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ABSTRACT OF THE THESIS

Advancing Neural Radiance Fields through Self-Supervised NeRF Image Selector (SNIS)

by

Nahyeon Kim

Master of Science in Mechanical Engineering

University of California, Los Angeles, 2024

Professor Mohammad Khalid Jawed, Chair

Neural Radiance Fields (NeRF) have recently emerged as a promising research area

due to their remarkable photorealistic rendering capabilities and diverse applications. By

training NeRF network with various viewpoints and their corresponding images, we can

generate new views of a scene. This approach, however, is highly dependent on the quality

and composition of the training images. Effective learning in NeRF can be achieved by

selecting images with high coverage rather than those having many overlaps. To date,

there has been a lack of research focused on the selection of images for NeRF training.

To address this gap, this paper proposes an innovative image selector designed to select

optimal image viewpoints to enhance NeRF training. We created a custom dataset by

creating a virtual environment in Unity, allowing for the flexible positioning of cameras to

capture images. We introduce two methods to predict optimal image viewpoints: the first

employs reinforcement learning, while the second utilizes a Self-supervised NeRF Image

Selector (SNIS) based on a simplified deep neural network architecture. SNIS is trained

using our novel pseudo-labels, which function analogously to the reward mechanism in

reinforcement learning frameworks. Experimental results demonstrate that our selector

significantly outperforms the random selection of images, providing stable and superior

performance in NeRF training.

ii



The thesis of Nahyeon Kim is approved.

Sriram Narasimhan

Veronica Santos

Mohammad Khalid Jawed, Committee Chair

University of California, Los Angeles

2024

iii



Contents

List of Figures v

List of Tables vi

Acknowledgements vii

1 Introduction 1

1.1 Background of the Study . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Purpose of Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Related Works 6

3 Preliminary 11

3.1 Neural Radiance Fields (NeRF) . . . . . . . . . . . . . . . . . . . . . . . 11

3.2 Instant-NGP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Dual-DQN (DDQN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Methodology 18

4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Reinforcement Learning Agent and Environment . . . . . . . . . . . . . . 19

4.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Results and Discussion 24

5.1 Optimal Selection of Camera Positions . . . . . . . . . . . . . . . . . . . 24

5.1.1 Reinforcement Learning for NeRF Training . . . . . . . . . . . . . 24

5.1.2 Self-supervised NeRF Image Selector (SNIS) . . . . . . . . . . . . 28

5.2 SNIS Performance of Training from Scratch . . . . . . . . . . . . . . . . 31

5.3 Investigation for Image Number Configuration . . . . . . . . . . . . . . . 32

5.4 Label Coefficient Exploration . . . . . . . . . . . . . . . . . . . . . . . . 34

6 Conclusion 34

iv



List of Figures

1 An example of a camera distribution and its corresponding embedded form.

The camera poses are embedded as a spatial arrangement of cameras within

the grid. In this matrix, cells containing cameras are assigned a value of

1, while cells without cameras are assigned a value of 0. . . . . . . . . . 18

2 Overall process of reinforcement learning framework . . . . . . . . . . . . 21

3 Overall process of SNIS framework . . . . . . . . . . . . . . . . . . . . . 23

4 Sample evaluation result images. Column (b) shows the evaluation results

from 5.2, which trained the NeRF network with 100 images with SNIS.

Column (b) shows the evaluation results from 5.1.1, which trained the

NeRF network with 130 randomly sampled images. . . . . . . . . . . . . 25

5 Performance comparison of training with RL (our method) and randomly

sampled images, when k is 10. . . . . . . . . . . . . . . . . . . . . . . . 27

6 Performance comparison of training with RL (our method) and randomly

sampled images, when k is 5. . . . . . . . . . . . . . . . . . . . . . . . . 28

7 Performance comparison of training with RL where the episode ends once

scores exceed the baseline. . . . . . . . . . . . . . . . . . . . . . . . . . 29

8 Performance comparison of training with RL (our method) and randomly

sampled images. The yellow line shows the baseline performance in which

images are randomly selected. The brighter yellow line and the darker one

indicate BL2 and BL1, respectively. Blue bars represent the ranges of 15

different random seed experiments. . . . . . . . . . . . . . . . . . . . . . 30

9 Performance of training from scratch with 130 images. The yellow line

shows the baseline performance, where 130 images are randomly selected.

