
UCSF
UC San Francisco Electronic Theses and Dissertations

Title
Stochastic optimization of neural networks and implications for biological learning

Permalink
https://escholarship.org/uc/item/738590wk

Author
Anderson, Russell Wayne

Publication Date
1991

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/738590wk
https://escholarship.org
http://www.cdlib.org/

STOCHASTIC OPTIMIZATION OF NEURAL NETWORKS
AND IMPLICATIONS FOR BIOLOGICAL LEARNING

by

RUSSELL WAYNE ANDERSON

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

BIOENGINEERING

in the

GRADUATE DIVISION

of the

UNIVERSITY OF CALIFORNIA

San Francisco

Committee in Charge

Deposited in the Library, University of California, San Francisco

Date University Librarian

Degree Conferred: . . %||
- - -

ii

Stochastic Optimization of Neural Networks
and Implications to Biological Learning

Copyright (1991)
by

Russell Wayne Anderson

Dissertation Committee:

Hans J. Bremermann (Chair), Vojtech Licko, Donald A. Glaser,
Steven L. Lehman and V. (Rao) Vemuri

iii

To Jennifer, my wife, best friend and companion, for listening.

i v

ACKNOWLEDGEMENTS

I wish to thank my parents, Dr. Allen and Renee Anderson, and
my family, who believed in me and supported me.

I would also like to express my appreciation for the people who
most influenced my interests and development: Mr. Gonzoles, my
English and Spanish teacher, who started me writing; Richard Thorn,
my high school economics teacher, who first introduced me to
mathematical models; Mike Baxter, my high school English teacher,
who taught me the joy of reading; Dr. Edwin R. Lewis, who introduced
me to mathematical biology and who impressed on me the value of
scholarship in research; Dr. Lawrence Stark for his enthusiasm and
support; Dr. Harlan Romberg, who exposed me to decision theory and
taught me the meaning of the expression: "Polishing a turd"; Dr.
Rajendra Bhatnagar for his friendship and advice; Dr. Vojtech Licko,
for our many conversations, and who taught me a respect for rigor;
Steven L. Lehman, for his technical advice and friendship; Dr. Farid U.
Dowla, for his financial support and judgement; Dr. V. (Rao) Vemuri,
for his advice, support and insights on work and living; Dr. Donald A.
Glaser, for his advice and interest; and my many friends, for their
continuing support.

Finally, special thanks goes to my research advisor and dear
friend, Dr. Hans J. Bremermann. He helped me develop my ideas,
exposed me to the history and state of the art of mathematical
biology, and convinced me to do work which I found hard or tedious
- all with the patience of a true master. He always had an eye out
for The Big Picture, and through hundreds of stream-of
Consciousness discussions, he shaped my understanding of the world.

This work was supported in part by NIH Training Grant # GM
08.155 awarded to U.C. San Francisco; the U.S. Department of Energy
(at Lawrence Livermore National Laboratory [LLNL), contract W
7405-ENG-48; a grant from the Institute for Scientific Computing
Research, LLNL awarded to U.C. Davis; and NIH Training Grant #GM
07379 awarded to U.C. Berkeley. Many of the computer simulations
were done on the facilities at LLNL and the Department of Applied
Sciences, U.C. Davis at Livermore.

Additional financial support for my graduate education and
other research was provided by my parents, Dr. and Mrs. Allen M.
Anderson, a Teaching Assistantship in Physiological Optics 129
(under Dr. Lawrence Stark, School of Optometry, U.C.B), a Teaching
Assistantship in Electrical Engineering 100 (under Dr. Selig Kaplan,
Dept. Nuclear Engineering, U.C.B), and NIH Biomedical Research
Support Grant RR07006-24 at U.C. Berkeley.

Russell Wayne Anderson
Berkeley, California
August, 1991

vi

Stochastic Optimization of Neural Networks
and Implications to Biological Learning

Russell Wayne Anderson

ABSTRACT

Neural network training algorithms, such as back-propagation,
have been used in a wide variety of non-trivial applications, but are
criticized as being biologically implausible. Hebbian learning rules
can be supported biologically, but are insufficient for learning
complex mappings. We propose a neurobiologically feasible rule for
adjusting synaptic weights (called the "chemotaxis algorithm") which
can produce the same results as back-propagation. Training consists
of a biased Gaussian random-walk in weight space: synaptic
modifications are generated locally, via random processes, and are
retained only if a global reinforcement signal is broadcast to the
network. We present theoretical arguments, biological evidence and
computer simulations to support this learning rule.

The chemotaxis algorithm is demonstrated on benchmark
problems, such as n-bit parity and the "encoder" problem.
Theoretical capabilities neural networks are discussed and exploited
in a real-world application in seismic signal classification. For this
application, neural networks are competitive with conventional
Statistical pattern recognition methods.

The chemotaxis algorithm does not require any modifications
for novel activation functions or recurrent networks, in this sense, it
is a general learning rule. However, we demonstrate that training
recurrent networks to perform complex temporal signal processing
tasks is extremely slow and inefficient.

Vii

Finally, we develop a neural network methodology for motor
control. Feed-forward networks are used to estimate the parameters
of a temporal control signal. State trajectory error is then used for
network performance evaluation. Since the chemotaxis algorithm
does not require the calculation of gradients of unknown state
variables, it offers unique advantages over the back-propagation
algorithm for this application. This methodology is applied to a
linear, second-order system and a two-link, planar manipulator.
Analogies to motor control via central pattern generators and the
acquisition of skilled movement are presented.

viii

TABLE OF CONTENTS

PROLOG

General Philosophy. 1

Genesis of a Learning Algorithm . 2

Motivation for the Selected Applications 4

CHAPTER 1: INTRODUCTION: NEURAL NETWORK MODELING

1.1 Neural Networks are Universal Computational Devices. .. 7

1.2 Neuronal Networks Employ Similar Structures for Diverse
Functions . 9

1.3 Hebbian Learning Rules . 9

1.4 Theoretical Learning Rules . 1 1

1.5 The Success of Back-Propagation . 1 2

1.6 Neural Network Models of Biological Systems 1 3

1.7 A Biologically Plausible Learning Rule 15

CHAPTER 2: A BIOLOGICALLY PLAUSIBLE LEARNING RULE

2.1 Introduction . 18

2.2 Training for Performance . 19

2.2.1 Error Function and Back-Propagation 19

2.2.2 Search Algorithms . 22

ix

2.2.3 Mutational Versus Gaussian Random Walks 2 3

2.2.4 Importance of the Search Probability
Distribution . 25

2.2.5 Learning the Step Size . 27

2.2.6 The Chemotaxis Algorithm 28
2.2.7 Accelerated Guided Random Search 33

2.3 Random Walk Learning in Biological Neural Systems . . . 34
2.3.1 Gaussian Fluctuations of Neuronal Connections

and Synaptic Strength . 34
2.3.2 Fixation of Successful Modifications 35

2.3.3. Origin of the Global Signal 36

2.4 Simulation Examples: Training Networks on Benchmark
Problems . 37

2.4.1 N-Bit Parity . 37
2.4.2 Discussion . 38

2.4.3 The 4-Bit Encoder Problem 40

2.4.4 The Multilayer Encoder . 42

2.5 Variations of the Basic Algorithm . 42
2.5.1 Boltzmann Factor . 42

2.5.2 Activation Functions . 44

2.5.3 Net Expansion and Contraction 45

2.6 A Conjecture for Cortical Mappings 46

2.7 Discussion: Observability of Biological Learning 49

CHAPTER 3: NEURAL NETWORK THEORY

3.1 Introduction . 53

3.3 Pattern Recognition . 59
3.3.1 Feature Extraction . 60

3.3.2 A Brief Review of Statistical Decision Theory . . . 61
3.3.2.1 The Two-Category Case 62
3.3.2.2 Discriminant Functions 64

3.3.3 Nonparametric (Distribution-Free) Classification. 66
3.3.4 Neural Networks Can be Used to Approximate the

Bayes-Optimal Discriminant Function 67

3.3.5 Advantages of the Neural Network Approach . . 68

3.4 Generalization . 69

3.4.1 Boolean Functions . 69

3.4.2 Limitations of Generalization 70

3.4.3 A Simulation Example . 72

3.4.4 Discussion: Generalization, Cortical Maps and
Learning Rules . 77

CHAPTER 4: AN EXAMPLE OF PATTERN DISCRIMINATION

WITH NEURAL NETWORKS ON SEISMIC DATA

4.1 Motivation . 78

4.1.1 The Real World of Pattern Recognition 78
4.1.2. Neural Networks versus Statistical Methods for

Discrimination of Seismic Signals 7 9

4.1.3 An Engineering Application of a Biologically Inspired
Computational Method . 80

4.2 Background: Seismic Signal Discrimination 80
4.2.1 Nuclear Test Ban Treaties . 80

4.2.2 Characteristics of Seismic Data 8 1

4.2.3 Earthquakes versus Explosions 81
4.2.4 Discrimination Studies . 83

4.3 A Neural Network Approach . 85

xi

4.4 Seismic Spectral Discriminants . 88

4.4.1 Characteristics of the Spectral Data 88
4.4.2 Seismic Discriminant Functions 9 1

4.5 Seismic Database and Preprocessing 9 3

4.5.1 Spectral Estimation and Signal-to-Noise Ratio
Checking . 95

4.5.2 Correction of Distance Effects on the Spectra . . . 97
4.5.3 Normalization of Spectral Levels for Magnitude
Invariance . 99

4.6 Neural Network Discrimination Performance 1 0 1

4.6.1 Training with Chemotaxis and Back-Propagation 101
4.6.2 "Leave-One-Out" Performance 102

4.6.3 Discussion . 105

4.7 Comparison with the Fisher Discriminant 105

4.8 Conclusions . 108

4.8.1 Advantages over Conventional Methods 1 11

4.9 Subsequent Work on Seismic Signal Discrimination 1 12

CHAPTER 5: RECURRENT NETWORKS AND THE CHEMOTAXIS
ALGORITHM

5.1 Introduction . 113

5.2 Recurrent Network Theory . 1 14

5.3 Training Algorithms for Recurrent Networks 115

5.4 Modifications of the Chemotaxis Algorithm for
Recurrent Networks . 1 1 7

xii

5.4.1 Network Architecture . 1 1 7

5.4.2 Definition of the Objective Function 119

5.5 Simulation Results . 120

5.5.1 A Neural 'Integrator' . 120
5.5.2 Training a Recurrent Network to be a
Finite-State Machine . 1 2 3

5.5.3 Oscillators . 128

5.6 Discussion . 131

5.5.1 Alternatives to Recurrent Neural Networks

in Control . 132

CHAPTER 6: NEURAL NETWORKS APPLIED TO OPEN-LOOP,
DYNAMIC CONTROL

6.1 Introduction . 134

6.1.1 Parameterization of Temporal Sequences in
Neural Network Applications . 13.5

6.1.2 Parameterization of Time-Optimal Control
Signals . 13.5

6.1.3 A Neural Network Control Methodology 136

6.2 Time-Optimal Control Theory . 1 38
6.2.1 Problem Statement . 1 38

6.2.2 Pontryagin's Maximum Principle 1 38

6.2.3 Bang-Bang Control . 139

6.3 Example: Time-Optimal Control of a Linear Second-Order
System . 141

6.3.1 Calculation of the Switching Function 1 4 3
6.3.2 Optimal Control with a Single Switching Time . . 146
6.3.3 Switching Times as a Function of System
Parameters . 14.9

xiii

6.4 Neural Networks for Open-Loop Control 14.9

6.4.1 Training a Neural Network to Generate Switching
Times . 14.9

6.4.1.1 Experiment #1 . 151

6.4.1.2 Experiment #2 . 153

6.4.1.3 Experiment #3 . 155
6.4.1.4 Conclusion . 155

6.4.2 Training Neural Networks to Control a System
with Unknown Switching Times . 158

6.4.2.1 Simulation Results with a Second-Order

Plant . 1 6 1

6.4.2.2 Discussion . 162

6.4.3 Preliminary Results with a Multilink Arm 167

6.4.3.1 Dynamics of a Planar Manipulator 167
6.4.3.2 Preliminary Results . 170

6.5 Discussion . 172

6.5.1 Future Outlook . 172

6.5.2 Relation to Biological Control 17 3

xix

LIST OF TABLES

2.1 Comparison of the chemotaxis algorithm and
back-propagation .
2.2 Performance of the chemotaxis algorithm on the
encoder problem with communication "bottlenecks".
2.3 Comparison of training times for the multilayer
encoder problem .

3.1 Training sets used in the generalization study.
3.2 Generalization as a function of training set and net
architecture for the encoder problem. .

4.1 Performance of the neural network

4.2 Performance of the Fisher discriminant

5.1 Average training times for sequential parity

6.1 Summary of results for section 3.1
6.2 Summary of results for section 3.3

XX

LIST OF FIGURES

2.1 Uniform versus Gaussian distribution of random

directions . 26

2.2 Graphical presentation of the random walk in weight
Space . 30-32

2.3 Schematic representation of the map from the retina to the
lateral geniculate nucleus. 48

3.1 Schematic representation of a neural network applied to
function approximation . 57
3.2 Example of function approximation 58
3.3 Probability densities of two object classes on feature x . 63
3.4 Distribution of two object classes on two features 65

3.54-bit Hamming space . 74

4.1 Examples of peak-to-peak earth-motion amplitude
measurements for an earthquake and an explosion. 8 2

4.2 Network-averaged discriminants. 84
4.3 The architecture of a neural net used to discriminate

between explosion and earthquake spectra. 87

4.4 Examples of seismograms for (a) an earthquake and (b)
an underground nuclear explosion. 89
4.5 Examples of displacement amplitude spectra of the Pn,
Pg and Lg phases. 90
4.6 Map of the LLNL Nevada Test Site (NTS) seismic
network . 94

4.7 Histogram of event distances. 9 6
4.8 Spectral correction function. 9 8
4.9 Magnitude distribution of the two populations. 100

4.10 a-b Plots of the normalized (a) Lg and (b) Pg spectra. . 104
4.11 The weights from the input to a hidden unit for a
trained network at Elko. 109

xxi

4.12 The weights corresponding to the Pg spectra for the
other three stations. 1 1 0

5.1 Architecture of a recurrent neural network. 1 18

5.2a Performance of a 'neural integrator' on the training set.121
5.2b Performance of a 'neural integrator' on the test set. . . . 122
5.3 State transition matrices for a two-state FSM 124

5.4 Training a recurrent neural network to be a
finite state machine. 126

5.5 Performance of neural networks trained to oscillate. . . . 129

5.6 Implementation of a sinusoidal oscillator with a
recurrent network. 130

6.1 Schematic representation of a problem in open-loop
motor control . 1.37

6.2 Time optimal control of a second-order, linear system. 145
6.3 Optimal switching and stopping times. 148

6.4 Schematic representation of three experiments. 150
6.5 Performance of a trained network in experiment #1. . . 152
6.6 Network performance for experiment #2. 154
6.7 Network performance for experiment #3. 15 6
6.8 Experiment design used in section 3.2 1 5 9
6.9 Evaluation of system performance 160
6.10 System performance for experiment #1. 164

6.11 System performance for experiment #2. 165
6.12 System performance for experiment #3. 166

6.13 Geometry of a two-link, planar manipulator 168

6.14 Arm trajectory generated by a neural network 171

STOCHASTIC OPTIMIZATION OF NEURAL NETWORKS
AND IMPLICATIONS FOR BIOLOGICAL LEARNING

PROLOG

GENERAL PHILOSOPHY

The main result of this thesis is the development and
exploration of a biologically plausible learning rule. By necessity,
this study involves elements of several normally distinct fields -
including neurobiology, mathematics, computer science, complexity
theory, pattern recognition and control theory.

Plasticity in neuronal networks is observable macroscopically
(in the changes in cortical maps) and microscopically (at individual
synaptic connections). However, the mechanisms that govern
learning are still very much in dispute and virtually unobservable
with present day methods. Alternatively, many groups have studied
neural network models that imitate the connectivity and properties
of real, biological neuronal structures. Neural network models can be
used to investigate the capabilities of these ensembles and to test
learning mechanisms. The rules that have emerged from such
studies, so far, are either insufficient for complex learning tasks or
have been criticized as being biologically implausible.

Neural network models, to some extent, can be described and
explored mathematically. Analysis of a network consisting of a
handful of neurons, however, can become mathematically intractable
due to the large number of variables and the complexity and
nonlinearity of their interactions. Most purely mathematical
treatments of neural networks have been limited to existence proofs;
in other words, they tell us what these structures can do in principle.
(These results are discussed in detail in Chapters 3 and 5.) To

discover what neural networks can do in practice, and to find what
learning rules can find these solutions, we must rely on computer
simulations of properly chosen learning tasks.

Much of the data processing in the brain is involved in pattern
discrimination and motor control. And since the neural structures

involved in both sensory and motor functions are histologically very
similar, we would like any potential learning rule to be robust
enough to solve both pattern recognition and motor control problems.

In the course of this thesis, we train neural networks for
widely varying tasks: implementation of Boolean functions,
encoding/decoding of topographic maps, pattern recognition and
motor control. We note that through the experience of creating
successful neural network applications we may gain insight on how
actual neural structures solve similar problems.

GENESIS OF A LEARNING ALGORITHM

I began working with Dr. Bremermann in 1988, having been
inspired by his seminar series on "Brain Theory". Initially, we had a
modest research project in mind. We wished to apply an
optimization algorithm developed by Dr. Bremermann to neural
network training.

The task of learning in neural networks is to find a vector in
parameter space (weight space) which satisfies a goal defined by a
performance criterion, or objective function. The most common
neural network training algorithm, back-propagation of error, is an
iterative, gradient descent optimization algorithm. The Bremermann
optimizer searches parameter space by estimating the objective
function along random rays with Lagrangian interpolation
(Bremermann 1970). The optimizer can be quite efficient as long as
the error surface of the objective function (also called the "energy" or
error surface) has the same general shape as a the polynomial used

for an estimate (Milstein 1975, Lehman and Stark 1979, Subba Rao
1986, Cutler 1988). We had hoped that this algorithm would be
faster than gradient descent methods and have the added advantage
of being able to escape local minima through long-range
interpolation.

Regrettably, Lagrangian interpolation turned out to be a very
poor predictor of neural network error surfaces. We noticed,
however, that along the random rays we were able to locate lower
energy points without the aid of interpolation. We decided to
explore training without the interpolation portion of the optimizer.

What remained was a training algorithm which consisted of a
biased Gaussian random-walk through weight space. We have

dubbed this algorithm "the chemotaxis algorithm" since it is
mathematically analogous to the way bacteria find higher
concentrations of food (Berg 1975). (Dr. Bremermann suggested
"NETWALK" in a pun on Sejnowski and Rosenberg's famous neural
network paper called "NetTalk" [Sejnowski and Rosenberg 1987].
The reader can decide what would have been the better choice.)

Optimization through random walks is nothing has not
heretofore been vigorously tested on neural networks. There had

been some experimentation with a similar algorithm in the late
1960's (see section 2.2.7); however, the results obtained then
(hampered by the lack of ample computer power) and failure to
apply this method to non-trivial tasks resulted in a lack of follow-up,
and relegated this method to relative obscurity. Also overlooked by
researchers at the time was that a biased random walk is a

biologically plausible learning rule. We present mathematical
arguments, biological evidence and computer simulations to support
this learning rule.

MOTIVATION FOR THE SELECTED APPLICATIONS

In the course of this thesis, we demonstrate the effectiveness
of the chemotaxis algorithm on several abstract, benchmark neural
network problems as well as on non-trivial, real-world problems in
pattern recognition and motor control. In the former category we
train feed-forward networks to solve the N-bit parity and encoder
problems. In addition, we train fully-connected networks to
integrate a sequential signal, mimic a simple finite-state machine and
oscillate at various frequencies.

In Chapter 4, we tackle a practical problem in pattern
recognition, and in Chapter 6, we develop a neural network
methodology for motor control. The specific pattern recognition
problem we chose is discrimination of seismic signals generated by
earthquakes and underground nuclear explosions. It is a "real
world" problem, which was investigated in a non-classified setting at
Lawrence Livermore National Laboratory (LLNL). Neural network
methodologies were competing with more conventional pattern
recognition methods based on feature extraction and statistical
decision theory. In this setting, we could test the efficacy of the
chemotaxis algorithm versus commercial software for neural
network training. The choice of applications was also guided by
pragmatic reasons: opportunity, access to real data, the potential for
collaboration with experts in the field, computer resources, funding
opportunities, personal interests, inspiration and serendipity.

In December 1988 I was given a unique opportunity to study
the usefulness of neural networks in a practical problem in pattern
recognition when I met and was later hired by Dr. Farid Dowla at
LLNL. Dr. Dowla and I shared a mutual interest in neural networks

and a background in decision theory problems. I had worked on
threat discrimination while employed by the Ballistic Missile Defense
Program (McDonnell Douglas Astronautics, Huntington Beach, CA),
and Dr. Dowla worked on seismic signal discrimination for the Treaty

Verification Program (Earth Sciences Division, LLNL). The problem of
discriminating re-entry vehicles from booster tank fragments and
decoys is well-characterized with discriminants tightly coupled to the
underlying physics of projectile motion. The cause and characteristics
of seismic waveforms, in contrast, is not well understood. The
seismic database is inherently high-dimensional, requiring extensive
pre-processing to reduce the problem to a manageable size. Many of
the most effective discriminants used have been found empirically or
through intelligent guesswork. The problem seemed to us to be
ideally suited to a neural network application.

Dowla and others (Dowla et al. 1989) had already attempted
pre-processing temporal seismic signals using neural networks and
an in-house transputer. This study encountered problems with the
so-called time registration problem, where small shifts in the
alignment of the input window would invalidate the results. We
discussed using instead the Fourier transform of the input signal to
avoid windowing problems, and I was eager to try the chemotaxis
algorithm on some real problems. The results of our studies are
presented in Chapter 4.

Pattern discrimination ability is a form of knowledge. This
knowledge seems to be stored in the organization of the neural
structures which process this information (e.g. the retina, lateral
geniculate nucleus and visual cortex). Likewise, skilled motor control
is a form of "knowledge" stored in the motor cortex, cerebellum and
spinal cord. For this reason, I was next interested in applying neural
networks to motor or effector functions.

I had previously studied the control of extraocular muscles
involved in saccadic eye movements with Dr. Lawrence Stark (and
worked as a teaching assistant in Physiological Optics). Lurking in
the back of my mind for several years how the neural structures
computed the control signals for driving this open-loop system. As I
experimented with recurrent networks, I began to realize that

"teaching" a randomly connected group of neurons to generate these
control signals was extremely difficult (see Chapter 5).

In Chapter 6, we suggest alternative neural network strategies
to generate temporal signals for motor control. The particular
application chosen is open-loop motor control. We present examples
of time-optimal control of a second-order linear system and a
multilink robotic arm.

CHAPTER 1

INTRODUCTION: NEURAL NETWORK MODELING

Much of the 'knowledge' stored in the nervous system is
thought to be imbedded in the structure, or 'wiring diagrams' of
assemblies of neurons. Many neuronal assemblies have clear,
identified functions (e.g. the stretch reflex in the spinal cord, control
of the stomach muscles by the lobster stomatogastric ganglion [Miller
and Selverston 1982], motion detection in the retina [Poggio and Koch
1987]). Many of these systems are generally thought of as fixed, or
"programmed from birth". But there is a great deal of plasticity in
the connectivity, cortical representation and organization of neural
structures, and this ability to change continues throughout life
(Merzenich et al. 1988). The two main issues addressed in this thesis
a TC :

(1) What capabilities do these adaptive structures confer to the
organism? , and

(2) What processes govern this change?

1.1 NEURAL NETWORKS ARE UNIVERSAL COMPUTATIONAL
DEVICES

Mathematical analyses of neural networks reveal them to be
potentially powerful computing devices. In their landmark paper, A
Logical Calculus of the Ideas Immanent in Nervous Activity,
McCulloch and Pitts (1943) demonstrated how a network of
extremely simplified ("all-or-nothing") neurons could compute any
Boolean function and therefore could emulate any Turing machine in
the following sense:

"...every net, if furnished with a tape, scanners connected to
afferents, and suitable efferents to perform the necessary
motor-operations, can compute only such numbers as can a
Turing machine... and that nets with circles [feedback loops] can
compute, without scanners and a tape, some of the numbers
the machine can, but no others and not all of them."

J.D. Cowan comments:

"This was a remarkable achievement. It established once and
for all, the validity of making formal models of brain
mechanisms, if not their veridicality."(Cowan 1990)

In the forties and fifties, mathematicians and logicians were
concerned with characterizing classes of functions that were
computable by ideal Turing machines (without concern to the time
such computations would take). McCulloch and Pitts offered a
solution to the "embodiment problem" by showing how networks of
biological neurons could perform the same calculations as a Turing
machine. Rosenblatt (1958) demonstrated that these networks,
when endowed with modifiable connections ("perceptrons"), could be
"trained" to classify patterns (see also Cowan 1990, Arbib 1987).
Thus, Rosenblatt was the first who bridged the gap between
behaviorism and modular nets of McCulloch and Pitts neurons.

Rosenblatt went on to explore quantitatively what problems his
perceptrons could solve, how many "neurons" would be required, and
how long they had to be trained (Rosenblatt 1962). Beginning in the
sixties, theoretical computer scientists had become increasingly
concerned about computational complexity (Bledsoe 1961 c,
Bremermann 1962, Beckenstein and Schiffer 1990). The best

algorithm or computational method for a given task is known only in
a few elementary cases (Bremermann 1974b). Hence it becomes
important to test performance of alternative computational methods
(in this case, learning rules) empirically.

Since then, a variety of neural network models and training
algorithms have been developed to tap this potential computing
power (for a review, see Lippmann 1987). These mathematical
models allow us to study the interactions of many adaptive neurons
and to test hypothetical learning mechanisms.

1.2 NEURONAL NETWORKS EMPLOY SIMILAR STRUCTURES
FOR DIVERSE FUNCTIONS

Assemblies of neurons in the brain are involved in widely
varied functions (vision, sensory perception, motor control, etc.), yet
are histologically very similar. In fact, it takes a highly trained
specialist to distinguish between neurons taken from sensory and
motor cortex microscopically (or even between brain tissue from
different species! [Braitenberg, personal communication]). These
histological similarities between sensory and motor neurons indicate
that general organizational principles may be involved in brain
function.

In this work, we employ neural network models to many
functionally different applications. We show that a single learning
rule can train neural network models to perform nonlinear mappings
(Chapter 2), pattern classification (Chapter 4) and motor control
(Chapter 6).

1.3 HEBBIAN LEARNING RULES

In 1949, Hebb proposed a neuronal learning rule which could
integrate associative memories into neural networks (Hebb 1949).
Hebb postulated that when one neuron repeatedly excites another,
the synaptic knobs are strengthened. Verification has taken time,
but there is now ample evidence that Hebbian-type long term
potentiation (LTP) (with some modifications of the original
hypothesis) does indeed occur (Lynch 1986, Kennedy 1988, Stevens

1 0

1989). Long-term synaptic change in Aplysia sensorimotor synapses
can be produced by a cellular analog of classical conditioning
(Buonomano and Byrne 1990). Long-term depression (LTD) has been
observed in the same system supporting a corollary "Hebbian
covariance learning rule" (Stanton and Sejnowski 1989).

Theoretically, Hebbian learning can account for some types of
biological learning. For example, a Hebbian mechanism has been
shown to be sufficient to account for plasticity in mappings of cortical
representation (Grajski and Merzenich 1990). But there is more to
the brain than conditioned reflexes and associative memories. For

anything but special cases, Hebb's rule is insufficient as a learning
rule (Rosenblatt 1962; Rumelhart and McClelland 1986).

Since Hebbian learning requires near simultaneous or
synchronous stimuli, it is limited temporally. In many real biological
situations, instantaneous performance results are not available.
Hebbian learning would have to be combined with some type of
memory mechanism to account for many phenomena observed in
psychophysical and electrophysiological studies of classical
conditioning - such as anticipation of the unconditioned stimulus
(Deno 1991, Chester 1990b). Recent attempts to expand Hebbian
learning rules to include short-term memory (Sutton and Barto 1983,
Klopf 1989, Grossberg and Schmajuk 1989) have met with limited
success (Chester 1990b).

Since the Hebbian rule applies only to correlations at the
synaptic level, they are limited locally. Strengthening a local
correlation in the context of a nonlinear mapping of several variables
(such as the N-bit parity problem) often reduces overall
performance. Rumelhart and McClelland (1986) demonstrated that a
Hebbian learning was rule unable to train a multilayer perceptron
network to learn one of the simplest nonlinear mappings (the
"exclusive OR" problem). The task of determining the relative
responsibility of individual synaptic changes in a network is referred
to as the "credit assignment problem".

1 1

1.4 THEORETICAL LEARNING RULES

There is no general method for finding learning rules, but once
a particular one has been proposed, one can analyze it by proving
mathematically that it converges (and how fast), or one can explore it
through computer simulation or hardware implementation.

In 1956 Frank Rosenblatt formulated his "Perceptron" model
and set out to explore all three approaches. Analytically, he
described an iterative error correction procedure called the
"perceptron learning rule". He also proved that this procedure will
converge if there is a solution to a classification problem within the
constraints of the given neural net. Today this algorithm for
changing synaptic weights is also known as the "Widrow-Hoff rule"
(Widrow and Hoff 1960). It can be proven to converge, it is
reasonably efficient, but unfortunately it works only for "simple
perceptrons", which in today's terminology are equivalent to neural
nets without "hidden units". This limitation, acknowledged by
Rosenblatt, helped kill perceptron research in the late 1960's.

From the beginning, Rosenblatt was interested in exploring
"multilayer perceptrons". The input-response function of such nets is
inherently nonlinear and mathematically intractable. Neither the
"error correction procedure" nor Hebb's rule are a viable training
procedure for these networks. The problem can be solved, however,
by numerical minimization of the "squared error performance
function".

There are several engineering techniques available to optimize
a system with a defined error function, among them "genetic" and
gradient descent algorithms. The genetic approach is to treat the
synaptic weights like nucleotides of DNA; mutate, recombine, cross
over and select, as in Darwinian evolution. Early on, Bremermann
and Bledsoe experimented with the idea of applying genetic

12

algorithms to optimizing the performance of perceptrons
(Bremermann 1958, Bledsoe 1961 a,b, Bremermann 1962,
Bremermann and Rogson 1964, Bremermann, Rogson and Salaff
1966). The method works in principle (and is currently a popular
method in Artificial Intelligence [Holland 1975]). But success with
neural networks did not come until much later due to the

extraordinary computational requirements (Edelman 1987, Montana
and Davis 1989, Austin 1990). It took a surprisingly long time for an
effective gradient descent algorithm to be developed.

1.5 THE SUCCESS OF BACK-PROPAGATION

More than a decade later Rumelhart, Hinton, McClelland,
Sejnowski, and others (Rumelhart and McClelland 1986) had
successes training multi-layer perceptrons. In order to develop a
gradient descent algorithm, they replaced the discontinuous step
function of the linear threshold elements (McCulloch and Pitts
neurons) that Rosenblatt had employed by a continuous (and
differentiable) activation function (Feldman 1981). The algorithm
they developed is known as "back-propagation of error", because
synaptic weight changes are determined by error gradients (partial
derivatives) propagated back through the network via the chain rule.
With steepest descent along gradients they were able to obtain some
startling results: Pronunciation of English words (Sejnowski and
Rosenberg 1987), elucidation of 3-Dimensional shape from 2-D
shaded images (Lehky and Sejnowski 1988), predicting secondary
structure in protein conformation (Qian and Sejnowski 1988),
computing stereo disparity (Lehky and Sejnowski 1990), and
selecting moves in "backgammon" (Tesauro and Sejnowski 1989).
Surprisingly, moderate size nets performed some remarkable tasks.
The nature of neural nets seems to make local minima less of a

problem than they are in some other optimization problems of
comparable size. (Two other applications are presented in chapters 4
and 6. One of these uses the back-propagation algorithm, the other
does not - and as we shall see, cannot.)

