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Abstract

B-Spline curves and surfaces can be de®ned by a set of control points and a set of re®nement rules. These

rules act on the de®ningmesh of control points to create a new re®ned mesh. Repeated applicationof the rules

generates a sequence of meshes that converge to the curve or surface. In the surface case, Catmull and Clark

extended the re®nement rules for the rectangular topologicalmeshes of the B-spline form tomeshes that have

an arbitrary topological structure. In much the same way, the re®nement rules for a trivariate B-spline solid

can be extended from those that apply to the regular hexahedral topological lattices of the B-spline form to

lattices that have an arbitrary topological structure. We present a uniform development of the re®nement

rules for trivariate B-spline solids and extend the rules to apply to solid lattices of arbitrary topology.

1. Introduction

In geometric modeling, the techniques based upon the BÂezier and B-spline paradigms have been at the fore-

front for over two decades. The single characteristic that insures their popularity is that the curves, surfaces

or solids de®ned by these methods are uniquely de®ned by a set of control points in three-dimensional space.

These control points completely de®ne the B-spline object: In the univariate case, the control points are ar-

ranged in a sequence - a one dimensional array; in the bivariate case they are arranged in a two-dimensional

array structure; and in the trivariate case, they are arranged in a three-dimensional array. These array struc-

tures are quite signi®cant in that they enable us to de®ne the surface and solid in a tensor product form. One

bene®t of this is that it allows us to use the algorithms and methods generated for B-spline curves to design

the algorithms for B-spline surfaces and solids. This ease of de®nition and ease of design brought about by

manipulating a meaningful set of control points is what has made the BÂezier and B-spline methods so useful

in geometric modeling.



Unfortunately, the regular topological structures imposed on the control points of a B-spline surface or

solid limit the usefulness of the B-spline paradigm. For example, the B-spline surface is a tensor product

surface where the control points are arranged in an n�m array. This array structure imposes a rectangular or

quadrilateral structure on the set of control points. Consider the case of a control point mesh that is arranged

in a triangular structure - such as one may get from approximating triangles on surfaces. The B-splinen�m

array structure cannot be adapted to represent the triangular structure without creating a degeneracy in the

resulting surface. As the solid case is just an extensionof the surface case (bivariate to trivariate), the problem

clearly exists in this case also - perhaps even to a greater extent.

In the case of surfaces, there have been several proposed solutions to this problem, the most important of

which center about methods of de®ning the surface by subdivision. These methods de®ne a set of rules that

re®ne a de®ning mesh into a ªnewº mesh that still represents the surface exactly. By repetitively applying

these methods, one can generate a sequence of meshes that converges to the surface. The re®nement rules

for a B-spline surface are straightforward to de®ne. The idea is to adapt these rules so that they can be used

with a mesh of arbitrary topology. With some care, they can be developed so that, if the mesh is quadrilat-

eral, then the surface is a B-spline. The re®nement methods were ®rst presented by George Chaikin [2] for

curves; Riesenfeld [9] proceeded to show that Chaikin's curves were uniform quadratic B-spline curves; Doo

and Sabin [3, 4] extended Chaikin's methods to uniform quadratic B-spline surfaces, and then extended the

re®nement rules for the quadratic case to meshes of an arbitrary topology; and, Catmull and Clark [1] devel-

oped the cubic case. These methods have now come into widespread use in geometric modeling. They have

been used for interpolation and fairing [5], approximation [6], multiresolution design [7], and as a prepro-

cessing step in the design process [8]. In this paper, we limit ourselves to the cubic case and de®ne the set of

re®nement rules for solids speci®ed by a mesh of arbitrary topology.

Our strategy is to build up these re®nement methods by successively considering the univariate, bivari-

ate and trivariate cases. We will follow the general methodology given by Catmull and Clark, in that we ®rst

examine the re®nement for a trivariate B-spline solid de®ned over a hexahedral mesh. We will then extend

these rules to solids de®ned by a mesh of arbitrary topology. In section 2 we begin this analysis by devel-

oping the re®nement rules for uniform cubic B-spline curves. In section 3 we utilize these univariate rules

to develop re®nement rules for uniform cubic B-spline surfaces and then present, in section 4, Catmull and

Clark's classic generalization of the surface rules to meshes of arbitrary topology. In section 5, we develop

the extension of the re®nement rules for uniform B-spline surfaces to rules for the trivariate uniform B-spline

solid. Finally in section 6, we generalize these rules to meshes of arbitrary topology. We have attempted to

be complete in this paper - developing the rules for the most elementary of modeling primitives - curves ±
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and using these uniformly to develop the rules for higher-level primitives.

