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Meaning guides attention in real-world scene images:
Evidence from eye movements and meaning maps

John M. Henderson

Center for Mind and Brain, University of California,
Davis, CA, USA

Department of Psychology, University of California,
Davis, CA, USA $#

Taylor R. Hayes
Center for Mind and Brain, University of California,

Davis, CA, USA $#

We compared the influence of meaning and of salience
on attentional guidance in scene images. Meaning was
captured by ‘‘meaning maps’’ representing the spatial
distribution of semantic information in scenes. Meaning
maps were coded in a format that could be directly
compared to maps of image salience generated from
image features. We investigated the degree to which
meaning versus image salience predicted human
viewers’ spatiotemporal distribution of attention over
scenes. Extending previous work, here the distribution of
attention was operationalized as duration-weighted
fixation density. The results showed that both meaning
and image salience predicted the duration-weighted
distribution of attention, but that when the correlation
between meaning and salience was statistically
controlled, meaning accounted for unique variance in
attention whereas salience did not. This pattern was
observed in early as well as late fixations, fixations
including and excluding the centers of the scenes, and
fixations following short as well as long saccades. The
results strongly suggest that meaning guides attention in
real-world scenes. We discuss the results from the
perspective of a cognitive-relevance theory of
attentional guidance.

Introduction

We can attend to only a fraction of the visual
stimulation available to us at any given moment. For
this reason, visual attention is guided through scenes in
real time, with the eyes shifting position about three
times each second, on average, to select informative
objects and scene regions for scrutiny (Buswell, 1935;
Hayhoe & Ballard, 2005; Henderson, 2003; Henderson,
2017; Henderson & Hollingworth, 1999; Land &
Hayhoe, 2001; Rayner, 2009; Yarbus, 1967). How does

the brain determine which scene regions and elements
should be attended at any given moment?

Most recent research on attentional guidance in real-
world scene images has focused on the idea that
attention is primarily driven by low-level image
features. Image-guidance theory has its roots in models
of attention and visual search that emphasize the
attraction of attention by primitive visual features and
feature differences (Treisman & Gelade, 1980; Wolfe &
Horowitz, 2017). When applied to real-world scenes,
the most influential instantiation of this type of theory
is based on image salience, which proposes that saliency
maps are generated by pooling contrasts in semanti-
cally uninterpreted image features such as luminance,
color, and edge orientation at multiple spatial scales
(Borji, Parks, & Itti, 2014; Borji, Sihite, & Itti, 2013;
Harel, Koch, & Perona, 2006; Itti & Koch, 2001; Koch
& Ullman, 1985; Parkhurst, Law, & Niebur, 2002). In
this theoretical approach, regions that are uniform
along these features are considered uninformative,
whereas those that differ from neighboring regions
across spatial scales are taken to be worthy of
attention. That is, differences in salience in the map
serve as predictions about the spatial distribution of
attention in a scene. In this view, attentional guidance
is fundamentally characterized as a reaction to image
features in the scene, with attention captured by or
pulled to visually salient scene regions (Henderson,
2007). An appeal of image-guidance theory based on
image salience is that salience is both neurobiologically
inspired and computationally tractable (Henderson,
2017). The saliency-map approach has served an
important heuristic function in the study of attention
and eye movements in scene perception by providing an
explicit model that generates quantitative predictions
about attention and eye movements.
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Despite the substantial influence of the saliency-map
approach on research in scene perception, it is well
established that the semantic content of a scene and the
viewer’s task also influence viewing (Buswell, 1936;
Yarbus, 1967). Indeed, when directly tested, image
salience often does a poor job of accounting for
attention in real-world scene viewing (Einhäuser,
Rutishauser, & Koch, 2008; Henderson, Brockmole,
Castelhano, & Mack, 2007; Henderson, Malcolm, &
Schandl, 2009; Tatler, Hayhoe, Land, & Ballard, 2011;
Underwood, Foulsham, & Humphrey, 2009). To
account for these observations, cognitive-guidance
models place primary emphasis on cognitive control of
attention. In this view, attention is pushed by the
cognitive system to scene regions that are semantically
informative and cognitively relevant in the current
situation (Henderson, 2007). For example, in the
cognitive-relevance model (Henderson et al., 2007;
Henderson et al., 2009), attention is guided by semantic
representations that code the meaning of the scene and
its local regions (objects, surfaces, and other interpret-
able entities) with respect to the viewer’s current goals
and task (Buswell, 1935; Hayhoe & Ballard, 2005;
Hayhoe, Shrivastava, Mruczek, & Pelz, 2003; Hender-
son, 2003; Henderson, 2007; Henderson, 2017; Hen-
derson & Hollingworth, 1999; Land & Hayhoe, 2001;
Rothkopf, Ballard, & Hayhoe, 2007; Tatler et al., 2011;
Turano, Geruschat, & Baker, 2003; Võ & Wolfe, 2013;
Yarbus, 1967). The cognitive-relevance model posits
that the representations used to assign task relevance
and meaning for attentional priority encode knowledge
about the world itself (world knowledge) as well as
knowledge about the general scene concept (scene
schema knowledge) and the current scene instance
(episodic scene knowledge; Henderson & Ferreira,
2004; Henderson & Hollingworth, 1999).

Most proponents of image guidance acknowledge
that meaning must play some role in attentional
guidance. Nevertheless, much of the research on

attentional guidance in real-world scene images has
been motivated by and focused on image salience as
instantiated by saliency maps. One reason for this
emphasis is the relative tractability of image salience; it
is far easier to quantify image features than it is to
quantify meaning (Henderson, 2017). To investigate
meaning and compare its influence to image salience, it
is necessary to represent both constructs so that
comparable quantitative predictions can be generated
from them.