13

1.6 NEURAL NETWORK MODELS OF BIOLOGICAL SYSTEMS

In 1962, Hubel and Wiesel studied the response of neurons in
the cat's visual cortex to oriented bars of light (Hubel and Wiesel
1962; Hubel 1988). They found many of these neurons
preferentially responded to specific orientations and that cells with
similar receptive fields were organized spatially in the cortex. Hubel
and Wiesel's neuron's came to be known as "edge detectors", because
of their strong response to lines and boundaries. A conventional
wisdom evolved which presumed that one could understand neural
processing by identifying the receptive fields of individual neurons.
This launched a decades-long effort in which neurobiology became
dominated by the identification of cortical mappings and receptive
fields through single electrode recording experiments.

Long neglected in these studies was the complexity of the
dense connectivity present in the brain. Neural network modelers
began to challenge the prevailing paradigm of neurobiology. Many
likened this effort to "trying to understand the function of a
computer by listening to the output of a single transistor". They
stressed the emergent computational properties of networks of
neurons (Hopfield 1984; Freeman 1991).

Hopfield and Tank (1986) provided a simple example of the
capabilities of a very simple network of 7 neurons. When studied
individually, they argued that each individual performed apparently
random signal transformations; collectively, the network performed
the operation of an A/D (analog-to-digital) converter. In their paper
"Computing 3-D Curvatures from Images of Surfaces Using a Neural
Model" (commonly referred to "Shape-from-Shading"), they
dramatically illustrated the limitation of elucidating a neuron's
function from a mapping of it's receptive field (Lehky and Sejnowski
1988). In their study, a two layer network was trained to identify
the local curvatures of a shaded two-dimensional image. The images
used in this study had no edges or boundaries. Yet, when they

14

examined the hidden units, they found units with oriented receptive
fields nearly identical to Hubel and Wiesel's "edge detectors". This
does not rule out the possibility that edge detectors don't exist in the
brain, but it illustrates the point that knowledge of an individual
neuron's receptive field is insufficient to characterize its' function in
the larger context of a network.

Neural network modelers have also tried to gain insight into
the distributed nature of actual neural systems by training artificial
neural networks on biologically realistic input/output relationships.
Most efforts to 'bridge the gap' between artificial neural networks
and electrophysiological recordings have been limited to 'static' or
instantaneous pattern mappings. This approach has offered insights
into neural structures which process spatial information, such as in
the visual or somatosensory cortex (Lehky and Sejnowski 1988,
Pearson et al. 1987, Grajski and Merzenich 1989).

Many studies have omitted temporal features of both the
environment and the neural architecture while retaining essential
features of the problem being addressed. However, pattern
recognition in real cortical tissues typically involves transitory states
of chaos and coherent oscillations (Freeman 1991, Baird 1990, Skarda
and Freeman 1987). For example, refractory periods are an integral
component in visual motion detection (Poggio and Koch 1987).

Many researchers have attempted to extend neural network
methodologies to intrinsically temporal neural processes such as
motor control (Anastasio et al. 1991, Lockery et al. 1990) or olfactory
discrimination (Freeman 1991). Many of these studies employ
dynamical (recurrent) neural network architectures. Lockery and
colleagues have modeled the withdrawal reflex in the leech using
static and dynamic neural networks to study the distributed function
of interneurons in this well-characterized circuit (Lockery et al.
1988; 1990). In his methodology, he attempts to use whatever
existing information about known neural relationships, receptive and
projective, and uses neural network optimization algorithms to "fill in

15

the missing pieces". Anastasio has conducted similar studies on the
vestibulo-ocular reflex (VOR) (Anastasio et al. 1989; Anastasio et al.,
in press 1991). It is hoped that these models will one day provide a
useful supplement to the traditional minimal implementation single
input/single-output (SISO) block diagrams used in biological control
system models.

1.7 A BIOLOGICALLY PLAUSIBLE LEARNING RULE

Despite its many successes, neural network research has been
plagued by one significant drawback. The most sophisticated neural
network applications to date have trained networks using the back
propagation algorithm - or one of it's many variants. However,
nobody has proposed a reasonable biological mechanism by which
such a complicated algorithm could be implemented with identified
biological structures. Computation of the gradient and adjustment of
synaptic weights, individually through "back propagation of error",
would require an error correction structure as complex as the "feed
forward net" to propagate error signals back to the individual
synapses. Also, the method becomes inefficient and incredibly
complex in network architectures that allow lateral and feedback
connections. Hinton, one of the pioneers of neural networks,
acknowledges that "as a biological model, backpropagation is
implausible" (Hinton 1989). Mel (1990, p 34.) asks,

"[I]s it, then, a fundamental law that neural associative learning
algorithms must be either representationally impoverished or
mechanistically overcomplex?"

In his article "The recent excitement about neural networks", Francis
Crick (1989) writes:

"It is hardly surprising that such achievements [referring to the
work of Rumelhart, Hinton, Sejnowski et al.] have produced a
heady sense of euphoria. But is this what the brain actually
does? Alas, the back-prop nets are unrealistic in almost every

16

respect....Obviously what is really required is a brain-like
algorithm which produces results of the same general character
as back propagation."[emphasis added].

In Chapter 2, we introduce such an algorithm: We have
experimented with a method that is so simple and straightforward
that it seems ideal for implementation in a biological structure. DNA
can generate neural circuits through morphogenesis (though
evolution would have taken many millions of years). Thus, in
principle, DNA could have organized back-propagation networks in
the brain. But, there is a trade-off between simplicity and whatever
increased performance might be obtained from complex neural
circuitry. The algorithm that we propose is of utmost simplicity.
This is its merit. It does not require much "genetic information" or an
excessive overhead of predetermined neural circuitry (as would
back-propagation). It may not appeal to professionals who make
optimization algorithms their life's work and who derive esthetic
pleasure from the intricate program structures their algorithms
require. However, whatever is programmed in the brain has to first
be programmed in the genes. The conversion of nucleotide

sequences in the genome into computationally competent neural nets
is anything but simple. Economy in the number of genes involved
and economy in developmental complexity of neural nets are
therefore overriding powerful principles of evolutionary pattern
formation and selection.

The algorithm that we are proposing, is a random walk through
the space of synaptic weights. It relies on Gaussian trial fluctuations,
which can be generated locally at the synapses, and which are then
fixed by a global signal "To all synapses: Freeze the last trial
fluctuation and make it the starting point for new trials". How can
such a simple rule possibly be substitutable for back-propagation?
We were able to show that this algorithm, augmented by a few
additional features, is indeed a candidate for the synapse adjustment.

1 7

To obtain a comparison to other theoretical learning rules, we
have applied our method to two benchmark problems: "n-bit parity"
and the "encoder problem" (Chapter 2). In subsequent chapters, we
present successful applications of Gaussian random walks and the
"chemotaxis algorithm" to train nets to perform a variety of tasks:
discrimination of earthquakes from underground explosions (Chapter
4), generation of time-varying signals from "recurrent networks"
(Chapter 5), and the generation of control signals for open-loop,
dynamical systems (Chapter 6). This is very encouraging since the
essential point of Gaussian random walk descent is its utter
simplicity in terms of biological implementation. By solving real
world problems with neural networks trained with a biologically
plausible learning rule, we help bridge the gap between
mathematical models and actual neuronal assemblies.

Perhaps such a learning rule could be in operation, at least in
part, in some types of learning in the nervous system. The most
likely candidates may be in the acquisition of skilled movement,
refinement of perceptual skills, or the establishment and refinement
of cortical mappings. In the following chapters, we present
theoretical arguments, biological evidence and computer simulations
to support this view.

18

CHAPTER 2

A BIOLOGICALLY PLAUSIBLE LEARNING RULE1

2.1 INTRODUCTION

In this chapter we describe a non-Hebbian learning rule for
neural network training, called the "chemotaxis algorithm". Network
training consists of a biased random walk through weight space,
combined with a generalized reinforcement signal that fixes
successful modifications. Section 2.2 is a discussion of search and

engineering optimization algorithms, including the back-propagation
and chemotaxis algorithms. The chemotaxis algorithm requires three
elements: (1.) a source of random variation in synaptic efficacy, (2.) a
structure for evaluation of network performance, and (3.) a
reinforcement, or "print" signal to retain successful modifications. In
section 2.3 we argue the biological plausibility of this learning rule
by showing that these three elements are consistent with
neurobiological structures and phenomena. In Section 2.4 we

demonstrate, using computer simulations, that this learning rule is
sufficeint for learning the same complex, non-linear mappings as the
back-propagation algorithm and is reasonably efficient when applied
to benchmark problems in neural network research today. Section
2.5 presents variations of the chemotaxis algorithm. We show that
our algorithm does not require modification for novel activation
functions (such as step functions or conjunctive inputs) or for
dynamical ('recurrent') networks; in this sense, it is a general
learning rule.

! Much of the text and results presented in this chapter first appeared (or will
appear) in publications by Hans J. Bremermann and RWA (Bremermann and
Anderson 1990, 1991).

19

In the last two sections, we return to our discussion of
biological neural networks. Our algorithm suggests a way in which
cortical maps can be established, maintained and expanded. In
Section 2.6 we offer a conjecture on cortical mappings based on these
observations. We conclude with a discussion on the problems of
observability of learning in biological systems and suggest an
experiment for the identification of a reinforcement signal.

2.2 TRAINING FOR PERFORMANCE

2.2.1 ERROR FUNCTION AND BACK-PROPAGATION

Neural nets consist of simple processing elements called
"neurons" or "units" which respond, according to an "activation
function" to weighted sums of input patterns or vectors x. We call
the collection of all the weights the weight vector w. The outputs of
the neurons become inputs of other neurons until a response
eventually emerges on a set of designated output units. The network
response is thus a function of the network inputs and the weight
vector ok = F(x,w). Given a collection of P input patterns and
associated target outputs tº on k = 1,....K output elements, an error
function

P K
2

Ferror= Xº- °ip)

can be computed. The task is to minimize Eerror by optimizing over
the weight vector w.

When there are no constraints on the architecture of the neural

net, this optimization task can be enormously time consuming. We
therefore consider in the following "feed-forward nets" with N input
units, one or several layers of hidden units, and one or several
output units. A "N - M - L - K" net, for example, is a net with N

20

inputs, M hidden units in the first layer, L units in the second, and K
output units.

The input z to each unit in the network is a linear weighted
sum of its inputs. Let oij denote the output of the ith unit in the jth
layer and wi■ k denote the synaptic weight of the kth unit in the jth
layer with input oiG-1) from the ith unit in the (j-1)st layer. Then

*=XXiºgo

is the weighted sum of inputs to the kth unit in the jth layer. The
thresholds are represented by wojk and by convention oog-1) = -1 .

The output of each unit is determined by a nonlinear function
of its weighted inputs called the activation function. In McCulloch
and Pitts neurons, the activation function is a Heavyside step
function. Neural networks trained with the back-propagation
learning rule typically employ a sigmoid activation function, given by
the "squashing function":

1f(z)=7–H–R .(1 + exp(-z))

The sigmoid activation function allows the calculation of partial
derivatives necessary for gradient descent optimization.

The dimension of the weight space is the sum of all the weights
and thresholds in the net. Training consists of a series of weight
changes Aw until the squared error function Eerror is reduced to an
acceptably small value. The algorithm has to find a path in weight
space, descending from and weaving through, graphically speaking, a
very ragged mountain landscape (defined by the objective function
Eerror(w)). It has to overcome not only local minima but find its way
out of saddle points in which escape directions are extremely rare.
(This problem can become exponentially worse with the dimension N
and thus is poorly represented by 3-dimensional intuition).

21

The back-propagation algorithm computes:

Aw(n)= AVE+ HAw(n-1)

where VE is the gradient of the error function, A is the learning rate
(step size parameter) and p Aw (n-1) is called a "momentum term"
that adds a portion of the previous increment Aw (n-1) to the
gradient. The momentum term is thought to help to overcome local
minima. For some problems, conjugate gradient methods have
proven faster than backpropagation (Johansson, Dowla and Goodman
1990).

Gradient descent is the method of choice in countless

applications. Thanks to back-propagation, neural nets have made a
comeback, Hinton, Sejnowski and coworkers succeeded where
Rosenblatt (1962) did not. However, gradient descent and its
variations (such as conjugate gradient techniques) have intrinsic
mathematical limitations (besides being computation intensive and
neurobiologically implausible).

Gradient methods are based on linearization. The gradient is
the normal to the tangent plane to the level surface (hypersurface) of
the objective function. The equation of the tangent plane is the
linearization of the objective function. When the nonlinearities
dominate then the linear approximation of the objective function is
of little use in predicting its values elsewhere. In many important
applications, especially when the dimension of the parameter space
is high, gradient methods have been a failure.

For difficult functions a variety of optimization methods have
been suggested, among others: Genetic algorithms (Holland 1975;
Bremermann 1968; Ackley 1987) stochastic optimization algorithms
(for a recent survey see Cutler 1988) and a partially stochastic
algorithm that interpolates the objective function by means of
polynomials on random rays (Bremermann 1970).

22

2.2.2 SEARCH ALGORITHMS

Every optimization algorithm combines prediction with search.
During a search one evaluates the objective function at chosen points.
The points can be chosen systematically or at random. When the
objective function is easy to predict (through interpolation or
extrapolation), then search is less important. Back-propagtion is
based upon the first order Taylor approximation of the objective
function, which is only locally predictive. We tried to predict the
objective function more globally, by polynomial and spline
approximation along randomly chosen lines. This method can be an
effective method of optimization (Bremermann 1970, Cutler 1988),
but in our experiments with training nets to classify n-bit binary
strings for "parity" the "landscape" defined by the objective function
is so rugged that the approximations in question were useless.

When prediction is impossible, then search is all that remains.
In a fully connected neural net we are talking about very large
dimensions of the weight space, even for nets with few units. Our
algorithms thus must search spaces of high dimension and
exhaustive search is out of the question. This leaves only one option:
Search through random sampling.

In our case, we have for any given point wo a set of "target"
points. These are the points to which the algorithm can jump. They
are the points wo + Aw such that E(w0 + Aw) is less than E(w0). If the
objective function is effectively unpredictable, then the sets of target
points, averaged over the weight space, have an average density
which is Gaussian. The proof is analogous to the proof of the central
limit theorem.

Given a random density of targets, how should the search effort
be allocated? There exists an elaborate theory for the allocation of
search efforts for targets whose location is given by a probability
distribution (Stone 1975). In our case it implies that the search

2 3

effort should be proportional to the target density. In other words,
the trial steps Aw should follow the same Gaussian that represents
the average target density. The variances of coordinate components
of the Gaussian a priori need not be the same, but they can be
normalized by scaling.

This leaves a single parameter to be determined: the common
standard deviation. We generated random steps from a Gaussian
distribution with standard deviation equal to one, then multiplied
them with a stepsize parameter h. This parameter can then be
adjusted interactively or automatically by means of feedback from
successful steps (see section 2.2.5).

2.2.3 MUTATIONAL VERSUS GAUSSIAN RANDOM WALKS

Recently a number of authors have studied "mutational random
walks in rugged landscapes", among them Kauffman and Levin
(1987), and in the context of macromolecular evolution and the
origin of life: Eigen (1988); Eigen, McCasgill and Schuster (1991);
Schuster and Swetina (1988); Fontana, Schnabl and Schuster (1989);
and Schuster (1985). Macken and Perelson (1989), Perelson and
Kauffman (1991) and Macken, Hagan, and Perelson (1991) have
explored random walks on "rugged landscapes" that are generated by
single point mutations in the context of affinity maturation of
antibodies. The mutations affect the coding region for the variable
part of antibody molecules, the quantity selected is the binding
affinity of antibodies for the antigen to which they respond. During
the primary immune response those clones of the B-cell repertoire
are expanded whose immunoglobulin receptors have the highest
affinity for the invading antibody. Subsequently the affinity
(equilibrium binding constant) of antibodies for the immunizing
antigens increases, typically ten- to fifty-fold. This is due to somatic
point hypermutations which occur at the high rate of 10-3 per
basepair per generation. After an initial improvement of affinity and
typically 6-to-8 mutations in the V- (for "variable") region of the

24

immunoglobulins further mutations tend to lead to no further
improvement in affinity.

Macken and Perelson have simulated this process by
representing genomes by binary strings and assigning affinities at
random. This gives rise to a "worst case scenario", a totally rugged
landscape. They consider only single point mutations and describe
the random walk as follows:

"The germline sequence defines a starting point on the
landscape. At any stage on a walk, single-mutant variants
of the current antibody are tested in random order until
the first neighbor having a higher fitness is attained. The
walk then moves to this new point in sequence space (i.e.
new antibody sequence), and the testing process starts
all CW..... If no fitter variant is found among these
different one-mutant neighbors, the process stops, as the
walk has reached a local maximum."

They then analyzed the probability that a random walk ends
(gets trapped) at the kth step. This depends, of course, upon the
number of mutable bases involved. Macken and Perelson estimate

that for the V-region about 700 basepairs are involved, and that
about 75% of the mutations (due to the degeneracy of the genetic
code) lead to changes in affinity, which amounts to 1575 one-mutant
neighbors. Rounding this figure to 1500 they found that the
"trapping probability" reaches a maximum at seven steps, and that
very few of these mutational walks extend beyond fifteen steps.

When the underlying space consists of digital strings (as it
necessarily does in protein evolution), then there is little that can be
done about trapping. However, when the underlying space consists
of vectors of real variables, then it is possible to draw random steps
to from a spherically symmetric probability distribution. The n
variate Gaussian (with equal variances) is spherically symmetric, and
it has the added advantage to vary step length in a way that is an

2.5

optimal search strategy when the "points of opportunity" themselves
have a Gaussian distribution (previous section).

2.2.4 IMPORTANCE OF THE SEARCH - PROBABILITY

DISTRIBUTION.

When extending mutational random walks to a vector of
continuous real variables, we are presented a choice as to the form
the mutation, or search vector, should take. Perhaps the simplest
choice would be to choose a random vector from a uniform

probability distribution. However, genetic algorithms using a uniform
distribution generate highly non-symmetric distributions. Mutation
and recombination in a population of points is another matter, but in
our context the cost of function evaluation makes working with
populations unfeasible.

The importance of the Gaussian distribution, especially in high
dimension, can easily be demonstrated by substituting another
distribution such as a uniform distribution. If we choose the

individual trial modifications of the synaptic weights independently
from a uniform distribution we obtain in N-space a distribution that
is uniform over the N-cube. These directions are not spherically
symmetric. The diagonals of the N-cube are longer than the axes.
Deviations from the Gaussian distribution have no serious effect

when the dimension is small. They become more and more serious as
the dimension increases. The N-sphere inscribed in the N-cube
contains the subset of spherically symmetric directions. Its volume
V is

VNsphere= tn/?rNMTCN + 2y2)

Here T denotes the Gamma function. Note that T((N+2)/2) = (N/2)
when N is even. Let N/2 = M. The volume of the N-cube is 2N =
4M. The ratio of the volumes goes to zero as (t/4)M/(M!). Hence
random directions taken from the N-cube are biased away from

26

3-Dimensions N-Dimensions | 2TS

Cube (2)” 2NEN

N
4TU (WTC) rNSphere ºr Fºya,

Figure 2.1: Uniform versus Gaussian distribution of
random directions.

Vectors in multidimensional space whose components
are drawn from a uniform distribution will fill an N-cube.

The 3-dimensional case is illustrated. For higher
dimensions, the ratio of the volume of the N-cube to the
N-sphere becomes astronomical. Generation of a
spherically uniform distribution by discarding vectors from
an N-cube that lie outside the N-sphere therefore becomes
impossible. Components drawn from a Gaussian
distribution, however, result in a spherically symmetric
distribution of vectors.

27

spherical symmetry, with the unbiased directions loosing out to
biased directions exponentially with increasing N (Figure 2.1).

Robert Hecht-Nielsen has also compared random variables
drawn from cubes and spheres in high dimensional spaces. He notes
that the length of the diagonal of an N-dimensional hypercube is
(N2)N whereas the radius of a sphere remains constant. He concludes
that "... cubes in high dimensions are best thought of as spherical
porcupines" (Hecht-Nielsen 1990, pp. 42-43).

2.2.5 LEARNING THE STEPSIZE

Besides biased random walks as described above we have also

experimented with an algorithm that resembles bacterial chemotaxis.
It is a shade less pessimistic about the predictability of the objective
function. As before, random trial steps are taken with a Gaussian
distribution, but when the algorithm takes a successful step, it
attempts to keep going in the same direction until the objective
function no longer decreases. In other words this algorithm will
attempt to follow a declining slope if it finds one.

The steps of our algorithm are analogous to the motions that
bacteria perform during chemotaxis (Koshland 1980, Berg 1983).
Bacteria are too small to be able to measure spatial concentration
gradients of chemo-attractants. When swimming in a medium with
varying concentrations they generate random directions instead and
keep going as long as concentration increases. If attractant
concentration does not or no longer increases, then they stop, tumble,
then emerge in a new direction at random angles to the old direction.
In this way they move towards larger and larger concentration
values of the attractant. In other words, they optimize the function
that describes the concentration of the chemo-attractant in the
medium.

28

How much distance do bacteria have to swim under chemotaxis

versus gradient ascent? That depends upon the shape of the
equiconcentration surfaces in the medium. When these are spherical
(a condition that is ideal for gradient descent), they have to swim an
average of only 39% longer as compared with following the gradient
(Bremermann 1974). In our case the error function takes the place
of the chemo-attractant concentration, and the weight space (of high
dimension) corresponds to the 3-dimensional physical space in which
bacteria swim.

Algorithms, involving random walks, have long been the
numerical method of choice for many particle problems of
mathematical physics. "Monte Carlo" algorithms were introduced by
Metropolis and Ulam in 1949 (Metropolis and Ulam 1949, Shreider
1966). Recently Ceperly and Alder (1986) reported that the many
particle Schroedinger equation can be solved by a "quantum Monte
Carlo method" that solves the equation by random walks in the
many-dimensional state space. The method is faster and more
accurate than conventional variational methods, which for high
dimension are too slow and cannot be refined to give sufficiently
accurate results. In the limit, for short stepsize and many
trajectories, random walks are described by the diffusion equation
(Comp. Koshland 1980; Berg 1975, 1983; Okubo 1980). Chemotaxis,
too, in the limit is described by a reaction-diffusion equation (Keller
and Segel 1970; Alt 1980; Nossal 1980). Equations for selection
diffusion have been analyzed by Ebeling et al. (1984). Ceperly and
Alder note that the many-particle Schroedinger equation, written in
Euclidean time, is equivalent to a bacterial chemotaxis equation.

2.2.6 THE CHEMOTAXIS ALGORITHM

In the Gaussian random walk algorithm, the network is
initialized with an an arbitrary set of weights, wo, and performance
E (w 9) is evaluated. A random vector A w is chosen from a
multivariate Gaussian distribution with a zero mean and a unit

29

standard deviation. This random vector is added to the current

weights to create a 'tentative' set of weights w! :

w t = w O4-h/Aw

where h is a stepsize parameter. Performance E(w t) is then
calculated for the tentative weights. If the error of the new
configuration is lower than the original configuration, the tentative
changes in the weight vector are retained; otherwise, the system
reverts to its original configuration. A new random vector is chosen,
and the process is repeated.

In the chemotaxis algorithm, if a successful direction in weight
space is found, an additional step is taken along the same random
vector and the stepsize parameter, h, is increased automatically.
Weight modifications continue along this same random vector until
progress ceases. In other words, the algorithm will attempt to follow
a declining slope if it finds one. In addition, if after several trials, a
successful direction is not found, h is reduced by 50%. This allows for
automatic adjustment of the single learning parameter, which
otherwise has to be found empirically. Because of these automatic
features and the ease of implementation, the chemotaxis algorithm
was used in all computer simulations reported here.

Figure 2.2 (Following Pages): Graphical presentation of the
random walk in weight space.

A 3-3-1 network was trained using the 'chemotaxis' algorithm for 3-bit
parity. Training continued until the network responses to all 8 patterns
were within 10% of their 'target' values. Total system error versus
iterations of the algorithm is shown in figure 1.B. Figure C shows the
evolution of the individual weights during training from the three hidden
units and bias to the output unit. Each marker identifies a point in
training where a successful random step was found. Evolution of the
weights from the input nodes to the three hidden units are shown in
figures D-F. Random walks in the weight space of larger nets look similar,
but would require too much space for graphical presentation.

30

(A)

OUTPUT UNIT

HIDDEN UNITS

|NPUTS

B:TOTALSQUARED ERROR

100 200

Iteration

O

31

C: WEIGHTS INTO OUTPUT UNIT

+ Hidden #1

TH Hidden #2

-*- Hidden #3

<> Bias

literation

D: WEIGHTS INTO HIDDEN UNIT #1

+ Input #1

{} Input #2

-*- Input #3

-O- Bias

Iteration

32

E:WEIGHTS INTO HIDDEN UNIT #2

|-
* Input #1

| {} Input #2

* Input #3

|* Blas

Iteration

F: WEIGHTS INTO HIDDEN UNIT #3

* Input #1

{F Input #2

* Input #3

*O- Bias

Iteration

33

2.2.7 ACCELERATED GUIDED RANDOM SEARCH

It should be noted that optimization through random walks is
not new. Two years after we developed the chemotaxis algorithm,
Daniel Chester (U. of Delaware) pointed out to us that the chemotaxis
algorithm is similar in spirit to a method which was known as the
accelerated guided random search: (GARS) developed by Lewey O.
Gilstrap, Jr. and others at Adaptronics, Inc. (McLean, VA):

" [T]he accelerated random search begins by exploring the
vicinity of its initial estimate. The random trials are governed
by a normal distribution of probabilities which is centered on
the initial point. ... the accelerated random search follows an
unsuccessful random step, with a step of equal magnitude in
the opposite direction. By this means, a successful step is
usually achieved on the second trial if not on the first random
trial. ... A successful step is always followed by another step in
the same direction ... each successive step is given double the
magnitude of the prior step."(Barron 1968)

Barron (1968; 1970) used GARS to optimize control parameters in
flight control systems. Mucciardi (1972) even applied GARS to
neural net-like classification structures called "neuromine nets".

Mucciardi's paper presented an analysis of neuromine nets and the
algorithm, but provided only simple examples of its application.
Advanced applications of the GARS algorithm never materialized due
to the lack of available computer resources. Their failure to apply
the algorithm to the complex classification problems emphasized in
Perceptrons kept GARS from receiving much attention.

Another aspect of random search, overlooked in by the group
at Adaptronics, was it's biological plausibility, discussed in the next
section.

34

2.3 RANDOM WALK LEARNING IN BIOLOGICAL NEURAL
SYSTEMS

2.3.1 GAUSSIAN FLUCTUATIONS OF NEURONAL
CONNECTIONS AND SYNAPTIC STRENGTH

A Gaussian distribution can easily be generated in biological
nerve nets for two reasons:

1) The product of individual Gaussians (with standard deviations o 1
to on) is the multivariate Gaussian distribution with multivariate
standard deviations o 1 to on . In other words if individual synaptic
weights fluctuate independently, each according to a Gaussian
distribution, then the entire weight vector fluctuates according to a
multivariate Gaussian. Not only is the multivariate Gaussian
distribution required by the the optimal search theorem, but it can
be generated without interaction between the weight changes.

Glanzman et al. (1990) have observed structural change in
vitro of a coculture of Aplysia sensory neurons and their target (L7
motor) neurons over a 24 hour period. They note that morphological
changes (varicosities and new synaptic processes) at the junctions
between the sensory and motor cells appeared to be normally
(Gaussian) distributed in the control group. In the cocultures
repeatedly treated with serotonin, however, structural change was
shown to be highly biased toward increases in connectivity.
Furthermore, they showed that these observed structural changes
corresponded to measurable changes in monosynaptic EPSP
(excitatory postsynaptic potential) produced in L7 motor cells by
firing the sensory neuron. Perhaps the random variation observed in
the control group serves a vital role in learning by generating
tentative, exploratory variation in neural structure. (see section 2.7)

2) When synaptic strength is the result of many components
(channels in the presynaptic membrane, transmitter release
mechanisms, postsynaptic receptors, etc. [Lynch 1986; Kennedy

35

1988]) then fluctuations in the total mechanism, because of the
central limit theorem are distributed approximately Gaussian, even if
individual fluctuations are not.

Learning is likely to occur not only at the level of individual
neurons but could involve "groups" or populations of neurons
(Edelman 1987). Plasticity in contact between axons and spines (for
which there is evidence, e.g. [Aoki et al. 1988]) would lead to
fluctuations in the strength of contact between groups. Such
fluctuation, because of the central limit theorem, would also follow a
Gaussian distribution. Therefore the same basic learning algorithm
would apply to learning by individual units as well as learning by
large and small groups of neurons.

2.3.2 FIXATION OF SUCCESSFUL MODIFICATIONS

Our algorithm requires that all fluctuations in the strengths of
weights (or synaptic contact between groups) remain tentative and
reversible unless made permanent by a special "hold" signal (which
is analogous to Grossberg's postulated "print" signal [1988]) It is
important to note that this signal does not require any local
computations whatsoever; it is a global signal addressed "to all
synapses" within the net. It could be an electrical signal propagating
through the net (such as tetanization), or chemical, or an interaction
of both. This signal would fit Crick's (1989) description of a signal "to
tell the system when something is worth remembering". He points
out that "there are many return pathways in the brain." The global
signal is consistent with his observation of the existence of "diffuse
pathways, such as that from the locus coeruleus, ... [in which] ... one
such neuron sends much the same signal to many parts of the brain."

Our proposed modification rule also seems to be consistent with
current knowledge about molecular mechanism of synaptic
modification (Kauer et al. 1988; Stevens 1989; J.H. Williams, et al.
1989). Both back-propagation and our algorithms require that
synaptic strength can be increased as well as decreased. Long-term

36

synaptic change in Aplysia sensorimotor synapses can be produced
by a cellular analog of classical conditioning (Buonomano and Byrne
1990). Associative long term depression (LTD) has been reported in
the same system by Stanton and Sejnowski (1989). They show that
this is consistent with a "Hebbian covariance learning rule", but such
phenomenon are consistent with several reinforcement learning
rules - including random walks.

2.3.3 ORIGIN OF THE GLOBAL SIGNAL

The algorithm requires that the performance of a net be
evaluated. This evaluation could be accomplished by other brain
circuits. We do not consider this requirement problematic, since
evaluation of performance tends to be computationally easier than
improvement. For example, throwing a ball requires precise
coordination and timing of numerous muscles. Good performance is
hard to achieve and may require extensive training. But, how close a
ball comes to hitting the target is relatively easy to determine.
Evaluation of accuracy can be processed separately by the visual
cortex - independent of networks involved in generating the
movement. One portion of the brain thus could act for another
system as "supervisor".

Other learning schemes also require a global signal. In the
Boltzmann machine weights are adjusted according to the activities
of the neurons that are connected (Ackley et al. 1985). The local
adjustment mechanism, however, must receive information when the
neural net is free running and when it is "clamped". Barto et al.
employ a rather complex 'adaptive critic element' in their
reinforcement learning schemes (Barto, Sutton and Brouwer 1981;
Barto, Sutton and Anderson 1983). In Edelman's "Neural Darwinism"
(1987) a global "value" of the net activity is required.

37

2.4 SIMULATION EXAMPLES: TRAINING NETWORKS ON
BENCHMARK PROBLEMS2

2.4.1 N-BIT PARITY

Here we report results of computer simulations of the
chemotaxis algorithm applied to the on the "N-bit parity" problem.
The parity value of N binary inputs is defined as 'true" for an odd
number of "true" inputs and "false" otherwise. N-bit parity can be
considered a generalization of the "exclusive or" (XOR) which is
known to be problematic for single layer perceptrons (Minsky and
Papert 1969). Parity is considered a "difficult" test case for neural
networks since its solution requires complete knowledge of the input
vector in order to determine a correct response. In addition, neural
network training time is known to scale exponentially with N
(Tesauro 1988). However local minima do not seem to present a
significant obstacle to training when more than the minimal number
of hidden units are allowed. Michael Conrad has also noted

evolutionary optimization is easier on a system with redundant
variables (Conrad 1983).