2. The Univariate Case

The re®nement rules for the univariate case are developed directly from themethods for binary subdivisionof

the uniform B-spline curve. We ®rst develop the re®nement rules for a uniform cubic B-spline curve de®ned

by four control points. We then extend these rules to those work with control polygons of arbitrary length.

2.1. Binary Subdivision

Consider a cubic uniform B-spline curve P(t) de®ned by the control polygon consisting of the four points

P0, P1, P2 and P3. Such a curve is shown in the following illustration.

P0

P1 P2

P3

P(t)

This curve is subdivided into two pieces by applying one of the two splittingmatrices

SL =
1

8

2
6666664

4 4 0 0

1 6 1 0

0 4 4 0

0 1 6 1

3
7777775

SR =
1

8

2
6666664

1 6 1 0

0 4 4 0

0 1 6 1

0 0 4 4

3
7777775

to the control polygon. (When applied to the control polygon SL gives the control points for the ®rst half of

the curve, and SR gives the control points of the second half.) These matrices induce af®ne operations on

the control points, as the sum of the elements of each row of the matrix is one.

3



By examining the rows of the two matrices, we can see that ®ve unique points are generated and we can

combine the two into a single 5� 4 matrix

1

8

2
6666666664

4 4 0 0

1 6 1 0

0 4 4 0

0 1 6 1

0 0 4 4

3
7777777775

which can be applied to the control polygon by2
6666666664

P1
0

P1
1

P1
2

P1
3

P1
4

3
7777777775

=
1

8

2
6666666664

4 4 0 0

1 6 1 0

0 4 4 0

0 1 6 1

0 0 4 4

3
7777777775

2
6666664

P0

P1

P2

P3

3
7777775

generating a new control polygon which serves as the re®nement of the original. The ®ve control points of

this new control polygon specify the two subdivided halves of the curve ( P1
0, P

1
1, P

1
2, and P

1
3 specify the

®rst half, and P1
1, P

1
2, P

1
3, and P

1
4 specify the second half), and therefore uniquely specify the curve itself.

P0

P1 P2

P3

P
1

0

P
1

1

P
1

2

P
1

3

P
1

4

Wenote that three of the newcontrol points appear to lie at themidpointsof the three respective line segments.

These points will be classi®ed as ªedge pointsº. The other points all lie close to one of the interior vertices

(P1 and P2) of the original control polygon, and will be called ªvertex pointsº.

With this classi®cation, denote the new control polygon generated by the binary subdivision method as
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fE0;V0;E1;V1;E2g. Then by applying the matrix we obtain

2
6666666664

E0

V0

E1

V1

E2

3
7777777775

=
1

8

2
6666666664

4 4 0 0

1 6 1 0

0 4 4 0

0 1 6 1

0 0 4 4

3
7777777775

2
6666664

P0

P1

P2

P3

3
7777775

The edge pointsE0, E1 and E2 are calculated by

E0 =
1

8
(4P0 + 4P1)

=
P0 +P1

2

E1 =
1

8
(4P1 + 4P2)

=
P1 +P2

2

E2 =
1

8
(4P2 + 4P3)

=
P2 +P3

2

and indeed are the midpoints of the line segments connecting the original control points. These points are

illustrated in the following ®gure:

P0

P1 P2

P3

E0

E1

E2

The vertex pointsV0 andV1 are calculated by

V0 =
1

8
(P0 + 6P1 +P2)
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=
1

8
((P0 +P1) + 4P1 + (P1 +P2))

=
1

4
(
P0 + P1

2
+ 2P1 +

P1 +P2

2
)

=
1

4
(E0 + 2P1 +E1)

=
E0+P1

2
+ P1+E1

2

2

V1 =
1

8
(P1 + 6P2 +P3)

=
1

8
((P1 +P2) + 4P2 + (P2 +P3))

=
1

4
(
P1 + P2

2
+ 2P2 +

P2 +P3

2
)

=
1

4
(E1 + 2P2 +E2)

=
E1+P2

2
+ P2+E2

2

2

P0

P1 P2

P3

E2

E1

E0

V1

V2

and each is the midpoint of the line segment that joins the respective midpoints of the line segments from the

vertex point to the adjacent edge points. We note that the calculations require onlymidpointsof line segments

to be determined.