To provide a method for directly comparing the
influences of meaning and salience on the guidance of
attention, we recently developed the concept of
meaning maps (Henderson & Hayes, 2017). Meaning
maps draw inspiration from two classic scene-viewing
studies (Antes, 1974; Mackworth & Morandi, 1967).
In these studies, images were divided into regions and
subjects were asked to rate each region based on how
easy it would be to recognize (Antes, 1974) or how
informative it was (Mackworth & Morandi, 1967). In
both studies, eye movements of a different group of
subjects were measured while they viewed the rated
images. The key result was that, in general, viewers
looked more at the higher-rated regions. We modified
and extended these methods to develop meaning maps
for images of real-world scenes. We used crowd-
sourced responses in which we asked subjects who
were not aware of our experimental aims to rate the
meaningfulness of a large number of scene patches.
Specifically, photographs of scenes were divided into a
dense array of objectively defined circular overlapping
patches at two spatial scales (Figure 1). These patches
were then presented to raters independently of the
scenes from which they were taken, and raters were
asked to indicate how informative or recognizable
they judged the patches to be (Figure 2). Finally, we
constructed smoothed maps for each scene based on
interpolated ratings over a large number of raters
(Figure 3). The basic idea of the meaning map is that it

Figure 1. Real-world scene and corresponding tiled patch grids. (a) Example real-world scene. (b–c) Overlapping circular patches used

for meaning rating at (b) fine and (c) coarse spatial scales. The blue dots in (b–c) denote the center of each circular patch and the

image circles show examples of the content captured by the fine and coarse scales for the example scene.
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captures the spatial distribution of the semantic
content of a scene in the same format as a saliency
map captures the spatial distribution of image
salience. Like image salience, meaning is nonuni-
formly spatially distributed across scenes, with some

scene regions relatively rich in semantic content and
others relatively sparse.

A meaning map provides the conceptual analog of a
saliency map by capturing the spatial distribution of
semantic features (rather than image features) across a

Figure 2. Rating distributions and example high and low patches. (a) Distribution of ratings for fine and coarse patches across all raters

and scenes. (b–c) Example highest- and lowest-rated nonoverlapping patches for (b) fine and (c) coarse patches.

Figure 3. Duration-weighted fixation density. Example (a) fixation density and (b) duration-weighted fixation density, for all fixations

on one scene. (c) The density difference depicting the absolute-value difference in the two densities, with hotter regions representing

greater difference. Note that the meaning and saliency maps are on the same scale (0–1) and the difference map is on a 10% scale (0–

0.10), to highlight the difference in the unweighted and weighted fixation-density maps.
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scene. Because meaning maps are represented in the
same format as saliency maps, they can be directly
compared to saliency maps. A meaning map can be
used to generate predictions concerning attentional
guidance using the same methods that have been used
to test the goodness of fit of predictions from saliency
theory (Carmi & Itti, 2006; Itti, Koch, & Niebur, 1998;
Parkhurst et al., 2002; Torralba, Oliva, Castelhano, &
Henderson, 2006). And the predictions for attentional
guidance generated from meaning maps can be
compared to those generated from saliency maps. In
short, meaning maps and saliency maps provide a
foundation for directly contrasting the influences of
meaning and salience on attentional guidance.

In an initial study, we investigated the relative ability
of meaning maps and saliency maps to predict
attentional guidance during scene viewing (Henderson
& Hayes, 2017). In that study, and in keeping with the
literature on scene perception, attention maps were
based on the locations of eye fixations. We found that
both meaning and salience could predict the distribu-
tion of attention over scenes, with meaning accounting
for more variance in attention than salience. However,
we also found that meaning and salience were
themselves highly correlated. Furthermore, when the
variance due to salience was controlled, meaning
accounted for a significant amount of the remaining
variance in attention; but when meaning was con-
trolled, no further variance in attention was accounted
for by salience. These data held for both early and later
fixations during viewing, including the very earliest
fixations on the scenes. The data strongly suggested
that attention is guided by meaning rather than
salience.

The present study was designed to extend the
original meaning-map results. A potential concern with
the original report is that the attention maps were
based on fixation locations that did not take into
account fixation durations (Henderson & Hayes, 2017).
The fixation-location analysis was an important first
step because most of the research assessing saliency
maps to date has similarly focused on fixation location
(Borji et al., 2013; Borji et al., 2014; Harel et al., 2006;
Itti & Koch, 2001; Parkhurst et al., 2002). However,
fixation durations vary, and this variability reflects a
variety of factors including attention related to
perceptual and cognitive processing. When more
attention is needed on an object or other scene entity,
fixations are directed to that entity for more time
(Einhäuser & Nuthmann, 2016; Henderson, Nuth-
mann, & Luke, 2013; Henderson & Pierce, 2008;
Henderson & Smith, 2009; Henderson, Weeks, &
Hollingworth, 1999; Laubrock, Cajar, & Engbert,
2013; Nuthmann, 2017; Nuthmann, Smith, Engbert, &
Henderson, 2010). The distribution of attention over a
scene therefore depends on both the location and

duration of attentional selection (Henderson, 2003).
For this reason, we report here a new set of analyses
designed to determine how well meaning and salience
predict attentional guidance in scenes accounting for
how long attention is focused on each location. We
include a new center-knockout procedure to ensure that
the results hold when center bias is completely removed
from the analysis. Finally, we include a new saccade-
amplitude analysis showing that the advantage for
meaning over salience holds across all saccade ampli-
tudes.

In summary, the goal of this study was to test current
theoretical approaches to attentional guidance in real-
world scenes. We applied our recently developed
meaning-map method to capture the spatial distribu-
tion of semantic content across scenes. We then tested
cognitive- and image-guidance theories by comparing
the ability of meaning maps and saliency maps to
predict attentional guidance during real-world scene
viewing, with attention operationalized as the duration-
weighted fixations of subjects viewing the scenes.

Method

Meaning maps

For this study we used the meaning maps developed
by Henderson and Hayes (2017), as described in this
section.

Subjects

Scene-patch ratings were performed by 165 subjects
on Amazon Mechanical Turk. Subjects were recruited
from the United States, had a hit approval rate of 99%
and 500 hits approved, and were allowed to participate
in the study only once. Subjects were paid $0.50 per
assignment, and all subjects provided informed con-
sent.