The network used for this study had an 'N - (2N+1) - 1'
architecture where N represents the number of bits in the input
layer. In all the explorations reported in the following binary inputs
were represented as 'one' and 'minus one'. In this way we avoid
multiplying weights by zero.

The output unit's response to a given input is defined as
'perfect' if it is within 0.2 of the the target output. A training cycle
consisted of testing all 2N input vectors on a given trial weight
vector. Training was continued until 100% of the input vectors had

2An independent comparison of the chemotaxis, back-propagation, recursive
error minimization, second-order back-propagation and cascade correlation
training algorithms on benchmark problems appears in Wilson (1991).

38

'perfect' responses. Best, worst and average training times as a
function of input vector dimension are shown in Table 2.1.

2.4.2 DISCUSSION

These training times are roughly an order of magnitude longer
than back-propagation. Note that the adjustment of weights
according to back-propagation is computation intensive, while ours is
trivial. A back-propagation cycle requires about twice the amount of
computation as our algorithm. Also, Tesauro and Janssens fine-tuned
their version of back-propagation by choosing optimal values for the
learning rate and momentum parameters for each N. This required
considerable trial and error. All together they expended several
weeks of SUN workstation CPU-time compiling their statistics (Table
2.1). There are indications that training times for our method could
be further improved through fine-tuning of the algorithm. For
example, one could add a "momentum term" p Aw (n-1), where Aw (n-
1) is the previous weight adjustment. Chemotaxis adjusts the stepsize
automatically. Automatic expansion and contraction of net
architecture might also help improve convergence (see below).

We also have experimented with back-propagation by
substituting it for our own optimization algorithm, minimizing the
sum of squared errors of all test patterns rather than, as Tesauro and
Janssens, adjusting weights after each in dividual test pattern
presentation. Tesauro and Janssens' performance figures are much
better than the results that we obtained in this way with constant
learning rate A and momentum parameter pi). Tesauro and Janssens'
method depends critically upon A and pl. We did not attempt to fine
tune these parameters, which would have been very computation
intensive. Our "chemotaxis algorithm", in contrast, is automatic and
does not require any tuning.

Back-propagation likewise can be modified to automatically
adjust parameters. When we incorporated a rule for adjusting the
learning rate, (omitting the momentum term), back-propagation

39

Table 2.1: Comparison of the Chemotaxis Algorithm and Back-Propagation'

Chemotaxis Back-Prop
Dimension Average (cycles through

(N) (Low/High) training set)
2 113 24

(35/188)
3 251 33

(96/421)
4 962 75

(64.9/1660)
5 1259 130

(820/1951)
6 4169 31 O

(2494/7107)
7 5789 800

(3159/10:169)

* Average, best and worst training times for the chemotaxis algorithm.
Net architecture: N-(2N+1)-1. Weights were updated after performance
was evaluated over the entire input set.

Back-propagation averages from Tesauro and Janssens (1988). For
comparison of computational effort, the figures of Tesauro and Janssens
should be doubled (see text).

40

performed slightly better than our chemotaxis algorithm on 4-bit
parity.

Finally, we note that many researchers introduce the
equivalent of a stochastic element into the back-propagation
algorithm. They do not minimize (as we do) the objective function
that is generated by summing the squared output errors over the
entire set of inputs. Instead they compute the gradient and adjust
the weights after each individual input sample (e.g. Tesauro and
Janssens 1988). Therefore the objective function changes after each
sample presentation. In this case, the "momentum term" actually is
serving as a "memory" term - to remember the landscape of previous
samples. Since for the parity problem the objective function is
rather erratic, the resulting gradient directions would seem to
behave in a pseudo-stochastic way.

2.4.3 THE 4-BIT ENCODER PROBLEM

This problem was introduced by Ackley, Hinton and Sejnowski
to demonstrate a learning algorithm for Boltzmann Machines (Ackley
et al. 1985). It has since become a standard problem in neural
networks (see also Rumelhart, Hinton and Williams 1986; Ballard
1987, Hinton 1988, Crick 1989). The net architecture chosen for this
study takes the form 4-N-4: four input nodes are connected to N
hidden units, which then feed into four output units (In this study
N=2,3,4). Four input patterns: (0,0,0,1), (0,0,1,0), (0,1,0,0), (1,0,0,0)
are then trained to elicit a corresponding set of patterns at the
output units. For N less than 4, the network is forced to find a more
compact representation of the input vector in order to communicate
all of the input patterns to the output layer, thus the name encoder.

Twenty training runs were performed for each architecture (4-
4-4, 4-3-4, 4-2-4). Weights were updated after each cycle through
all four input patterns. Training was continued until the sum of the
squared errors had been reduced to 0.1. All runs converged except

41

Table 2.2: Performance of the Chemotaxis Algorithm on the Encoder
Problem with Communication "Bottlenecks" (1)

Architecture Average Training Times
(to 1.0) (to 0.1)

'4-4-4" 259 496

'4-3-4' 352 648

'4-2-4" 3.28° 96.3 *

(1)Average performance on the encoder problem as described by Ackley
et al. (1985). In this problem, the hidden units are fewer in number
than the number of input and output units (forcing coding in the hidden
layer). Averages are taken from 20 simulation runs. One run of the
4-2-4 encoder failed to learn all 4 patterns and was omitted from
that average.

42

one run of a 4-2-4 net, which learned only 3 of the four patterns.
Average training times are given in Table 2.2. Restriction of the
number of hidden units did not appear to present a significant
obstacle to the chemotaxis algorithm in this case.

2.4.4 THE MULTILAYER ENCODER

The problem was extended to several layers of hidden units
(Ballard 1987). Following Ballard's convention, the architecture
chosen consisted of four input units, feeding into four hidden units,
and into N-1 layers of hidden units. Note that no 'bottleneck' was
imposed for simplicity. Performance was averaged over 20 training
runs for networks with 1 to 5 layers of hidden units (3 to 7 layers of
nodes).

The algorithm converged for all runs. Average training times to
a squared error of 1.00 are given in Table 2.3 (for 1 and 3 layers of
hidden units, errors were further reduced for comparison).
Comparison with Ballard's study shows that the chemotaxis algorithm
is 2 to 5 times slower than back-propagation for one hidden layer.
But, for nets with three or more layers of hidden units, our method
matches or outperforms back-propagation. A comparison with an
evolutionary optimization algorithm on this problem is given in
(Smalz and Conrad 1990).

2.5 WARIATIONS OF THE BASIC ALGORITHM

2.5.1. BOLTZMANN FACTOR

In the spirit of the Metropolis (Metropolis et al. 1953)
algorithm and the Boltzmann machine (Hopfield 1984; Hopfield and
Tank 1985, 1986; Ackley, Hinton, and Sejnowski 1985; Geman and
Geman 1984/88; Boseniuk, Ebeling and Engel 1987; Ackley 1987;
Haken 1988; Day and Camporese 1990) we modified the algorithm
such as to allow the occasional acceptance of values of the objective

43

Table 2.3: Comparison of Training Times
for the Multilayer Encoder Problem”

#of layers Chemotaxis Back-propagation
of Hidden Algorithm Training times to

Units Training Squared errors:
(to 1.0) || (to 0.1) (to 1.0) (to 0.1)

1 259 479 50 200

2 584
- - -

3 829 1837 2000 3000

4 2404
- - -

5 3560
- - -

*Averages taken over 20 simulation runs.
Back-propagation numbers are estimated from Ballard
(1987).

44

function that were higher than the current value in the hope that
this helps overcome local minima. Acceptance of higher values was
governed by a probability equal to a negative exponential of a
"temperature" factor and the difference in values of the objective
function (Boltzmann factor). Unfortunately this did not speed up
convergence but had detrimental effects, allowing a slow
deterioration of the function value, unless the "temperature" factor
was virtually zero, which takes us back to the original algorithm.

2.5.2 ACTIVATION FUNCTIONS

Rosenblatt's (1962) original perceptron model is very similar to
the feed-forward nets that we have studied, except for the sigmoid
activation function, (sometimes called "squashing function"). He used
a step function instead of a sigmoid, in accordance with the
McCulloch and Pitts neuron model. The sigmoid function was
originally introduced in Boltzmann machines, where it represents
firing frequencies of neurons (Hopfield 1984; Ackley, Hinton and
Sejnowski 1985). Subsequently Rumelhart, Hinton and Williams
(1986) used it as their activation function with back-propagation in
feed-forward nets. Sejnowski and coworkers successfully applied
this methodology to several non-trivial problems (see Introduction).

The sigmoid is convenient for applying back-propagation,
which computes the gradient of the performance (error) function.
The gradient contains the derivative of the activation function. In the
limiting case the sigmoid function becomes the discontinuous step
function H(t), which is zero for t < 0, H(t) = 1 for t > 0. The derivative
of H(t) is the Dirac delta function: H'(t) = 8(t). The delta function is
zero for t + 0, but 6 (0) = co, and thus the formula for back
propagation does not work.

The sigmoid function may be difficult to justify as the response
function of an individual neuron. However, if the "units" are not
individual neurons but populations of neurons then the collective

45

output could easily be a sigmoid or some sort of a saturation curve
resembling it. It may thus be of interest to know that the exact shape
of the group response curve does not seem to matter.

The exact shape of the activation function is not critical for our
algorithms. In some experiments we have replaced it with a
piecewise linear "ramp" function without affecting performance of
the algorithm. (On the contrary, ramp functions are cheaper to
compute than sigmoids, which involve exponentials). McClelland and
Rumelhart (1981) and Rumelhart and McClelland (1982) have
employed this activation function in connectionist models.

Rumelhart, Hinton, and McClelland (1986) compare different
types of activation functions that have been proposed for
connectionist models as well as feed-forward nets. Among these are
conjunctive units of Feldman and Ballard (1982) that have terms that
are the product of inputs, the same as the "sigma-pi" units of
Williams (1986). We have experimented with such units in the N-bit
parity problem and found that our algorithm converges faster when
products of nearest neighbors are added as inputs to the weighted
sums. This shows that our algorithm can handle activation functions
of many kinds without any added computational complexity. In
contrast, computation of the derivatives of activation functions other
than sigmoids (which is required for back-propagation), can become
very complex. (Note that the sigmoid function is special because f =
f(1 - f)). We have not collected performance statistics for Feldman
Ballard and Williams-type activation functions since our objective
was to compare our algorithm with published performance figures
for back-propagation.

2.5.3 NET EXPANSION AND CONTRACTION

We conducted experiments for n-bit parity (interactively, with
simple random walks as well as chemotaxis) where during the
training of a net additional units are added or removed. This process
does not unduly disturb training progress. In fact, when a task

46

proved too difficult for a net (not enough hidden units), adding units
would help achieve ultimate convergence. Also, when training
reached a prolonged plateau, the algorithm could be made to
converge by training a smaller net (on a simpler version of the
problem), then expanding the net and training it on the full problem
again.

2.6 A CONJECTURE FOR CORTICAL MAPPINGS

The principles of cortical self-organization have recently been
reviewed by Stryker et al. (1988). In this context, topographic maps,
especially from the retina to the visual cortex (and other areas of the
cortex, as many as 24 in the rhesus monkey), are of special
importance. Von der Malsburg and Singer (in Rakic and Singer 1988)
have suggested that the establishment of the topological map from
the retina to target areas in the cortex is "an important paradigm
case".

"There are many topological fiber projections between thalamic
areas and also between and within cortical areas. Retinotopy is
one of the few biological model problems experimentally
addressed with enough intensity that theoretical issues can be
decided".

We (HJB and RWA) propose the following three mechanisms:

"A) There is a mechanism to guide fibers to tectum.

B) There is a mechanism to position fiber terminals within
tectum. This mechanism is responsible for rigid constraints on
the mapping.

C) There is a fiber-sorting mechanism which improves the
precision of the mapping over that attained by mechanism B
alone and which is activity-dependent."

47

They further state that "the fiber-sorting mechanism C, since it deals
with activity-dependent network organization....can be generalized to
other interesting cases, in particular to neocortex".

A bundle of fibers ascending from the retina, through the
optical nerve, lateral geniculate to the visual cortex resembles the
"encoder problem" (Figure 2.3).

There are many reverse pathways in the brain (Van Essen
1985). The corticofugal fibers carry information from the cortex to
the dorsal lateral geniculate nucleus. Could it be that these fibers
return information to the lateral geniculate where it is compared for
quality of matching? A topological map is entirely determined by
the maps of points and their neighborhoods such that the mappings
in neighborhood intersections are consistent. According to postulates
A and B by Von der Malsburg and Singer, morphogenesis locates
fibres coarsely in correct neighborhoods. The problem thus is to
account for refinement of this map. Suppose a cell in the originating
layer creates a ring of inhibition when it fires. Then its projection
should be surrounded by a "ring of silence". If the point to point
map is not consistent in the projection area, a distorted ring will
result. Suppose that such distortion would generate an error signal
that is returned to the originating layer. The random walk algorithm
could then adjust weights and or connections until the error signal is
minimized. Repeated over and over again for all projecting points,
the initially coarse map could be improved to the limit of resolution.

Another problem is: how do the reverse fibers "know" exactly
where to go? Here is a suggestion for a possible solution of this
dilemma: The projections from the lateral geniculate nucleus to the
visual cortex and back to the geniculate are trained as a single
encoder. The input is sent on ascending pathways to the cortex and
returned on reverse channels to its origin where the original pattern
and its "echo" are compared. This configuration would constitute an
encoder with the cortex functioning like a layer of "hidden" units.
Initially the two patterns might match only very coarsely. The

4 8

Retina LGN

A Optic A W 1

Nerve

B NA -> 2. B To other
cortical

2%
D N projection

C
N

C | areas

Figure 2.3: Schematic representation of the map
from the retina to the lateral geniculate nucleus.

Pathways originating from the retina project via the
optic nerve through the Lateral Geniculate Nucleus (LGN)
on to the primary visual cortex (V1) as well as other
cortical projection areas. The mapping on W1 is a point
-to-point map of 2-D visual space. This characteristic
Organization is typical of most mappings in the brain and
resembles a multilayer encoder. (Figure adapted from Roe
et al. 1990.)

49

encoder would then be trained with varying inputs until the identity
map becomes better and better.

To ensure that the map is a one-to-one map we suggest that
signals originate alternately in the geniculate and being trained to
return to the point of origin, and conversely: signals that originate in
the projection areas are trained to return to the point of origin in the
COrtex.

Our model would also be consistent with multiple projections
onto cortical areas, each projection being fine-tuned separately. The
lateral geniculate would thus be a distribution area for multiple
retinotopical maps.

2.7 DISCUSSION: OBSERVABILITY OF BIOLOGICAL LEARNING

What learning mechanisms, if any, accounts for the plasticity in
the organization of neural structures? Identification of learning
mechanisms is complicated by the problem of observability. The
only mechanism for systematic synaptic change found thus far is the
Hebbian-like changes involved in Long-Term Potentiation and
Depression (Chapter 1) which only requires observation of two or
three locally interacting neurons. We have argued, however, that
Hebbian learning rules are insufficient for learning complex,
nonlinear mappings, such as N-bit parity. We have demonstrated
that a simple mechanism can be effective in training networks of
highly abstracted neurons. Evidence for non-local learning
mechanisms such as the Gaussian random walk presented here will
be difficult, if not impossible. What we can hope to find is the
necessary components of a learning rule. As discussed in Section 2.3,
our algorithm requires three components to function:

1. a mechanism for local variation,
2. a structure to evaluate performance, and
3. a reinforcement signal to fix successful modifications.

50

Recent physiological experiments by Glanzman and others (Glanzman,
Kandel and Schacher 1990) can be reconciled with this simple
learning rule. Here we briefly describe their results, offer an
interpretation consistent with a global reinforcement learning rule,
and suggest additional, clarifying experiments.

Glanzman et al. (Glanzman et al. 1990) studied an in vitro
coculture of Aplysia sensory neurons and their target [L7 motor]
cells. The sensorimotor cocultures were grown for 5 days and
observed by fluorescence video micrographs. One group of
preparations was repeatedly treated with the facilitating transmitter
serotonin (5-HT) for 24 hours. Afterwards, the coculture was imaged
again to look for structural changes. (Serotonin was not applied to the
control coculture.) This study was significant in that they were able
to directly image structural changes - rather than relying on
comparison of two different populations of neurons. Morphological
changes (varicosities or new processes) at the junctions between the
sensory and motor cells were rated on a subjective scale. Increases in
size or number of varicosities or processes rated increasingly positive
scores (up to +2) and decreases rated negative scores (to -2).

In the control group, morphological changes were found to be
normally distributed with a mean change of zero on their rating
scale. In the cocultures treated with serotonin, however, structural
change was shown to be highly biased toward increases in
varicosities or processes. Furthermore, they showed that these
structural changes corresponded to measurable changes in
monosynaptic excitatory post-synaptic potential (EPSP) produced in
L7 motor cells by firing the sensory neuron. Thus, they were able to
show both physical and electrophysiological facilitation can be
induced in vitro by a single chemical signal - serotonin. (In a
separate experiment, they showed that memory-related structural
changes did not occur without the presence of the appropriate
postsynaptic target.)

51

We suggest that the random variations in the control
experiment may serve a vital role in learning, that is, to generate
new trial connections and efficacies (see section 3.1). The system
may make use of these trial-and-error explorations in structural
organization as a vital component of the "learning" process.
Interpreted in this light, serotonin release in a cluster of neurons
may serve as a local "print" (or fixing) signal to retain effective
changes. However, the experiment described by Glanzman, et al.
cannot differentiate between serotonin's putative role as a
generalized facilitating growth factor or a reinforcement signal.

We propose an experiment in which serotonin is applied
selectively. With more frequent imaging, structural change could be
monitored as a function of time. Images could be taken, for example,
every 4 hours. Serotonin would only be applied if growth from the
previous image had been detected. These applications would serve as
a "print", or reinforcement, signal. In the control experiment, the
same number of serotonin applications would be applied, but at
random intervals. If our hypothesis is correct, we would expect the
experimental group to show significantly more structural change. If,
however, serotonin is simply acting as a generalized growth factor,
there should be no difference between the two groups. Difficulties
would arise in interpretation of a negative result as it may be
difficult to measure minute changes in structure on a subjective
basis. These problems may be overcome by increasing the total
duration of the experiment to 3-4 days (instead of 24 hours) and
sampling every 8 or 10 hours.

There is other evidence the other transmitters can induce

depression of synaptic efficacy (Montarolo, Kandel and Schacher
1988). There is also evidence that the effects of serotonin may be
more selective (Eaton and Salt 1989). Its effectiveness is also
modulated by secondary messengers (Bergold et al. 1990) and
threshold phenomena (Flavahan and Vanhoutte 1988). We note that
a more orchestrated and directed learning process would only serve
to increase the efficiency of a simple global reinforcement signal. We

52

also emphasize that our proposed learning scheme does not preclude
other modes of change (i.e. Hebbian facilitation and conditioned
response).

53

CHAPTER 3

NEURAL NETWORK THEORY

3.1 INTRODUCTION

We have demonstrated that a biologically plausible learning
algorithm is capable of training feed-forward neural networks. It is
useful to know what these networks can do in principle as well as
whether a particular training algorithm is effective in exploiting
these capabilities. As mentioned in Chapter 1, neural networks are
potentially powerful computing devices. Here we discuss the
theoretical capabilities of the more limited, feed-forward neural
networks. This lays the foundation for a discussion of capabilities of
fully-connected (recurrent) networks presented in Chapter 5. This
mathematical treatment is essential for the understanding of the
constraints which govern biological information processing.

Knowledge of the theoretical capabilities and limitations of
neural networks is critical for the design of successful applications.
As some of these theoretical developments are fairly recent, a
general reference on the topics covered here is not yet available.
(For an excellent reference on the state of the art up to 4 years ago,
see Brains, Machines and Mathematics [Arbib 1987].) The topics
covered here provide the necessary background for the applications
presented in subsequent chapters.

We present a review of three relevant theoretical issues for
neural network applications: function approximation, pattern
recognition and generalization. We review recent analyses that
interpret neural networks as convenient functional approximation
devices. As a special case, we discuss the capabilities of neural
networks in estimating probability density functions and

s

*

54 *

discriminant functions in problems of pattern recognition. Neural
network methods are compared to traditional pattern recognition
techniques, especially statistical pattern recognition. We review
studies which show that under certain conditions, neural network
training algorithms can be used to approximate the Bayes optimal
discriminant function. We show that neural networks possess
advantages over conventional techniques. Finally, we discuss the
limitations of the phenomenon of 'generalization' in neural networks.
We argue that the generalization capability of a trained network is
critically dependent on the prototypes in the training set and
network architecture and that the particular optimization (training)
algorithm is mostly irrelevant.

3.2 NEURAL NETWORKS AND FUNCTION APPROXIMATION

In several applications, neural networks have demonstrated
their capability as convenient function approximation devices.
Recently, theoretical analyses have supported this interpretation of
neural network function. The output of each unit in a standard
neural network is a nonlinear function of a weighted sum of it's
inputs. A two layer, feed-forward network has a mathematical
structure where at the output layer, each unit performs a summation
of several nonlinear functions of the input vector of the form:

Xo ow■ X +9)
j=l

were O represents a nonlinear function, N is the number of hidden
units, 6 is a threshold, x is the input vector, and w and ■ o represent
weight vectors. Functions of this type have some rather remarkable
universal properties relating to the representation of functions and
Hilbert's 13th problem.

r

s

55

At the turn of the century David Hilbert, in an address to the
Paris Academy, presented a list of over 20 unsolved problems in
mathematics. Work on these problems continues to occupy a
substantial amount of effort of the mathematical community
(Browder 1976). Hilbert's 13th problem conjectured that there are
continuous functions of three variables that are not representable by
continuous functions of two variables, or simply, that "true functions"
of three variables exist (Lorentz 1976). This conjecture turned out to
have two answers. "The astonishing result of Kolmogorov" (Lorentz
1976) was that, under certain conditions, Hilbert's conjecture was
false. Kolmogorov (Kolmogorov 1957; Lorentz 1976) proved that
there exist continuous increasing functions ppg(x), on I = [0,1] so that
each continuous function f on In can be written in the form

2n+1 n

f(x1,...,xn) –
X. g,(2°rºxy)

>

=1 p=1

where gq are (2N +1) properly chosen continuous functions of one
variable. Hecht-Nielsen interpreted Kolmogorov's Theorem in terms
of feed-forward networks: "an arbitrary, continuous function from
the n-dimensional hypercube to the m-dimensional space of real
numbers R m can be implemented exactly by a 2-layer network"
(Hecht-Nielsen 1987, Hoffgen and Siemon 1990). Hecht-Nielsen was
referring to networks where the activation functions of the 2N4-1
"hidden units" are chosen to correspond to the gq's in Kolmogorov's
Theorem. But the Kolmogorov representation requires specific and
precise nonlinear functions (Cybenko 1989). How close can a neural
network composed of generic, nonlinear functions get to this ideal?

In most neural network applications one cannot realistically
expect any given training algorithm to find these ideal solutions, so
more recent analyses have emphasized the functional approximation
capabilities of neural networks. Cybenko notes that "requiring a
finite linear combination exactly represent a general continuous
function is typically asking too much [emphasis added]" (Cybenko

56

1989). In the same paper, however, he proved that linear
combinations of sigmoidal functions (which serve as inputs to the
output of the second layer of a feed-forward network) can uniformly
approximate any continuous function. A similar result was obtained
by Funahashi (1989) who showed that any continuous mapping can
be approximated by a net with one hidden layer, provided that an
unlimited number of units are allowed. Networks consisting of non
sigmoidal activation functions (such as Gaussian hidden units) can
also be used as universal approximators (Hartman et al. 1990).

Figure 3.1 schematically illustrates a neural network applied to
a functional approximation task. One can imagine that the neural
network accomplishes the task in much the same way as a function is
represented by a Taylor series, Fourier transform or a spline
approximation. In fact, Poggio and Girosi offer a complementary
interpretation of neural networks, equating neural networks to the
technique of generalized splines (Poggio and Girosi 1990).

It is important to note that Cybenko does not guarantee that
any particular training algorithm will find a sufficiently close
approximation, nor is any indication given as to how many hidden
units are required to accomplish the desired task, even in principle.
Several studies have attempted to establish "least upper bounds" on
the number of hidden units needed to realize an arbitrary function
(Lippmann 1987, Chester 1990a, Huang and Huang 1991), but
nobody has demonstrated a training algorithm capable of reliably
converging on these minimal solutions. Chester argues that although
in principle, one hidden layer is sufficient for any approximation, in
practice two layers of hidden units may yield better interpolation
capabilities with faster training. He notes the problem with using
only a single hidden layer is that "the neurons therein interact with
each other globally, making it difficult to improve an approximation
at one point without worsening it elsewhere." When several layers
are allowed, "approximations in different regions can be adjusted
independently of each other, much as is done in the Finite Element

57

F(x,w)

X1 X2
- - -

Xn

Figure 3.1: Schematic Representation of a Neural
Network Applied to Function Approximation

Each output unit of a 2-layer network is a superposition of
continuous, nonlinear functions of the input vector x. The
output unit is trained to approximate a function f(x) by
optimizing the estimate F(x,w) with respect to the weight
Vector W.

58

1 +

0.8 +

O

U 0.6 + ×2 × Tarn.

T ºs. TargetP _*-* s—-º’ -O-U 0.4 + NSZ- Response
T

0.2 +

O ■ + + # —H + +

O 0.5 1 1.5 2 2.5 3

INPUT (ARBITRARY UNITS)

Figure 3.2: Example of Function Approximation

A small neural network (1-15-1) was trained to approximate an arbitrary
function of one continuous variable. The network was optimized with the
Chemotaxis algorithm until the average squared error per sample in the training
set was .01. Training averaged around 1000 cycles through the training set
(epochs). The X's denote the patterns used in the training set. The black
diamonds represent the trained network's performance. Accuracy of the estimate
seems to be related to the sample density and the smoothness of the function
being approximated.

59

Method for solving partial differential equations or the spline
technique for fitting curves" (Chester 1990a).

To get an idea of how well neural networks perform this task
in practice, a network was trained to approximate an arbitrary
function of one variable. Figure 3.2 shows the performance of
networks trained on an arbitrary function of one variable. Notice
that the accuracy of the approximation depends on the sampling
density and the smoothness or regularity of the function. In Chapter
6, we exploit the functional approximation properties of neural
networks to solve a problem in open-loop motor control.

3.3 PATTERN RECOGNITION

The problem of mathematical pattern recognition can be
viewed as a function approximation task. Solution of a problem in
pattern recognition involves estimating of a function which indicates
a degree of membership in a given class of objects based on observed
features. Such a function is called a characteristic function in fuzzy
set theory (Zadeh 1968), a discriminant function in the context of
pattern recognition, or a probability density function in statistical
decision theory (Andrews 1972, pg. 67). The classification problem
is to find a multidimensional hypersurface which separates the
patterns in pattern space P into the various categories in
classification space C which affords some degree of confidence in
correctly classifying unknown patterns (Andrews 1972). This

mapping is often highly nonlinear, and the methods of finding these
surfaces rely on optimization methodologies. Statistical decision
theory is the most developed and formalized of the three disciplines.
Indeed, when all the relevant statistical information is known,
statistical decision theory defines the best theoretical performance of
a pattern recognition system.

60

Neural networks have demonstrated their utility over
conventional techniques in ill-posed problems or in problems where
not enough classified prototypical patterns are known to apply
statistical decision theory. Examples of empirical neural network
studies have been presented in pattern recognition problems in
vision (Bertero, Poggio and Torre 1988, Lehky and Sejnowski 1988),
speech (Lippmann 1989), sonar signals (Gorman and Sejnowski
1988) and seismic signals (Dowla, Taylor and Anderson 1990 &
Chapter 4) - among others. This section outlines the subject of
pattern recognition with a particular emphasis on statistical decision
theory and draw the relevant comparisons to neural networks.
Recent theoretical results are presented which argue that, under
certain conditions, the methods of neural networks are equivalent to
statistical pattern recognition.

3.3.1 FEATURE EXTRACTION

In many problems, pattern space is high or infinite
dimensional as the patterns of interest are taken from measurements
of the physical world. The sheer size of pattern space may render a
pattern recognition problem theoretically or practically
transcomputational (Bremermann 1968, Andrews 1972). Thus, most
pattern recognition schemes reduce the problem by choosing some
essential "features" of pattern space which are likely to be sufficient
for the classification. The problem is schematically illustrated in two
parts:

Feature Decision

— Extraction — Algorithm —
P F C

Pattern Feature Classification

Space Space Space

Where classification space Ck consists of a finite number of object
classes {01,02, ..., Ok}.

61

The primary goal of feature extraction is to reduce the
dimensionality of the pattern space. In other cases, however, feature
extraction may simply involve translations, rotations or
transformations of the pattern space. Proper feature selection, then,
may allow simpler decision surfaces between classifications. For
example, certain patterns or regularities in temporal signals are more
readily identified in the frequency domain. Common examples are
problems in speech recognition, Sonar signal processing or visual
image processing.

In many problems, however, we do not know, a priori, what
features will be useful. Good examples of this situation are systems
where human intuition fails, such as high dimensional systems, or in
problems where we have no natural reference, such as what
constitutes an interesting olfactory, sonar or seismic pattern. In
these cases, it may be more advisable to skip pre-processing entirely
so as to not discard potentially useful information. Then feature
space is equivalent to pattern space.

Neural networks can be useful in both stages - they can be
excellent classification machines and they can be used to find useful
features to serve as inputs to more traditional pattern classification
techniques (see below and chapter 4).

3.3.2 A BRIEF REVIEW OF STATISTICAL DECISION THEORY

The goal of statistical pattern recognition is to draw decision
boundaries - called discriminant functions - between object classes.
If we had complete knowledge of the distribution of features in each
classification and their relative frequencies, we could calculate the
probabilities of membership in each class as a function of the
observed values. Since these statistics define an ideal performance
limit, it is useful to interpret pattern recognition in the context of
statistical decision theory.

62

To illustrate the pattern recognition problem, we will first
consider a simple case where we only have one or two features to
discriminate between two classes of objects. While all of the

theoretical results presented here can easily be extended to multiple
classes and high dimensional feature spaces, it is important to keep
in mind the practical difficulties of computing exact solutions to high
dimensional problems (for example, inverting matrixes). These

limitations often require that simplifying assumptions be made about
the distribution of the data and noise, or in other cases, ignore well
established information. We describe empirical means to find
discriminant functions, and argue that the function approximation
capabilities of neural networks classify them as an alternative non
parametric technique for estimating discriminant functions.

3.3.2.1 THE TWO CATEGORY CASE

Let v0 represent the observed value of feature vector x. Let the
prior probability of an object belonging to class (oi be P(a)i) and the
conditional probability density function for observation v0 be p(voloi).
[The notational format for this and the remainder of this chapter will
represent probabilities as P(-) and probability density functions
(p.d.f.'s) as p(-).] The a posteriori probability that the observed
object belongs to class coi is given (by Bayes' Rule) to be:

-
_ p(Vol (0) P(0)}

where

p(VO = XPVo Q); PIG);

Figure 3.3 shows the conditional probability densities of two classes
of objects on a one-dimensional feature x. We can minimize the
average probability of classification error using Bayes decision rule
(e.g. Duda and Hart 1973):

Decide (01 if p(x|a) |P(01) > p■ z | Q)2P(O2); otherwise decide (O2.

63

p(x)

OBSERVATION

Figure 3.3: Probability densities of two object classes on feature x.

64

If the prior probabilities are assumed to be equal, then Bayes
decision rule becomes:

Decide Col if p(x|a) || > p(x|| 02); otherwise decide O2.

the conditional probability density functions are shown where f l =
p(volo.1), f2 = p(volo)2).

3.3.2.2 DISCRIMINANT FUNCTIONS

These probabilities can be used to form the basis of a
discriminant function, that is, a function which indicates a degree of
membership to a given class. For the two-category case, it is
convenient to choose a single discriminant which separates the two
classes:

g(x) = g(x) - g;x)
Or

gºk) = P(q)1 | x) - P(CO2 x)

In the practical design of neural network applications, however, it is
often more convenient to have each output node represent a single
discriminant function (see section 3.4).