2.2. The General Case of Arbitrary Length Control Polygons

Extending the above re®nement rules to control polygons of arbitrary length is straightforward. Given a con-

trol polygon fP0;P1; :::;Png, we extend the re®nement generated for four points by de®ning the re®ned

control polygon to be

fE0;V0;E1;V1;E2; :::;En�2;Vn�2;En�1g
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where each Ei, an edge point, lies on the edge of the original control polygon, and each Vi, a vertex point,

corresponds to an internal vertex of the original control polygon. The new control polygon has 2n�1 control

points (the original has n + 1). The rules to calculate the vertex and edge points are

Ei =
Pi + Pi+1

2

and

Vi =
Ei + 2Pi +Ei+1

4

It is fairly easy to see these how these rules work by considering the following example: If we are given

the control polygon below.

P0

P1

P2 P3

P4

P5

The edge points are calculated as the midpoints of the line segments forming the control polygon by

Ei =
Pi + Pi+1

2

P0

P1

P2 P3

P4

E0

E2

E1

E3

E4

P5
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and the vertex points are calculated as the average of twice the control point and the two edge points adjacent

to the control point by

Vi =
Ei + 2Pi +Ei+1

4

P0

P1

P2 P3

P4

E0

E2

E1

E3

E4

P5

V1

V2
V3

V4

Connecting the edges and vertex points generated by the re®nement gives the new control polygon.

P0

P1

P2 P3

P4

E0

E2

E1

E3

E4

P5

V1

V2
V3

V4

This new set of edge points and vertex points can be considered a new control polygon, and by applying the

re®nement rules again, we generate the second re®nement shown below.
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One can see the curve actually taking shape now, and it is easy to see that if we continue this process, repet-

itively generating new control polygons by generating edge points and vertex points, then the successive

control polygons will converge to the curve.

Thus the re®nement rules for cubic uniform B-spline curves can be de®ned by utilizing the edge points

and vertex points de®ned above. To differentiate from the processes we develop for the bivariate and trivari-

ate cases, we will call the rule by which the edge points are calculated the curve-edge rule and the rule by

which the vertex points are calculated the curve-vertex rule.

2.3. Summary of the Classi®cation in the Univariate Case

We have shown that in the curve case, we can classify the points of the re®ned mesh into two types.

� edge points ± those that can be calculated by the curve-edge rule: the points are the average of the two

vertices that de®ne the edge.

� vertex points ± those that can be calculated by the curve-vertex rule: the points are an af®ne combina-

tion of the two edge points for the edges radiating from this vertex and the point itself with weights 1

4
,

1

4
, and 1

2
, respectively.

3. The Bivariate Case

Consider a bicubic uniform B-spline patch de®ned by a control point mesh

fPi;j : 0 � i � n1; 0 � j � n2g

This is a tensor product surface, which enables us to consider each respective parameter in turn to generate

the re®nement ± i.e. utilize the univariate re®nement to generate a re®nement of all rows of the control point

9



mesh; take the resulting points and apply the univariate re®nement to the columns ± utilizing the univariate

re®nement rules to de®ne the points of the bivariate re®nement.

Consider the control point mesh given below,

which we have kept simple for purposes of illustration. If we utilize the univariate re®nement rules to re®ne

the rows of the mesh, we obtain the following points (where the new points all have been labeled as to the

rule that was used in generating them ± curve-edge(E) or curve-vertex(V)).