Stimuli

Stimuli were 40 digitized (1,024 3 768 pixels)
photographs of real-world scenes depicting a variety of
indoor and outdoor environments. The full set of scene
images can be found in the supplementary materials of
Henderson and Hayes (2017). Each scene was decom-
posed into a series of partially overlapping (tiled)
circular patches at two spatial scales (Figure 1).
Simulated recovery of known scene properties (e.g.,
luminance) indicated that the underlying property
could be recovered well (98% variance explained) using
these two patch sizes (see Appendix), suggesting that
this method is sufficiently sensitive to underlying scene
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structure. The full patch stimulus set consisted of
12,000 unique fine patches (87-pixel diameter) and
4,320 unique coarse patches (205-pixel diameter), for a
total of 16,320 scene patches.

Procedure

Each subject rated 300 random patches extracted
from 40 scenes. Subjects were instructed to assess the
meaningfulness of each patch based on how informa-
tive or recognizable it was. They were first given
examples of two low-meaning and two high-meaning
scene patches, to make sure they understood the rating
task, and then they rated the meaningfulness of scene
patches on a 6-point Likert scale (very low, low,
somewhat low, somewhat high, high, very high).
Patches were presented in random order and without
scene context, so ratings were based on context-free
judgments. Each unique patch was rated three times by
three independent raters for a total of 48,960 ratings.
However, due to the high degree of overlap across
patches, each patch contained rating information from
27 independent raters for each fine patch and 63
independent raters for each coarse patch. Figure 2
shows the distribution of ratings and the highest- and
lowest-rated nonoverlapping patches across all scenes
at the two patch sizes. The lowest-rated patches tended
to come from the edges of the pictures, which accounts
for their truncated shapes.

Meaning maps were generated from the ratings by
averaging, smoothing, and then combining fine and
coarse maps from the corresponding patch ratings. The
ratings for each pixel at each scale in each scene were
averaged, producing an average fine and coarse rating
map for each scene. The average rating maps were then
smoothed using thin-plate spline interpolation (fit using
the thinplateinterp method in MATLAB; MathWorks,
Natick, MA). Finally, the smoothed maps were
combined using a simple average. This procedure was
used to create a meaning map for each scene. The final
map was blurred by a multiplicative center-bias
operation which down-weighted the scores in the
periphery to account for the central fixation bias, the
commonly observed phenomenon in which subjects
concentrate their fixations more centrally and rarely
fixate the outside border of a scene (Bindemann, 2010;
Borji et al., 2013; Henderson et al., 2007; Tatler, 2007).
This center bias operation is commonly applied to
saliency maps and emerges in the ones used here.

To investigate the relationship between the generated
meaning maps and image-based saliency maps, saliency
maps for each scene were computed using the Graph-
based Visual Saliency (GBVS) toolbox with default
settings (Harel et al., 2006). GBVS is a prominent
saliency model that combines maps of neurobiologi-
cally inspired low-level image features. The GBVS

model also includes a center bias as described for the
meaning maps that down-weights the periphery of its
maps.

Histogram matching

Meaning and saliency maps were normalized to a
common scale using image-histogram matching, with
the duration-weighted fixation map for each scene
serving as the reference image for the corresponding
meaning and saliency maps. Histogram matching of the
meaning and saliency maps was accomplished using the
MATLAB function imhistmatch in the Image Pro-
cessing Toolbox.

Eye-tracking experiment and attention maps

Subjects

Seventy-nine University of South Carolina under-
graduate students with normal or corrected-to-normal
vision participated in the experiment. All were unaware
of the purposes of the experiment and provided
informed consent. The eye-movement data from each
subject were inspected for excessive artifacts caused by
blinks or loss of calibration due to incidental movement
by examining the mean percentage of signal across all
trials using MATLAB. Data from 14 subjects with less
than 75% signal were removed, leaving 65 subjects for
analysis who tracked very well (mean signal percentage
¼ 91.74%). We have previously used this corpus to
investigate individual differences in scan patterns in
scene perception (Hayes & Henderson, 2017), as well as
for an initial study of meaning maps (Henderson &
Hayes, 2017).

Apparatus

Eye movements were recorded with an EyeLink
1000þ tower-mount eye tracker (spatial resolution 0.01)
sampling at 1,000 Hz (SR Research, 2010b). Subjects
sat 85 cm away from a 21-in. monitor, so that scenes
subtended approximately 278 3 20.48 of visual angle at
1,024 3 768 pixels. Head movements were minimized
using a chin and forehead rest. Although viewing was
binocular, eye movements were recorded from the right
eye. The experiment was controlled with SR Research
Experiment Builder software (SR Research, 2010a).

Stimuli

Stimuli consisted of the 40 digitized photographs of
real-world scenes that were used to create the meaning
and saliency maps.

Journal of Vision (2018) 18(6):10, 1–18 Henderson & Hayes 5



Procedure

Subjects were instructed to view each scene in
preparation for a later memory test, which was not
administered. Each trial began with fixation on a cross
at the center of the display for 300 ms. Following
central fixation, each scene was presented for 12 s while
eye movements were recorded. Scenes were presented in
the same order for all subjects.

A 13-point calibration procedure was performed at
the start of each session to map eye position to screen
coordinates. Successful calibration required an average
error of less than 0.498 and a maximum error of less
than 0.998. Fixations and saccades were segmented with
EyeLink’s standard algorithm using velocity and
acceleration thresholds (308/s and 95008/s2; SR Re-
search, 2010b).

Eye-movement data were imported off-line into
MATLAB using the EDFConverter tool. The first
fixation, always located at the center of the display as a
result of the pretrial fixation period, was eliminated
from analysis.