Each blue bar represents the range of 15 different random seed experiments. 31

10 Performance of training from scratch. . . . . . . . . . . . . . . . . . . . 33

11 Performance comparison of training with various value of α where label

y = α ∗ z. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

v



List of Tables

1 Training results for different image number sets. ’Mean after iter=10’ in-

dicates the average performance score after the SNIS prediction has stabi-

lized. ’Max performance’ represents the highest performance scores achieved. 32

2 Detailed scores of PSNR and SSIM of each n1 case. Each score is the

average of 5 trials. The total training Image number is n0 + n1 = N = 150. 33

vi



Acknowledgments

Foremost gratitude is extended to Professor Khalid Jawed for his

unwavering support, insightful guidance, and invaluable encouragement.

His expertise and dedication have been instrumental in the successful

completion of this thesis, and working under his mentorship has been a

profound privilege.

Deep appreciation is also conveyed to the UCLA Structures-

Computer Interaction (SCI) Lab. The collaborative environment and

intellectual stimulation provided by the lab have greatly enriched this

research experience. Special thanks are due to the lab mates for their ca-

maraderie, constructive feedback, and the many enlightening discussions

shared.

Also, I would like to express my profound appreciation to the the-

sis committee members, Professor Sriram Narasimhan and Professor

Veronica Santos, for their time and valuable guidance. Further acknowl-

edgment is made of the financial and institutional support provided by

UCLA. This support has been essential for the execution of this research.

Personal gratitude is extended to family and friends for their constant

encouragement and understanding. Their unwavering belief has been a

source of great motivation and strength throughout this journey.

Finally, thanks are due to all who have directly or indirectly con-

tributed to this work. Your support and contributions have been invalu-

able, and are deeply appreciated.

vii



1 Introduction

1.1 Background of the Study

The integration of artificial intelligence (AI) and robotics has attracted growing at-

tention due to its vast array of applications and its potential to execute highly sophisti-

cated tasks. AI and robotics are revolutionizing various industries, including agriculture,

healthcare, manufacturing, and logistics. One common method for training robots in-

volves teaching them to perceive real-world environments and learn how to perform spe-

cific tasks. For instance, an agricultural robot designed to dispense pesticides on weeds

would traditionally be brought to every targeted farm and allowed to learn by interacting

with each environment. The robot would learn to recognize and differentiate between

crops and weeds, enabling it to perform its task efficiently. However, this method comes

with significant spatial constraints, as it requires the physical relocation of the robot

to various real-world environments. This approach is not only time-consuming but also

costly, as it involves substantial logistical efforts and expenses to transport the robot to

different locations. Moreover, the variability in environmental conditions across different

farms can pose additional challenges, as the robot may need to adapt to a wide range of

scenarios, further complicating the training process.

To address these spatial and temporal constraints, a viable solution is to train the

robot in a virtual environment that closely resembles real-world conditions. Virtual

training environments offer numerous advantages, including the flexibility to modify the

environment according to specific training needs and the ability to use a more diverse

set of training datasets. By creating a virtual environment, robots can interact with a

simulated setting that mimics the real world, allowing them to learn tasks as if they were

in an actual environment. This approach not only saves time and reduces costs but also

enables parallel training, where multiple robots can be trained simultaneously, leading

to a significant reduction in overall training time. To make virtual learning practically

achievable, it is essential to construct a virtual setting that accurately replicates the

target environment and to establish an infrastructure that allows for seamless interaction
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between the robot and the virtual environment. One effective method for constructing

such an environment is through 3D scene rendering, which involves creating a 3D model

scene from images. This technique provides a straightforward and efficient way to develop

a detailed virtual representation of the target environment without the need for complex

calculations or extensive manual modeling.

In this context, Neural Radiance Fields (NeRF) have emerged as a powerful tool for

3D scene rendering. NeRF is a novel approach that leverages neural networks to generate

high-fidelity visual representations of real-world environments from images. By inputting

a set of images into the NeRF model, it can reconstruct a detailed 3D scene that captures

the intricate geometry and lighting conditions of the original environment. This capabil-

ity makes NeRF particularly suitable for creating virtual training environments that are

both accurate and realistic. The potential applications of NeRF extend beyond agricul-

ture to various fields where precise 3D modeling is required. For example, in healthcare,

NeRF can be used to create virtual simulations of medical procedures, allowing practi-

tioners to train in a controlled and risk-free environment. In manufacturing, NeRF can

facilitate the development of virtual prototypes, enabling engineers to test and refine

designs before physical production. Additionally, in the realm of autonomous vehicles,

NeRF can generate realistic driving scenarios for training self-driving algorithms, thereby

enhancing their performance and safety.