E

V

E

E

E

E

E

E

E

E

E

E

E

V

V

V

V

V

V

V
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Taking now the new mesh consisting of the points labeled E or V (which is now 5 � 4), we will re®ne

the columns of this mesh to obtain the re®nement in the bivariate case. Examining this closely, we note that

two cases arise : a column contains either four points that were generated using the curve-edge rule on the

rows, or four points that were generated by the curve-vertex rule. We consider each case separately.

3.1. Case I ± All Points of a Column were Generated by the Curve-Edge Rule on the Rows

of the Mesh

Consider the case where the control points in the column were all generated by the curve-edge rule from the

univariate case. For example, this could be from the highlighted row of points below:

V

E

E
E

E

E

E

E

E

V

V

V

V

V

V

V

E0

E1

E2

E3

These points will be re®ned according to the univariate rules ± i.e. either the curve-edge rule, or the curve-

vertex rule.

3.1.1. Using the Curve-Edge Rule

Consider points E0 and E1. A new point of the re®ned mesh is calculated by using the curve-edge rule ±

de®ning a new point as the midpoint of E0 and E1. That is,

F =
E0 + E1

2

The following ®gure, which represents the mesh in the area of the points, illustrates this calculation. Since

the edge pointsE0 and E1 are the midpoints of their respective edges and F is the midpoint of E0 and E1,

11



it is easy to see that F is just the average of all the mesh points that surround the face in which F lies.

F

E0

E1

This point will be called a ªface pointº. It is calculated by the patch-face rule, which is to take the average

of all control points that surround the face in which this point lies. These face points are calculated for each

pair of control points in the column.

3.1.2. Using the Curve-Vertex Rule

Consider pointsE0,E1 andE2. A new point of the re®ned mesh is calculated by using the curve-vertex rule

± that is

E =
E0+E1

2
+ 2E1 +

E1+E2

2

2

P0

P1

F1

F0

E

E1

E0

E2

From the discussion in the previous section (3.1.1), the two midpoints in the numerator of the above equation
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are just face points, and can be calculated by the patch-face rule. This implies that

E =
E0+E1

2
+ 2E1 +

E1+E2

2

2

=
F0 + F1 + 2E1

4

=
F0 + F1 +P0 +P1

4

where F0 and F1 are the face points for the two faces adjacent to the edge, andP0 andP1 are the endpoints

of the edge. This is shown in the following ®gure.

P0

P1

F1

F0

E

This new point is commonly called an ªedge pointº (It is associated with the edge P0P1. It is calculated by

the patch-edge rule, which states that the new point is the average of four points: the two endpoints of the

edge and the two face points of the faces adjacent to the edge. These edge points are calculated for each triple

of pointsE0;E1;E2 and E1;E2;E3 in the row.

3.2. Case II ± All Points Generated by the Curve-Vertex Rule on the Rows of the Mesh

Consider the case where the control points of the columnwere all generated by the curve-vertex rule from the

univariate case. For example, this could be from the highlighted row of points in the following illustration:
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E

E

E

E

E

E

E

E

E

E

E

E

V0

V1

V2

V3

V

V

V

V

The new points are calculated according to the univariate rules, and there are two cases to consider.

3.2.1. Using the Curve-Edge Rule

Consider pointsV0 andV1. A new point of the re®ned mesh is calculated by using the curve-edge rule from

the univariate case ± that is,

E =
V0 +V1

2

The following ®gure illustrates the local area around such a point and the calculation procedure.1

1Note that we have labeled the points of the mesh surroundingV0 andV1 so that they represent how they were calculated ± F

for face points, etc.

14



P0

P1

E

V0

V1

E0

E1

F0

F1

E2

E3

Note that each vertex point is calculated from edge points and original vertices of the mesh as follows:

V0 =
E0 + E1 + 2P0

4

V1 =
E2 + E3 + 2P1

4

where the points are labeled as in the illustration above. This implies that

E =
V0 +V1

2

=
E0+E1+2P0

4
+ E2+E3+2P1

4

2

=
E0+E2

2
+ E1+E3

2
+ P0 + P1

4

=
F0 + F1 +P0 + P1

4

and therefore this point is an ªedge pointº and can be calculated by the patch-edge rule developed in the

previous section (3.1.2) ± i.e. calculating the average of the two adjacent face points along with the two

original control points of the mesh that are the endpoints of the edge.