Attention maps

The distribution of attention over a scene is a
function of the locations and durations of eye fixations
(Henderson, 2003). Although maps created from
fixation locations alone (Henderson & Hayes, 2017)
and from the duration-weighted fixations were similar,
they were not identical (see also Henderson, 2003). An
example of the difference can be seen in Figure 3 by
comparing fixation-density maps based on location
alone (Figure 3a) to maps of location weighted by
duration (Figure 3b). The difference in the two maps is
shown in Figure 3c, with regions of greater difference
shown with hotter colors. Note that the scale of the
difference map is smaller than that of the original
density maps. As can be seen, some regions changed
their relative attentional weighting when duration was
considered. For the present analyses, we therefore
created attention maps from fixation density weighted
by fixation duration.

To create duration-weighted attention maps, a
duration weight was generated for every fixation
following the initial (experimenter-defined) fixation.
Because average fixation durations vary reliably and
systematically across subjects (Castelhano & Hender-
son, 2008a; Henderson & Luke, 2014; Rayner, Li,
Williams, Cave, & Well, 2007), duration weights were
based on subject-normalized values. We first generated
each subject’s fixation-duration distribution across all
40 scenes. We then defined two parameters for these
distributions, an upper-bound 95th-percentile cutoff
(any values in the 95th percentile received a weight
value of 1.0) and a lower-bound minimum weight
cutoff of 0.1 (any value below the 0.1 percentile

received a weight value of 0.1, to avoid weights of 0).
Each fixation was therefore weighted from 0.1 to 1.0
based on its place in the overall distribution. Fixation-
weighted values were accumulated across all subjects
adding the weight to each location, producing a
weighted fixation-frequency matrix for each scene.
Finally, a Gaussian low-pass filter with a circular
boundary and a cutoff frequency of�6 dB was applied
to the matrix for each scene, to account for foveal
acuity and eye-tracker error. The Gaussian low-pass
function is from the MIT Saliency Benchmark code
(https://github.com/cvzoya/saliency/blob/master/code_
forMetrics/antonioGaussian.m). With a cutoff fre-
quency fc ¼ 6, the window size is approximately 28 of
visual angle. An example of a resulting duration-
weighted attention map is shown in Figure 3b.

Results

We can take meaning maps and saliency maps as
predictions concerning how viewers will distribute their
attention over scenes. To investigate how well meaning
maps and saliency maps predict the distribution of
attention, it is important to assess the degree of
association between the maps themselves. For the
scenes used here, the correlation between meaning and
salience was 0.80 averaged across the 40 scenes
(Henderson & Hayes, 2017). This correlation is
consistent with the suggestion that attention effects that
have previously been attributed to salience could be due
to meaning (Henderson et al., 2007; Henderson et al.,
2009; Nuthmann & Henderson, 2010). At the same
time, meaning and salience did not share 36% of their
variance, and we can ask how well this unshared
variance in each predicts attention.

The critical empirical question was how well the two
types of prediction maps capture the distribution of
attention. To investigate this question, we used linear
correlation (Bylinskii, Judd, Oliva, Torralba, & Du-
rand, 2016) to determine the degree to which meaning
maps (Figure 4d) and saliency maps (Figure 4e) for a
scene (Figure 4a) statistically predicted the spatial
distribution of attention (Figure 4b), as represented by
the duration-weighted attention maps (Figure 4c). This
method allows us to assess the degree to which meaning
maps and saliency maps account for shared and unique
variance in the attention maps. There are many ways in
which prediction maps can be tested against attention
maps, and no method is perfect (Bylinskii et al., 2016).
We chose here a map-level analysis method that is
sensitive, makes relatively few assumptions, is intuitive,
can be visualized, generally balances the various
positives and negatives of different analysis approach-
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es, and allows us to tease apart variance due to salience
and meaning.

Figure 5 presents the primary data for each of the 40

scenes. Each data point shows the relationship (R2

value) between the meaning map and the observed

attention map for each scene (red), and between the

saliency map and the observed attention map for each

scene (blue). The top half of Figure 5 shows the squared

linear correlations. On average, across the 40 scenes,

meaning accounted for 50% of the variance in fixation

Figure 4. Example data used in the analyses. (a) Real-world scene. (b) Viewers’ fixations superimposed on the scene as blue dots. (c)

Duration-weighted attention map derived from the fixations. (d) Meaning map. (e) Saliency map for the example scene. (f) Difference

between the meaning and saliency maps, with regions of greater meaning shown in red and greater saliency shown in blue. The

meaning and saliency maps are on the same scale (0–1), and the difference map is on a 10% scale (0–0.10). Note that the guidelines

in the scene were not shown to subjects and are presented here to facilitate comparison across panels.

Figure 5. Squared linear correlation and semipartial correlation by scene and across all scenes. The line plots show the linear

correlation (top) and semipartial correlation (bottom) between duration-weighted fixation density and meaning and salience by

scene. The scatter box plots on the right show the corresponding grand mean (black horizontal line), 95% confidence intervals

(colored box), and one standard deviation (black vertical line) for meaning and salience across all 40 scenes. The dotted lines in the

top panels show consistency across subjects based on leave-one-out cross-validation.

Journal of Vision (2018) 18(6):10, 1–18 Henderson & Hayes 7



density (M ¼ 0.50, SD ¼ 0.12) and salience accounted
for 35% (M ¼ 0.35, SD¼ 0.12). A two-tailed t test
revealed that this difference was statistically significant,
t(78) ¼ 5.38, p , 0.0001, 95% confidence interval (CI)
[0.09, 0.20].

We used leave-one-out cross-validation to estimate
the upper limit on salience and meaning performance
given subject variability in attention (Torralba et al.,
2006). The cross-validation analysis sets an expected
maximum in the ability of meaning and salience to
account for attention. Specifically, we computed for
each scene a duration-weighted group attention map as
described earlier for 64 subjects and a test map for the
65th subject. The linear correlation of the group and
test maps was computed, and this was repeated for all
65 subjects. Mean correlations by scene and across
scenes were then generated. The results are shown as
dotted lines in the top panels of Figure 5, with the left
panel showing the mean linear correlation for each
scene and the right panel showing the grand mean
across scenes. Across all scenes, cross-validation R2 was
0.53 (SD ¼ 0.05). Meaning-map performance was not
statistically different from this theoretical maximum, as
revealed by a two-tailed t test, t(78) ¼ 1.37, p ¼ 0.17,
95% CI [�0.01, 0.07]. In comparison, saliency maps
produced poorer performance than the theoretical
maximum, t(78)¼8.17, p , 0.0001, 95% CI [0.13, 0.22].
These results show that meaning maps accounted for
attention about as well as possible, given the reliability
of the subject data, whereas saliency maps performed
significantly below this level.