When working in high dimensional spaces, it is impractical to
treat each measurement or feature as an individual discriminant.

Part of feature extraction, then, involves combining measurements in
pattern space into composite discriminants. The simplest functional
form is the linear discriminant function. A discriminant for class k

would take the form:

g(k\x) = wºx, + wºx2+...+ wºxN = w (k), x

65

º
Population A

3.
-3
CD

Discriminant X

Population B

|
x alone

Figure 3.4: Distribution of two object classes on two features

Discrimination between the two classes using either feature alone
is not as sharp as an optimized composite, linear discriminant (ax+by).
Traditional statistical discrimination theory can find the Bayes optimal
discriminant if enough is known about the exact distributions or reasonable
assumptions about these distributions can be made. When known patterns
are limited, non-parametric "learning machines" can be used to find
good separation empirically. In the context of neural networks, the
parameters a and b of a linear discriminant represent weights in a single
layer perceptron. More complex hypesurfaces can be generated with a
multilayer perceptron.

66

Figure 3.4 shows a linear discriminant function for a two
feature problem. The weight vector w can be calculated exactly if all
the statistical information is known. Otherwise, a practical
discriminant function can be found empirically using a variety of
methods (e.g. the Fisher discriminant [Duda and Hart 1973, pg. 114]).
A single layer perceptron can also be trained to find the optimal
linear discriminant using the perceptron convergence procedure
(Duda and Hart, pg. 141 1973). In chapter 4, we apply both methods
to a problem in seismic signal discrimination. Unfortunately, finding
nonlinear discriminant functions is much more difficult.

3.3.3 NONPARAMETRIC (DISTRIBUTION-FREE)
CLASSIFICATION

When there is not enough data to support the application of
statistical decision theory directly, methods of p a ram e tric
classification can be used. "Parametric classification refers to the
development of discriminant functions in which the underlying
probability functions are assumed known. It then remains to simply
estimate a set of parameters which will then completely describe the
densities of the known prototypes" (Andrews 1972, pg. 113).
Usually, data is assumed to be distributed in a Gaussian function.
This has two advantages: (1) the Gaussian is the most common
distribution in nature, and (2) it allows simplification of the
underlying mathematics.

When the form of the probability density functions are not
known, decision boundaries must be found empirically.
Nonparametric (distribution-free) classification involves learning
(from prototypical or "exemplar" patterns). A variety of "learning
machines" have been proposed to perform nonparametric
classification (Nilsson 1965, Andrews 1972, Duda and Hart 1973). For
example, the Widrow-Hoff learning rule and the perceptron
convergence procedure are ways to find a linear discriminant
function through learning in "weight space". All of these methods

67

incrementally alter the decision surface which separates the
prototype patterns. The main advance offered by back-propagation
is the ability to draw highly complex decision surfaces.

3.3.4 NEURAL NETWORKS CAN BE USED TO APPROXIMATE
THE BAYES-OPTIMAL DISCRIMINANT FUNCTION

Many authors have pointed out that neural network training
algorithms can be considered a nonparametric technique for
estimating the a posteriori probabilities of pattern classifications
(Lippmann 1987, White 1989, Wan 1990, Ruck et al. 1990). In fact,
recently two independent groups have shown that neural networks
are in theory capable of learning arbitrarily close approximations of
the a posteriori probabilities (White 1989; Ruck, et al. 1990). A
detailed and simple proof for the two-class and multiple class
discrimination problems is given in Ruck et al. (Ruck et al. 1990).
Here we present an outline of the argument for the two-class
problem. This argument can readily be extended to the multiple
class case.

Let x represent the feature vector which is to be classified.
Consider an arbitrary approximation device that computes an
estimate F(x, w). For a multilayer perceptron, w represents the
weight vector, although this could apply to any device with
adjustable parameters w.

The training set consists of a subset S of all possible patterns in
classification space (X). Let X1 and X2 represent the set of feature
vectors in classes 1 and 2, respectively (S = X1 U X2). If we choose the
output unit's target response to be "+1" for class 1 and "-1" for class
2, then the neural network training algorithms (e.g. back
propagation) can be chosen to minimize the error criterion

Ew)=X F(x,w)-1■ + X F(x,w)+1)*
xe X, xe X,

68

with respect to w.

Ruck and colleagues show that as the training set (or sample
set) size increases, the Strong Law of Large Numbers implies
minimization Es converges to minimization of the quantity:

e”(w) = | |F(x,w) -g,(x)|^p(x) dºX.

where go(x) is the Bayes optimal discriminant function:

go(x) = P(01 x) - P(02 x)

Thus, back-propagation (as well as any training algorithm which
minimizes the squared output error) yields a minimum mean
squared-error approximation to the Bayes optimal discriminant
function. This result is subject only to the mild and reasonable
conditions that the training set be sufficiently large to span the
feature space in roughly the same proportion as these objects occur
in the environment. Hampshire and Pearlmutter (1990) have
developed reasonable error measures and additional conditions for
an ideal training set.

Several authors have noted that the coding scheme used to
represent the target output may be significant in designing
successful neural network applications. Clearly, following the
construction above, one should choose one output unit for each
category in classification space ("0" for low probability, "1" for high
probability for each class) if the goal is to estimate a posteriori
probabilities.

3.3.5 ADVANTAGES OF THE NEURAL NETWORK APPROACH

Many authors have identified the advantages of neural
networks over statistical pattern recognition. Not all of these have

69

been rigorously demonstrated. Listed below are the most frequently
cited:

1.) Arbitrarily complex decision boundaries can be easily
implemented with back-propagation or other training algorithms.
Since neural networks can realize highly nonlinear decision
boundaries, feature extraction becomes less important (Chen 1990).

2.) "Neural network classifiers are ... non-parametric and make
weaker assumptions concerning the shapes of underlying
distributions. They may thus prove to be more robust when
distributions are generated by non-linear processes and are strongly
non-Gaussian" (Lippmann 1987).

3.) Neural networks can perform better if the statistical
distribution of the background noise is not available. Performance is
much less sensitive to noise or incomplete data than statistical
pattern recognition (Chen 1990; Dowla, Taylor and Anderson 1990).
(Chen thinks this is due to the distributed nature of the neural
network architecture.)

4.) Training a neural network on prototypes directly from
pattern space may be useful for discovering useful features. These
features may then be used as inputs to more traditional decision
theory algorithms.

3.4 GENERALIZATION

3.4.1 BOOLEAN FUNCTIONS

Single layer perceptrons can not solve problems in which the
classes can not be separated by a hyperplane (e.g. exclusive "OR").
Rosenblatt and others circumvented some of these problems by
adding additional layers of pre-processing consisting of randomly
connected perceptrons or standardized feature extraction procedures.

70

Nevertheless, the failure to generalize the perceptron convergence
procedure or the Widrow-Hoff learning rule to multilayer
perceptrons presented an insurmountable obstacle to early
perceptron research (which was also extremely limited by available
computational resources). Thus, the exclusive OR was one of the first
problems attacked with multilayer perceptrons using the back
propagation algorithm (Rumelhart and McClelland 1986).

Boolean functions, such as parity, represent a kind of "worst
case" scenario. There is no reason to expect a neural network to
properly generalize a Boolean function when it is trained on a subset
of patterns in the corresponding truth table. (For N Boolean variables,
there are 2N corresponding Boolean functions.) In the terminology of
classification theory, each of these input/output patterns is
potentially a necessary prototype for the training set, since we do not
know a priori whether it lies on the decision boundary or perhaps
defines a separate region in classification space.

3.4.2 LIMITATIONS OF GENERALIZATION

That "trainable networks can generalize" is a widely held belief
and the reason for their popularity in applications (Hinton 1989).
Examples show that they can indeed perform much better than
chance on unseen patterns in classification tasks such as "shape from
shading" (Lehky and Sejnowski 1988), "protein secondary structure"
(Qain and Sejnowski 1988), and so on. In the training process the
networks may generate appropriate categories (Sejnowski and
Rosenberg 1987). Some of the examples in the literature are such
that precise rules are not even known (for example for protein
secondary structure). On the other hand there are problems where
the training set cannot possibly determine the performance on the
unseen patterns. For example, there are 2N Boolean functions for N
bit input strings, and the predictability of the output for "unseen"
inputs from those already seen is no better than pure chance.

71

In a series of papers, Van den Broeck and Kawai (1990; 91)
have investigated the generalization properties of Boolean networks.
Boolean networks consist of a set of Boolean gates (such as AND, OR,
XOR, etc.) linked up in a feed-forward configuration. Study of these
binary networks is simpler than that of continuous networks, since
the total number of configurations is finite for a given number of
gates. When randomly wired, Boolean networks have a bias toward
certain Boolean functions. They show that the volume of phase space
(number of configurations which implement a particular function)
occupied by a given function is widely variable. (When functions are
ranked according to frequency of occurrence, volume in phase space
for lower ranked function falls with the characteristic inverse power
law known as Zipf's law, seen in 1/f noise.) Thus, Boolean networks
have an inherent structure of hierarchical hypotheses. The

complexity of learning a given Boolean function is related to the
number of possible network configurations that solve the problem.

Standard, feed-forward neural networks likewise have a bias
towards particular hypotheses about the classification function to be
implemented. Generalization in a feed-forward network, therefore,
depends on whether the classification function the user is looking for
is among one of the more "reasonable" hypotheses from the
network's point-of-view. Training time will likely be related to the
Hamming distance from the initial guess as well.

Wilson (1991) compares generalization of networks trained by
a variety of training algorithms - including the Chemotaxis algorithm.
He claims that no single training algorithm can guarantee
consistently better generalization performance. The most important
factor in generating good generalization, as in functional
approximation and statistical pattern recognition, is that the training
set form a basis set over pattern space. Predictability, thus, depends
not only upon the network structure and the training algorithm but
upon the type of association to be learned.

* *

!.

*

72

3.4.3 A SIMULATION EXAMPLE

The generalization capabilities of a network cannot reliably be
predicted from theoretical considerations. However, one might
expect generalization in special cases, where the classes are well
represented in the training set. The identity map is geometrically a
very special case which may be expected to be easily generalized.

Crick (1989) emphasizes the importance of generalization and
categorization in the seemingly trivial problem of stacking networks
one on top of each other and requiring that the output equals the
input (i.e. the encoder problem). The encoder problem is to retain an
identity mapping though several intermediate stages of processing.
When trained with an algorithm, starting with random weights, this
problem is not trivial at all. In the following, we explore the
generalization capabilities of networks trained with the chemotaxis
algorithm with a computer simulation on the encoder problem.

Note that there are 16 possible binary input vectors. For the
performance tests we had trained with (1,0,0,0), (0,1,0,0), (0,0,1,0),
and (0,0,0,1). If outputs for the remaining vectors were random,
there would be a 1 in 12 chance for the correct output to occur. Such
an "all-or-nothing" comparison, however, does no justice to output
vectors that are "almost correct", say off by one bit. In the brain
input and output could be "pixels" of an image, for example on the
retina and in the visual cortex. Scoring an image where just one or a
few pixels are wrong as totally wrong (the same as two images with
little or nor correlation) would make no sense. We therefore used
the "Hamming distance", the number of bit-by-bit discrepancies
between input and output, as measure of similarity (see Table 3.1
and Figure 3.5).

We found that generalization was weak when the training set
consisted of only four vectors. We thus increased the training set to
eight vectors and found that these nets do indeed "generalize".

73

Table 3.1: Training Sets Used in the Generalization Study. *

Decimal Input Pattern Training Set
1 || #2 | #3

O 0 0 0 0 X | X
1 0 0 0 1 X
2 0 0 1 0 X X
4 0 1 0 0 X X
8 1 O 0 0 X
3 0 0 1 1 X
5 0 1 0 1 X | X | X
6 0 1 1 0
9 1 O O 1 X | X | X

10 1 0 1 0 X X
12 1 1 0 0 X | X
7 0 1 1 1 X X

14 1 1 1 0 X
13 1 1 0 1
11 1 0 1 1 X
15 1 1 1 1 X

*Three training sets were used to investigate the property of
generalization in the encoder problem. Training sets numbered '1'
and '2' were found by random selection of the sample input patterns.
Training set #3 consists of patterns with a Hamming distance
of 1 of either (0,0,0,0) or (0,0,0,1).

O | 1 | 1 O ||

| | | |

Figure 3.5: 4-Bit Hamming Space

Strings of 4 binary bits have 16 possible configurations.
Each 4-bit string has four neighbors with a Hamming
distance of 1 (denoted by two-way arrows). Training sets
1 and 2 represent random samples in Hamming space.
Training set #3 consists of the 8 patterns in the neighbor
hood of "0000' and '000 1" (circled), which is rather
localized in Hamming space.

75

A training set consisted of 8 of the 16 possible binary input
vectors. The remaining 8 patterns comprised the 'test' set. Networks
of varying architectures were trained on three different training sets
(Table 3.1). Sets #1 and 2 were selected randomly and appear
evenly distributed in Hamming space. Set #3 was chosen to be
particularly self-similar. Every vector in set #3 is within a Hamming
distance of 1 from either the vector (0,0,0,0) or the vector (0,0,0,1);
while every vector in the corresponding test set has a Hamming
distance of 2 or more from these two vectors (see Figure 3.5). It was
anticipated that set #3 would be easy to learn (since the vectors are
close) but might not generalize well when tested on the remaining
vectors (which are distant).

The networks were trained with the chemotaxis algorithm.
Performance was measured by the number of bit-to-bit matches
from the input pattern to the output patterns. Thus, for eight 4-bit
input vectors there are a total of 32 bit matches possible. A bit
match was counted for every bit which was closer to the desired
output than 0.5 (squared error of 0.25). Training was continued until
the sum of the squared errors over all 32 bits was below 0.3 or for
1800 cycles - whichever came first.

Performance for the three training sets on increasingly
restrictive architectures are given in Table 3.2. As can be seen in the
table the 4-2-4 nets can perform reasonably well on the 8 patterns
in the training set but does not generalize well. For nets with only
one extra hidden unit generalization improves significantly but
judicious choice of the test set is important.

76

Table 3.2: Generalization as a Function of Training Set and Net
Architecture for the Encoder Problem.”

4-4-4 Net 4-3-4 Net 4-2-4 Net

Set | Training Test Training Test Training Test
1 88% 75-100% 88% 72-100% 78-84% | 63-78%

#2 100% 69-75% 100% 63-72% 91-97% 56-69%

3 || 97-100% 41-59% 100% 38-56% | 84-97% 44-50%

*Performance was measured by the number of bit-to-bit matches from
the input patterns to the output patterns divided by N=4 times the
number of vectors tested. Note that generalization (to the test set) depend

Note also the overall degradation
of performance when an insufficeint number of hidden units are
on the choice of the training set.

provided (4-2-4). As anticipated, set #3 was easier to learn (due
to the pattern's similarity) but did not generalize well when tested
on the remaining vectors.

77

3.4.4 DISCUSSION: GENERALIZATION, CORTICAL MAPS AND
LEARNING RULES

The encoder problem is that of maintaining an identity map
through several intermediate processing layers. The importance of
such mappings is obvious, since analogous mappings are common in
the somatosensory and visual cortex. These mappings are
continuously being established, maintained and refined (Chapter 2;
Merzenich et al. 1987, 1988).

The identity map (abstracted by the encoder problem) is
mathematically and geometrically trivial. Thus, it is relatively easy
to generate such mappings using widely varied models and learning
mechanisms. For example, an identity map can be created assuming
only local excitation and long-range inhibition in a network of
processing nodes (Kohonen 1984). Hebbian learning rules can also
account for cortical mappings (Grajski and Merzenich 1990). We
have shown here that, assuming a representative training set, the
chemotaxis algorithm is capable of training a randomly-connected
network to solve the problem as well. Neurotropic factors are likely
also involved (Molnar and Blakemore 1991). Elements of all of these
mechanisms may be responsible for maintenance of cortical maps.
Hence, one cannot distinguish between learning rules using the
encoder problem as a benchmark.

78

CHAPTER 4

AN EXAMPLE OF PATTERN DISCRIMINATION WITH
NEURAL NETWORKS ON SEISMIC DATA1

4.1 MOTIVATION

4.1.1 THE REAL WORLD OF PATTERN RECOGNITION

Too often, neural network algorithms are only tested on easy
"toy problems" or on benchmark problems (such as the encoder and
N-bit parity problems) that are far removed from more "natural"
pattern recognition tasks.

"Real-world" problems (such as the recognition of hand-written
characters or human speech) commonly have high-dimensional
pattern or classification spaces and continuously valued variables.
Furthermore, many problems, such as determination of three
dimensional structure from a two-dimensional image or stereo vision
are "ill-posed" (Poggio and Edelman 1990; Bertero, Poggio and Torre
1988; Geman and Geman 1988).

In this chapter, we present an example of the power of neural
networks as pattern classifiers on a "real-world" problem in seismic
signal classification. Although this is not a "biological" problem
specifically, one pattern recognition problem is as good as any other
for the purpose of demonstration. Seismic signal discrimination has
several features common to biological pattern recognition problems
in vision or acoustics.

* Results of this chapter appear in Dowla, Taylor and Anderson (1990).

a / .

7 9

4.1.2 NEURAL NETWORKS VERSUS STATISTICAL METHODS
FOR DISCRIMINATION OF SEISMIC SIGNALS

This problem is typical of many in pattern recognition and it
also provides a valuable comparison of neural network methods over
statistical pattern recognition:

(1) Little is known about the underlying physics and geology
of seismic wave sources and propagation. Thus, the form of a seismic
signal cannot be deduced from first principles. Selection of useful
features or discriminants, therefore, is based on little else than
intelligent guesswork (see Sections 4.2.4 & 4.4). Potentially, neural
networks can be used to find useful discriminants empirically.

(2) No human "expert" can reliably classify a signal even
through detailed analysis. (The only way to know for sure whether a
seismic signal was produced by a small magnitude underground
nuclear explosion is to set one off.)

(3) The pattern space is high dimensional which presents
computational problems for traditional statistical pattern recognition
(as well as human intuition). Traditional techniques also require the
inversion of large dimensional and (potentially) poorly conditioned
matrices.

(4) Because of the limited data set and the large number of
variables, the statistical distributions of both classes of signals and
background noise are unknown. Application of statistical methods, in
this case, requires that we assume a distribution (usually Gaussian)
for the data. As we discussed in Chapter 3, if the real distributions
are significantly different from those assumed, performance of
statistical classification is degraded.

a / .

80

4.1.3 AN ENGINEERING APPLICATION OF A BIOLOGICALLY
INSPIRED COMPUTATIONAL METHOD

In this chapter, we demonstrate the effectiveness of both the
chemotaxis and back-propagation algorithms on training feed
forward networks on a non-trivial task. We show that using even
simple feed-forward neural network architectures (82-1-2), high
discrimination performance can be achieved. We found that neural
networks were not only useful in drawing effective decision
boundaries but in choosing the discriminants as well. Performance of
networks trained by the chemotaxis algorithm was equal to those
trained with back-propagation. For ease of implementation,
however, we used an automated back-propagation routine (SunNet)
to obtain performance statistics on the over 800 simulation runs.
Performance of our preliminary study, using a single-layer
perceptron, proved to be slightly better than a Fisher discriminant
applied to the same task. Subsequent work with an expanded input
database using multilayer networks proved to be superior to linear
regression techniques (Dowla 1991, in preparation).

There is one final problem involved in tackling a real world
problem of this kind, the real-world practical requirements: funding,
computer resources, access to real data and expert collaborators.
Working at the Lawrence Livermore National Laboratory (LLNL)
offered all four.

4.2 BACKGROUND: SEISMIC SIGNAL DISCRIMINATION

4.2.1 NUCLEAR TEST BAN TREATIES

Discrimination of seismic records from natural earthquakes and
underground nuclear explosions is a difficult and important problem
in test ban treaty verification research (Dahlman and Isreal son
1977). The eventual goal of these studies is to monitor and verify
compliance with a variety of potential treaties ranging from a

81

Threshold Test Ban Treaty (TTBT) to a Comprehensive Test Ban
Treaty (CTBT) (Taylor, March 1990). Of particular interest is the
ability to discriminate low magnitude (m. b > 4) earthquakes from
underground nuclear explosions at regional distances (< 2000 km).
This would allow for verification with a small network of seismic

stations spread across each signatory nation.

4.2.2 CHARACTERISTICS OF SEISMIC DATA

Both earthquakes and underground explosions generate seismic
waves which travel through the earth (Body waves) and waves
which propagate along the surface (surface waves). There are two
main types of surface waves: compressional waves (P waves) and
shear waves (S waves). A Rayleigh is one type of surface wave, that
appears on the vertical- and radial-component seismograms. A Love
wave is another type of surface wave, with particle motion
perpendicular to the wave's horizontal direction. The Lg phase is also
a surface wave. It is a higher-mode wave that is guided by the crust
of the earth and is thought to be a superposition of higher-mode
Rayleigh and Love waves (Taylor, March 1990). The Le phase is
often the largest in amplitude.

Differences in the propagation medium and regional geology
affect the attenuation and arrival time of various phases of a
seismogram recorded at a seismic recording station. For example, in
the Great Basin in Nevada, the most prominent regional phases are
the L8, Pg and Pn waves. Figure 4.1 shows typical seismograms for a
large magnitude explosion and earthquake, passed through
standardized bandpass filters. Compressional phases (P and Pg)
arrive first, followed by the slower shear phases (S, LE, Rayleigh and
Love waves).

4.2.3 EARTHQUAKES VERSUS EXPLOSIONS

Most discriminants are chosen based on physical differences
expected between earthquakes and explosions. Generally, explosions

-

82

(a) Earthquake

4 H R WWSSN LP

Max
0

Max

–4 H. R# l | l | l l l |

É
< |-g WWSSN SP

(b) Explosion

1 R WWSSN LP

O Max
Max

-1 –
GD

É l | t | R, | l |
75.

45 P. ww.SSN SP

160

Figure 4.1: Examples of peak-to-peak earth-motion amplitude measurements for
a magnitude-5.7 earthquake (a) and a magnitude-6.0 explosion (b) passed through
WWSSN (World-Wide Standardized Seismic Network) LP (Long Period time
domain amplitudes) and SP (Short Period) bands. The onset of the various wave
signals can be determined from these signals. (Figure from Taylor [March 1990]).

83

can be considered a source of compressional waves radiating
uniformly from the explosion site; although they can trigger the
release of shear energy in nearby faults. Earthquakes are the result
of a release of elastic energy in a fault, and therefore contain a
relatively larger component of the release energy in shear waves.
Explosions are also a sudden event, generating high frequency waves.
Earthquakes are often a 'deep' source, with the epicenter located
deep within the crust. Taken together, we would expect that for the
same magnitude event, the seismic signal of explosions would contain
a larger percentage of energy in surface and compressional waves
and in higher frequencies.

4.2.4 DISCRIMINATION STUDIES

Currently, discrimination of regional data is an important
research topic, and a variety of regional discriminants have been
proposed (cf. Pomeroy et al. 1982, Taylor et al. 1989). Discrimination
of small magnitude events, however, is still a difficult problem. For
small magnitude events (body-wave magnitude = m b & 4), spectral
discrimination using multiple regional phases has recently received
much attention (Bennett and Murphy 1986, Taylor et al. 1988). It is
generally believed that both spectral shapes and ratios of the
regional (Pn, Pg and Lg) might be quite useful for distinguishing
earthquakes and explosions (Pomeroy et al. 1982). Generalization
and regionalization of these discriminants is, however, important for
optimum performance. Taylor, Sherman and Denny (1988)
evaluated the effectiveness of several discriminants based on Lg and
Lg/PE ratios. Figure 4.2 shows the performance of some of these
discriminants on real data (Taylor, March 1990). Note that

discrimination tends to be more precise for larger amplitude events.

Since neural networks can classify populations by generating
complex discriminant functions by training on real data, we used as
input to the network the full broadband, distance-corrected spectra
of the regional seismic phases. During the learning phase, the

84

co

Ts
— to 5.

º
To
E
'E
-n
-
E
-->
-
º
>
-
-

- + T
O
º

O
<>

<>

1–1 | | | | | | ºv.

_ e º T f ºf º ov - O 6 T.º -

-
("uz-) A51eue eaem anot S (zH 8-9)/(zHz-1) one. Ienoeds"T

l co

q)

= 3
- -

5 § 3
- ºn# = 3
tº tº ■ º.
Q) q x

O Lu Lu &
C. -O O.| e o ° —le É

© .. $
-> : E

ºxº --C. -
-> 3 -n

Bºo #º
º q)

-> º -

ºš §sº
-

sºlºe —l- #
-> º - o

- - ■ º
-

C.

<>

| | | l | ºv
<r rº ºv - O ºv - c -

- s - I3 ("w-ºu) apnilidue eaewu6[el■ eh Sº one, apnil due ºf".

Figure 4.2: Network-averaged discriminants plotted versus body-wave (m. b)
magnitudes: (a) Rayleigh wave amplitude, (b) Love wave energy, (c) Lg/Pg
amplitude ratio, and (d) Lg spectral ratio. (Figure from Taylor [March 1990]).

85

network automatically extracted and learned the relationships
among the discrete frequency components of the multiple regional
phases for correct discrimination between earthquakes and
explosions. The network was developed and tested with a large
number of real seismic events, consisting of 83 earthquakes and 87
underground nuclear explosions recorded at each station in a
network of four stations located in the western United States.

Results of this study based on regional spectral data indicate that
neural networks can indeed generate excellent discriminant
functions. The rate of correct recognition for untrained data is over
93 percent at any single station and is 97 percent for a network of
four stations.

Our primary goal at the outset of this study was to gain an
understanding of the performance of neural networks for seismic
event discrimination with a set of real seismic data. In this chapter,
we also discuss the important problems of the representation, pre
processing, normalization, and training of neural networks with a
database of real seismic data.

We discuss the problems of pre-processing and data
representation in neural networks. This is followed by a discussion
of the seismic spectral data for discrimination and the performance
of the network for discrimination between earthquakes and
explosions. We then apply the same data to the conventional Fisher
discriminant (Tjøstheim 1981, Duda and Hart 1973), a linear method
which utilizes covariance matrix information, and compare its
performance with that of the network. Finally, we conclude with a
discussion of the implications of our results and ares of future
research in seismic neural networks.

4.3 A NEURAL NETWORK APPROACH

Although in the seismic discrimination problem we used a
multilayer perceptron, the architecture of the network which we

86

eventually used had the structure of a very simple network with
only one hidden unit and two output units. We found that for this
data set, increasing the number of layers or hidden units did not
improve the performance significantly. In order to gain insight into
the network, we chose to keep the architecture to a minimum level
of complexity.

To gain further insight into the learning method consider an
explosion spectrum presented at the input of the network shown in
Figure 4.3. (In neural network terminology, this network has just
one hidden unit with N units at the input layer and 2 units at the
output layer.) Input to the network are spectral values, i.e., in this
problem the network input layer units corresponds to spectral
frequency components of the three phases. The input layer is thus
represented by a vector of (N = 3M) elements:

X E [SLg(1),...,SLg(M), SPg(1),...,SPg(M),SPn(1),...,SPn(M)]

corresponding to the (M = 41) frequency components for each of the
three phases, sampled logarithmically from 0.1 to 10 Hz. The
mechanics of how we computed the spectra is described in the next
section.

In order to teach the network to discriminate between

earthquakes and explosions, a training set consisting of a large
number of spectra for both earthquakes and explosions was applied
to the network. The back-propagation algorithm was then used on
the network where the objective was to adjust and determine the
weights w such that for each member of the training set the network
classified the spectra according to its appropriate category: an output
of 1 for explosions and an output 0 for earthquakes. When the
network was tested, for example, an activation level of around 0.5
means the network is unable to decide on the event type.

87

Earthquake Explosion

Output layer

Hidden unit

Input

layer |weights !---~ll.
T T I | II

Lg Spectrum Pg Spectrum Pn Spectrum

Amplitude
(log)

Frequency Frequency Frequency
(iog) -> (log) -> (log) ->

Figure 4.3: The architecture of a neural net which was used to discriminate
between explosion and earthquake spectra. The network had 123 input units
(corresponding to the 41 spectral values of the three phases), 1 hidden unit, and
2 output units. The back-propagation training algorithm was used to teach the
network to discriminate between the explosion and earthquake spectra at the
input.

88

4.4 SEISMIC SPECTRAL DISCRIMINANTS

4.4.1 CHARACTERISTICS OF THE SPECTRAL DATA

Examples of regional seismic phases from earthquakes or
underground nuclear explosions which are recorded by the LLNL
seismic observatory stations are illustrated in Figure 4.4. For the
Basin and Range region, the regional phases Pn, Pg and Lg are the
principle arrivals corresponding to distinct modes and paths of
seismic wave propagation. The first arrival in our data is usually Pn,
a body wave with longitudinal particle motion. Pn is usually
followed by Pg, also a longitudinal wave with frequencies slightly
higher than Pin . However, for the instruments we used the range of
frequencies for both Pn and Pg were from 0.1 to 10 Hz. In this
geologic region P8 is observed to have higher amplitudes than Pn.
The final principle arrival is Le , a regional phase whose properties
are not fully understood in spite of the fact that the Le usually has
the largest amplitude of the three phases. Ls has frequencies
approximately in the same range as that of Pn and Pg . It is generally
believed that the Le phase is a superposition of higher modes of Love
and Rayleigh waves propagating in a crustal wave guide. Typical
amplitude spectra of the principle regional phases are illustrated in
Figure 4.5.

In our notation we represent the amplitude spectrum of a
phase at frequency fº by Sphase (fr). For example, for the L& phase,
the amplitude spectrum will be represented by Slg (fr), the
magnitude of the discrete Fourier transform of SLg(n):

SL(f) = Xwostºe■ ”

where slg(n) represents the discrete-time windowed sequence
corresponding to the phase L3, w(n) represents a cosine tapering

89

T i T i I- I I I T | T T
r—T-- I | | –53

-
–3

|- 3 cºw co -
cro sº

º-
–

- |- ~ -
- cro
r) rºy >5 gº

- SS cº) ES3 cGº S- : —H35 H tº T ~ - Co

Sg: sº ->< Sº - - - - >< - -- šší š ga, E = St
—lsº H –3

- cºv -

–53 – —sº
|- -

cº -

-
E__i= –3 – ETE —5.

-
cºw T –

-

-*.
º- - - - - clo.5

*-

- -

—É H –3

c
-

–9
- - cº- |- CO

-
c —le

|- - “r H. - Cº

co – c’
M.- - cº- º- <r

|- º - |- 3
-

-
—18 – | | –3

- |

l + l #. L 4. #. L
+

L 4. I th t co l º l Sº
I - i

Z+0| X Z+OI X
s/uu s/uu

Figure 4.4: Examples of seismograms for (a) an earthquake and (b) an
underground nuclear explosion recorded at Elko, NV, one of the four stations of a
seismic network operated by LLNL.

90

Station Elko
I | t i i i T-I-T-I I i T i i T-TTI |

10% –

10* |-
E

10° -
tº:

§ 10%|
‘F.
5 ...!

10* H

■ 00 — Pn-spectrum (–— Pg-spectrum
-

---. Lg-spectrum
10- | | l 1––––––– t I 1––––––l

8 | 2 4 6 8 0 2 4 6 8 ■10T 10 10

Station Elko
I I I– i i i TTTI | I i i I T-TTI I

10° – ~~ -

104 – `S
-

E

10%|-
-

#:

#
* 101 ||

-

0 — Pn-spectrum ¥
10 F--Pg-spectrum \\ –

---. Ig-spectrum *

10-'ll
t 1 1––––––. I t 1–1 |

8 —l 2 4 6 8 0 2 4 6 8 ■10 10 10
Frequency (Hz)

Figure 4.5: Examples of displacement amplitude spectra (nm/Hz) of the Pn, Pg
and Lg phases of an earthquake (a) and an underground nuclear explosion (b)
recorded at Elko. Note that the smooth characteristics of the spectral plots is due
to the fact that the spectra were sampled in a log scale and plotted with linear
interpolation between sampled points.