3.2.2. Using the Curve-Vertex Rule

Consider pointsV0, V1 and V2. A new point of the re®ned mesh is calculated by using the curve-vertex

rule of the univariate case ± that is,

V =
V0+V1

2
+ 2V1 +

V1+V2

2

4
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The following ®gure illustrates the local area about such a point and the calculation procedure.

F0

F1

F2

F3

V0

V1

V2

V

P0

P1

P2

E2

E3

The points V0+V1

2
and V1+V2

2
, as is in section 3.1.2, can be calculated by the patch-edge rule, and so

V =
V0+V1

2
+ 2V1 +

V1+V2

2

4

=
F0+F1+P0+P1

4
+ F2+F3+P1+P2

4
+ 2V1

4

=

F0+F1+F2+F3
4

+ P0+2P1+P2

4
+ 2

�
E2+E3+2P1

4

�
4

=

F0+F1+F2+F3
4

+ 2
�
E0+E1+E2+E3

4

�
+P1

4

where the pointsE0, E1, E2 andE3 are midpoints of the line segments that radiate from P1, and are shown

in the following ®gure.
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F0

F1

F2

F3

VP1

E0

E1

E2

E3

This has generated the patch-vertex rule which states that the vertex point is an af®ne combination of the

values

� the average of the face points for the faces that are adjacent to the vertex,

� the average of the midpoints of the edges that radiate from the vertex,

� the original vertex in the control point mesh.

with weights of 1

4
, 1
2
and 1

4
, respectively. By multiplying numerator and denominator by 4, we obtain

V =
F0 + F1 + F2 + F3 + 2E0 + 2E1 + 2E2 + 2E3 + 4P1

16

and so the in¯uence of the points on the vertex point is shown as follows:
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F0

F1

F2

F3

2E0

2E1

2E2

2E3

4P1

One each of these vertex points must be calculated for each tripleV0;V1;V2 andV1;V2;V3.

3.3. Summary of the Classi®cation in the Bivariate Case

We have shown that in the bivariate case, the points of a re®nement can be classi®ed into three types.

� face points ± those that can be calculated by the patch-face rule : the points are the average of the

control points in the mesh that surround a face.

� edge points ± those that can be calculated by the patch-edge rule : the points are the average of the

two face points for the faces containing the edge and the two control points that are the endpoints of

the edge.

� vertex points ± those that can be calculated by the patch-vertex rule : the points an af®ne combinations

of the face point average, the edge point average and the original control point that corresponds to this

vertex, with weights of 1

4
, 1
2
, and 1

4
, respectively.

These points are illustrated in our simple example below. Each point has been labeled corresponding to its

calculation method (V, E, or F).

18



F

F

F

F

F

F

F

F

F

E

E

E

E

E

E

E

E

E

E

E

E
V

V

V

V

4. Catmull-Clark Surfaces

Ed Catmull and Jim Clark [1] were the ®rst to notice that the classi®cation of re®nement points as ªfaceº,

ªvertexº, or ªedgeº points could be generalized to work with meshes of arbitrary topology. They de®ned the

following procedure

� For each face of the mesh, generate a new face point ± which is the average of all the control points

de®ning the face (Note that faces may have 3, 4, 5, or many points now de®ning them).

� For each edge of the mesh, generate a new edge point ± which is calculated as the average of the end-

points of the edge with the two new face points of the faces adjacent to the edge.

� For each internal vertex of the mesh, calculate a new vertex point ± which is calculated as the average

V =
Q+ 2R+ (n� 3)P

n

whereQ is the average of the face pointsof all faces adjacent to the vertex,R is the average of themid-

points of all edges incident on the vertex,P is the vertex itself, and n is the number of edges radiating

from the vertex.

Note that this rule is the same as the rule for the uniform cubic B-spline case when n = 4. It has been

extended by realizing that the average at a vertex shouldbe based upon the number of edges that radiate

from it.
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To reconnect the mesh after these rules have been applied, we ®rst connect each new face point to the

new edge points of the edges de®ning the original face, and then connect each new vertex point to the new

edge points of all edges incident on the original control point.