To examine the unique variance in attention
explained by meaning and salience when controlling for
their shared variance, we computed squared semipartial
correlations (bottom half of Figure 5). Across the 40
scenes, meaning accounted for a significant 19%
additional variance in the attention maps after con-
trolling for salience (M ¼ 0.19, SD ¼ 0.11), whereas
salience accounted for a nonsignificant 4% additional
variance after controlling for meaning (M¼ 0.04, SD¼
0.04). A two-tailed t test confirmed that this difference
was statistically significant, t(78) ¼ 8.22, p , 0.0001,
95% CI [0.11, 0.18]. These results show that meaning
explained the distribution of attention over scenes
better than salience.

It has sometimes been proposed that during scene
viewing, attention is initially guided by image salience,
but as viewing progresses over time, meaning begins to
play a greater role (Henderson & Ferreira, 2004;
Henderson & Hollingworth, 1999; Mannan, Ruddock,
& Wooding, 1996; Parkhurst et al., 2002). To test this
proposal, we conducted temporal time-step analyses.
Linear correlation and semipartial correlations were
conducted based on a series of attention maps, with
each map generated from each sequential eye fixation
(first, second, third fixation, etc.) in each scene. This

method allowed us to test whether the relative
importance of meaning and salience in predicting
attention changed over time. The results are shown in
Figure 6. For the linear correlations, the relationship
was stronger between the meaning and attention maps
for all time steps (top of Figure 6) and was highly
consistent across the 40 scenes. Meaning accounted for
33.0%, 32.1%, and 29.7% of the variance in the first
three fixations, whereas salience accounted for only
9.5%, 15.2%, and 16.6% of the variance in the first three
fixations. Two-sample two-tailed t tests were performed
for all 38 time points, and p values were corrected for
multiple comparisons using the false-discovery-rate
(FDR) correction (Benjamini & Hochberg, 1995). This
procedure confirmed the advantage for meaning over
salience at all 38 time points (FDR , 0.05).

The improvement in R2 for the meaning maps over
saliency maps observed in the overall analyses was
again found to hold across all 38 time steps in the
partial correlations (bottom of Figure 6; FDR , 0.05),
with meaning accounting for 26.1%, 21.7%, and 17.4%
of the unique variance in the first three fixations,
whereas salience accounted for 2.7%, 4.6%, and 4.2%.
Counter to the salience-first hypothesis but consistent
with results based on unweighted fixations (Henderson
& Hayes, 2017), meaning accounted for more variance
in attention in both the correlation and semipartial-
correlation analyses than did salience from the very
first fixation. These results indicate that meaning begins
guiding attention as soon as a scene appears (Rider,
Coutrot, Pellicano, Dakin, & Mareschal, 2018).

Central-region knockout analyses

It is commonly found in eye-tracking studies that
viewers tend to concentrate their fixations near the
center and rarely fixate the outside borders of a real-
world scene (Borji et al., 2013; Henderson et al., 2007;
Tatler, 2007). As noted under Method, in creating the
final meaning maps we used a multiplicative center-bias
operation to down-weight the scores in the periphery
and consequently up-weight the center, as is commonly
done with saliency maps. However, to further ensure
that the advantage of meaning maps over saliency maps
in predicting the distribution of attention was not due
to a center-bias advantage for the meaning maps, we
also conducted additional analyses in which the data
from the central 78 of each map (attention, meaning,
and saliency) were removed. Differences in the success
of meaning and saliency maps in this analysis therefore
cannot be due to differences in the ability of meaning
maps to predict central fixations, since they are no
longer included. The results of these analyses were
qualitatively and quantitatively very similar to those of
the complete analyses.
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Figure 7 presents the correlation data used to assess
the degree to which meaning maps and saliency maps
accounted for shared and unique variance in the
attention maps for each scene excluding the central 78.
Each data point shows the R2 value for the prediction
maps (meaning and saliency) and the observed
attention maps for saliency (blue) and meaning (red).
The top of Figure 7 shows the squared linear
correlations. On average, across the 40 scenes excluding
scene centers, meaning accounted for 46% of the
variance in fixation density (M ¼ 0.46, SD¼ 0.11) and
saliency accounted for 34% (M ¼ 0.34, SD¼ 0.13). A
two-tailed t test revealed that this difference was
statistically significant, t(78)¼ 4.39, p , 0.0001, 95% CI
[0.06, 0.17].

To examine the unique variance in attention
explained by meaning and salience excluding the
central 78 and when controlling for their shared
variance, we computed squared semipartial correla-
tions. These correlations, shown in the bottom of
Figure 7, revealed that across the 40 scenes, meaning
captured more than three times as much unique
variance (M ¼ 0.17, SD¼ 0.10) as saliency (M ¼ 0.05,
SD¼ 0.05). A two-tailed t test confirmed that this
difference was statistically significant, t(78)¼ 6.78, p ,

0.0001, 95% CI [0.08, 0.16]. These results confirm those
of the complete analysis and indicate that meaning was
better able than salience to explain the distribution of
attention over scenes even when the central 78 of maps
was removed.

Figure 6. Squared linear correlation and squared semipartial correlation as a function of fixation number. The top panel shows the

squared linear correlation between duration-weighted fixation density and meaning and salience as a function of fixation order across

all 40 scenes. The bottom panel shows the corresponding semipartial correlation as a function of fixation order across all 40 scenes.

Error bars represent standard error of the mean.