91

window, and At represents the sampling interval. For most of the
data in this study, At is 0.025 seconds.

With these brief introductory comments on the seismic waves
observed at the LLNL network, we state more precisely the seismic
event discrimination problem which we studied:

Given a seismogram with detected regional phases Lg, Pg and
Pn, extract and use the characteristics of these phases to
determine whether the source responsible for generating these
waves was an earthquake or an underground nuclear
explosion.

4.4.2 SEISMIC DISCRIMINANT FUNCTIONS

In a review paper addressing the above problem, Pomeroy et
al. (1982) summarize 15 classes of regional discriminants that could
be used in the discrimination problem. They concluded that while
these discriminants had differing degrees of success in separating
earthquakes from explosions, more research was required to
determine clearly the most promising discriminants. They give an
extensive discussion on the Lø/P amplitude ratio discriminant and
conclude that while Le/P is a promising discriminant, earthquakes
and explosions often, based on this discriminant overlap significantly.
A number of studies have extended these time-domain discriminants

into the spectral domain and have conducted systematic comparisons
on the performance of various discriminants. In a recent study,
Taylor et al. (1988) extended the spectral ratio discriminant of
Bennett and Murphy (1986) to higher frequency bands for the same
phase. They define the Le phase a spectral ratio:

K12 K22

D(L) = X. Suffo/X. Sl■ o
k=K11 k=K21

92

where (K11, K12) and (K21, K22) define upper and lower frequency
bands of the spectra. They found that for a certain threshold level, a
low value for D(Lg) indicates a waveform was due to an earthquake.
On the other hand, a high value for D(Lg) would indicate an
explosion. by applying their discriminants on real data, Taylor et al.
concluded that spectral ratios at certain frequency bands ([K11, K12),
[K21, K22]) of a phase might be an important discriminant. Their
results indicate that Ls, in comparison with PE and Pn, performs the
best for single-phase event discrimination. Performance in terms of
misclassification probabilities ranged from 4 to 33 percent,
depending on the phase and the station, and from 7 to 16 percent for
the network of four stations of the LLNL Nevada Test Site (NTS)
stations. In summary, the study by Taylor et al. (1988) shows
clearly that the broadband spectral characteristics of the regional
phases might be quite important for the discrimination of regional
seismic events.

In view of the studies of Bennett and Murphy (1986) and
Taylor et al. (1988) on spectral discriminants, it is reasonable to
guess that an optimum discriminant might be a weighted spectral
ratio of the form

D(L) = X-Wifosi,(■)/X.W.■ os, ■ o
all k all k

where W1(fk) and W2(f) are spectral weightings at frequency fº. In
the previous discriminant, W(k) = 1 for i = 1,2. Another discriminant
might be of the form of a ratio of spectral components of the
different phases, or a multi-phase spectral ratio:

D(L.P.) = X Wi■■ osu■)/XWrg■ osrºfo
all k all k

In fact, the discriminant function need not be ratios but could
conceivably be some unknown function of the various frequency
components of the three principle phases. In any event, the problem

9 3

reduces to one of determining these unknown relationships and the
optimum weighting functions Wz(fº). Given the large number of
unknown variables like geology and source characteristics, analytical
solution of this problem proves to be difficult.

The application of a "learning machine", like a neural network,
which determines discriminant functions automatically by
systematically training on real data might be an alternative method
for constructing the discriminant function. In this study we focus on
spectral discrimination using artificial neural networks using the
frequency components of the principle seismic phases.

4.5 SEISMIC DATABASE AND PREPROCESSING

The results of this study are based on data from the four LLNL
seismic stations at Elko (NV), Kanab (UT), Landers (CA), and Mina
(NV), located at distances of 200 to 400 km from the Nevada Test
Site (NTS). The database consisted of 83 earthquakes and 87 nuclear
explosions at each of the four stations of the LLNL NTS network. All
the explosions occured at the Nevada Test Site. Epicenters of the
earthquakes and the relative locations of the stations are shown in
Figure 4.6.

In order that discrimination is based on the basis of source

type, and not unduly influenced by background noise, event distance
or event magnitude, for each event in the database we checked the
signal to noise ratio, performed a distance correction and a
magnitude normalization on the spectral data as routine pre
processing steps. We explain the pre-processing of the data in
following sections.

94

x

x xx

* x x
- x

MNV

x J.; x*** **■ s #(NB
* x

x

x
A LAC xt

•- x

Figure 4.6: Map of the LLNL Nevada Test Site (NTS) seismic network. The
network consists of four stations, indicated by the filled-triangles, located 200
400 km from the Nevada Test Site. The locations of the earthquake epicenters
used in this study are indicated by asterisks.

95

4.5.1 SPECTRAL ESTIMATION AND SIGNAL-TO-NOISE RATIO
CHECKING

For each event-station pair, the spectra were calculated from
windowed Pn, Pg and Le phases. Group velocity windows were
defined by tº and t2, were ti = A/6.0 and t2 = A/5.0 for the Pg phase,
and ti = A/3.6 and t2 = A/3.0 for the Le phase. The Pn window was
selected manually and generally ranged in length from 4 to 5
seconds, starting from about 1 second prior to the Pn arrival time. To
get a smoother spectrum, the Pn window was extended to 20 seconds
by zero-padding of the data. Noise spectra were calculated in a 30
second window preceding the Pn arrival. The signals were
differentiated to acceleration and windowed using a 10% cosine taper
between the limits defined above. The resulting acceleration spectra
were divided by f to convert them to displacement spectra. If three
component data were available, the Pg and L& spectra were each
averaged using the vertical, radial and transverse components.

It is well known that spectral characteristics of seismic signals
are strongly influenced by the background noise characteristics. In
order to reduce the effect of noise on the signal spectra, only those
frequencies for which the S/N level was greater than 2 were used.
Frequencies at which the pre-event noise spectra exceeded the signal
spectra by a factor of 2 were not used. Instead, these spectral points
were obtained by fitting straight lines to the log spectra from the
known neighboring points in the spectra.

The problem of missing data is a common problem in seismic
analysis and sophisticated methods of dealing with missing data are
important when discrimination is based with a vector of parameters
(Glaser et al. 1986). However, in this study, since we used smooth
spectral functions for inputs (rather than discrete measured
parameters like m b : Ms), a line fit to obtain missing points in the
spectra was a simple solution that worked well.

96

Station Elko
25 | I I i | I I I | I T I | I I I | T-I i | I I I | I I

-
Q-Distances -

20H-
-

-
I

3 [. I
§ 15–

-

[…] - -

‘■ [. I
35

K- -

E 10+ –
:= -

-

5H –

0 H |H= l I I l l I I l -

0 2 4 6 8 10 12

Distances of Events (km)

Figure 4.7: Histogram of the distances for the earthquake events from the Elko
station. Note that the distances of the earthquakes varied from about 200 to 1200
km for this station.

97

4.5.2 CORRECTION OF DISTANCE EFFECTS ON THE SPECTRA

The distribution of the earthquakes in terms of distance is
shown in Figure 4.7 for the Elko, NV recording station. The
explosions were all from approximately the same site, about 400 km
from the Elko Station. Since lower frequency seismic waves
propagate better through the earth, it is conceivable that these
events could be discriminated solely on event distance rather than
event type. Because the members of the explosion population set
were approximately from the same location, and the earthquake data
were not, we made a first order approximation to account for the
effect of epicentral distance, d, on the source spectra. At frequency f.
the observed spectrum P(f,d), is given by the relation:

- - It f d lar"
P(f,d) = S(f) exp Q(■) v d

where S(f) is the source spectrum, d-K for some constant k is the
frequency-independent geometrical spreading, v the group velocity,
and Q(f) is the quality factor which is frequency dependent:

Q(■) = q f'

where 0 and 3 are constants which depend on the phase and on the
regional geology. Since we assume that the d-r term is frequency
independent (and because we normalize the log spectra), a first order
distance correction function for the spectra is simply

_ " £4C(f,d) = e " Q(■) v

Using results from studies applicable to the Basin and Range, we used
o, = 206; B = 0.60 for Ps, and B = 0.68 for Lg; the velocity for Pg and
Lg were 6.0 and 3.5 km/sec, respectively (Chavez and Priestly 1986).
(We did not use any distance correction for the Pn phase and our
final results are based on using only Pg, and LG phases as input to the

9 8

10 I | i i i i I-T-I T I i I i T-I-T-I |
— d-100

-----E---- d–500 o”
5 || --- d-1000 ...”

s 10° H-o- d-1500
-

...9 —
3

-
..o."

-- ...O.'
5 O ...A.’

#5 ..Or " A T§ 10%| ..o.” 2. A —
3 Gr O …”
.O G) ...-a ºr "

....” G■
it: ... o. --> * . --& " " - ... a...~P"
à- . Al G- -a- - - -AT - & , a..…"ºr"
10 - A - - -A T .E.-----" E-----" E}.” G. -

D{E---- E} ...G------" E} -

-1
10 T | l —----- I —-----|-

*...- 2 4 & 3.0 2 4 § 8,
10 10 10

Frequency (Hz)

Figure 4.8: Spectral correction function for the Lg spectrum plotted as a function
of frequencies and distances (D-km). Note that large corrections are made only
for distant events.

99

network). A distance-corrected spectrum, obtained from the raw
spectrum is given by

S(f) = P(f, d) C(f, d)

A plot of the distance correction function versus frequency and
distance is shown in Figure 4.8. From Figure 4.8 we see that distance
correction effects are stronger at higher frequencies and for distant
eV entS.

4.5.3 NORMALIZATION OF SPECTRAL LEVELS FOR
MAGNITUDE INVARIANCE

As shown in Figure 4.9, on the average the explosions were of
larger magnitudes than the earthquakes and certain pre-processing
for reducing the effect of magnitude information in the data was
appropriate. In order that discrimination is made on the basis of
spectral shape and ratio, the input data to the network was formed
by the distance-corrected log spectra of the three phases, Pn, Pg and
Lg, normalized such that the maximum value of the input data was 1;
i.e., the distance-corrected normalized input vector for the neural
network was obtained by first applying distance correction to the
spectra, then taking the logarithm, and finally normalizing the
spectra such that its maximum value of the three spectral phases
was 1. In summary, we wanted to be able to discriminate events by
type, explosion or earthquake, and not by event magnitude; for a
good test, the magnitude histograms of the two populations sets
should be similar. However, since the magnitudes of the explosions
were on the average larger than those of the earthquakes, we
attempted to reduce the effect of event magnitude by normalizing
the maximum value of each input pattern (the vector formed by the
spectra of the three regional phases) to be unity.

Figures 10-a and 10-b show the statistical characteristics of the
spectral data for the two populations. We draw attention to the fact,
that for any single phase, there might be overlap. However, some

1 00

Station Elko
30 i | i I T | i i i | i i I | i i I

-

— Q-histogram -
| | | - X-histogram

a 20– —
■ º

§ -
-

‘E L
-

|
-

E
£ 10–

-

0 I I I l I I I I l
3 4 5 6 7

Magnitude [Mb)

Figure 4.9: Distribution of the two populations (earthquakes and explosions) of
the data base plotted as a function of the event magnitude in m b for the Elko
station.

101

distinct differences are observed between the two populations. For
the explosions, the spectral shape of the LG phase appears to have a
higher corner frequency and a steeper decay than the earthquakes.
Because the maximum amplitude was generally taken from the L&
phase, there is more overlap in Lg than for P3. The normalized Pg
spectra from the explosions are typically greater than the
earthquakes which is consistent with a smaller Lg/Pg ratio for
explosions over a broad range of frequencies, particularly between 1
and 5 Hz.

4.6 NEURAL NETWORK DISCRIMINATION PERFORMANCE

We experimented with multilayered neural networks
architectures with a varying number of hidden units. We found that
even with the simple network architecture (see Figure 4.3) consisting
of an input layer, one hidden unit, and two output units, we could get
very good performance. (Increasing the number of layers or hidden
units did not increase system performance.) To regionalize the data
characteristics, we assigned a separate network to each recording
Statl On.

4.6.1 TRAINING WITH CHEMOTAXIS AND BACK.-

PROPAGATION

Networks were trained both with the back-propagation and
chemotaxis algorithms. Both training algorithms were able to find a
decision boundary to separate all 170 events in the database at any
of the four stations. Furthermore, they did so in a relatively short
training time (approximately 500 - 2000 training cycles for either
algorithm). Thus, computationally, there was no significant
difference between the two methods.

In order to test the robustness of this decision boundary, we
would like to test a trained network's performance on a test set of
unclassified patterns. However, as we were working with a limited
database of events (83 earthquakes and 87 explosions), it proved to

102

be difficult to choose an appropriate subset of examples to use as a
training set. Instead, we used a "leave-one-out" strategy
(Lachenbruch and Mickey 1968) to determine the performance of
the network. According to this strategy, the network was trained on
all but one of the events in the database. Once trained, the network
was tested on the event left out of the training set. To obtain a
statistical measure of the discrimination performance, the process
was repeated for every event in the database.

Performance evaluation via this method required training 680
networks (170 events times 4 recording stations). Thus, we needed
to automate the process of generating training sets, training
networks, and evaluating each network's performance. We used an
"off-the-shelf" back-propagation simulator (SunNet) on a SUN 4/110
workstation for network training. Training took about four days on a
dedicated computer. As we had established that the chemotaxis
algorithm could train networks as well as back-propagation, we
determined that there was no need to create an automated version of

the chemotaxis algorithm solely to repeat these computations.

4.6.2 LEAVE-ONE-OUT PERFORMANCE

As shown in Table 4.1, preliminary results of this data set
indicate that the rate of correct recognition for untrained data is
from 93-97.5% for earthquakes and explosions at any single station
of the four station network. When using a majority voting scheme
with the network of four stations, the rate of correct recognition is
over 97%. These results are based on using only the Pe and Le
spectra as input to the network. We found that inclusion of the Pn
data did not significantly change the performance, and since the Pn
had lower signal-to-noise ratio it was left out in the final analysis.

Out of the total 679 (earthquakes and explosions at 4 stations)
spectra, the network either could not classify or mis-classified 29
spectra. The mean magnitude of these 29 spectra was 3.74 m b with
a standard deviation of 0.42. We can say, therefore, most of the

103

TABLE 1

Performance of the Artifical Neural Network

Number of Correct Mis- Undecided
Events Identification Identification Classification
(Q/X) (%) (%) (%)

Elko 80/79 97.5 / 97.5 0.00/2.50 2.50 / 0.00

Kanab 86/83 96.5/96.4 0.00/1.20 3.50 / 2.40

Landers | 86/94 93.0/95.7 3.50/2.10 i 3.50/2.20

Mina 76/95 93.4/93.7 5.30/.420 # 1.30/2.10

NETWORK 79/83 100 / 97.6 0.00/2.40 0.00 / 0.00

Table 4.1: Performance of the neural network for discrimination expressed in
terms of percentage. In the table the entries Q/X represent results for
earthquakes (Q) and explosions (X), respectively.

104

|
Station Elko

TI I I i i T-I-T-I | i i i T TTTI |
-
–

1.0 —

-

0.5 –

0.0 –

-" l
|- -

–0.5 | 1 1 1_1_1_1_1_1 | 1 I I l l l 1–18.- : 4 & 8, 2 4 6 5.
10 10 10

1.5 Station Elko
“[. | I I I i T-I-T-I | i i I i I-I-T-I I -

10- º
|-

F –T

0.5- - - ~s i
|- *-. ~~~~ --> -

I "— I

00– Mean+5td.Pg.X –
T — Mean-Étd.Pg.X ~ -
I- Mean+ºld P■ q

-

I— Mean-Étd.Pg.3 I
–0.5 I | I l l I L-1–1–1 | I l l I 1–1–1–1 |

- ? 4 & 3.0 2 4 6 5.
10 10 10

Frequency (Hz)

Figure 4.10 a-b:
the Elko station.
complete data base for an event type.
spectra and dotted-dashed lines denote earthquake spectra.

Plots of the normalized (a) Lg and (b) P3 spectra for events at
Like lines are the mean # standard deviation obtained from the

Solid-dashed lines denote the explosion

105

events that were not correctly identified were among the small
magnitude events.

4.6.3 DISCUSSION

While we are encouraged by these preliminary results, we note
two defects in our present database. Figure 4.9 shows the
histograms of the events in terms of their magnitude. Since we want
to distinguish events by their type (earthquake or explosion) and not
by the event magnitude, ideally, we want the histograms of the two
populations to be similar. As the histogram shows, the magnitude of
the explosions were on the average larger than those of the
earthquakes. We attempted to reduce the effect of event magnitude
by normalizing the maximum value of each pattern (the vector
formed by the spectra of the three regional phases) to be unity.
Because this normalization may not completely remove the effect of
magnitude in the explosion or earthquake spectra, we cannot at
present confirm whether the network was a magnitude-independent
discriminator. The second peculiarity in our database was that the
explosions were from the same site, while the earthquake locations
had significant variations (see Figure 4.7). We tried to reduce the
distance effect by a simple distance correction formula explained
earlier. In any event, to test the validity of these preliminary
results, we need to verify them against other databases. Finally, we
note that appropriate pre-preprocessing (e.g., careful spectral
analysis, distance correction, and normalization) was important for
good discrimination performance.

4.7 COMPARISON WITH THE FISHER DISCRIMINANT

Since empirical results showed that a simple neural network
architecture obtained results as good as those from networks with
several hidden units, we might expect that this particular data set is
almost linearly separable. This implied that conventional methods
may be sufficient for the task. We applied the Fisher discrimination

106

method (Tjøstheim 1981, Duda and Hart 1973) to the same data set
for comparison of the results with conventional methods.

In order to use the Fisher discriminant, we must estimate a
sample covariance matrix of the population and be able to invert the
matrix. When the dimension of the input vector (= 80) is less than or
equal to the number of events in each population set, it is
numerically difficult to invert the sample covariance matrix. By
assuming equal covariance distribution for explosion and earthquake
populations, however, we were able to compute a better conditioned
covariance matrix because of more sample events, approximately
160. Under equal covariance Gaussian distribution of the population
sets we have

Px explosion)= —Hexp
(27t)2X2,

}x-u J's 'X-1 .

P(x |quake) = —Herº's 'sº
(27t)2X2,

where u and uq are the sample mean vectors of the explosion and
earthquake spectra, respectively, and X is the sample spectral
covariance matrix. Assuming that the populations have an equal
covariance Gaussian distribution as above, the log likelihood test for
discrimination is given by

P|x|explosion)
P(x |quake)Log = x*(1,-1)-;1, +1]'; 'u,-1)

Results upon application of the Fisher discriminant are listed in Table
4.2. Because we used the criteria for a positive likelihood ratio event
is an earthquake, there were no undecided events with the Fisher
discriminant. (With a neural network, in contrast, high, medium or
low responses in both output neurons meant that the classification
was undecided. Because of these differences, a fair comparison over
the network for the two methods becomes more complicated. as

107

TABLE 2

Performance of the Fisher Discriminant

Number of Correct Mis
Events Identification Identification
(Q/X) (%) (%)

Elko 80 / 79 96.3/96.2 3.70 / 3.80

Kanab 86/83 93.0/90.4 7.00/9.60

Landers 86/94 83.9/98.9 16.1 / 1.1

Mina 76/95 88.2/98.9 11.8/1.1

Table 4.2: Performance of the Fisher linear discriminant expressed in terms of
percentage. As in table 4.1, the entries Q/X represent results for earthquakes
(Q) and explosions (X), respectively.

108

such, for this preliminary study, we do not compare the network
performance between the the two methods.) For any single station,
the results on the same data set indicate that for the Fisher method

rate of correct identification ranged from 88.2 to 98.9 per cent over
the network for both earthquakes and explosions for any given
station (see table 4.2).

The results of this simple multivariate Fisher discrimination
method are nearly as good as those of the neural network. The
comparable performance of the two methods is not surprising
because with a very simple architecture for the neural network we
obtained results as good as those from complex neural network
architectures with many hidden units meaning that the two
populations are almost linearly separable and therefore the
performance of the Fisher technique should be quite close to optimal.

In summary, both neural network and Fisher methods perform
quite well with regional spectral data, indicating perhaps that given
complete spectral information, events with magnitude 4 or higher in
this geological region can be discriminated rather well. Whether the
same discrimination method will perform equally well in other
geophysical environments or at lower mºb values is unknown.

4.8 CONCLUSIONS

In our study we deliberately kept the architecture of the
neural network to the simplest form that would maintain
performance. As it turns out, a single layer network was capable of
realizing the same performance as a multilayer network. This allows
for simple interpretation of the network weights as adaptive filters.
Through examination of the network weights, we can find the
features in the spectral data which the network utilized for
discrimination of the two populations.

109

T T n I i TTI T] I TI i i TTI T

-
Pg-wtfl.lgpg.elk -

20H

ºº# 0
*

-

F

—20—
-

1 | l L ■ 1 | 1 || 1 | ■
1

i
L

§ l à
t |8 2 4

10- 109 10|
i | i i I I T-TTI | i i n i TTTI I

-
Lg-wtfi.lgpg.elk -

20H-
-

-

- TTTTTTTT ºil- Hº
—20—

1–

10

-0

1 | I 1 1 I

010
Neural units corresponding to spectral frequencies (Hz)

I | I I I I

8.- ? i-º-;
10

à § {

Figure 4.11: The weights from the input to a hidden unit for a trained network at
Elko. Because the net had a simple architecture and the input units correspond
to the frequencies in the spectrum, examination of the weights is useful for
understanding how the network used features in the L3 and Pg spectra for
discrimination. Since the log spectra of PE has mostly positive weights and the
log spectra of L& has mostly negative weights, the network is using the L3/Pg
spectral ratio for discrimination, in addition to the spectral shape.

TI I T I T-T-I TI I I T I-T-I-T-I

º-
Pg-wls.gpg.lac -

20– -

3 ■ -

0–
-

* |

–20–
-

H
1 — 1 i i 1–1 , I l 1 1 1 L 1 1

-
2 4 6 8 2 6 8

10- 100 10'

I I I T I T T-I-T-I I I I T T T-I-T-I I

-
Pg-wl■ lgpg.kmb -

20–

-->
--Hºmº

–20– -

H # l l l l | | | | I - l l I I I -
-

4 6 8 2 4 6 8
10- 109 10'

TI n -T- T i 1-I-I-II T t I I * - II
| Pg-wl■ lgpgmny

20–
- -

OH- ■ t |||| |
I |. | l

* | I
| T

–20–
-

H ■ l
H++

l
-

4 & 8
10- 109 10'

Neural units corresponding to spectral frequencies (Hz)

Figure 4.12: The weights corresponding to the PE spectra for the other three
stations. The weights of the trained neural network differ from station to station,
supporting the fact that regional differences are important for determining
optimal discriminant functions.

1 11

In Figure 4.11, we compare the Ls and Pg weights of the
network for the Elko station corresponding to the Lg and Pg spectral
inputs. Note that most of the weights for Pg are positive and those
for Lg are negative. Since the log of the spectra was input to the
network, this implies that the network has learned to distinguish an
explosion from an earthquake by using the L&/Pg spectral ratio. It is
interesting, although not surprising, that the network through its
learning process automatically developed a discriminant which had
been previously recommended by experts in the field.

We investigated the variations of the input weights with the
different training sets (using the leave-one-out approach the number
of training sets is equal to the total number of earthquakes and
explosions at a station.) The standard deviation of the weight vector
about its mean showed that there is no significant variations in the
weight distribution with different training sets of the leave-one-out
method. Another interesting result was the fact that the weight
vectors exhibited variations in the detailed shape between the four
stations - although they had the same general shape. The P& weight
vectors for the other three stations are compared in Figure 4.12.

4.8.1 ADVANTAGES OVER CONVENTIONAL METHODS

Although the performance of the network for discrimination
between explosions and earthquakes was quite similar to that of the
Fisher linear discriminant, we found that the network exhibits a
number of computational advantages over conventional methods.
When the dimensions of the data are large (in this study the length
of the input vector was 82), conventional methods can become
numerically unstable and slow. For example, the Fisher technique
requires the inversion of a covariance matrix, and it is well known
that inversion of a large dimensional matrix can be numerically
difficult if the matrix is poorly conditioned. Furthermore, from many
other experiments that we performed we found that the network is
quite robust to missing data points. Finally, a neural network

1 12

provides a computational environment that is significantly more
flexible and simple from the viewpoint of an application scientist.

4.9 SUBSEQUENT WORK ON SEISMIC SIGNAL
DISCRIMINATION

There are many interesting questions and issues that we have
not addressed in this preliminary study. Some of the problems now
under study are: How important are the detailed spectral shape of
the various phases? Was the signal-to-noise ratio (SNR) the main
reason that the Pn data did not significantly contribute to the
solution? How important is it to train separate networks station by
station, or would it be better to use all the data from the seismic
network and apply it to a single network? Work along these lines is
continuing at the Earth Sciences Department at LLNL.

Dowla (Dowla, in preparation 1991) has since extended the
neural network technique for the discrimination of complete
seismograms or waveforms, instead of using detected, windowed
phases. This makes the network performance more independent of
an analyst's preprocessing and render the technique as an important
tool in automatic seismic signal analysis. In his study, network input
consisted of 700-800 points representing the short-term power
spectra windowed at intervals over the entire signal. In this case,
they found it necessary to use multilayer neural networks (with a
minimum of 5-6 hidden units) to achieve the best performance.
Because of the large network size and incomplete data, Dowla was
only able to train on 50-60 events at each station, so that direct
comparison with our study was impossible. Using the leave-one-out
strategy, however, the new network was able to correctly classify
100% of the events in the training and test sets. (Remember that on
any given network was trained on all but one of the events and
tested on the other.) Dowla showed that multilayer neural networks
yielded better results than linear regression techniques.

1 13

CHAPTER 5

RECURRENT NETWORKS AND THE CHEMOTAXIS
ALGORITHM

5.1 INTRODUCTION

Thus far, we have limited application of the chemotaxis
algorithm to feed-forward networks. The power of feed-forward
networks as functional approximation devices has been amply
demonstrated theoretically (Chapter 3) and in practical applications
(e.g. Chapter 4). But these networks are only a subclass of the fully
connected finite-state automatons proposed by McCulloch and Pitts.
As we noted in Chapter 1, if feedback loops are allowed in the
network architecture, neural networks are potentially universal
computational devices. These networks are referred to as

"recurrent" networks, and are capable of a wide range of dynamical
behavior, such as preservation of internal states, self-activation,
lateral inhibition, refractory periods and time delays. (A typical
recurrent architecture is illustrated in Figure 5.1.)

Many efforts are now underway to expand the realm of neural
networks to intrinsically sequential or temporal signal processing
problems. One approach currently being pursued is to tra in
recurrent networks on sequential input/output patterns. Most
recurrent network training algorithms are extensions of the back
propagation algorithm (discussed in Section 5.3). One advantage of
the chemotaxis algorithm is that it does not require modification for
recurrent networks other than in the definition of the objective
function. We detail these modifications in Section 5.4. Next, we use
computer simulations to demonstrate the effectiveness of the
chemotaxis algorithm on three representative sequential tasks. We
report the results of attempts to train recurrent networks to:

114

(1) integrate a sequential signal (Section 5.5.1),
(2) mimic a finite-state machine (Section 5.5.2), and
(3) oscillate at various frequencies (Section 5.5.3).

We note that all existing methods for training recurrent neural
networks are extremely slow and not practical for many engineering
applications. In the Discussion, we suggest alternative neural
network strategies to deal with temporal problems.

5.2 RECURRENT NETWORK THEORY

A recurrent network is equivalent to a finite-state automaton
(Arbib 1987, p. 25). Much is known about what these structures can
do in principle. McCulloch and Pitts (1943) asserted that networks
connected "with circles" (feedback loops) could compute any
numbers computable by a Turing machine even without added
scanners or an infinite tape (see also Chapter 1; Turing 1937; Arbib
1964, 1987; Cowan 1990). They did not, however, provide a proof of
this assertion.

At first, one might think that construction of a universal Turing
machine out of fully connected neurons could only be possible
provided a potentially infinite number of neurons are available. But
one can encode an infinite tape into a finite tape, provided that that
tape has real valued activations. Indeed, Seigelman and Sontag
(1991) showed that it is possible to build a recurrent net that
simulates a universal Turing machine with a finite network of
sigmoidal neurons. (They estimate the network would consist of less
than 10° neurons.) This is an important finding, because it shows
that, potentially, recurrent networks can simulate an arbitrary
computing device (i.e. recurrent networks are capable of computing
anything computable by a sequential computer).

As is the case for the theoretical results for static neural

networks, most of these results are existence proofs (not known for

115

their usefulness in practical applications). In contrast to feed
forward neural networks, however, efficient training algorithms for
finding these solutions are not yet available. For example, recurrent
neural networks have been trained to mimic functions of several

finite-state machines (Elman 1988; Williams and Zipser 1988; Section
5.4.2). However, it is much easier simply to design finite-state
machines than to train what is essentially a randomly connected
finite-state automaton to achieve the same input/output
relationships. This is demonstrated in section 5.5.2.

On a less general level, we would like to know what recurrent
neural networks could do practically, in other words, "what are they
best suited for?" A more recent theoretical result claims that

recurrent neural networks are universal controllers'; that is, for any
controllable system (as defined in linear control theory), there exists
a recurrent neural network implementation of the corresponding
ideal controller. In this area, recurrent networks are yielding some
initial successes (Seidl and Lorenz 1991, Swiniarski 1991).

5.3 TRAINING ALGORITHMS FOR RECURRENT NETWORKS

Recent efforts to train recurrent networks to generate or
classify temporal patterns (for example adding two sequential inputs
[Tsung and Cottrell 1989) or memorizing oscillatory patterns [Doya
and Yoshizana 1989]) have relied on extensions of the back
propagation learning algorithm (Almeida 1987; Pineda 1988;
Williams and Zipser 1988; Elman 1988). (For a comprehensive
review, see [Williams and Zipser 1988]).

One of the early schemes relied on back-propagation-through
time which limited the duration of the signal to the number of

|Robert Hecht-Nielsen announced that there is a paper (not his) currently under
review for publication that proves this result (at the AMSE Int'l Conf. Neural
Networks, San Diego, May 29-31, 1991).

1 16

processing layers (Rumelhart and McClelland 1986). Other learning
algorithms require specific architectures (Elman 1988, Jordan 1987).
The learning rules presented by Almeida (1987) and Pineda (1988)
are limited in that they require that desired network dynamics have
only point attractors. A more general learning algorithm, recurrent
back-propagation (Williams and Zipser 1988), places no constraints
on how the network is connected or the dynamics of the neural
signals.

Recurrent back-propagation requires that the objective
function E(w) be redefined to account for output error as a function
of time E(w,t). So for each weight wift in the network, a value

OEw,t)
Awi (t) = - 0. Town■

is accumulated for each time step At along the output trajectory (0.
represents the algorithm learning rate). After the network has run
through its trajectory, each weight is altered by

tf

XAwi ().
to

In summary, recurrent back-propagation requires that gradients be
calculated and summed over the duration of the simulation.

One variation of the recurrent back-propagation algorithm,
called 'teacher-forcing', seems to be helpful in learning some
dynamical behavior, such as learning stable oscillations (Williams
and Zipser 1988). In 'teacher-forcing' during training, the actual
output of the network is replaced by the teacher signal creating a
'teacher forced State'.

Back-propagation, already considered biologically implausible
for static neural networks, has yet to be extended to dynamical

1 1 7

networks in a biologically realistic way. Recurrent back-propagation
is even less plausible biologically, since it requires credit assignment
backward through time as well as through the network. One
advantage of the chemotaxis algorithm is that it does not require
modification for recurrent networks other than in the definition of

the objective function. In this respect, it is a general learning rule.
Thus initially, we had great enthusiasm about extending the
chemotaxis algorithm to recurrent networks.