5. The Trivariate Case

Consider a hexahedral lattice

fPi;j;k : 0 � i � n1; 0 � j � n2; 0 � k � n3g

as is shown (in simpli®ed form) below.

P0;0;0

P1;0;0

P2;0;0

P3;0;0

P0;1;0

P0;3;3

P0;2;0

P0;3;0

P3;0;3

P3;3;3

This lattice can be used to form a trivariate cubic uniform B-spline solid. Since this is a tensor-product solid,

we can generate re®nement rules for the solid by utilizing the bivariate re®nement rules on each ªplaneº of

the lattice, coupled with the univariate rules in the other dimension.

Consider the re®ned control lattice below where we have re®ned each mesh according to the bivariate

rules on each plane of the ®gure ± generating face points (F), edge points (E) and vertex points (V). We

will use these points and the rules for the univariate case to generate the re®nement according to the third

parameter.
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E

F

V

F

F

F

F

F

F

F

F

E

E

E

E

V

V

E

E

E

E

E

V

E

E

F

F

F

E

E

E

F

F

F

E

E

E

F

F

F

F

F

F

F

F

F

E

E

E

E

E

E

If we wish to re®ne according to the other parameter, we end up with three cases : the four control points to

be used are all face points of the bivariate re®nement; the four control points to be used are all edge points of

the bivariate re®nement; or the four control points to be used are all vertex points of the bivariate re®nement.

We treat each case separately.

5.1. Case I ± All Face Points

Consider the case where univariate re®nement must be done on a list of control points all of which are face

points generated by the bivariate re®nement. From the univariate case, these can be re®ned according to two

different rules: the curve-edge rule and the curve-vertex rule.

5.1.1. Using the Curve-Edge Rule

Consider the control pointsF0 andF1. A new point of the re®ned mesh is calculated by the univariate curve-

edge rule ± that is the new point is the midpoint of the line segment de®ned by F0 and F1

S =
F0 + F1

2

The following ®gure illustrates the local mesh around this point and the calculation procedure
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F0

F1

S

Since the face points are average of the points surrounding a face, this point is then the average of all points

surroundingthe hexahedral solid containing the point. Thispointwill be called a ªsolidpointº. It is calculated

by the solid-solid rule, which is to take the average of all control points that surround the hexahedral solid

in which this point lies.

S

5.1.2. Using the Curve-Vertex Rule

Consider the control points F0, F1 and F2. A new point of the re®nement is calculated by the univariate

curve-vertex rule ± that is

F =
F0+F1

2
+ 2F1 +

F1+F2
2

4
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By the above calculations (section 5.1.1), the two midpoints in the numerator are both ªsolid pointsº and

therefore this point can be calculated as

F =
S0 + 2F1 + S1

4

as is shown in the illustration below:

F0

F1

F2F

S0

S1

These points are called ªfaceº points, as they are associated with a face of the control point mesh. They are

calculated by the solid-face rule which states that they are an af®ne combinations of three points ± the two

solid points of the hexahedra containing the face and the face point calculated by the patch-face rule ± with

weights of 1

4
, 1
4
and 1

2
, respectively

5.2. Case II ± All Edge Points

Consider the case where univariate re®nement must be done on a list of control points all of which are edge

points of the bivariate re®nement. From the univariate case, these can be re®ned according to two different

rules: the curve-edge rule and the curve-vertex rule.

5.2.1. Using the Curve-Edge Rule

Consider the control pointsE0 andE1. A new point of the re®ned mesh is calculated by using the univariate

curve-edge rule. That is, the new point is the midpoint of the line segment de®ned by E0 and E1.

F =
E0 + E1

2

The following®gure illustrates the local portion of the control mesh about this point and the calculation pro-

cedure.
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F

P0

P1

P2

P3

F0

F1

F2

F3

E1

E0

Since each of E0 andE1 are edge points in the bivariate scheme, they are calculated according to the patch-

edge rule and are the average of the endpoints of the edge and the face points of the faces that are adjacent

to the edge. Substituting this into the equation above, we obtain

F =
F0+F1+P0+P1

4
+ F2+F3+P2+P3

4

2

=

F0+F2
2

+ F1+F3
2

+ 2
�
P0+P1+P2+P3

4

�
4

which is the average of the two solid points that are adjacent to the face and twice the face point ± which is

just the solid-face rule de®ned in section 5.1.2.