Given the broad implications and benefits of virtual training environments, this re-

search aims to explore and optimize the use of NeRF to create such settings. By sys-

tematically analyzing and improving the NeRF training process, we seek to enhance its

efficiency and effectiveness, ultimately contributing to the advancement of AI and robotics

training methodologies. This study will focus on developing algorithms that can predict

optimal image sets for NeRF training, ensuring that the resulting images are of the high-

est quality and fidelity. In summary, the integration of AI and robotics holds immense

potential for transforming various industries. However, traditional training methods are

often constrained by spatial and temporal limitations. Training the vision of AI in vir-

tual environments, enabled by advanced 3D scene rendering techniques like NeRF, offer
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a promising solution to these challenges. By leveraging the capabilities of NeRF, we can

create realistic and detailed virtual visual settings that facilitate efficient and effective

robot training, paving the way for more sophisticated and practical applications of AI

and robotics.

1.2 Problem Statement

The performance of Neural Radiance Fields (NeRF) models can vary significantly

depending on the specific images used for training, as these models require sufficient

visual information from diverse viewpoints to accurately learn the 3D structure of a scene

and its complex lighting conditions. If the images are biased towards certain viewpoints

or angles, or if they fail to capture critical parts of the scene adequately, the model may

miss essential information during the learning process. Consequently, the resulting images

may be inaccurate or lack detail, undermining the effectiveness of the NeRF approach.

Conversely, if the images are optimally captured from various angles and viewpoints,

ensuring even coverage or focused attention on complex areas, the NeRF model can

comprehensively understand the entire scene and produce accurate scenes. Therefore, to

maximize NeRF’s performance, it is crucial to carefully consider not only the number of

images but also their quality and distribution. Optimal image selection is essential for

the model to gain a complete and accurate understanding of the scene.

Achieving this requires research into image selection methods that aid the model in

accurately understanding and reconstructing the scene. This research focuses on identi-

fying optimal image selection strategies that enable the model to understand the scene

most efficiently. At the same time, it is crucial to explore methods that yield efficient

performance without excessively consuming computational resources, even when employ-

ing simpler models. In other words, there is a need for image selection methods that

can produce optimal learning outcomes with minimal complexity and computational

cost, thereby enabling NeRF models to perform high-quality 3D rendering with fewer

resources.

In this paper, we implement and evaluate effective image selection algorithms using
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reinforcement learning and a Self-supervised NeRF Image Selector (SNIS), which con-

sists of a simple deep neural network structure. We employ a deep Q-network (DDQN)

for reinforcement learning, adopting an approach that continually improves the model

through iterative learning. As training progresses, rewards are assigned based on the

model’s performance, aiding the reinforcement learning agent in developing better image

selection strategies. Meanwhile, the SNIS uses a self-supervised learning framework, gen-

erating new supervised learning labels that reflect the model’s learning outcomes, akin

to the rewards in reinforcement learning. This novel approach supports more effective

model training by continually refining the image selection process based on the model’s

performance.

By comparing and evaluating the performance of these two methodologies, we aim

to determine the most effective approach for optimizing NeRF training. Our goal is to

develop a model that delivers superior performance by leveraging the strengths of both

reinforcement learning and self-supervised learning. Through extensive experimentation

and analysis, we seek to provide insights into the most effective strategies for image

selection and to propose a robust algorithm that enhances the accuracy and efficiency of

NeRF models. By exploring and implementing advanced image selection algorithms, we

aim to enhance the model’s ability to accurately reconstruct 3D scenes while minimizing

the image numbers required to train the NeRF model for desired performance. This study

ultimately contributes to the development of more efficient and effective NeRF models,

with broad implications for various applications in AI and computer vision.

1.3 Purpose of Study

The objective of this research is to analyze the spatial distribution of the most effec-

tive image sets for training Neural Radiance Fields (NeRF) models and to propose an

algorithm capable of predicting such distributions. Specifically, this study evaluates the

combinations of images captured from various viewpoints and angles that enable NeRF

models to achieve optimal performance. We aim to systematically analyze the impact of

these image sets on model training, focusing on how sets with specific spatial distributions
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contribute to maximizing the rendering performance of NeRF models. By understanding

the influence of different image distributions, we seek to develop a predictive algorithm

that can identify the most beneficial configurations for NeRF training.