5.4 MODIFICATIONS OF THE CHEMOTAXIS ALGORITHM FOR

RECURRENT NETWORKS

5.4.1 NETWORK ARCHITECTURE

In it's most general form, a recurrent network allows all
elements to connect with all others, including themselves. (Figure 5.1
shows the network architecture used in this study.) As in the case of
static neural networks, net activation of a unit is a weighted sum of
all of its inputs:

J K

net(t+A) =X wip;(t) + X wig■ ,()
j k

where oj(t) = the output of unit j
Ik(t) = input signal k

The output of a unit is function of its activation on the previous time
step. In this study, this activation function is a nonlinear "squashing
function" of the form:

o, (t+A) = (e-met()+ 1)/e-net■)+ 1)
O T

o, (t+A) = 1 /e-net()+1)

118

T(t) X(t)

Figure 5.1: Architecture of a recurrent neural network

All units are allowed to receive input from any other unit - including themselves.
External inputs can be arbitrarily assigned. Training requires the evaluation of the
performance of at least one unit's response.

119

Note that the networks studied here are given non-linear,
continuously differentiable activation functions; however, the
algorithm does not require that this be the case. Back-propagation
and its variants use local gradients to predict favorable directions in
weight space. Since the chemotaxis algorithm chooses random
directions in weight space, it does not require differentiable
activation functions.

5.4.2 DEFINITION OF THE OBJECTIVE FUNCTION

Notice that a temporal dimension has been added to the input
and output patterns. The simplest way to incorporate this into the
training algorithm is simply to integrate, or sum, the error between
the target signal dynamics and the output trajectories. Hence, we
defined the total network error as follows:

P time. N

E(w) = XXX (x,0)-T,0)?
P t-0 in

where: P = the number of patterns in the training set
tmax = duration of the target sequence
N = number of targeted output units
Tnp = target response of unit p to pattern n
xmp = actual response of unit p to pattern n

We note that there is considerable flexibility in choosing the
exact form of the error function by which the network performance
is evaluated. The output signals can be sampled, for example, at
every tenth time step or asynchronously. Furthermore, the error
could be weighted toward the final state reducing the importance of
the actual trajectory taken to reach the desired state (i.e. ignoring the
transient response.) In the following simulations, the output error is
unweighted and calculated at each time step.

1 20

5.5 SIMULATION RESULTS

5.5.1. A NEURAL 'INTEGRATOR'

For an initial test of the training algorithm, a small network
was trained to integrate an input signal I(t). Notice that it is trivial
to design a linear network to perform this task. (A linear unit with a
feedback weight of "1" approaches an ideal integrator as At — 0.) The
purpose of this demonstration was to verify the training procedure.

The network was trained on 8 representative patterns whose
magnitudes ranged between 0 and 1 over ten discrete time steps
(see Figure 5.2a). Although the maximum output range of the net
was -1 to +1, no negative valued input signals were used in the
training set. The target signal for the output was chosen to be

T(t+At) = K■ "()d,0

with K, a scaling constant, set at 0.095 to keep the output within the
dynamic range of the output unit. Since it takes at least one time
step for information to propagate from the input node to the output,
network error was calculated with a delay of one time step.

The net architecture was '1-H-1' (one input node representing
the input signal, H fully-connected hidden units, and one output unit
at which the network response was measured).

Figure 5.2a shows the performance of a trained 1-4-1 net after
500 cycles through the training set (epochs). Training time was
independent of the number of hidden units. Training time was also
independent of the length of the input signal (number of sample
points). The total squared error of the net on this training set is 0.2.
Notice that the net performance eventually saturates when it tries to
follow a maximal step input (Fig. 2a-i). Here the output unit's

12 1

1 1

0.8 - 0.8 -

0.6 -
- -

0.6

0.4 + 0.4-

0.2 - 0.2 +

O O
1 2 3 4 5 6 7 8 9 1 0 1 1 12 13

1 *-*

0.8 -

0.6

0.4 -

0.2 - 2"
2^ O

1 2 3 4 5 s 7 8 g 10 11 12 13 1 2 3 4 5 6 7 8 9 1 0 1 1 12 13

1 * 1

0.8 0.8

0.6
-

0.6

0.4 . 0.4 +

0.2 --x-x-x

|^. O + 2
1

O

O r- -

1 2 3 4 5 6 7 8 9 1 0 1 1 12 13 2 3 4 5 6 7 8 -9 1 0 1 1 12 13

1 *-* 1 I

0.8 0.8 -

0.6 0.6 -

0.4 + 0.4 -

0.2- 0.2 -

0 irº r—i t r T I

O 1 2 3 4 5 6 7 8 9 1 0 1 1 12 13
1 2 3 4 5 6 7 8 9 1 0 1 1 12 13

Figure 5.2a.: Performance of the neural integrator on the training
Set.

Eight temporal signals were used to train a network to integrate an
incoming signal. The heavy solid line indicates the input signal and the crossed
dashed line, the time integral of the input. The light, solid line shows the
corresponding output of a trained network.

1 22

- T
1 2 3 4 5 6 7 8 9 1 0 1 1 12 13

1 2 3 4 5 6 7 8 9 1 0 1 1 12 13

1 - -

0.8 0.8

0.6 === 0.6

0.4 r 0.4

0.2 0.2
-

==z-?

0 i 7
1

T-I
o 11 12 13 O

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 1 0 1 1 12 13

0.8 -

0.6-

0.4

0.2
—==

x0 i-F—r—-- r

1 2 3 4 5 6 7 8 9 1 0 1 1 12 13* : * 4 = e 7 s 9 to 11 12 13

-
O --~~ —z

1 \ 2 3 4-5 6 7 8 9 10/11 12 13

0.8 - -0.2

0.6 -
-0.4

0.4-
-

-0.6
-x-x-x

0.2-
-0.8

0.4—--F-
r–

1 2 3 4 5 6 7 8 9 1 0 1 1 12 13 - 1

Figure 5.2b.: Performance of the 'neural integrator' on the test set.
Note that the trained network responds correctly to negative valued inputs

which were not included in the training set.

1 2 3

response is being limited by the nonlinearity of its activation
function.

Figure 5.2b shows the response of the net to various test
signals. Notice that the net responds correctly to a ramp input, a
high frequency input as well as nonpositive inputs.

5.5.2 TRAINING A RECURRENT NETWORK TO BE A FINITE
STATE MACHINE

A recurrent network with a linear threshold activation function

can be considered equivalent to a finite state machine. In this study,
we explore the practicality of training a recurrent network to achieve
a realization of a particular finite-state machine - a digital 'flip-flop".

The state transition matrixes for a flip-flop is shown in Figure
5.3. Notice that the required operations are analogous to the
'exclusive OR" (XOR). In other words, the two-state machine will
perform the task of evaluating the parity value of a sequential,
digital input signal. The trained network must learn to generalize a
task for which there are an infinite number of examples of
input/output patterns. Also, as the number of recurrent units
increases, the network will be capable of more internal states making
the occurrence of 'spurious states' or minima more likely. Thus, the
problem is to train the smallest network possible on a small subset of
the possible binary sequences. Since there are only two internal
states, there are only 4 combinations of transitions the network
needs to learn. This suggests that the minimal training set size would
consist of 4 patterns - one for each state transition case. We also
note that as few as two units are sufficient to build a two-state

machine. The following experiments were conducted to determine
the practicality of creating a given FSM through training a recurrent
network on examples of the desired dynamical input/output
behavior.

124

Figure 5,3: State Transition Matrices for a Two-State FSM

NeXt State

O
|nput |nput

1 25

The networks in this study consisted of 2 to 4 fully connected
units. One unit was arbitrarily chosen as the output unit. The single
input to the network was a string of 1's and 0's. The target output
was set to respond with a "1" if the total number of 1's received
(after a clock-cycle delay) was even, "0" otherwise. Training
continued until all of the output sequences were within 0.1 of the
target sequence at each time step for every pattern in the training
set. The network was then tested on an expanded set of patterns. The
training sets were expanded until the trained networks had properly
"generalized" the problem (see table 4.1).

First, a 2-unit network was trained on the minimum number of
examples, that is the 4 patterns in the truth table for "exclusive OR."
in sequential form. Although it was possible to train a network to do
this task, the resultant networks would give inappropriate responses
when tested on the same sequences shifted by only one time step. It
seems that there was a strong tendency for the network to simply
generate the 4 output sequences exploiting some of the initial
conditions provided by the internal biases as well as the input
patterns. To steer the network performance further toward the
stated goal, the training set size was expanded to include both the 4,
2-bit patterns of sequential XOR as well as the same patterns shifted
in time one time step. Thus, the network was trained on all 8
permutations of a three-bit signal (or 3-bit parity). Attempts to
train a 2 unit network were unsuccessful. Training was possible,
however, for larger networks. In addition, these networks performed
well on test sequences. (The networks tended to give responses
closer to the 'right' answer - within 0.5 - than the 'wrong' answer.) In
addition, the networks could be forced to generalize to longer input
sequences by continuing training for a few hundred cycles through
the larger set. Networks trained on an even larger training set (4-bit
parity) generalized well - often performing as well on 'unknown'
sequences as on the training set. Figure 5.4 shows the final
architecture of one such training run.

126

–6.

–5.2

–3.3 —-

—5.4 Output
O.33

BiaS É
|nput

8.4

5.7

5.6

–3.6

7.6

Bias

■ l ■ l É
6.6

6, 1

3.6

–3.O

-8.4

E
Bias —

Figure 5.4: Training a recurrent neural network to
be a finite state machine

A flip-flop" can be considered a 2-state finite state machine (FSM)
Which performs a parity operation on a sequential signal. The
corresponding state transition matricies are shown in Table 5.1.
An implementation realized by training a recurrent neural
network is shown below.

127

Table 5.1: Average Training Times for Sequential Parity (1)

Training set # Of Average Ratio || FSN1
Size UnitS Training (Successes. General

Time to trials) || ization 7

4 2 36,790 1/5 no

(XOR) 3 24-34 34% -- --

4 12.19 5/5 nC)

34.3%. 3%-36 /
--

8 2 O/5

(3-bit parity) || 3 34O6 1/5 alm OSt

4 21 32 8/1 O alm OSt

34.3%. 24 ×

16 2 O/5
--

(4-bit parity) || 3 1859 2/ 1 O yes

4 3728 6/ 1 O yes

(1)Averages were taken over successful training runs under
various conditions (number of units and training set size).
The ratio of successful runs to trials is given in the adjacent
column. Training Was stopped when all of the output
Sequences Were Within 0.1 of the target sequence at each time
step for every pattern in the training set.

Training on the smallest possible training set (the 4
patterns in the XOR truth table) could be achieved fairly
quickly; however, the resultant network would give
inappropriate responses to the same sequences shifted in
time. A network Was judged to have "almost" generalized when
it's response to test inputs are close to the desired output
(Within 0.5 instead of within 0.1). Such networks could
usually be made to generalize by training the sub-optimal
network on an expanded training set (@ 200 cylces). A
network was considered to have properly generalized the task
of the 2-state FSM if its performance on test sequences was
equal to that on the training set.

128

Only mathematical analysis of the final network architecture
can guarantee that the network had properly 'generalized' the task of
sequential parity from sample input/output pattern matchings. We
note that a finite state machine is relatively trivial to design. We
suggest that the power of recurrent networks, if it exists, may be in
training dynamical systems to desired specifications and tolerances.
This theme is pursued in the following sections.

5.5.3 OSCILLATORS

Networks were trained to generate oscillations of specified
frequencies and characteristics. The networks in these studies had
no inputs and only one output.

In the first task (from Williams and Zipser 1988), a pair of
logistic units were trained to produce the sequence 0, 0, 1, 1, 0, 0, 1,
1, ... (Period = 4 clock cycles). Training continued until the output
was within 0.1 of the desired sequence. With initial random weights
drawn from a uniform distribution [-1, +1] and biased units, the
network learned this behavior in 2000 training cycles. Figure 5.5a
shows the trained network output.

For comparison, Williams and Zipser (1988) report that simple
recurrent back-propagation failed to converge at all on this problem.
However, using a more complicated variation of the recurrent back
propagation algorithm, called 'teacher forcing' (Section 5.3), they
were able to train a two unit network in around 100 training cycles.

In the second task, a 2 unit network was trained to generate a
continuously valued sine wave oscillation with a period of 25
iterations. The training signal consisted of one complete cycle. The
units in this study again had a logistic activation function, but this
time the allowed range of operation was [-1,+1]. The network was
trained until all 25 points were within 0.2 of the target sequence.
(Note that it would be impossible for this system to generate a

129

A: BINARY OSCILLATOR

X- —X X- -X X— —X

|

*—|
O X— — + ×—x

5
-X-X-1––X—x——

9 13

B: SINUSOIDAL OSCILLATOR

Figure 5.5 A & B:
oscil late

* Target

* Output

- Target

- Unit #1

Performance of neural networks trained to

130

2.4

Bias Ps

– 1.4

— 1. O2

.99 Output
BiaS

O.25 P.

3.56

Figure 5.6: Implementation of a roughly sinusoidal
oscillator with nonlinear, recurrent units (see also
figure 5.5B).

131

perfect sine wave because of saturation effects.) Figure 5.5b shows
the output of this network after 26,500 training cycles.

Training for this task proved to be surprisingly difficult. First
of all, initially the training set consisted of a sample of two or more
cycles. Training often failed to converge because of what might be
termed 'phase washout'. If the network produced an output with a
sightly different frequency than the target signal, the error over
several periods will cancel out. Also, there seems to be a strong
attractor part way through training where the network produces a
damped response followed by a constant valued output. Williams
and Zipser report similar results in their studies.

5.6 DISCUSSION

Recurrent networks are in theory capable of a wide range of
dynamical behavior. These systems have potentially infinitely many
states or attractors. Training recurrent networks requires a search of
state space for the required attractor. We provided one example
with our attempt to train a network to be a two-state finite-state
machine. (A network consisting of 4 units was capable of occupying
approximately 24 = 16 binary internal states.) Thus, successful
training required the use of long input/output sequences in the
training set to keep the network from developing "spurious states".
Hence, great care must be taken in the design of a recurrent network
application for it is likely to succeed even at the most trivial
applications. Training a tabula rasa, randomly connected, finite-state
automaton to perform a complex sequential signal processing task
may be a hopeless endeavor.

It is for these reasons, and not because of the inefficiency of
the training algorithms, that recurrent network architectures must
be constrained to "custom-fit" the application at hand. The most
successful applications have applied recurrent networks by
restricting their function in a control or filtering process.

132

For example, recurrent network structures have been proposed
by which each output unit estimates a state variable xi(t) of a
dynamical system (Seidl and Lorenz 1991; Swiniarski 1991). The
structure used by Seidel and Lorenz consists of an internal formation
of a two layer, feed-forward neural network which is used to
approximate the next state as a function of the previous state vector
xi(t + At) = f(x(t)). Using this less general architecture, they are able
to prove that this approximation can become arbitrarily close to a
specific class of nonlinear dynamical systems. Swiniarski used the
same two-layer scheme to employ recurrent networks as "neural
Kalman filters", where the network is trained to estimate the
unobservable system states (Swiniarski and Nieplocha 1991).

5.6.1 ALTERNATIVES TO RECURRENT NETWORKS IN CONTROL

Many studies have employed feed-forward neural networks in
feedback control systems (A wide range of applications appears in
the April 1990 issue of IEEE Control Systems Magazine.) A common
application is to use the neural network to estimate a nonlinear
transfer function of either the feedback or feedforward controller (F.
Chen 1990, Psaltis et al. 1988). Training the network increases the
control system performance; thus this technique can be considered a
nonlinear adaptive control process.

For many control problems, however, what we would like is a
dynamical system which generates a temporal control signal as a
function of modulating inputs. The existing recurrent training
algorithms have not been shown capable of producing such a rich
response.

We propose an alternative strategy to recurrent networks for
motor control which employs static, feed-forward networks. We
propose to exploit the function approximation capabilities of feed
forward networks (Chapter 3) to estimate the parameters of a
dynamical control signal. One can think of this strategy as analogous

133

to generating a temporal sequence by estimating the magnitudes of
it's Fourier spectral coefficients. In the next chapter, we present
methodology by which a static, feed-forward neural network can be
used to control a dynamical system.

This control scheme has a biological correlate in high level
motor control. It is well known that ganglia of invertebrates and
spinal cord of vertebrates are capable of generating autonomous
movements (such as walking in cats and coordinated movement of
the lobster stomatogastric ganglion). These neural structures are
called central pattern generators (For a review, see Selverston
[1980]). Efferent fibers from higher central nervous system centers
seem to only modulate this action by speeding up, inhibiting or
reversing the basic motor patterns.

This neural network strategy assumes an ensemble of existing
dynamical central pattern generators. In this context, the static
neural network represents the higher level control, or modulation, of
this ensemble. Thus, learning is the process of coordinating the
interactions of existing function generators. This is somewhat akin to
Edelman's selectionist hypothesis of neuronal "groups" in that
learning entails the selection or "education" of an existing repertoire
of dynamical groups (Edelman 1987, Crick 1989).

134

CHAPTER 6

NEURAL NETWORKS APPLIED TO OPEN-LOOP,
DYNAMIC CONTROL1

6.1 INTRODUCTION

The purpose of this chapter is to explore the usefulness of
neural nets in generating temporal signals for controlling dynamical
systems. This is a universal problem in engineering (from controlling
a chemical process to landing on the moon) as well as in biology
(from regulating blood sugar to throwing a baseball). Conceivably,
one could employ recurrent networks to generate control signals,
since they are capable in theory of a wide range of dynamical
behavior. But as we noted in Chapter 5, training methods for
recurrent networks are extremely slow and inefficient for large
dimensional problems. Here, we develop an alternative methodology
for the generation of temporal control signals.

The specific control tasks considered here are open-loop, time
optimal control. We have chosen this problem because the optimal
control signals can be derived from classical control theory, and thus
we can assess performance against the ideal control. The usefulness
of neural networks, however, will be in cases where the dynamics
are nonlinear or may not even be explicitly known. Therefore, this
methodology may be applicable to a wide range of control problems.

First, we reduce the dimensionality of the control problem by
parameterization of the control signals. Next, feed-forward networks
are then trained to approximate these parameters as a function of

"Some of the results of this chapter are to appear in The International Journal of
Neural Networks: Research and Applications (1991).

135

the initial and final system states. Finally, we train networks to
drive an unknown plant using error in the dynamical state trajectory
as a performance measure. We note that a whole class of control
problems, linear and non-linear, can effectively be solved by this
method.

6.1.1 PARAMETERIZATION OF TEMPORAL SEQUENCES IN
NEURAL NETWORK APPLICATIONS

In most successful applications of neural networks to temporal
signal processing, the time signals are first transformed into static
patterns by sampling in a time window. The sampled values are then
used as inputs to the networks. This method has been applied to
solve non-trivial problems such as pronouncing phonemes from
strings of letters from ordinary English text (Sejnowski and
Rosenberg 1988) and recognizing spoken words from sonograms
(Lippmann 1989, Waibel 1989).

Conversely, the technique of transforming temporal signals into
a parameter space (such as the frequency domain) can be employed
for the generation of temporal signals.

6.1.2 PARAMETERIZATION OF TIME-OPTIMAL CONTROL
SIGNALS

We wish to find an appropriate parameterization for a class of
optimal control signals. Conceivably, this could be done using the
Fourier spectral coefficients of the temporal control signal. Since
time-optimal control signals often consist of discontinuous pulses or
step functions, several spectral coefficients may be required for a
good approximation of the control signal. In this section, we propose
a parameterization which gives an exact fit with relatively few
variables.

For concreteness, we consider the problem of controlling a
simple ballistic (open-loop) movement. In the next section (6.2), we

136

review optimal control theory and show how we can use Pontryagin's
maximum principle to find the form of the optimal control signal.
Application of the maximum principle gives us the well-known facts
that (a) the time-optimal control of this system is bang-bang (the
control variables only operate at their maximal allowed values) and
(b) under certain conditions, the control variables have a finite
number of changes between these extrema over the optimal
trajectory. The changes in extrema occur at specific points in time,
called the optimal switching times. Thus we show that optimal
controller signals can be parameterized with a small number of
variables (switching times). (In Section 6.3, we work through an
example of time-optimal control of a second-order, linear mechanical
system.)

6.1.3 A NEURAL NETWORK CONTROL METHODOLOGY

In this chapter, we develop a methodology using feed-forward
networks for open-loop control. In Section 6.4, we present a series of
experiments to test this methodology. In the first experiment, we
verify that a feed-forward network is capable of approximating the
functional relationship, ts = f(x0, xf) (Section 6.4.2). In the second
experiment, the networks are trained directly on the dynamical state
trajectory (Section 6.4.2). Changes in switching times generated by
the network can be evaluated by their effect on the state trajectory -
without any prior knowledge of what the ideal switching times may
be. Thus, under this control scheme, it is not necessary that we have
a precise mathematical description of the dynamical system to be
controlled (also referred to as the plant in control theory). However,
back-propagation requires the calculation or estimation of the partial
derivatives of the plant for the adjustment of the network weights.
Since the chemotaxis algorithm adjusts weights randomly, these
calculations are unnecessary. Finally, we report experiments on a
preliminary attempt to apply this methodology to open-loop control
of a two-link robotic arm (Section6.4.3).

|NITIAL and

137

OPEN-LOOP STATE
TARGET CONTROL TRAJECTORIES
STATES SIGNAL

x(t)

(to) CONTROLLER u(t) x(t)
- - -

X

to EX PLANT >
x(t) F ()

X(to)

Figure 6.1: Schematic Representation of a Problem
in Open-Loop Motor Control

The controller's function is to generate an appropriate control
signal as a function of the initial and target states of the system
to be controlled. We wish to employ a neural network to perform
the function of the controller.

1 38

6.2 TIME-OPTIMAL CONTROL THEORY

6.2.1 PROBLEM STATEMENT

Consider an nth-order mechanical system with a bounded
forcing function,

X = g(x,u)

|u(t) < 1

where x(t) and u(t) are respectively the state and control variables. s

The task is to drive this system from its given initial state x(0) = x0,
to the final state x(tf), in minimum time. This problem is routinely
solved in control theory by maximizing a performance index

tf|-| fo (x,u,t) dt0

where fo is a cost function. For time-optimal control, fo = -1 since
maximizing the performance index gives the minimum time. Thus,
the statement of the problem is:

max J ■ tf
-

{us 1} -■ º dt = - ti

subject to the system constraints.

6.2.2 PONTRYAGIN'S MAXIMUM PRINCIPLE

Pontryagin's maximum principle (Pontryagin et al. 1962) gives
a necessary condition that an optimal control must satisfy and has
become the basic method for computing optimal controls (Intriligator
1971, Takashi et al. 1972). The maximum principle can be thought
of as an extension of the method of Lagrange multipliers to dynamic

139

optimization and control problems. The maximum principle involves
the introduction of n costate (or adjoint) variables yi(t), i=1,...,n. A
Scalar function, called the Hamiltonian H, is then defined as the sum
of the cost function plus the inner product of the vector of costate
variables and the vector of functions defining the rate of change of
the state variables:

H(x,u,y,t) = f0(x,u,t)+ yx = f0(x,u,t) + y g(x,u)

Application of the maximum principle involves solving for the
trajectories u(t), y(t), and x(t) satisfying

I■ lax H(x,u,y,t) for all t, t < t < t
(ue o)

where Q is the class of permissible controls. The maximum principle
states that the function H(u) attains its maximum at u = u", where u"
represents the optimal control. Moreover, for the case of time
optimal control under this formulation, H(u") = 0 (Leitmann 1981).
The equations of motion for the costate and state variables
respectively are:

These equations for the state and costate variables are posed as
initial and final value problems, respectively.

6.2.3 BANG-BANG CONTROL

It is often possible to find important properties of the optimal
control signal by inspection of the Hamiltonian. First, we note that if
the Hamiltonian for a given problem can be decomposed into two
functions, H1(u) which is a function of u and H2 which is not a
function of u :

1 40

H(u) = H1(u) + H2,

we need only consider H1(u). Now the control variable u is usually
restricted to some prescribed range (u e Q). If the optimal control
signal takes on values for u inside this range, it is called an "interior
maximum"; if the optimal control only takes on its limiting values of
its allowed range, it is called a "boundary maximum". Through
mathematical analysis of H1, one can determine whether u'(t) is an
interior or boundary maximum over some or all of its trajectory. For
example, in the case of a single control variable, if H 1 is proportional
to u OT

H1(u) = g(t) u,

u" takes on its limiting values, um in and umax according to the
following criterion:

u’=uma, if g(t) > 0,
u" = umin if g(t) < 0.

This mode of control is called bang-bang control, since the control
variable takes on only its extremal values. The times at which u"
changes from one extreme to another are called the optimal
switching times. The switching times correspond to the zero
crossings of g(t), which is commonly referred to as the switching
function. In many cases, analysis of this function can be used to
specify the form of the control signal.

In some cases, we can even determine the number of switching
times in a bang-bang control signal. Control of a linear time
invariant (LTI) system is an interesting special case. If the optimal
control of an LTI system can be shown to be bang-bang, under
certain conditions, the number of switching times are specified by
the following theorem:

º ;

* *

141

Theorem. (Bellman, Glicksberg and Gross 1956) Consider the
system:

x(t) = Ax(t) + Bu(t)

where A and B are constant matrices of dimension n X n and n X m

respectively; the control constraint set is a parallelepiped in R*; that
is,

U = (u e R"| u■ ins up < u■ ”, k = 1,2,...,m)

and the cost function is fo(x,u,t) = 1. If (a) the eigenvalues of the
matrix A are real, and (b) the component up (-) of the control variable
u(,) : [to, tº le R m is bang-bang, then there can be at most n - 1
switches in the value of up.(t).

A simple proof of this theorem can also be found in Leitmann
(1981). Thus, if for a given system we can demonstrate that optimal
control is bang-bang and specify the number of switching times, we
have a complete parameterzation of the optimal control. In the
following section we work through an example of time-optimal
control of a second-order system. This system is then used for a test
case of our neural network control methodology in Sections 6.4.1 and
6.4.2.

6.3 EXAMPLE: TIME-OPTIMAL CONTROL OF A LINEAR
SECOND-ORDER SYSTEM

We consider a second-order linear time-invariant system with
a bounded forcing function:

x = Ax + bu

A =|}}|, b = | x =[...]

--

142

|u(t) < 1

where x(t) and u(t) are respectively the state and control variables.
The task is to drive this system from its given initial state x(0) = x0,
to the final state x(tf) = [xf, 0 IT, in minimum time.

As before, the performance index for time-optimal control is fo
= -1. Thus, the statement of the problem is:

max J [ºf
-

{u < 1} =|ºld--
subject to the system constraints.

The Hamiltonian for this example is

= -1 + y (Ax + bu)
= -1 + y, x2-kyx 1 - by 2/2+ uy,

Since the control variable u occurs only in the final term, to maximize
H we need to choose u(t) such that the term uy2 is maximized.
Therefore, u(t) should be at its highest possible positive value (+1)
when y2 is positive and its maximal negative value (-1) when y2 is
negative, or

u"(t) = sgn(y2(t)}.

Thus, control of this system is bang-bang, and the function y2 (t) is
the corresponding switching function because it changes sign when
the optimal control switches from one extremal value to the other.

1 4 3

6.3.1 CALCULATION OF THE SWITCHING FUNCTION

In general, there is no closed form solution for the switching
function, y2 (t). It is, however, relatively easy to find the solution
through numerical methods (at least for n = 2). An insight into the
nature of the difficulty can be obtained by considering the equations
of motion for the co-state vector in the specific case of a second
order system:

* -- *-k
y1 Ox1 y2

OH
- - - - - + b

y2 Ox2 y1 y2

The solution of this system is:

y1(t) = Cle-fit + C2 e-'2'

y:0 - #ce". #Ce”

where

- -bit bººk
T1,2 2

However, we cannot determine the arbitrary constants since only the
final values are specified for the costate variables. Nevertheless,
there is some hope. We can get one constraint on these constants
from the Hamiltonian. At t = to or t■ , the Hamiltonian is both
maximized and equal to zero (Leitmann 1981). Further, at time t = 0
we have the boundary conditions x1(0) = 0 and x2(0) = 0. Also, since
the plant must initially be accelerated, u"(0+) = +1. Therefore solving
for the Hamiltonian at t=0+ yields one constraint on the two
variables.

max Hl-0 –
-1-#C - C = 0

O T

144

C1 = - #(ºc, + k)

Let t = ts be the time at which the switching function y2 (t) changes
sign (or y2(t) =0). Setting y2 equal to zero at the switching instant we
obtain an expression for C2:

y2(ts) = |G:C. + k)e-fit. - #ce” = 0

O T

- ke-fil
C2 ri■ e-tº-eº.

So, if ts is known, we would be able to fix the other constant. The
boundary conditions at t■ yield no additional constraints on C1 or C2
since they introduce the additional variable t■ .

Figure 6.2a shows y2 and u" for ts = 1. If r1 and r2 are real, the
switching function y2(t) could change sign only once over the interval
0 < t < t■ ; therefore, there is only one switching time. (This is simply
a special case of the theorem in the previous section.)

It is useful to reinforce that application of the the maximum
principle gives two important characteristics of the optimum
solution: (a) time-optimal control is bang-bang, and (b) For r1 and r2
real, there is at most one switching time ts in the optimal control
trajectory u"(t) between its two extremal values. We use this
knowledge, in the next section, to solve the dynamical equations of
the system.

º
º

1 4.5

— x 1

Figure 6.2 a & b: Time Optimal Control of a Second-Order, Linear
System:
Figure 6.2 a shows the trajectory of the costate variable y2 (also the switching
function) and the optimal, 'bang-bang', control strategy. Note that the control
variable changes sign at the same time (ts = 1) as y2. Figure6.2 b shows the state
trajectories x1 (position), and x2 (velocity). The vertical axes in both figures are
dimensionless units.

* . .

146

6.3.2 OPTIMAL CONTROL WITH A SINGLE SWITCHING TIME

We know that the optimal control trajectory is:

+1 0 < t < t

-1 t

.
u"(t) = < t < t f

*

S

where ts" is the optimal switching time. Now the equations of motion
can be solved. The homogeneous solution of the dynamical system is

x1(t) = Cle-fit + C2e32

where

-
+b+ \bº - 4k

T1,2 2

For 0 < t < ts",the particular solution x1(t) is determined from the
initial conditions x(0) = 0. Combined with the forcing function u"(t) =
1, we get

x1(t) = #1 tº-re" + rie-ºff

For ts" < t < tf, the particular solution x1 ~(t) is determined from the
final conditions, namely x^1 (tf) = xf, x^2 (tf) = 0:

(x+1)
-

= -l k']- -ri(t-t') -r2(t-t')
X1(t) k + #. r2e + r1e |

We can now match the two solutions at the switching instant t=ts".

x1(t) = x1 (t.)
x2(t) = x2 (t.)

147

These two equations define one more set of boundary conditions.
Imposing these conditions leads us to the pair of transcendental
equations:

*

sr2e-F# T ■ t rie-F4. r2:2 + 1 + (kxf-H 1)e' "H = 1 + + 1)e#; (kx, Deº #; (kx, Deº

efill + (kxf4. 1)e^*} = € ++11 + (kxf+ 1)e^*}

These equations have no closed form analytical solution (like linear
or quadratic equations). Their roots can be found numerically by
iterative methods, such as Newton's method. For a single variable
(single switching time), Newton's method is unproblematic. For
larger dimensions (n > 2), Newton's method requires repeated
inversion of matricies (Strang 1980). Complications arise when
during the numerical iteration, singular or ill-conditioned matricies
OCC Ul T.

Further complications arise when the system dynamics are
nonlinear. Iterative numerical methods often become unstable and

fail to converge on these problems since they are often based on local
error estimates (such as gradients) which do not predict global
Solutions. In this case, we must resort to global optimization
algorithms which cannot be guaranteed to converge (Cutler 1988).
Many methods have been used to optimize switching times in bang
bang control of nonlinear systems. Lehman has applied the
Bremermann optimizer (Bremermann 1970) successfully for time
optimal control of nonlinear extraocular muscle-plant models
(Lehman and Stark 1979;83). Masri, Bekey and Stafford (1980)
applied a stochastic optimization procedure to optimize switching
times for a five-degrees-of-freedom system.

148

5
-

. . . " • . *

3 +
. . . " — Ts

Time
2

-

...”
- -

Tf

1 + ...’