5.2.2. Using the Curve-Vertex Rule

Consider the control pointsE0, E1 and E2. A new point of the re®ned mesh by is calculated using the uni-

variate curve-vertex rule. That is

E =
E0+E1

2
+ 2E1 +

E1+E2

2

4

The local portion of the control mesh about such a point and the calculation procedure are shown in the il-

lustration below:
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P0

P1

P2

P3

F0

F1

F2

F3

E1

E2

P4

P5

F4

F5

EE0

Since each of E0, E1 and E2 are edge points in the bivariate scheme, they are calculated according to the

patch-edge rule and are the average of the endpoints of the edge and the face points of the faces that are adja-

cent to the edge. The two fractions in the numerator are both face points in the trivariate scheme and can be

calculated by the solid-face rule (see section 5.1.2). Using the notation in the ®gure below, and substituting,

gives

P2

P3

F2

F3

E1

E2

E

F6

S0

S1

S2

S3

F7

E0

E =

S0+S1+2F6
4

+ 2
�
F2+F3+P2+P3

4

�
+ S2+S3+2F7

4

4

=

S0+S1+S2+S3
4

+ 2
�
F2+F3+F6+F7

4

�
+ P2+P3

2

4

That is, this point can be calculated by taking the average of the following values

� the average of the solid points for the hexahedra that contain this edge.

� twice the average of the face points for those faces that contain this edge.
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� The midpoint of the edge.

This point is associated with an edge of the original mesh and thus will be called an ªedge pointº. The cal-

culation of this point will be called the solid-edge rule.

5.3. Case III ± All Vertex Points

Consider the case where univariate re®nement must be done on a list of control points, all of which are vertex

points of the bivariate re®nement. From the univariate case, these can be re®ned according to two different

rules: the curve-edge rule and the curve-vertex rule.

5.3.1. Using the Curve-Edge Rule

Consider the control pointsV0 andV1. A new point of the re®ned mesh is calculated by using the univariate

curve-edge rule ± the new point is the midpoint of the line segment de®ned by the pointsV0 andV1. That

is,

E =
V0 +V1

2

The following®gure illustrates the local portionof themesh about such a point and the calculation procedure.

P0

P1

F0

F1

F2

F3

E1

E0

E2

E3

V0

F4

F5

F6

F7

E4

E5

E6

E7

V1

E

Since each ofV0 andV1 are vertex points in the bivariate scheme, they are calculated according to the patch-
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vertex rule and can be written as

V0 =

F0+F1+F2+F3
4

+ 2
�
E0+E1+E2+E3

4

�
+P0

4

V1 =

F4+F5+F6+F7
4

+ 2
�
E4+E5+E6+E7

4

�
+P1

4

where F0, F1, F2 and F3 are the patch face points of the respective faces that have P0 as a vertex, F4, F5,

F6 and F7 are the patch face points of the respective faces that have P1 as a vertex, E0, E1, E2 and E3 are

the patch edge points of the edges that radiate from P0, and E4, E5, E6 and E7 are the patch edge points of

the edges that radiate from P1. Taking the average of these two quantities, one obtains

E =
V0 +V1

2

=

F0+F4
2

+
F1+F5

2
+
F2+F6

2
+
F3+F7

2

4
+ 2

�
E0+E4

2
+
E1+E5

2
+
E2+E6

2
+
E3+E7

2

4

�
+ P0+P1

2

4

The ®rst four midpoints in the numerator are all solid points calculated by the solid-solid rule (section 5.1.1),

the second fourmidpoints in the numerator are all face points calculated by the patch-face rule (section 3.1.1),

and the last midpoint is the edge point calculated by the curve-edge rule. Therefore, we have that this is just

the solid-edge rule as de®ned in section 5.2.2.

5.3.2. Using the Curve-Vertex Rule

Consider the control points V0, V1 and V2. A new point of the re®ned mesh is calculated by using the

univariate curve-vertex rule ± i.e.