Figure 7. Squared linear correlation and semipartial correlation by scene and across all scenes with 78 center removed. The line plots

show the linear correlation (top) and semipartial correlation (bottom) between duration-weighted fixation density and meaning and

salience by scene after removing the central 78 from each scene. The scatter box plots on the right show the corresponding grand

mean (black horizontal line), 95% confidence intervals (colored box), and one standard deviation (black vertical line) for meaning and

salience across all 40 scenes. The dotted lines in the top panels show consistency across subjects based on leave-one-out cross-

validation.
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To test whether the overall advantage of meaning
over salience early in viewing was due to meaning at the
center, we conducted the fixation-series analysis ex-
cluding the central 78 of maps. Figure 8 shows the
temporal time-step analyses with the central 78 of maps
removed. Linear correlation and semipartial correla-
tion were conducted as in the main time-step analyses,
based on a series of attention maps generated from
each sequential eye fixation in each scene. Under the
same testing and FDR correction as in the main
analyses, 34 of 38 time points were significantly
different in both the linear and semipartial analyses
(FDR , 0.05), excluding fixations 21, 25, 27, and 28.
Importantly for assessing initial control of attention
during scene viewing, meaning accounted for 22.9%,
27.0%, and 26.7% of the variance in the first three
fixations in the linear-correlation analysis (top of
Figure 8), whereas salience accounted for only 10.2%,
14.9%, and 16.2%. Critically, when the correlation
among the two prediction maps was controlled for with
semipartial correlations, the advantage for the meaning
maps observed in the overall analyses was also found to
hold across all time steps, as shown in the bottom of
Figure 8 (FDR , 0.05). Meaning accounted for 17.9%,
17.8%, and 15.7% of the unique variance in the first
three fixations, whereas salience accounted for 5.2%,
5.6%, and 5.4%. Consistent with the overall correlation
and semipartial-correlation analyses, meaning pro-
duced an advantage over salience from the very first
fixation even when the central 78 region of each map
was removed from analysis. These results indicate that
when overt attention leaves the center of a scene,
meaning guides even those earliest shifts of overt
attention. These results are especially strong evidence
for the control of attention by meaning, because
removing the central 78 should disadvantage the
meaning maps, given that photographers tend to center
meaningful information (Tatler, 2007). Nevertheless,

the meaning maps continued to outperform the saliency
maps in accounting for both overall variance and
unique variance in the attention maps.

Saccade-amplitude analyses

It could be that meaning controls attention as it is
guided within objects and nearby scene regions, but
that salience controls attention as it is guided from one
scene region to another. If this is true, then meaning
should be more highly related to attentional selection
following shorter saccades, whereas image salience
should be more highly related to attention following
longer saccades. To investigate this prediction, we
conducted an analysis in which we examined how
meaning and salience related to attention following
saccades of different amplitudes.

Figure 9 presents the distribution of saccade
amplitudes in the present study. The average amplitude
was 3.58, but as is typically observed in scene viewing,
saccade amplitude varied considerably (Henderson &
Hollingworth, 1999). Once again, we used correlation
analyses to assess the degree to which meaning maps
and saliency maps accounted for shared and unique
variance in the attention maps for fixations following
saccades of different amplitudes. For these analyses,
saccade amplitudes were binned by percentile. Each
data point shows the R2 value for the observed
attention maps for saliency (blue) and meaning (red) at
each saccade-amplitude ventile. The middle of Figure 9
shows the squared linear correlations, and the bottom
of Figure 9 shows the unique variance accounted for by
meaning and salience. The R2 values for meaning and
salience differed for all amplitudes except the very
longest ventile in both figures (FDR , 0.05). These
results confirm those of the complete analysis and
indicate that meaning was better able than salience to

Figure 8. Squared linear correlation and squared semipartial correlation as a function of fixation number with 78 center removed. The

top panel shows the squared linear correlation between fixation density and meaning (red) and salience (blue) as a function of

fixation order averaged over all 40 scenes. The bottom panel shows the corresponding semipartial correlation as a function of fixation

order averaged over all 40 scenes. Error bars represent standard error of the mean.
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explain the distribution of attention over scenes even
when attention was not limited to the object or scene
region at the current point of attention.

General discussion

Image salience as instantiated by computationally
derived saliency maps currently provides a central
theoretical framework and empirical paradigm for
understanding how attention is guided through real-
world scenes. Yet human viewers are known to be
highly sensitive to the semantic content of the visual
world that they perceive, suggesting that attention may
be directed by semantic content rather than image
salience. Until recently it has been difficult to directly
contrast the influence of image salience and meaning.
To address this difficulty, we developed a new method
for identifying and representing the spatial distribution
of meaning in any scene (Henderson & Hayes, 2017).
The resulting meaning maps quantify the spatial
distribution of semantic content across scenes in the
same format that saliency maps quantify the spatial

distribution of image salience. Meaning maps therefore
provide a method for disentangling the distribution of
meaning from the distribution of image salience. In the
present study, we used meaning maps to test the
relative importance of meaning and salience during
scene viewing by testing meaning maps and saliency
maps against observed duration-weighted attention
maps.

The results showed that both meaning maps and
saliency maps were able to account for considerable
variance in attention maps, suggesting that they both
offered good predictions concerning attention. How-
ever, meaning maps and saliency maps are themselves
strongly correlated (Henderson & Hayes, 2017). When
these correlations were statistically controlled, meaning
maps accounted for additional unique variance in the
duration-weighted distribution of attention over scenes.
On the other hand, the variance due to visual salience
was completely accounted for by meaning, such that
saliency maps accounted for no additional unique
variance in the attention maps when the variance
accounted for by meaning was controlled. These results
suggest that meaning plays the primary role in directing
attention through scenes.