O H + { } } +

O 0.5 1 1.5 2 2.5 3

Amplitude X(Tf) º,

Figure 6.3: Optimal switching and stopping times.
Time-optimal control of an overdamped system at various amplitudes. Notice that . . .
the ratio (R = ts/tf) approaches 1 for larger amplitude movements. [System
parameters: m=1, b=1, k=0.1].

14.9

6.3.3 SWITCHING TIMES AS A FUNCTION OF SYSTEM

PARAMETERS

Now let us consider the problem of controlling of a pure inertial
object (i.e., b = 0, k = 0 in the dynamical equations). The time
optimal control strategy would be to accelerate the mass for half of
the trajectory and decelerate for the second half. Thus, ts/t■ = 1/2.
The amplitude of the movement would vary with t”. At the other
extreme, a pure viscoelastic system with no inertia (m = 0) would not
require any braking at all. The optimal strategy in this case would be
simply to drive the system with maximal input until it arrives at the
final position. Thus, we have arrived at upper and lower bounds for
the ratio R = ts/t■ (0.5 s R < 1.0). Figure 6.3 shows how the values of
ts and t■ change with amplitude for an overdamped system (model
parameters: m =1, k = 0.1, b = 1). For small amplitude movements,
system inertia dominates and R approaches 1/2. For larger
amplitudes, viscoelastic forces dominate. For critically damped
systems or very large amplitude movements, there may be no
braking pulse in the optimal control signal at all (ts — co or ts — tº).

6.4 NEURAL NETWORKS FOR OPEN-LOOP CONTROL

6.4.1 TRAINING A NEURAL NETWORK TO GENERATE
SWITCHING TIMES

In this section, we describe the training of neural networks to
approximate a class of functions of the form:

t; = f(x(to),x(t)}

for the second-order system described in the previous section.

150

Experiment * 1: Input desired final position
(|nitial and final Velocities fixed at Zero)

x1(t■) —- º —- tºe * -

t = f(x1(t))

Experiment * 2: Input initial and desired final position.

x1(to) —-
Neural H- ts

x(t) —-| *

tº - fºx (to).x1(t))
Experiment * 3: Input initial state and final position.

|nitial < X1(to) >State

x2(to) —- sk y s

ºr so - tº T' "
State et ! :

x2(tf) = 0 —-

skt =f(x1(to),x2(to).x1(t))
Figure 6.4: Schematic Representation of Three experiments

NetWork inputs consisted of the target, final state and the initial
system state. The network output is the corresponding optimal
SWitching time. Experiments 1-3 are increasing generalizations of *

the problem.
-

151

Figure 6.3 illustrates the less general relationship:

t =f(x1(t) x(t)=x(t)=x(t)=0)

We can see that, in this case, this transcendental relationship can be
represented as a continuous function. According to the theoretical
results of Cybenko (see Chapter 3), neural networks can approximate
any continuous function. However, these theoretical results do not
predict how many units or how much training would be required.
This section describes a series of three experiments to demonstrate
the effectiveness of the back-propagation and chemotaxis training
algorithms in finding practical neural network solutions of this task.

The networks are trained to generate the time-optimal
switching time, given the initial and target states of the system as
inputs. The three experiments are illustrated schematically in Figure
6.4. In the first experiment, the functional relationship is identical to
the example problem in the previous section (illustrated in Figure
6.3). The system is initially at rest at the origin and is to be driven to
a target state, that is {x = (0,0) → (xf,0)}. In the second experiment,
initial and final positions are given as inputs, that is {(x0,0) → (xf,0)}.
Finally, in the third experiment, the initial state (position and
velocity) and the target position are inputs - making the switching
time a function in three dimensions, that is {x0 = (x0, v0) → (xf,0)}. All
three of these tasks represent real-world tasks in control theory
(drive a system to a new position and bring it to rest in minimum
time). A fourth experiment, where the target state has nonzero
velocity is also possible, but it was not attempted.

6.4.1.1 Experiment #1

The training set consisted of 17 sampled input/output pairs
spanning 'target' amplitudes from 0 to 3 (see Figure 6.5a). To create
the training set, the optimal switching times were found numerically.

152 º

A: Experiment #1 º

4 22*
3.5 ...~~~

3 _** º.2% % Target
2.5 ** -

TS 2 _* <> Back-prop
1.5 ** º

1 _2^ * Early º
0.5 isx”

0 &
T l –

0 0.5 1 1.5 2 2.5 3

Amplitude

s
*

B: Performance Errors sº

º

-- Chemotaxis
-

{} Back-prop >

* Early º
y

º

º

Amplitude

Figure 6.5a&b: Performance of a Trained Network in Experiment #1. sº
Figure 6.5a shows the performance of a network trained by back-propagation as
compared to optimal switching times. The training set samples the dynamic range *
of the system. The input/output pairs used in the training set are the shown with º
markers. Figure 6.5b shows the error magnitudes as a function of movement
amplitude (xf) for both training algorithms as well as the sub-optimal
performance of a network early in training.

153

The network consisted of a single input node (i.e. the target state), 15
hidden units and a single output unit (1-15-1).

Networks trained with the back-propagation algorithm were
trained until performance improvement stalled (i.e., no improvement
for 100 cycles). The back-propagation runs averaged about 4000
cycles. Networks trained with the chemotaxis algorithm were
trained for a fixed 6000 cycles, although performance continued to
show slight improvement with continued training beyond that point.
As was pointed out in Chapter 2, the chemotaxis algorithm requires
half as much computation per training cycle as back-propagation.
Performance of the two trained networks is shown in Figure 6.5 a■ b.
The performance of the two networks was comparable.

Inspection of training progress sheds some light on how neural
networks learn to approximate functions. Figure 6.5 shows the
performance of a network midway through training (the trace
labelled "Early"). Improvement in performance of the network at
that stage in training was slow suggesting the presence of a possible
"saddle point" in the "energy" landscape. The performance of this
sub-optimal network represents a kind of 'least-squares' fit of a
single sigmoid function to the data. Later in training, we can see that
higher order corrections are generated by the network, indicating
that the network solution now represents a functional approximation
by superposition of several sigmoid functions.

6.4.1.2 Experiment #2

Now, the network is given two inputs - the target position (as
in Experiment #1) as well as the initial position. the training set
consisted of 32 input/output patterns with x0 ranging from 0 to 3
and xf ranging from 0 to 5. The initial velocity was set to zero. The
network architecture was 2-15-1. Final network performance of
networks trained with back-propagation and chemotaxis is given in
Table 6.1 and graphically in Figure 6.6a-b.

154

A: Experiment #2: Back-Propagation

4 (0) = 0
(0) = 2×(0) = 22&(0) - 3.

2.5
TS 2 _*

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Amplitude (Xf)

B: Experiment #2: Chemotaxis

4 (0) = 0

3.5
~. (0) = 123(0) = 2×(0) - 3.3

-

2.5
2T

-TS 2

O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 º *

Amplitude

º

Figure 6.6 a 3:b: Network Performance for Experiment #2.
Training set for this more general case consisted of 32 patterns spanning the
dynamic range.

155

6.4.1.3 Experiment #3

Here the entire initial state (position and velocity) as well as
the target position were used as inputs. Initial conditions were
chosen over a specified range (x2(to):[0,1],x 1 (to):[0,3]). The training
set consisted of 112 sample input/output patterns. The network
architecture was 3-20-1. Figure 6.7 shows performance of the
trained network on sample patterns from the entire training set (A
full representation would require a plot of a function of three
variables).

6.4.1.4 Conclusions

We have shown that it is not only theoretically possible for a
neural network to estimate the functional relationships described in
Section 6.3, but it is practical to train a relatively small network to do
so with either the back-propagation or chemotaxis training
algorithms. Although the performance of networks trained with the
chemotaxis algorithm was generally a little inferior to those trained
with back-propagation, the chemotaxis algorithm offers some
important computational advantages. The most important feature
(for our purposes) is that it does not require gradient calculations.

In the next section, rather than training networks to estimate
known switching times, we train a network to generate switching
times as intermediate variables which, in turn, are used to control an
unknown dynamical system. In order to calculate weight changes
using the back-propagation algorithm, we would need to estimate the
quantity of:/0t" (where E is the state trajectory error), which could
become very expensive, computationally.

156

Experiment #3
(110.25)

4 T (0,0) 2,0.25) (3,0.5) *

3.5 + yº.
3 --

2.5 +

2 +
2"TS

1.5 +

1 +
2"

0.5 +

O
■

+ + —h f + t º-0.5 1 2 3 4 5 6

Amplitude

Figure 6.7: Network Performance for Experiment #3.
Only a subset of the 112 patterns in the training set are shown. A Complete
representation would require a four-dimensional plot.

157

Table 6.1: Summary of Results for Section 6.4.1°

Expt. Network | Training Set Average Error/ Pattern

Inputs Size Chemotaxis Back-Propagation

1 Xo 17 0.001 48 0.001 35

2 Xo, Xf 32 0.01.21 0.00245

3 Xo, Vo, Xf 1 12 0.015.4 0.00742

“Networks were trained to generate the optimal switching times.
Back-propagation algorithm was implemented on Sunnet software.
Algorithm parameters: learning rate 0.05, momentum term 0.95 to 0.99.

158

6.4.2 TRAINING NEURAL NETWORKS TO CONTROL. A SYSTEM

WITH UNKNOWN SWITCHING THMES

In real-world motor control problems, the system (plant)
dynamics are unknown. Controlling a "black box" is not, however, a
hopeless task. One can evaluate the effectiveness of various control
signals by observing the dynamical trajectories at the output.

In the following experiments, we drive an unknown plant with
a neural net and use the resultant state trajectory as a measure of
network performance. The methodology of these experiments is
illustrated in Figure 6.8. As in Section 6.4.1, a neural network takes
as inputs the initial and target system states and generates a
corresponding switching time. A signal generator (SG) translates the
switching time into the corresponding control signal u(t) which is
used to drive the plant directly. The output of this system is simply
the observed state trajectory. Notice that no knowledge of the plant
or its optimal switching times is necessary for this control scheme.
For this preliminary study, we used the same second-order plant
described in Section 6.3 allowing for validation of the method.

To achieve this objective, we are presented with two technical
problems:

1.) Given the state trajectory, how should we measure the system
performance?

2.) After performance is measured, how should the network
weights be modified?

We want to drive the plant to its target state while minimizing
transit time. We know the optimal controller signal for this system
has only one switching time. This suggests a simple method for
evaluating system performance. Referring to Figure 6.9, assume the
heavy line represents the optimal trajectory. Non-optimal switching
times will draw the actual trajectory off this course. If the switching
time generated by the network is less than the optimal, the plant will

Initialand+1 final ---
Signal ConditionsParameters

-1

x(to)->

(t)
U

NS.G.Hº-Plant

x(t)

HP \performance
error

Figure6.8:ExperimentDesignUsedin
Sections6.4.2–6.4.3 Theneuralnetwork(NN)receivesinitialandtargetstateasinputsandgeneratesswitching times(signalparameters)

as
outputs.
Asignalgenerator(S.G.)generatesthe
corresponding temporalcontrolsignal■ u(t)]usedtodrivetheplant.Thestatetrajectory[x(t))isthen usedto

evaluatenetworkperformance(Figure9)andmodifythenetworkweights.

3.

}

160

>k [x(t), X}(tf)] [x(t),x*(t)]

[Xi(t),x*(t)]

t- tº t+

Time —-

for t”, ex. = (x3 - x3)

for t, ex = (xi - xi)

Figure 6.9: Evaluation of System Performance
The dark trace represents the time-optimal trajectory to [X1(tf),X2(tf)]. If the

network-generated switching time is short of optimal, the trajectory will come up short of
optimal (X1-). If the switching time is larger than ts, the trajectory will have excess
velocity when it reaches the target position (X2+). This suggests a simple method of
measuring system performance.

16.1

come to rest short of the desired target position (x1 < x1*). On the
other hand, if ts is too large, when the system reaches the target
position, it will have excess velocity (x2* > x2"). Thus, when either the
target position or velocity are attained, the error in the other state at
that time can be measured. The performance error is defined as:

P

Error = X. {(xi,
-

x:p" + (xif- xi)?)
n=1

where P is the number of patterns in the training set.

The second problem arises when we realize that if we are
working with an unknown plant, we cannot analytically calculate the
state derivatives needed to apply the back-propagation algorithm.
Psaltis has used numerical differentiation to estimate the local partial
derivatives using small variations about the operating point for
neural network control (Psaltis 1990). This method can become
computationally intensive, especially with higher dimensional
systems corrupted by noise. We propose a simpler method which
does not require partial derivatives at all. That is, we apply the
chemotaxis algorithm to the entire system.

In the previous section, we had demonstrated that the
chemotaxis algorithm is capable of generating the switching times as
a function of initial and final system states. The accuracy of
networks trained with the chemotaxis algorithm was nearly as good
as those trained back-propagation.

6.4.2.1 Simulation Results with a Second-Order Plant

The three experiments described in Section 6.4.1 were
repeated using this new scheme. Initial experiments demonstrated
that a few minor modifications in network architecture significantly
improved the system performance. First, the chemotaxis algorithm
seems to perform better when two layers of hidden units are used.

162

We think this is because it increases the dimensionality of the search
space allowing several routes to a 'good' solution. This empirical
result is supported by the theoretical analysis of Chester (1990a),
which was reviewed in Chapter 3 (Section 3.2). Secondly, at the
output layer, we used a simple piecewise linear unit rather than a
sigmoid to avoid saturation effects.

Figure 6.10 shows the switching times (now intermediate
variables in the system model) generated by the network as a
function of movement amplitude for Experiment #1. Figure 6.11 and
Figure 6.12 show performance of networks on Experiments #2 and 3,
respectively. The results are summarized in Table 6.2.

6.4.2.2 Discussion

We note that since this approach measures state trajectory
error instead of error in the switching time, we have implicitly
included system sensitivities to variation in switching time. Modest
variations in the switching time do not directly translate into
significant errors in the final state. Therefore, in general, we should
not expect the networks trained by this scheme to generate precisely
the same switching times as those in Section 6.4.1. The system
seems to be most sensitive to switching times in intermediate
amplitude movements.

163

Table 6.2: Summary of Results for Section 6.4.2°

Expt. Network Training Set Network Average
Inputs Size Architecture Error/ Pattern

1 Xo 17 1 - 1 2-1 2-1 0.008.4

2 Xo, Xf 32 2 - 1 0 - 1 0 - 1 0.033

3 Xo, Vo, Xf 1 12 3 - 15-8 - 1 0.035

*The network was trained on the state trajectory error. The
error in this table is measured by the squared error in the
optimal switching times, which is now an intermediate
variable.

164

3.5 +
-

_*
3

-

2.5 + __
_E 23 Target

TS 2 + 2

1.5 +
__” TH System

1 + 22
0.5
º

ºO + +- + + + h

O 0.5 1 1.5 2 2.5 3

Amplitude

Figure 6.10: System Performance for Experiment #1.

1.65

** *

. . . .
- |

º

4 .* ,

3.5 -
-

2.
* . "3

- *- :

2.5 +
2.2.

-TS 2 +

1.5 + 23%
1 + _*

0.5
-

D7– º
O

1.

× X T X L + + -

O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 º

Amplitude * *

!.

f :

- º

>
Figure 6.11: System Performance for Experiment #2.

166

(1,.25)

4 - 0,0 2,.25

3.5 | /* > 2 º
3 +

2.5 +

TS 2 + /
1.5 +

1 + /.
0.5 + .”

0 º
+- —H + ■ + H

O 1 2 3 4 5 6

Amplitude (Xf)

Figure 6.12: System Performance for Experiment #3.

167

6.4.3 PRELIMINARY RESULTS WITH A MULTILINK ARM

Next we wish to expand this methodology to the control of
more complex plants. Time optimal control of higher dimensional
systems (sometimes called high-order systems) involves multiple
switching times. In most problems of control, exact system models
are not available, and even when they are, calculation of the optimal
controls can become a computationally intensive task. For example,
to estimate the optimal switching times for a sixth-order nonlinear
plant, Lehman and Stark (1979) used a stochastic optimization
algorithm (Bremermann 1970) which required the use of a parallel
computer. In the following we report the results of an attempt to
apply our methodology to a nonlinear system with two control
inputs.

6.4.3.1 Dynamics of a Planar Manipulator

We consider the control of a planar robotic arm with two links
of equal length (see Figure 6.13). There have been several studies
training neural networks to solve the inverse kinematics of robotic
arms (e.g. Lee et al. 1990, Jack et al. 1990, Jorgensen 1990a,b).
Kinematics deals with the basic geometry of the linkages. The
inverse kinematics problem for a two-link arm is simply to derive
the joint angles from the Euclidian (x,y) coordinates of the
manipulator's end-point position. While the inverse kinematics of
this system are analytically relatively simple, the inverse dynamics
are not.

168

Figure 6.13: Geometry of a two-link, planar manipulator

169

The system considered in this study was purely inertial with
no gravity or dynamical load. We assume two torque generators
located at the "shoulder" (t1) and "elbow" (t2). The joint angles are
denoted by 61 and 62 (Figure 6.13). The corresponding dynamical
equations are given below (Horn 1974, Uicker 1967):

■ =[2,3t-(2134 cos(0).t]/(169-cos’.9)

| - (2/3 + cos(02)) T + 2(5/3 + cos(92) T.
6

2 (169
-

cos’(92)

where -T = t /(1/2 mi’) + sin(92.62(2614-62

- • 2T. = t2/(1/2 mi’) - sin(92.61

In this example, the link mass (m) and length (l) were set to unity.

For this plant, the time-optimal switching times are unknown
(Kahn 1969). Furthermore, since the system is purely inertial, we
can expect that the system eigenvalues about any operating point are
not all real valued. Consequently, the theorem in Section 6.2.2 does
not strictly apply. Nevertheless, to a first approximation, we chose to
try control with the minimum number of switches prescribed by the
theorem. The dimension of the plant is 2, and there are two control
variables; Thus, we allowed only one switching time per control
input. In future work, we would like to increase the number of
switching times to try to increase performance.

We have several choices available for the representation of
network inputs and the measurement of performance. For example,
since the length of each link is fixed, we could use the joint angles
(0.1, 62) or the Euclidian coordinates of the elbow and endpoint ([x1,
y 1], [x2, y2]) to completely describe the system state. We only need

170

the elbow coordinates to distinguish between the two possible
solutions for each prescribed endpoint (the "right-handed" and "left
handed" poses). Thus, if we restrict the system further by only
allowing "right-handed" poses, the system state can be described
simply with the endpoint coordinates. For this study, we chose to
use the Euclidian coordinates of the manipulator's target endpoint
(xt, y!) as the network inputs. Error was measured from the
manipulator's endpoint (x2(t), y2(t)) from a target position (x,y) over
time with the following performance criteria:

Error = s |x2(t) - x(0° + ■ y,(t)
-

yºf
where the interval from t] to timax was chosen empirically to be a
reasonable time to complete the movement.

6.4.3.2 Preliminary Results

Initially, we tried to train the network to produce the switching
times as a function of several different target states, beginning from
a given initial state ([x1, y1, x2, y2] = [1,0,2,0] or [01,62] = [0,0]).
Training on this problem was unsuccessful. The network would
usually move the arm into a compromise position between all of the
target states. Additional training could not get the system out of this
apparent local minimum.

In a scaled-down problem, we attempted to drive the system
in a single movement (from [x1,y1,x2,y2] = [1,0,2,0] to [x1,y1,x2,y2] =
[0,1,0,2]). The resultant arm trajectory is shown in Figure 6.14. Note
that the plant had not come to a complete stop at the final position.
This was to be expected since the system had no velocity damping.

The system is designed to seek out compromise solutions
between time optimality and accuracy. This underscores the

importance of how we choose to measure performance. This plant is

171

Figure 6.14: Dynamic trajectory Generated by a neural network

172 1.

highly sensitive to variations in switching times. Perhaps control
could be made simpler by adding some viscous damping to the plant.
In addition, we have not studied the relative effectiveness of using
61,02-space for system inputs or measuring performance in angular
error. In the discussion, we discuss variations of this method for
more complex plants which may avoid some of these difficulties in
future studies.

6.5 DISCUSSION

Neural networks have been studied for solving problems
involving classification, association and optimization. Recently, the
mapping capabilities of neural networks have also been exploited to
solve function approximation problems. In this chapter, we believe,
we have demonstrated the use of neural networks to solve a function

generation problem as well. Specifically, we have demonstrated a
method of generating the optimal control function of a dynamical
system by reformulating the control problem as an approximation
problem and demonstrated it for simple examples.

6.5.1 FUTURE OUTLOOK

It seems reasonable that this method could be extended to

several switching times. Alternative parameterization schemes may
prove useful. In addition to switching times, a neural network could
be applied to estimate the coefficients for a Fourier or Taylor series
of the control signal. Other possibilities include parameterization of
pulsed wavelets or Haar polynomials (Bremermann 1968, Andrews
1972). Our choice of using the switching times as the estimated
signal parameters was a direct result of the chosen performance
criterion (time-optimal control). In other cases, one may prefer to
change the performance function being optimized, such as minimum
power control. Current efforts on extending this methodology to more
complex control tasks (such as multiple-link robotic arms); however,

173

will require more extensive simulations and study. If successful, this
could prove to be a powerful tool.

6.5.2 RELATION TO BIOLOGICAL CONTROL

The motivation behind the desire to address the above problem
was rooted in neurobiological considerations. For example, it is well
known that skilled motor movements, such as ordinary hand
positioning movements, consist of "open-loop steps", or incremental
"jumps" in position (Crossman 1959, 1983; Anderson 1981). Control
of saccadic eye movements is open-loop, and possibly, time-optimal
(Lehman and Stark 1979, 1983). Taken as a whole, the movement of
a skilled, or trained, machine operator is in some sense optimal
(Inooka 1990). Natural neural networks obviously play a crucial role
in generating these optimal control signals.

The signal generators in this study can be considered analogous
to the Central Pattern Generators encountered in biological systems.
High level control of movement is thought to involve the coordination
or modulation of existing Central Pattern Generators (Selverston
1980). In this study, we used the chemotaxis algorithm to coordinate
the "wiring diagram" of a network modulating a signal generator.

A biased random walk is the mathematical analog of a trial
and-error process. We have presented this "algorithm" as a
biologically plausible learning rule and demonstrated it's
effectiveness at training neural networks to perform non-trivial
functions, such as Boolean mappings, pattern recognition and motor
control. The same "trial-and-error" processes, then, may be
involved in the refinement of cortical maps, the attainment of
perceptual discrimination abilities, and the acquisition of skilled
movement. We hope that it will be possible to find experimental
evidence for the proposed learning rule.

174

REFERENCES

David H. Ackley, G.E. Hinton and Terrence J. Sejnowski, "A Learning
Algorithm for Boltzmann Machines", Cognitive Science, Vol. 9, pp.
147-169 (1985).

David H. Ackley, A Connectionist Machine for Hillclimbing, Kluwer
Academic Publishers, Boston (1987).

L B Almeida, "A Learning Rule for Asynchronous Perceptrons with
Feedback in a Combinatorial Environment", Proc. IEEE First Int'l Conf.
Neural Networks (1987).

Wolfgang Alt, "Biased random walk models for chemotaxis and
related diffusion approximations", J. Mathem. Biology, Vol. 9, pp.
147-177 (1980).

T.J. Anastasio and David A. Robinson, "The Distributed Representation
of Vestibulo-Oculomotor Signals by Brain-Stem Neurons", Biol.
Cybern., v 61:pp. 79-88 (1989).

J.R. Anderson (Ed.) Cognitive Skills and Their Acquisition, Lawrence
Erlbaum Associates, Hillsdale, N.J. (1981).

Russell W. Anderson and V. Vemuri, "Neural Networks Can Be Used
For Open-Loop, Dynamic Control", To appear in: Intn'l J. Neural
Networks: Research & Applications (1991).

Harry C. Andrews, Mathematical Techniques in Pattern Recognition,
Wiley-Interscience, New York (1972).

Chiye Aoki and Philip Siekevitz, "Plasticity in Brain Development",
Scientific American, Vol. 259, No. 6, pp. 56-64 (December 1988).

Michael A. Arbib, Brains, Machines, and Mathematics, Second Edition,
(First Edition: McGraw 1964), Springer-Verlag, New York (1987).

Scott Austin, "Genetic Solutions To XOR Problems", AI Expert, pp. 52
57 (December 1990).

Bill Baird, Ph.D. Thesis, U.C. Berkeley (1990).

175

Dana H. Ballard, "Modular Learning in Neural Networks", AAA I
National Conference on Artificial Intelligence, pp. 279-284 (1987).

Robert L. Barron, "Self-Organizing and Learning Control Systems", in:
Cybernetic Problems in Bionics (Bionics Symposium, May 2-5, 1966,
Dayton, Ohio), New Yor, Gordon and Breach, pp. 147-203 (1968).

Robert L. Barron, "Adaptive Flight Control Systems", in: Principles and
Practice of Bionics (NATO AGARD Bionics Symposium, Brussels,
Belgium, Sept. 18-20, 1968), pp. 119-167 (October 1970).

Andrew G Barto, Richard S. Sutton and Peter S Brouwer, "Associative
Search Network: A Reinforcement Learning Associative Memory",
Biological Cybernetics, Vol. 40, pp. 201-211 (1981).

Andrew G Barto and Richard S. Sutton, "Neuronlike Adaptive
Elements That Can Solve Difficult Learning Control Problems", IEEE
Transactions on Systems, Man, and Cybernetics", Vol. SMC-13, No. 5,
pp. 835-846 (1983).

Jacob D. Bekenstein and Marcello Schiffer, "Quantum Limitations on
the Storage and Transmission of Information", International Journal
of Modern Physics C (in press 1990).

R. Bellman, I. Glicksberg and O. Gross, "On the 'Bang-Bang' Control
Problem", Quarterly of Applied Mathematics, 14: 11-18 (1956)
Reprinted in Optimal and Self-Optimizing Control, ed. R. Oldenburger.
M.I.T. Press, Cambridge, Mass. (1966).

T.J. Bennett, and J.R. Murphy, "Analysis of seismic discrimination
using regional data from western United States events", Bull. Seism.
Soc. Am., Vol. 76, pp. 1069-86 (1986).

Howard Berg, "How Bacteria Swim", Scientific American, Vol. 233(2),
pp. 36-44 (1975).

Howard Berg, Random Walks in Biology, Princeton University Press,
Princeton (1983).

P.J. Bergold, J.D. Sweatt, I. Winicov, K.R. Weiss, E.R. Kandel and J.H.
Schwartz, "Protein Synthesis During Acquisition of Long-Term
Facilitation is Needed for the Persistent Loss of Regulatory Subunits

176

of the Aplysia cAMP-Dependent Protein Kinase", PNAS (USA), Vol. 87,
No. 10, PP. 3788-91 (May 1990).

M. Bertero, T.A. Poggio and V. Torre, "Ill-Posed Problems in Early
Vision", Proc. IEEE, Vol. 76 (8): pp. 869-887 (August 1988).

W.W. Bledsoe, "The Use of Biological Concepts in the Analytical Study
of Systems", Technical Report, Panoramic Research Inc., Palo Alto, CA
(1961 a).

W.W. Bledsoe, "Lethally Dependent Genes Using Instant Selection",
Technical Report, Panoramic Research Inc., Palo Alto, CA (1961b).

W.W. Bledsoe, "A Quantum-Theoretical Limitation of the Speed of
Digital Computers", IRE Trans. Elec. Comp., Vol. EC-10, No. 3 (Sept.,
1961c).

T. Boseniuk, W. Ebeling and A. Engel, "Boltzmann and Darwin
Strategies in Complex Optimization", Physics Letters A, Vol. 125, pp.
307-310 (1987).

Hans J. Bremermann, "The Evolution of Intelligence", ONR Technical
Report No. 1, Contract Nonr 477(17), University of Washington,
Seattle (1958).

Hans J. Bremermann, "Optimization Through Evolution and
Recombination", in: Self-Organizing Systems, Yovits, Jacobi and
Goldstein, eds., Spartan Books, Washington, D.C. (1962).

Hans J. Bremermann and M. Rogson, "An Evolution-Type Search
Method for Convex Sets", Technical Report, Contracts Nonr 222(85)
and 36.56(08), Berkeley, CA (1964).

Hans J. Bremermann, M. Rogson and S. Salaff, "Global Properties of
Evolution Processes", In: Natural Automata and Useful Simulations,
H.H. Pattee, E.A. Edelsack, Louis Fein and A.B. Callahan, eds., Spartan
Books, Washington, D.C., pp. 3-41 (1966).

Hans J. Bremermann, "Pattern Recognition, Functionals, and Entropy",
IEEE Transactions on Biomedical Engineering, Vol. BME-15 (3), pp.
201-207 (July 1968).

177

Hans J. Bremermann, "A Method of Unconstrained Global
Optimization", Mathematical Biosciences, Vol. 9, pp. 1-15 (1970).

Hans J. Bremermann, "Chemotaxis and Optimization", J. of the
Franklin Institute, (Special Issue: Mathematical Models of Biological
Systems) Vol. 297, pp. 397-404 (1974a).

Hans J. Bremermann, "Complexity of Automata, Brains, and Behavior",
Lecture Notes in Biomathematics, Vol. 4: Physics and Mathematics of
the Nervous System, S. Levin (ed.), Springer-Verlag, Berlin, pp. 304
331 (1974b).

Hans J. Bremermann and Russell W. Anderson, "An Alternative to
Back-propagation: A Simple Rule of Synaptic Modification For Neural
Net Training and Memory", Technical Report: U.C.Berkeley Center for
Pure and Applied Mathematics PAM-483 (1990).

Hans J. Bremermann and Russell W. Anderson, "How the Brain
Adjusts Synapses - Maybe", To appear in: Festschrift for Woody
Bledsoe, R.S. Boyer (ed.), Chapter 6, pp. 119-147, Kluwer Academic
Pub. (1991).

Felix E. Browder (Ed.), Mathematical Developments Arising from
Hilbert Problems, American Mathematical Society, Providence, RI
(1976).

D.V. Buonomano, and J.H. Bryne, "Long-Term Synaptic Changes
Produced by a Cellular Analog of Classical Conditioning in Aplysia",
Science, Vol. 249, pp. 420-3 (27 July 1990).

David Ceperley and Berni Alder, "Quantum Monte Carlo", Science, Vol.
231, pp. 555-560 (7 Feb 1986).

D.E. Chavez, and K.F. Priestley, "Measurement of frequency dependent
Lg attenuation in Great Basin", Geophys. Res. Lett., Vol. 13, pp. 551
554 (1986).

C.H. Chen, "On the Relationships Between Statistical Pattern
Recognition and Artificial Neural Networks", 1990 IEEE SMC Conf., Los
Angeles (Nov. 1990).

** =

178

Fu-Chuang Chen, "Back-Propagation Neural Networks for Nonlinear
Self-Tuning Adaptive Control", IEEE Control Systems Mag., Vol. 10(3):
44-48 (April 1990).

Daniel L. Chester, "Why Two Hidden Layers are Better than One",
Proc. IJCNN, Washington, D.C., Lawrence Erlbaum Assoc., Vol. I, pp.
265-68 (Jan 15-19, 1990a).

Daniel L. Chester, "A Comparison of some Neural Network Models of
Classical Conditioning", Proc. 5th IEEE Int'l Symposium on Intelligent
Control, Philadelphia, PA, Vol. 2, pp. 1163-1168 (Sept. 5–7, 1990b).

Michael Conrad, Adaptability, (Chapter 10), Plenum Press, N.Y.
(1983).

Michael Conrad, "The brain-machine disanalogy", Biosystems, Vol. 22:
197-213 (1989).

J.D. Cowan, "Discussion: McCulloch-Pitts and Related Neural Nets From
1943-1989", Bull. Mathematical Biology, Vol. 52, No1/2, pp. 73-97
(1990).

Francis Crick, "The Recent Excitement about Neural Networks",
Nature, Vol. 337, pp. 129-132 (12 January 1989).