To achieve this, our research leverages reinforcement learning (RL) and multi-layer

perceptrons (MLP). The RL approach uses a deep Q-network (DDQN) to iteratively

improve the model by optimizing image selection strategies through trial and error,

guided by performance-based rewards. Meanwhile, the MLP-based method employs a

self-supervised learning framework, where the model generates new learning labels that

reflect its performance, akin to the reward system in reinforcement learning. By com-

paring and evaluating the performance of these two methodologies in the image selection

process, we aim to determine the optimal approach. This involves conducting extensive

experiments to assess how each method influences the efficiency and accuracy of NeRF

model training. We explore various configurations, including different neural network

architectures, hyperparameter settings, and the number of selected camera positions, to

identify the critical factors that contribute to the optimization of NeRF training.

The ultimate goal of this research is to maximize the training efficiency of NeRF

models. By developing and validating an algorithm that can predict the optimal spatial

distribution of images, we hope to contribute to the advancement of 3D scene rendering

technologies. Our findings are expected to provide valuable insights into the design of

image selection strategies that can enhance the performance of NeRF models, making

them more efficient and effective in various applications. In summary, this study aims to:

• Analyze the optimal distribution of image viewpoint (camera) sets for NeRF train-

ing.

• Develop a predictive algorithm for optimal image distribution.

• Compare the performance of reinforcement learning and Self-supervised Image Se-

lector pipelines.

• Contribute to the development of efficient and effective image selection strategies

for NeRF models.
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By achieving these objectives, we aim to pave the way for more advanced and practical

applications of NeRF in fields such as virtual reality, robotics, and computer vision.

2 Related Works

Neural implicit representation for 3D geometry is a method within a model to depict

a scene, and it has attracted growing attention amid active research on representation

methods utilizing neural networks. Neural rendering has gained significant acclaim as an

implicit scene representation method, being actively employed in various applications of

3D computer vision, such as 3D reconstruction [1, 2, 3], 3D-aware generation [4, 5, 6]and

novel view synthesis [7, 8, 9].

3D Reconstruction In recent research, neural implicit surface reconstruction tech-

niques have surged in popularity for multi-view 3D reconstruction. Unlike conventional

multi-view stereo methods, these approaches yield smoother and more comprehensive

reconstructions, leveraging the inherent smoothness bias of neural networks. Although

cutting-edge neural implicit methods have shown good performance in reconstructing

straightforward scenes from numerous input views, their efficacy diminishes for large,

complicated scenes and sparse viewpoints. Inspired by recent advancements in monocular

geometry prediction, [3] focuses on intrinsic ambiguity in RGB reconstruction loss in en-

hancing neural implicit surface reconstruction. The authors demonstrate that depth and

normal cues forecasted by general-purpose monocular estimators substantially enhance

reconstruction quality and reduce optimization time. They scrutinize various design alter-

natives for representing neural implicit surfaces, encompassing monolithic MLP models,

single-grid, and multi-resolution grid representations. More recently, [2] has addressed

the limitations of neural implicit surface representation methods in handling texture-less

planar regions commonly found in indoor scenes. Existing solutions rely on image priors

derived from large annotated datasets. The authors propose a self-supervised super-plane

constraint, leveraging geometric cues from predicted surfaces to improve plane region re-

construction without additional annotations. They introduce an iterative training scheme
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involving pixel grouping to form super-planes and optimize the reconstruction network

with a super-plane constraint. Surprisingly, models trained with super-planes outperform

those using annotated planes, as super-planes cover larger areas and enhance training sta-

bility. Extensive experiments demonstrate that the self-supervised super-plane constraint

significantly enhances 3D reconstruction quality, surpassing ground truth plane segmen-

tation methods.

Research on 3D reconstruction of complex dynamic scenes is as actively studied as

on static scenes. Achieving accurate 3D reconstruction in dynamic scenes with cameras

has been difficult. To address this challenge, [10] proposes a neural invertible deforming

network to represent and constrain the non-rigid deformations. Given the possibility of

dynamic scene surface topology evolving, they utilize a strategy sensitive to topology

changes to establish correspondence between the fused frames. Recently, [1] proposed

R3D3, which integrates geometric estimation leveraging spatial-temporal information

from multiple cameras with monocular depth refinement. It incorporates multi-camera

feature correlation and dense bundle adjustment operators to improve geometric depth

and pose estimates.