Figure 9. Squared linear correlation and squared semipartial correlation as a function of saccade amplitude to fixation. (a) The

distribution of saccade amplitudes observed in the experiment. (b) The squared linear correlations between duration-weighted

fixation density for meaning and salience as a function of the saccade-amplitude percentiles prior to fixation. (c) The corresponding

semipartial correlations as a function of saccade amplitude. Data points are averages across all 40 scenes. Error bars represent

standard error of the mean.
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A similar advantage of meaning over salience was
observed throughout the viewing period, with unique
variance accounted for by meaning beginning with the
first subject-determined fixation. Contrary to salience-
first models, these results suggest that meaning
influences attentional guidance more strongly than
salience both early and later during scene viewing. The
results indicate that meaning begins guiding attention
as soon as a scene appears, and suggest that viewers are
able to determine very quickly (within the first glimpse)
where meaningful regions within the current scene are
to be found and to direct their attention based on that
assessment.

The strong role of meaning in guiding attention in
scenes can be accommodated by a theoretical perspec-
tive that places explanatory primacy on scene seman-
tics. For example, in the cognitive-relevance model
(Henderson et al., 2007; Henderson et al., 2009), the
priority of an object or scene region for attention is
determined solely by its meaning in the context of the
scene and the current goals of the viewer, not by image
features or salience. It is meaning that determines
attentional priority, with image properties used only to
generate perceptual objects and other perceptually
based potential saccade targets. Critically, then, atten-
tional priority is assigned to potential attentional
targets based not on image salience but rather on
knowledge representations. The visual stimulus is
relevant in that it is used to generate perceptual objects
and other targets for attention, and processes related to
salience may be relevant in determining whether a
perceptual object is generated, but the image features
themselves provide a flat (that is, unranked) landscape
of potential attentional targets rather than one ranked
by salience (Henderson et al., 2007). Instead, knowl-
edge representations provide the attentional-priority
ranking to the targets based on their meaning
(Henderson, 2003; Henderson et al., 2007; Henderson
et al., 2009).

It is important to note that the cognitive-relevance
model does not require that meaning be assigned
simultaneously across the entire scene to all perceptu-
ally mapped potential saccade targets. That is, the
model does not require a strong late-selection view of
scene perception in which all objects and scene regions
are fully identified before they are attended. There are
two reasons for this. First, when a scene is initially
encountered, the gist of the scene can be quickly
apprehended (Biederman, 1972; Castelhano & Hen-
derson, 2008b; Fei-Fei, Iyer, Koch, & Perona, 2007;
Potter, 1975) and can guide attention at the very
earliest points of scene viewing (Castelhano & Hen-
derson, 2003; Henderson & Hollingworth, 1999; Oliva
& Torralba, 2006; Võ & Henderson, 2010). Appre-
hending the gist allows access to schema representa-
tions that provide constraints on what objects are likely

to be present and where they are likely to be located
(Henderson, 2003; Henderson & Hollingworth, 1999;
Torralba et al., 2006). Information retrieved from
memory schemas can be combined with low-quality
visual information from the periphery to assign
tentative meaning to perceptual objects and other scene
regions. These initial representations provide a rich set
of priors that can be used to generate predictions for
guiding attention to regions that have not yet been
identified (Henderson, 2017). Second, most saccades
during scene viewing are relatively short, with an
average amplitude of about 3.58 in the present study.
The implication is that attention is frequently guided
from the current location to the next location based on
information that is relatively close to the fovea, where
identity and meaning can easily be ascertained.
Extraction of meaning from nearby regions cannot be
the entire story for attentional guidance, given that
meaning continues to dominate salience even for
fixations following longer saccades, as shown in the
present study, but it does suggest that for the many
shorter shifts of attention, meaning is at least partly
derived from a spatially local semantic analysis of the
scene. For longer saccades, it is likely that guidance is
based on scene representations retrieved from memory,
as already described.

The present results at first glance appear to be at
odds with past studies that have shown correlations
between visual salience and attention. How can we
account for the results of these earlier studies? One
explanation can be found in the strong correlation
between meaning and visual salience. We have hy-
pothesized in the past that this correlation is likely to be
high (Henderson et al., 2007). Meaning maps provide a
method for testing this hypothesis, and robust support
was found for it, with strong correlation between
meaning and salience (Henderson & Hayes, 2017).
Given this correlation, salience can do a reasonably
good job of predicting meaning-driven attention. From
an engineering perspective, this might be sufficient.
However, from the perspective of the neurocognitive
study of human vision, in which the goal is to provide a
theoretical account of how the brain guides attention, a
focus on image salience will be misleading. Instead, the
present results along with previous results (Henderson
& Hayes, 2017) strongly suggest that meaning, not
visual salience, is the causal factor that guides
attention.

Limitations and future directions

We note several limitations and caveats of this study
and our earlier meaning-map investigation (Henderson
& Hayes, 2017). First, we have so far used a single
viewing task. It has been shown that attention as
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indexed by eye movements differs over the same scene
depending on the task (Castelhano, Mack, & Hender-
son, 2009; Henderson et al., 1999; Mills, Hollingworth,
Van der Stigchel, Hoffman, & Dodd, 2011; Yarbus,
1967), and it could be that under other task instruc-
tions, image salience would play a greater role than
meaning. While this is a possibility, the memorization
task used here is a relatively unstructured free-viewing
task in which viewers are not explicitly or implicitly
directed to meaningful scene regions. Therefore, this
task would not seem to favor meaning-based over
image-based attentional guidance. Nevertheless, we
cannot rule out the possibility that salience might play
a more important role in other tasks, and it will be
important to assess the relative influence of meaning
and salience in guiding attention in different viewing
tasks.

Second, although meaning was the stronger predic-
tor of attention on average and for the majority of
scenes (36 out of 40) tested here, salience did perform
better for four scenes. The question arises why these
four scenes showed the opposite pattern. One possi-
bility is that there may simply be statistical noise in one
or more of the maps (meaning, saliency, or attention)
for a given scene that occasionally leads to a random
reversal of the true pattern. Another possibility is that
there is some systematic difference in the scenes that
show the reversed pattern. We were not able to discern
any particular regularities across those scenes, but a
future direction for study will be to compare different
classes of scenes (e.g., indoor vs. outdoor; natural vs.
artificial) to determine whether meaning and salience
play greater or lesser roles for specific types of scenes.