V =
V0+V1

2
+ 2V1 +

V1+V2

2

4

By the calculations in section 5.2.2, we know that the ®rst and the last fractions in the numerator are edge

points and are calculated by the solid-edge rule. We also know that the vertex points are all calculated by the

patch-vertex rule (section 3.2.2). Therefore the equation can be written as

V =
V0+V1

2
+ 2V1 +

V1+V2

2

4

=
1

4

 
S0+S1+S2+S3

4
+ 2F1+F2+F3+F4

4
+ E0

4

+ 2
F8+F9+F10+F11

4
+ 2E2+E3+E4+E5

4
+ P1

4
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+
S4+S5+S6+S7

4
+ 2F4+F5+F6+F7

4
+E1

4

!

=
1

16

�
2

�
S0 + S1 + S2 + S3 + S4 + S5 + S6 + S7

8

�

+ 6

�
F0 + F1 + F2 + F3 + F4 + F5 + F6 + F7 + F8 + F9 + F10 + F11

12

�

+ 6

�
E0 + E1 +E2 +E3 + E4 +E5

6

�
+ 2P1)

This is an af®ne combination of the four points

� the average of the eight solid points for each of the hexahedra that hasV1 as a vertex,

� the average of the twelve face points for the faces that hasV1 as a vertex,

� the average of the six edge points for the edges that radiate from V1, and

� V1 itself.

with weights 1

8
, 3
8
, 3
8
and 1

8
respectively. We will call this rule the solid-vertex rule.

5.4. Summary of the Classi®cation in the Trivariate Case

We have shown that in the solid case, we can classify the re®nement points into four types.

� solid points ± those that can be calculated by the solid-solid rule : the points are the average of the

control points in the lattice that bound the hexahedral volume surrounding this point.

� face points ± those that can be calculated by the solid-face rule : the points can be written as

S1 + S2 + 2F

4

where S1 and S2 are the solid points of the two hexahedra that contain the face and F is the face point

calculated by the patch-face rule.

� edge points ± those that can be calculated by the solid-edge rule : the points can be written as

S+ 2F+E

4

where S is the average of the solid points for those hexahedra that contain the edge, F is the average

of the face points (patch-face rule) for those faces that contain the edge, and E is the midpoint of the

edge.

28



� vertex points ± those that can be calculated by the solid-vertex rule : the points can be written as

S + 3F+ 3E+V

8

� where S is the average of the solid points for each of the hexahedra that have this as a vertex, F is the

average of the face points for the faces that contain the vertex, E is the average of the edge points for

the edges that radiate from this vertex, andV is the vertex itself.

6. Catmull-Clark Solids

To extend the rules developed for trivariate cubic uniform B-spline solids to lattices of arbitrary topology is

straightforward. Again, we can classify the re®nement points into four types:

� solid points± the points are the average of the control points in the lattice that bound the cell containing

this point.

� face points ± the points can be written as

S1 + S2 + 2F

4

where S1 and S2 are the solid points of the two cells that contain the face and F is the face point cal-

culated by the averaging the control points that form the face.

� edge points ± the points can be written as

S+ 2F+E

4

where S is the average of the solid points for those cells that contain the edge, F is the average of the

face points (calculated as the average of the control points forming the face) for those faces that contain

the edge, and E is the midpoint of the edge.

� vertex points ± the points can be written as

S + 3F+ 3E+V

8

� where S is the average of the solid points for each of the cells that contain the vertex, F is the average

of the face points (average of the vertices that surround a face) for the faces that contain the vertex, E

is the average of the edge points (midpoints of the edges) for the edges that radiate from this vertex,

andV is the vertex itself.
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7. Conclusion

We have developed the re®nement rules for Catmull-Clark solids. In this effort, we have tried to be uniform

and complete in the derivation of the rules ± starting with the B-spline univariate, bivariate and trivariate

cases and developing the general cases in a straightforward way.

We have not discussed continuity conditions with these solids, and have not extended the Catmull-Clark

extensions for vertex points in the surface case to the solid case. This is a topic for another paper.

Much is yet to be done with these solids. They form a new paradigm of a solid, de®ned by a lattice of

points with an arbitrary connection topology, and they need to be examined further.
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