3D aware generation Generating content with an understanding of the three-dimensional

structure, 3D-aware generation, involves considering the spatial relationships and charac-

teristics of objects or scenes when creating images or videos. In the context of generative

models like GANs (Generative Adversarial Networks), this approach allows for more re-

alistic and accurate representations, particularly when viewed from different angles or

in different poses. Recent efforts have aimed to make generative models 3D-aware, con-

necting the 2D image space with the 3D physical world. Some approaches incorporate

NeRF into GANs to serve as a 3D prior, mapping 3D coordinates to pixel values. How-

ever, NeRF’s implicit function has a limited receptive field, hindering global structure

awareness. Basically, NeRF relies on volume rendering, which can be computationally

expensive for high-resolution results, so it increases optimization complexity. To address

these challenges, [6] introduces a framework for high-fidelity 3D-aware image synthesis.

They train the model to learn a feature volume to represent structure, transformed into
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a feature field resembling NeRF. This field is then converted into a 2D feature map for

appearance synthesis using a neural renderer to facilitate independent control of shape

and appearance. Also, [4] presents a generative adversarial network creating photore-

alistic full-body human images with consistent appearances across different view angles

and body poses. Addressing representational and computational challenges, our novel

generator architecture combines a 2D convolutional backbone with a 3D pose mapping

network, leveraging 3D human mesh conditioning. In addition, [5] extends the capa-

bilities of image-based 3D GANs to video editing and represents the input video in an

identity-preserving and temporally consistent way, by introducing GAN inversion and op-

tical flow-guided compositing. The GAN inversion jointly embeds in multiple frames and

optimizes for the camera parameters to be tailored to 3D GANs. They also demonstrate

the potential of intrinsic properties of 3D GANs with high-fidelity face edits showing

novel views.

Novel view synthesis To create additional perspectives of scenes or objects, we can

generate previously unseen views of a scene from a set of sparse input images taken from

different viewpoints. To create realistic and coherent views that accurately depict how the

scene or object would appear from different angles or viewpoints, many studies are being

conducted. The neural radiance fields (NeRF) is one of the most representative models

in this field, demonstrating impressive results in view synthesis for objects and specific

spatial areas. However, there are remaining difficulties with ”unbounded” scenes, where

the camera can face any direction and objects may be located at any distance. Current

methods often result in blurry or low-resolution images, slow training times, and artifacts

due to reconstructing large scenes from limited image data. To tackle these issues, [9]

present mip-NeRF 360, an extension of mip-NeRF [11], designed for 360-degree camera

rotation. They parameterize nonlinear scenes and focus on distortion-based regularization

to decrease the complexities of unbounded scenes. Also, Based on the need to synthesize

novel views from a single input image and generalize across various object categories using

a unified model, [7] propose combining global and local features to create a comprehensive

3D representation. In their method, a vision transformer learns global features, while a
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2D convolutional network is trained for local features and a multi-layer perceptron (MLP)

network is trained to generate volume rendering images. This method allows the network

to reconstruct unseen regions without imposing constraints such as symmetry or standard

coordinate systems.

To synthesize novel views from a single image without encountering issues, many

methods project points to the input image plane and aggregate 2D features for volume

rendering. However, in cases of severe occlusion, this projection fails to resolve uncer-

tainty, leading to blurry renderings with insufficient details. In [8], The authors propose

NerfDiff, which is a generative framework for single image view synthesis, by distilling the

knowledge of a 3D-aware conditional diffusion model (CDM) into NeRF through synthe-

sizing and refining a set of virtual views at test time. However, these methods necessitate

multiple scene views during training, and their slow fine-tuning process hampers real-time

usage. Moreover, there are many challenges like poor learning performance in deformable

scenes and sparse viewpoints, and slow rendering speeds. To improve practical applica-

tion efficiency, many recent research has addressed these issues to resolve the limitations

of NeRF.