Third, in the present study we defined meaning in a
context-free manner, in the sense that each scene patch
was rated for meaning without regard to the scene it
came from. Meaning could instead be defined in a
context-dependent manner, with the meaning of a scene
region assessed in terms of its scene context. Similarly,
meaning could vary as a function of the viewer’s task.
So far we have focused on context-free meaning as a
first step, but it will be important to determine how
meaning changes as the context changes, and in turn
how context-dependent meaning influences attention.
One way to determine context-dependent meaning is to
ask participants to indicate directly (e.g., via mouse
click) which regions in a scene they find most
interesting (Onat, Açık, Schumann, & König, 2014).
However, in this type of task subjects might click on
regions that their attention has been drawn to,
potentially confounding visual salience and meaning
and leading to some circularity in using these clicks to
predict future attention. Alternatively, consistent with
the present approach, we might ask subjects to rate
independent experimenter-defined scene patches but
within the context of the entire scene or a specific task.

Fourth, we have chosen here to compare meaning to
the class of saliency models that are inspired and
motivated by neurobiologically plausible assumptions
about the nature of visual computation in the human
visual system (Borji & Itti, 2013; Itti et al., 1998; Itti &
Koch, 2001). This class of saliency model continues to
inspire a vast amount of research across many
disciplines. Within this class of model, we have used the
GBVS implementation because it is typically the best
performer (Walther & Koch, 2006). Indeed, in our own
comparisons of saliency models, GBVS outperforms
other similar models on our data set. However, it
should be noted that another class of model based on
learning within deep neural networks has recently been
advanced as a competitor to traditional saliency models
(Vig, Dorr, & Cox, 2014). For example, DeepGaze II,
the current top performer in this class, learns where
people attend in scenes from training sets of fixations
over object features and then predicts fixations on new
scenes (Kümmerer, Wallis, Gatys, & Bethge, 2017).
Interesting issues for future research include compar-
ison of predictions from current deep neural networks
and meaning maps, and extending deep neural net-
works to include meaning. However, an important
consideration from the perspective of understanding
human neurocognitive processes is whether these
models trade neurobiological plausibility and trans-
parency for engineering expediency.

Conclusion

In this study we employed recently developed
methods for comparing the relationship between the
spatial distribution of meaning and image salience to
the spatial distribution of attention in scene viewing
(Henderson & Hayes, 2017). We investigated the
relative importance of meaning and salience on the
guidance of attention in scenes as indexed by attention
maps based on duration-weighted fixations. We found
that the spatial distribution of meaning was better able
than image salience to account for the guidance of
attention, both overall and when controlling for the
correlation of meaning and salience. Furthermore, we
found that the advantage of meaning over image
salience appeared from the very beginning of scene
viewing, held over both shorter and longer shifts of
attention, and persisted when the central region of each
scene was removed from analysis. This pattern of
results is consistent with a cognitive-relevance theory of
scene viewing in which attentional priority is assigned
to scene regions based on semantic information rather
than visual salience.

Keywords: attention, scene perception, eye movements
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Appendix: Patch-density parameter
estimation

The optimal meaning-map grid density for each
patch size was estimated by simulating the recovery of
known image properties (i.e., luminance and entropy).
For the sake of simplicity and visualization, the

simulation procedure will be described in terms of
luminance recovery, but the same procedure was also
applied to edge density and entropy recovery.

The first step in the recovery simulation was to
generate the ground-truth luminance image for each
scene for a given patch size, which sets an upper limit
on the luminance resolution that can be recovered. The
ground-truth luminance image for each scene was
computed by taking the scene luminance image and
convolving it with a circular mean mask for a given
patch size. Then the patch-density grid (simulating
patch ratings) was systematically varied from 50 to
1,000 patches (fine patches) and 40 to 200 (coarse
patches), and recovery of the ground truth was
performed for each grid. The recovery procedure
consisted of taking the mean of each patch from the
original luminance image and then using thin-plate
interpolation to interpolate between the patches across
each grid. If the patch density was low enough that the
entire image was not tiled, then the background was set
to the mean value across all the patch samples in the
grid.

Figure A1 shows an example of the recovery
procedure for the scene shown in Figure 1a for patch
densities of 88 (a) and 300 (b). As can be seen by
comparing the ground truth (left) to the interpolated
recovery (right), a patch density of 300 provides an
excellent estimate of the ground truth. Figure A2 shows
luminance, edge density, and entropy recovery (R2) for
the fine patch size (a) and the coarse patch size (b) as a
function of patch density. Recovery improvement
plateaus at a patch density of 300 patches for the fine
patch size and 108 patches for the coarse patch size.

Figure A1. Example of scene luminance recovery. From left to right, the ground-truth luminance, simulated fine-patch rating density,

and interpolated recovery images are shown for patch densities of (a) 88 and (b) 300. A comparison of the ground truth and recovery

indicates that a patch-density value of 300 provided excellent recovery.
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It is worth noting that the recovery procedure makes
two assumptions. First, it assumes that meaning can be
interpolated from subsampling similarly to luminance,
edge density, and entropy. Second, it assumes that our
rating task provides an accurate estimate of meaning at
each patch-sample location. A priori, we did not know
whether these assumptions about meaning or our
rating task were satisfied. While we still do not know

whether the selected patch densities or rating task are

optimal for measuring meaning, the accuracy of the

meaning-map prediction results suggests that the

recovery simulations using image features provided

reasonable sample density values for each patch size,

and that the rating task provided reasonably accurate

estimates of patch meaning.

Figure A2. Ground truth recovery as a function of patch density for the fine and coarse patch sizes. The top panel shows the ground-

truth recovery (R2) across all 40 scenes for luminance, edge density, and entropy for the fine patch size. The bottom panel shows the

corresponding ground-truth recovery (R2) for the coarse patch size. Error bars represent standard error of the mean.
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