Francis Crick, "Neural Edelmanism", Trends in Neurosciences, Vol. 12
(7):240-248 (1989)

E.R.F.W. Crossman, "A Theory of the Acquisition of Speed-Skill",
Ergonomics, Vol.2 (2):153-166 (Feb. 1959).

E.R.F.W. Crossman and P.J. Goodeye, "Feedback Control of Hand
Movement and Fitt's Law", Quarterly Journal of Experimental
Psychology, Vol. 35A:251-278 (1983).

Adele Cutler, "Optimization Methods in Statistics", Ph.D. Thesis,
Department of Statistics, University of California, Berkeley (1988).

G. Cybenko, "Approximation by Superpositions of a Sigmoidal
Function", Math. Contr., Signal & Sys., Vol. 2, pp. 303-14 (1989).

179

Shawn P. Day and Daniel S. Camporese, "A Stochastic Training
Technique for Feed-Forward Neural Networks", Proc. IEEE Conf.
Neural Networks, June 17-21 (1990).

O. Dahlman and H. Israelson, Monitoring Underground Nuclear
Explosions, Elsevier Scientific Publishing co., Amsterdam (1977).

Kurt Deno, Ph.D. Thesis, U.C. Berkeley, Dept. EECS (1991).

Farid U. Dowla, A.J. DeGroot, S.R. Parker and V. Vemuri, "Back
propagation neural networks: systolic implementation for seismic
signal filtering", Intn'l J. Neural Networks, Vol. 1 (3), pp. 138-153
(July 1989).

Farid U. Dowla, Steven R Taylor and Russell W. Anderson, "Seismic
Discrimination with Artificial Neural Networks: Preliminary Results
with Regional Spectral Data", Bulletin of the Seismological Society of
America, Vol. 80, No. 5, pp. 1346-1373 (October 1990).

Kenji Doya and Shuji Yoshizawa, "Memorizing Oscillatory Patterns in
the Analog Neuron Network", Internat. Joint Conf. Neural Networks,
pp. I-27-32, Washington, D.C. (1989).

R.O. Duda and P.E. Hart, Pattern Classification and Scene Analysis,
Wiley, New York (1973).

S.A. Eaton and T.E. Salt, "Modulatory Effects of Serotonin on
Excitatory Amino Acid Responses and Sensory Synaptic Transmission
in the Ventrobasal Thalamus", Neuroscience, Vol. 33, No. 2, pp. 285
92 (1989).

W. Ebeling, A. Engel, B. Esser and R. Feistel, "Diffusion and Reaction in
Random Media and Models of Evolution Processes", J. Statistical
Physics, Vol. 37, No. 3/4, pp. 369-384 (1984).

G.M. Edelman, Neural Darwinism, Basic Books, New York (1987).

Manfred Eigen, J. McCasgill and Peter Schuster, "Dynamics of
Darwinian Molecular Systems", J. phys. Chem, (In press).

Manfred Eigen, "Macromolecular Evolution: Dynamical Ordering in
Sequence Space", In: Emerging Synthesis in Science, D. Pines, ed.,
Addison-Wesley, Redwood City, CA, pp. 21-42 (1988).

180

Jeffrey L Elman, "Finding Structure in Time", Center for Research in
Language Tech. Report #8801, La Jolla: University of California, San
Diego (1988).

Jerome A. Feldman, "A connectionist model of visual memory", In:
Parallel models of associative memory, G.E. Hinton and J.A. Anderson,
eds., Erlbaum, Hillsdale, N.J., pp. 49-81 (1981).

Jerome A. Feldman and Dana H. Ballard, "Connectionist Models and
their Properties", Cognitive Science, Vol. 6, pp. 205-254 (1982).

N.A. Flavahan and P.M. Vanhoutte, "Threshold Phenomena and
Interactions Between Receptors", J. of Cardiovascular Pharmacology,
Vol. 11 suppl. 1, pp. S67-72 (1988).

Walter Fontana, W. Schnabl and Peter Schuster, "Physical Aspects of
Evolutionary Optimization and Adaptation", Phys. Rev. A., Vol. 40, pp.
3301-21 (1989).

Walter J. Freeman, "The Physiology of Perception", Scientific
American, Vol. 264(2): 78-85 (February 1991).

Ken-ichi Funahashi, "On the approximate realization of continuous
mappings by neural networks", Neural Networks, Vol. 2(3): 183-192
(1989).

S. Geman and D. Geman, "Stochastic relaxation, Gibbs distribution, and
Bayesian restoration of images", IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 6, pp. 721-741 (1984); also
in: Neurocomputing: Foundations of Research, James A. Anderson and
Edward Rosenfeld, eds., MIT Press, Cambridge, MA (1988).

David L. Glanzman, Eric R. Kandel and Samuel Schacher, "Target
Dependent Structural Changes Accompanying Long-Term Synaptic
Facilitation in Aplysia Neurons", Science, Vol. 249, pp. 799-802 (17
August 1990).

R.E. Glaser, S.R. Taylor, M.V. Denny and E.S. Vergino, "Regional
discriminants of NTS explosions and western U.S. earthquakes:
multivariate discriminants", Tech. Report No. UCID-20930, Lawrence
Livermore National Laboratory.

181

R. Paul Gorman and Terrence J. Sejnowski, "Learned Classification of
Sonar Targets Using a Massively Parallel Network", IEEE ASSP, Vol.
36 (7): 1135-1140 (1988).

Kamil A. Grajski and Michael M. Merzenich, "Hebb-Type Dynamics is
Sufficient to Account for the Inverse Magnification Rule in Cortical
Somatotopy", Neural Computation (1990).

Stephen Grossberg, In: Neurocomputing: Foundations of Research,
James A. Anderson and Rosenfeld, eds., MIT Press, Cambridge (paper
number 24) (1988).

Stephen Grossberg and Nestor A Schmajuk, "Neural dynamics of
adaptive timing and temporal discrimination during associative
learning", Neural Networks , vol. 2(2): 79-102 (1989).

H. Haken, Neural and Synergetic Computers, Springer-Verlag, Berlin
Heidelberg (1988).

John B. Hampshire and Barak A. Pearlmutter, "Equivalence Proofs for
Multilayer perceptron Classifiers and the Bayesian Discriminant
Function", Proc. 1990 Connectionist Models Summer School, Elman,
Sejnowski and Hinton (Eds.), Morgan Kaufmann, San Mateo, CA
(1990).

E.J. Hartman, J.D. Keeler and J.M. Kowalski, "Layered Neural Networks
with Gaussian Hidden Units as Universal Approximations", Neural
Computation, Vol. 3 (2), pp. 210-215 (1990).

D.O. Hebb, The Organization of Behavior, Wiley, New York (1949).

Robert Hecht-Nielsen, "Kolmogorov's Mapping Neural Network
Existing Theorem", Proc. Intl. Conf. on Neural Networks, New York,
Vol. III, pp. 11-14 (1987).

Robert Hecht-Nielsen, Neurocomputing, Addison-Wesley (1990).

G.E. Hinton and J.L. McClelland, "Learning representations by
recirculation", In: Neural Information Processing Systems, D.Z.
Anderson, ed., American Institute of Physics, New York (1988).

G.E. Hinton, "Connectionist Learning Procedures", Artificial
Intelligence, Vol. 40, No. 1, pp. 143-150 (1989).

182

K.U. Hoffgen and H.P. Siemon, "Approximation of Functions with
Feedforward nets", Dept. of Comp. Sci., Univ. of Dortmund, D-4600
Dortmund, P.O.Box 500 500, FRG, Report No. 346 (April 1990).

John H. Holland, Adaptation in Natural and Artificial Systems,
University of Michigan Press, Ann Arbor (1975).

John J. Hopfield, "Neurons with graded response have collective
computational properties like those of two-state neurons", PNAS
(USA), Vol. 81, pp. 3088-92 (1984).

John J. Hopfield and David W. Tank, "Neural' Computation of
Decisions in Optimization Problems", Biological Cybernetics, Vol. 52,
pp. 141 (1985).

John J. Hopfield and David W. Tank, "Computing with Neural Circuits:
A Model, Science, pp. 625-633 (8 Aug 1986).

Berthold K.P. Horn, "Kinematics of the MIT-AI-Vicarm Manipulator",
MIT AI Lab. Working Paper 69 (1974).

Shih-Chi Huang and Yih-Fang Huang, "Bounds on the Number of
Hidden Neurons in Multilayer Perceptrons", IEEE Trans. on Neural
Networks, Vol. 2, No. 1, pp. 47-55 (Jan. 1991).

David Hubel and T.N. Wiesel, "Receptive Fields, Binocular and
Functional Architecture in the Cat's Visual Cortex", J. Physiol., Vol.
160, pp. 106-154 (1962).

David Hubel, Eye, Brain and Vision, Scientific American Library
Series #22. (1988).

H. Inooka and Koitabashi, T., "Experimental Studies of Manual
Optimization in Control Tasks", IEEE Control Systems Magazine, pp
20–23 (August 1990).

M.D. Intriligator, Mathematical Optimization and Economic Theory,
Prentice Hall, Inc., Englewood Cliffs, N.J. (1971).

H. Jack, D.M.A. Lee, R.O. Buchal and W.H. ElMaraghy, "Evaluations of
Neural networks for Robot Inverse Kinematics", Submitted to: IEEE
Int'l Conf. on Robotics and Automation, Cincinnati, Ohio (May 1990).

183

Eric M. Johansson, Farid U. Dowla and D. M. Goodman,
"Backpropagation Learning for Multi-Layer Feed-Forward Neural
Networks Using the Conjugate Gradient Method", submitted to IEEE
Transactions on Neural Networks, UCRL-JC-1850, Lawrence
Livermore National Laboratory (September 26, 1990).

M.I. Jordan, "Attractor dynamics and parallelism in a connectionist
sequential machine", Proc. Eighth Annual Conf. of the Cognitive
Science Soc., pp. 531-546 (1987).

Charles C. Jorgensen, "Development of a Sensor Coordinated Kinematic
Model for neural Network Controller Training", Research Institute for
Advanced Computer Science (RIACS), NASA Ames Research Center
Tech. Report RAICS 90.28 (August 1990a).

Charles C. Jorgensen, "Distributed Memory Approaches for Robotic
Neural Controllers", Research Institute for Advanced Computer
Science (RIACS), NASA Ames Research Center Tech. Report RAICS
90.29 (August 1990b).

M.E. Kahn, "The Near-Minimum-Time Control of Open-Loop
Articulated Kinematic Chains", Stanford Artificial Intelligence Memo
106 (1969).

J.A. Kauer, R.C. Malenka and R.A. Nicoll, Nature, Vol. 334, pp. 249-252
(1988).

Stuart A. Kauffman and S. Levin, "Towards a General Theory of
Adaptive Walks on Rugged Landscapes", J. Theoret. Biol., Vol. 128, pp.
11-45 (1987).

Evelyn Fox Keller and Lee Segel, J. of Theoretical Biology, Vol. 26, pp.
399 (1970).

Mary B. Kennedy, "Synaptic Memory Molecules", Nature, Vol. 335, pp.
770-772 (27 Oct 1988).

A. Harry Klopf, "Classical conditioning phenomena predicted by a
drive-reinforcement model of neuronal function", In: Neural Models
of Plasticity: Experimental and Theoretical Approaches, J.H. Byrne
and W.O. Berry (eds.), Chapter 7, pp. 104-132, Academic Press
(1989).

* - :

º

º

184

T. Kohonen, Self-Organization and Associative Memories, Springer
Verlag, Berlin (1984).

G.G. Kolmogorov, Dokl. Akad. Nauk. SSR, Vol. 114, pp. 953-956
(1957).

G.G. Kolmogorov, "On the representation of continuous functions of
many variables by superposition of continuous functions of one
variable and addition", American Mathematical Society Translations,
Series 2, Vol. 28, pp. 55-59.

Daniel Koshland, Bacterial chemotaxis as a model behavioral system,
Raven Press, New York (1980).

P.A. Lachenbruch and R.M. Mickey, "Estimation of error rates in
discriminant analysis", Technometrics, Vol. 10, pp. 1-11 (1968).

Douglas M. Lee, H. Jack, W.H. ElMaraghy and R.O. Buchal, "Neural
Network Solutions for Robot Inverse Kinematic Control", Tech. Report
DAMRL 90-07-01, Submitted to: Proc. of the CSME mechanical Eng.
Forum, Toronto, Ontario (Jan 1990).

S.R. Lehky and Terrence J. Sejnowski, "Computing 3-D Curvatures
from Images of Surfaces Using a Neural Model, Nature, Vol. 333, pp.
452 (1988).

S.R. Lehky and Terrence J. Sejnowski, "Neuronal Model of
Stereoacuity and Depth Interpolation Based on a Distributed
Representation of Stereo Disparity", Journal of Neuroscience, Vol. 10,
No. 7, pp. 2281-2299 (July 1990).

Steven Lehman and L. Stark, "Simulation of Linear and Nonlinear Eye
movement Models: Sensitivity Analyses and Enumeration Studies of
Time Optimal Control", J. of Cybernetics and Information Science, v
4:211-43 (1979).

Steven Lehman and Lawrence W. Stark, "Multipulse Controller
Signals. II. Time Optimality", Biological Cybernetics", v47:234-237
(1983).

George Leitmann,The Calculus of Variations and Optimal Control,
Plenum Press, New York, NY. (1981).

185

Richard P. Lippman, "Introduction to computing with neural nets",
IEEE ASSP magazine, pp. 4-22 (1987).

Richard P. Lippmann, "Review of Neural Networks for Speech
Recognition", Neural Computation, MIT Press, Vol. 1(1): 1-38 (1989).

Shawn R. Lockery, G. Wittenberg, W.B. Kristan and G.W. Cottrell,
"Function of Identified Interneurons in the Leech Elucidated Using
Neural Networks Trained by Back-Propagation", Nature, Vol. 340, pp.
468-71 (10 August 1989).

Shawn R. Lockery, Y. Fang and T.J. Sejnowski, "A Dynamical Neural
Network Model of Sensorimotor Transformations in the Leech", Intn'l
Joint Conf. Neural Networks, I-183-188 (June 1990).

G.G. Lorentz, "The 13th Problem of Hilbert", in: M at he matical
Developments Arising from Hilbert Problems, F.E. Browder (Ed.),
American Mathematical Society, Providence, RI (1976).

Gary Lynch, Synapses, Circuits, and the Beginnings of Memory,
Bradford/MIT Press, Cambridge, MA (1986).

Catherine A Macken and Alan S. Perelson, "Protein Evolution on
Rugged Landscapes", PNAS(USA), Vol. 86, pp. 6191-5 (August 1989).

Catherine A Macken, Patrick S. Hagan and Alan S. Perelson,
"Evolutionary Walks on Rugged Landscapes", SIAM J. Appl. Math. (in
press: 1991).

S.F. Masri, G.A. Bekey and F.B. Stafford, "A Global Optimization
Algorithm Using Adaptive Random Search", Applied Mathematics and
Computation, v 7:353–375 (1980).

J.L. McClelland and D.E. Rumelhart, "An interactive activation model
of context effects in letter perception. Part 1", Psychological Review,
Vol. 88, pp. 375-407 (1981).

W.S. McCulloch and W. Pitts, "A Logical Calculus of the Ideas
Immanent in Nervous Activity", Bulletin of Mathematical Biophysics,
Vol. 5, pp. 115-133 (1943).

186

Bartlett W. Mel, Connectionist Robot Motion Planning, Academic
Press, Boston, San Diego (1990).

M.M. Merzenich, G. Recanzone, W.M. Jenkins, T.T. Allard and R.J.
Nudo, "Cortical Representational Plasticity", pp. 41-67, (In: Rakic and
Singer 1988).

M.M. Merzenich, R.J. Nelson, J.H. Kaas, M.P. Stryker, W.M. Jenkins, J.M.
Zook, M.S. Cynader and A. Schoppman, "Variability in Hand Surface
Representations in Areas 3b and 1 in Adult Owl and Squirrel
Monkeys", J. of Comparative Neurology, Vol. 258(2), pp. 281-96
(April 8, 1987).

N. Metropolis and S. Ulam, "The Monte Carlo Method", J. Amer.
Statistical Association, Vol. 44 No. 247, pp. 335-341 (1949).

N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller and E. Teller,
"Equation of state calculations for fast computing machines", J. of
Chemical Physics, Vol. 21, pp. 1087-1092 (1953).

J.P. Miller and A.I. Selverston, "Mechanisms underlying pattern
generation in lobster stomatogastric ganglion as determined by
selective inactivation of identified neurons IV. Network properties of
the pvloric system", J. Neurophysiol., Vol. 48, pp. 1416-1432 (1982).

Jaime Milstein, "Estimation of the dynamical parameters of the Calvin
photosynthesis cycle, optimization, and ill conditioned inverse
problems." (LBL document 4264) Ph.D. Thesis, U.C. Berkeley (1975).

Marvin Minsky, "Steps Toward Artificial Intelligence", Proc. IRE, Vol.
49, pp. 8-30 (Jan 1961).

Marvin Minsky and S. Papert, Perceptrons: An Introduction to
Computational Geometry, M.I.T. Press, Cambridge, Mass (1969).

D. Montana and L. Davis, "Training Feedforward Neural Networks
Using Genetic Algorithms", Proc. 11th IJCAI (1989).

P.G. Montarolo, E.R. Kandel and S. Schacher, "Long-Term
Heterosynaptic Inhibition in Aplysia", Nature, Vol.333, pp. 171-4
(1988).

187

Zoltan Molnar and Colin Blakemore, "Lack of regional specificity for
connections formed between thalamus and cortex in coculture",
Nature, Vol. 351, pp. 475-477 (June 1991).

Anthony N. Mucciardi, "Neuromine Nets as the Basis for the
Predictive Component of Robot Brains", in: Cybernetics, Artificial
Intelligence, and Ecology, Herbert W. Robinson and Douglas E. Knight
(eds.), (Fourth Annual Symposium Amer. Soc. of Cybernetics),
Spartan Books, pp. 159-193 (1972).

N.J. Nilsson, Learning Machines, McGraw-Hill, New York (1965).

Ralph Nossal, "Mathematical Theories of Topotaxis", Lecture Notes in
Biomathematics, Vol. 38, Springer-Verlag, pp. 410-439

A. Okubo, "Diffusion and Ecological Problems: Mathematical Models",
Biomathematics, Vol. 10, Springer Verlag, Berlin Heidelberg New
York (1980).

John C. Pearson, Leif H. Finkel and Gerald M. Edelman, "Plastiscity in
the Organization of Adult Cerebral Cortical Maps: A Computer
Simulation Based on Neuronal Group Selection", J. of Neuroscience,
Vol. 7(12): 4209-4223 (Dec. 1987).

Alan S. Perelson and Stuart A. Kauffman, Molecular Evolution an
Rugged Landscapes: Proteins, RNA and the Immune System, Vol. IX,
Addison-Wesley, Redwood City, CA (1991).

C. Peterson and J.R. Anderson, "A Mean Field Theory Learning
Algorithm for Neural Networks", MCC Tech. Rept. E1-259-87,
Microelectronics and Computer Technology Corporation, Austin, TX
(1987).

Fernando J. Pineda, "Generalization of backpropagation to recurrent
and higher order neural networks", Physics Review Letters, pp. 602
611 (1988).

Tomasio Poggio and Chistoph Koch, "Synapses That Compute Motion",
Scientific American, vol. 256(5): 46-52 (May 1987).

T. Poggio and S. Edelman, "A network that learns to recognize three
dimensional objects", Nature, Vol. 343: 263-266 (18 Jan. 1990).

188

T. Poggio and F. Girosi, "Regularization Algorithms for Learning That
are Equivalent to Multilayer Neural Networks", Science, Vol. 247, pp.
978-82 (23 February 1990).

P.W. Pomeroy, W.J. Best and T.V. McEvilly, "Test ban treaty
verification with regional data - a review", Bull. Seismological Soc. of
America, Vol. 72, Part B, S89-S129 (1982).

L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F.
Mischenko, The Mathematical Theory of Optimal Processes, trans. by
K.N. Trirogoff. Interscience Publishers, John Wiley & Sons (1962).

D. Psaltis, A. Sideris and A.A. Yamamura, "A Multilayered Neural
Network Controller", IEEE Control Sys. Mag., pp.17-21 (April 1988).

Ning Qian and Terrence J. Sejnowski, "Predicting The Secondary
Structure of Globular Proteins Using Neural Network Models", J.
Molec. Biol., Vol. 202, pp. 865-884 (1988).

P. Rakic and W. Singer, Neurobiology of Neocortex, (Dahlem
Conferences Report No. 42) Wiley-Interscience, New York (1988).

Anna W. Roe, Sarah L. Pallas, Jong-On Hahm and Mriganka Sur, "A
Map of Visual Space Induced in Primary Auditory Cortex", Science,
Vol. 250, pp. 818-20 (9 November 1990).

Frank Rosenblatt, "The Perceptron, a probabilistic model for
information storage and organization in the brain", Psych. Rev., Vol.
62, pp. 386-408 (1958).

Frank Rosenblatt, Principles of Neurodynamics, Spartan Books,
Washington, D.C. (1962).

David E. Rumelhart, Geoffrey E. Hinton and R.J. Williams, "Learning
Internal Representations by Error Propagation, In: Parallel
Distributed Processing Vol.1, D.E. Rumelhart and J.L. McClelland, eds.,
MIT Press, Cambridge, MA pp. 318-362 (1986).

D.E. Rumelhart and J.L. McClelland, "An interactive activation model
of context effects in letter perception. Part 2", Psychological Review,
Vol. 89, pp. 60-94 (1982).

189

D.E. Rumelhart and J.L. McClelland, eds., Parallel Distributed
Processing Vol.1, MIT Press, Cambridge, MA (1986).

D.W. Ruck, S.K. Rogers, M. Kabrinsky, M.E. Oxley and B.W. Suter, "The
Multilayer Perceptron as an Approximation to a Bayes Optimal
Discriminant Function", IEEE Trans. on Neural Networks, Vol. 1, No. 4,
pp.296-8 (Dec. 1990).

Peter Schuster and K. Sigmund, "Dynamics of Evolutionary
Optimization", Ber. Bunsenges. phys. Chem., Vol. 89, pp. 668-682
(1985).

Peter Schuster and Jorg Swetina, "Stationary Mutant Distributions
and Evolutionary Optimization", Bulletin of Mathematical Biology, Vol.
50, No. 6, pp. 635-660 (1988).

David R. Seidl and Robert D. Lorenz, "Summary of a Structure by
which a Recurrent Neural Network Can Approximate a Nonlinear
Dynamic System", Proc. Intn'l AMSE Conf. Neural Networks, San
Diego, CA (May 29–31, 1991).

Terrence J. Sejnowski and Charles R. Rosenberg, "Parallel Networks
that Learn to Pronounce English Text", Complex Systems, Vol. 1, pp.
145-168 (1987).

Allen I. Selverston, "Are Central Pattern Generators
Understandable?", Behavioral and Brain Sciences, vol. 3, pp. 535-571
(1980).

Yu. A. Shreider, The Monte Carlo Method, Pergamon Press, Oxford,
Pure and Applied Mathematics, Vol. 87, Translation from Russian
(1966).

Hava Seigelman and Eduardo Sontag, "Neural Nets are Universal
Computing Devices", Technical Report SYCON-91-08, Rugters
University, Center for Systems and Control (May 1991).

Christine A. Skarda and Walter J. Freeman, "How Brains Make Chaos
in Order to Make Sense of the World", Behav. and Brain Sciences, Vol.
10(2): 161-195 (1987).

190

Robert Smalz and Michael Conrad, "A Credit Apportionment
Algorithm for Evolutionary Learning with Neural Networks",
(preprint), Wayne State University, Detroit (1990).

Patric K. Stanton and Terrence J. Sejnowski, "Associative long-term
depression in the hippocampus induced by hebbian covariance",
Nature, Vol. 339, pp. 215-218 (18 May 1989).

Charles F. Stevens, "Strengthening the synapses", Nature, Vol. 338,
pp. 460-461 (6 April 1989).

Lawrence D. Stone, Theory of Optimal Search, Academic Press, New
York, N.Y. (1975).

Gilbert Strang, Linear Algebra and Its Applications (Second Edition),
Academic Press, New York (1980).

M.P. Stryker, J. Allman, C. Blakemore, J.M. Greuel, J.H. Kaas, M.M.
Merzenich, P. Rakic, W. Singer, G.S. Stent, H. van der Loos and T.N.
Wiesel, "Group Report: Principles of Cortical Self-Organization", pp.
115-136, (In Rakic and Singer 1988).

Gita Subba-Rao, "Calculation of the Minimum Energy Conformation of
Biomolecules by Using a Global Optimization Technique. V. Preferred
Conformations of the Thyrotropin-Releasing Hormone", International
J. of Quantum Chemistry, Vol. 29, pp. 1177-1180 (1986).

Richard S. Sutton and Andrew G. Barto, "Toward a Modern Theory of
Adaptive Networks: Expectation and Prediction", Phychological
Review, Vol. 88 (2):135-170 (1981).

Roman R. Swiniarski, "Neural Recurrent State Estimator of Dynamic
Systems. Neural Kalman Filtering", Proc. Intn'l AMSE Conf. Neural
Networks, San Diego, CA (May 29–31, 1991).

Roman R. Swiniarski and J. Nieplocha, "Neural Estimation fro a Class
of Nonlinear Systems", Proc. Intn'l AMSE Conf. Neural Networks, San
Diego, CA (May 29-31, 1991).

Y. Takahashi, M.J. Rabins, and D.M. Auslander, Control and Dynamic
Systems, Addison-Wesley, Reading, Mass. (1972).

191

Steven R. Taylor, N.W. Sherman and M.D. Denny, "Spectral
Discrimination Between NTS Explosions and Western United States
Earthquakes at Regional Distances", Bull. Seismological Soc. of
America, Vol. 78, No. 4, 1563-79 (August 1988).

Steven R. Taylor, M.D. Denny, E.S. Vergino and M.V. Denny, "Spectral
Discrimination between NTS explosions and western United States
earthquakes", Bull. Seismological Soc. of America, Vol. 79, pp. 1142
1176 (1989).

Steven R. Taylor, "Discrimination of Nuclear Explosions and
Earthquakes", Energy and Technology Review (LLNL, MS L-3, P.O.Box
808, Livermore, Ca, 94551) pp. 28-37 (March 1990).

Steven R. Taylor, "Discriminating between Nuclear Explosions and
Earthquakes", Energy and Technology Review (LLNL, MS L-3, P.O. Box
808, Livermore, Ca, 94551) pp. 56-57 (July-August 1990).

Gerald Tesauro and Terrence J. Sejnowski, "A Parallel Network that
Learns to Play Backgammon", Artificial Intelligence, Vol. 39, No. 3,
pp. 357-390 (July 1989).

Gerald Tesauro and Bob Janssens, "Scaling Relationships in Back
propagation learning", Complex Systems, Vol. 2, pp. 39-44 (1988).

D. Tjøstheim, "Multidimensional discrimination techniques - theory
and application", Identification of Seismic Sources - Earthquake or
Underground Explosion, Husebye and Mykkeltveit (eds.), D. Reidel
Publishing Co., pp. 663-694 (1981).

Fu-Sheng Tsung and Garrison W Cottrell, "A Sequential Adder Using
Recurrent Networks", Internat. Joint Conf. Neural Networks, pp. II
133-39, Washington, D.C. (1989).

Alan M. Turing, "On computable numbers, with an application to the
Entscheidungsproblem", Proc. London Math. Soc., Vol. 45: 161-228
(1937).

J.J. Uicker, "Dynamic Force Analysis of Spatial Linkages", Transactions
ASME (1967).

C. Van den Broeck and R. Kawai, "Learning in Feedforward Boolean
Networks", Physical Rev. A., v. 42 (10): 6210-6218 (1990).

192

C. Van den Broeck and R. Kawai, "Generalization in Feedforward
Neural and Boolean Networks", Proc. AMSE Intn'l Conf. "Neural
Networks", San Diego (May 29-31, 1990).

D.C. Van Essen , In: Cerebral Cortex Vol. 3, A. Peters and F.G. Jones,
eds., Plenum Press, New York, pp. 259-324 (1985).

Waibel, Neural Computation, Vol. 1(1) (1989).

Eric A. Wan, "Neural Network Classification: A Baysean
Interpretation", IEEE Trans. on Neural Networks, Vol. 1, No. 4 (Dec.
1990).

H. White, "Learning in Artificial Neural Networks: A Statistical
Perspective", Neural Computation, Vol. 1, pp. 425-464 (1989).

Bernard Widrow and M.E. Hoff, "Adaptive Switching Circuits",
Institute of Radio Engineers, Western Electronic Show and Convention
Record Part 4, pp. 96-104 (1960).

J H Williams, M L Errington, M A Lynch and T V P Bliss, "Arachidonic
Acid Induces a Long-Term Activity-Dependent Enhancement of
Synaptic Transmission in the Hippocampus, Nature, Vol. 341, pp.
739-42 (26 October 1989).

R J Williams and David A. Zipser, "A Learning Algorithm foe
Continually Running Fully Recurrent Neural Networks", Tech. Report
#ICS-8805, University of California, San Diego (1988).

James M. Wilson, "Back-Propagation Neural Networks: A Comparison
of Selected Algorithms and Methods of Improving Performance",
Proc. 2nd Annual Workshop Neural Networks WNN-AIND, Auburn,
Alabama (Feb. 11-13, 1991).

Lofti A. Zadeh, "Communication Fuzzy Algorithms", Information and
Control, Vol. 12, p. 94-102 (1968).

4 579 9

-
- g º, y r

~
* * -

- -

º
-

º | - - - |
-

-
º

º
*

*
*

*
| -

-

- - - 2
*. s

- - º ** = "-s a - * *** - - - * _ - * - - *
- * * . º - - - º - - - * - - - -

º: º | T º, wº" CT º º, -* * * - w -> *
! ! º ** * - --.” ** º

--, ". º
- - :*. * - - - - * *** * - - - - ººf /■ . C

* -
v - - -

- / . , -- ... " ■ - - --1 & 4 ºr a a - - -

º • * ;
º ---

-- - - º
*

* "--
--- -

* r
*

* | " ' ". . . .

. . . .
- - - - *

, - .

- - -

* * -

- * - *" --- i. -
-* - - - - - - - º */) * - , • *

* * - * --
** z º sº was e - -

º ºf Y - * ... "

--- sº ...
-

*
- -… " - - - - -

º **, " - - -

-- ~y. * -- - *

> -º \ f . . -- -

* !.
- - * *

* > y - *

º

- * *

- - * , ■ ºr |- J r ■
* -

- - º - . . . º . . . -- º ** as s -* -

~. . . * -- -- / ºf in " . * .

- Tº - -As ºf * * : - | "I

L is . . .''.
*

--" -- - - - - - - * - sº- - .* -| …! .
- *: w - - - | * . . . *…*

- - ~~, * . º:- * * *
º -

, - - - , , , , ; , , , ;" * - . . " t -* *"... ... tº y → *.* º
...' - º -- *

-- - -
º rº º º *

-- º - --

- -- - º '■ 2–3 º --- ".
* -

- --- -

* *. º, - - - - --- 2 º * . --> A-Tºi \, º **

: I ---,
- -- *** - º * ". / / , , º, * 2 --> º'- ".

-7. - º - -- " - - - - - - - - ** s' cy.” y !
..Tº º

- ---- J Nº º: - - --" sº
-
º --"

*- º • * * * *- ~ * - - - - - - - - -

-- 1 s : -- __ * /* * -- -- -- - - - - -*- - - * * * -

* * * * * -
|] * . * * * ~ * - sº ■ T *:: ~ * -- : - -- - º- --- -

- --- * *. - *- º - - º |--
-

r - º --
■ n º --- * - ---

* - .* * - -- ~ - * * ---- -* -Ll -: , , º - - - - - ...T. •
*** *- * ..." -, * . " --

Zºº - “t ºr ºv +-

FOR REFERENCE

NOT TO BE TAKEN FROM THE ROOM * * * * º, -

§ cat. run. 23 at 2 •ºss *
-

//
- -- - * * -- c. .

w = A- -

