/D. g v g g v g 

Furthermore, from the ponderomotive Hamiltonian, one can 

compute the gyrofrequency shift of a particle in the presence 

of a high-frequency wave: 
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. aK2v 
If' - Sl = ~ 

f~ <~.t) ·z;oo [ ~M (n 
2 

e ::::: 
2 w 

a ~p) w -+ k aM z 

* u u 
-n-n 
kzpz 

• E
1 

(R , t) . 
. -- -g 

( 92 ) 

This result generalizes a formula derived previously by Aamodt 

21 et al. To reduce Eq. 92 ) to their result one must assume 

that the wave is electrostatic (~I lf1 >, that only one term in the 

sum contributes, and that k P /(w - nrl) << 1. z z 
Finally, we note that the oscillation center magnetic moment 

is an invariant, since K does not depend on If'. Actually M is an 

adiabatic invariant. Because we invoked approximation (79), M 

is conserved only when the"time derivative of the amplitude is 

small. In terms of the physical variables, M is given by 

M = ~-{w1 ,~} - ~{w2 ,~} + ~{w1 ,{w1 ,~}}. Alternatively, the magnetic 

1 
moment~ is given by~= M + {w1 (~,t) ,M} + 2 {w2 (!,t) ,M} + 

~ {w1 (!,t) ,{w1 (~,t) ,M}} in terms of the oscillation-center variables. 

Note that ~ is not invariant because of the presence of oscillating 

terms such as {w1 ,M}. However, one can easily verify that the 

term {w1 ,M} = aw1;alf' does vanish in the limit (k
2

p - w)/Sl + 0 and 

k v/Sl + 0 as it should, since then ~ must be an adiabatic invariant. 
X 

E. The Self-Consistent, Quasistatic Response 

If we neglect the time derivatives in Eq. ( 51 ) , we find that 

the oscillation-center distribution can be any function of the in-

variants of the oscillation-center Hamiltonian, h 0 + K20 . In the 
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1 2 
magnetized ease, there are two such invariants, ]J and '2Pz + K20 . 

Furthermore, using the arguments of Sec. IVF, the function 

must be the unperturbed distribution. Thus, the solution for 

F is given by F = f0 (~ p~ + K20 , ]J). We note that ifF is 

linearized, as in Eq. ( 65 ) , then the change in F is given by 

( 93 ) 

To determine the validity of this solution, we insert it into 

Eq. { 64 ) and require the term aF 2/at to be small. We find 

that the quasi-static approximation is valid when I a~;at! << 

v
11 

'I a~;az! holds. Physically, this means that the particles 

must be able to cross the wave packet by moving along field lines 

before the wave packet changes significantly. 

For simplicity,henceforth~we will use the linearized solu-

tion ( 93 ) . In addition, we will assume the unperturbed dis-

tribution to be Maxwellian in the parallel energy. In this case, 

Eq. ( 93 ) becomes 

' 
( 94 ) 

where Til is the parallel temperature. 

To find the density perturbation, we insert the distribu-

tion ( 94 ) into Eq. ( 88 ) . We obtain 
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In evaluating thi.s expression, we can neglect the term involving 

~20 , since it is an odd moment of an even function. When 

3 performing the integral over d rg' we can replace r by x since ,..._g ,.._, 

~ is small compared with the scale length of the wave packet. 

Thus we have 

n20 = f d~Sld~dpz [-fo (K2v0 + e~20)/TII 

+ ~ {wl,{wl,fO}}o - ~ {w20'fo}] r 
-g = X -

( 95 ) 

Next, we note that the last two terms in Eq. ( 95 ) vanish 

to lowest order in the amplitude gradients. The term 

vanishes since it is the integral over w of a W derivative. 

To prove that the other term vanishes, we insert w1 in the form, 

w
1 

= w1 cq,w,p,p ,t) exp(ik x + ik a - iwt) + c.c. , 
- Z X g Z Z 

where 
00 

wl = -ie ~ exp (inw) 
n=-oo 

* U ·A (g,t) ,.,_n """J ,...._ 

nn+k p -w z z 
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into Eq. (95). The term is then seen to vanish upon inte-

grating by parts. 

Thus, Eq. (95) for the density perturbation reduces to 

which can be put in the form, ( 70 ). At this point, we can 

follow the analysis in Sec· IVF from Eq. ( 70 ) to Eq. ( 72 ) • 

Thus, Eqs. (70) and (72) also apply to a magnetized plasma. 
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