To address deformable scenes, several works [12, 13, 14] proposed optimizing the neu-

ral radiance field and extending it to a dynamic domain. These works aim to overcome

the limitation of being only applicable to static scenes and empower the handling of

unbounded scenes. NeRF demands an extended optimization time for volumetric rep-

resentation. To reduce the rendering time complexity, [15] introduces a novel approach

utilizing precomputed Neural Transmittance Functions to expedite neural reflectance field

rendering, eliminating the need for laborious ray marching. [16] uses a single-network pre-

diction of ray sample locations in view rays, utilizing a classification network and depth

values to encode surface locations instead of directly estimating depth. [17] incorporates

a view-dependent computing ordering scheme to alleviate inefficiencies to improve the

speed of rendering images. More recently, [18] optimizes lightweight models suitable for

resource-constrained devices where only one forward pass is executed on a ray to predict
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pixel color. [19] extracts knowledge from a pre-trained dynamic NeRF model and handles

non-rigid deformations by integrating hyperspace representation into a deformation field.

Neural radiance field (NeRF) [20] initially demonstrated its effectiveness with a large

number of images in LLFF NeRF Real dataset [21]. Research aimed at effectively repre-

senting neural radiance fields even with sparse input and minimizing the reliance on dense

scene coverage has been actively conducted. [22] estimates the structure shape by evalu-

ating pairwise similarities and encoding stereo correspondence and enables the model to

need only sparse views during test time. [23] introduces a novel representation for visibil-

ity prediction to enhance rendering quality by focusing on visible image features, along

with a devised loss for refining visibility during fine-tuning on specific scenes. Focused on

depth relationships, [24] leverages depth information and geometry information from pre-

dicted depth to maintain 3D consistency. [25] broadens NeRF generalization with sparse

views to outdoor scenes, introducing a geometric correction module that normalizes ren-

dered depth and integrates it with light directions, along with an appearance correction

module to mitigate rendering artifacts resulting from changes in viewpoint. To supervise

the NeRF’s predicted depth, [26] propose a training pipeline where augmented models

learn alongside the NeRF. Additionally, they design a mechanism to selectively choose

reliable depth estimates for supervision to avoid using inaccurate augmented models for

specific regions. With Structure from Motion (SfM), [27] employs a sparse depth prior

sampled from volume points across local-to-global geometric regions to alleviate bias in

the depth prior, instead of relying on direct depth supervision.

However, these works only focus on improving the NeRF model itself rather than

addressing the selection of images for training. Ensuring the model’s optimal performance

with sparse viewpoints is indeed a critical endeavor; however, it is imperative to also

optimize the data selection process. In this paper, we mainly investigate the viewpoint

selection of the most essential scenes to effectively train the model with fewer images

while maintaining consistency by utilizing reinforcement learning.
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3 Preliminary

3.1 Neural Radiance Fields (NeRF)

In the realm of methods aimed at generating 3D rendering views from 2D perspectives,

Neural Radiance Fields (NeRF) [20] stands out as a 3D rendering technique known for

its efficient performance with effective memory utilization. By employing MLP networks,

NeRF facilitates rapid 3D rendering from untrained viewpoints. The objective of NeRF is

to render images for 3D scenes when viewed from arbitrary perspectives. This necessitates

an understanding of spatial information, including acquiring information about the Z-axis,

which is not visible in 2D.

To address this, it directly optimizes the parameters of 5D scene representation to

minimize the error in rendering a set of captured images. Static scenes are represented

in terms of radiance emitted in each direction (θ, ϕ) at each point (x, y, z) in space,

alongside a density at each point regulating the accumulation of radiance by rays passing

through (x, y, z). This density acts as a differentiable opacity, modulating the amount of

radiance accumulated when rays pass (x, y, z). The method achieves this optimization by

employing a deep fully-connected neural network without convolutional layers, regressing

from a single 5D coordinate (x, y, z, θ, ϕ) to a single volume density and view-dependent

RGB color.

The MLP network FΘ : (x, d) → (c, σ) approximates this continuous 5D scene rep-

resentation and optimizes its weights Θ to map each input 5D coordinate to its corre-

sponding volume density and directional emitted color. The inputs to this function are

the 3D location x = (x, y, z) and the 2D viewing direction (θ, ϕ), while the outputs are

the emitted color c = (r, g, b) and volume density σ. NeRF’s 5D neural radiance field

represents scenes in terms of volume density and directional emitted radiance at any point

in space. It renders the color of any ray passing through the scene using principles from

classical volume rendering. The volume density σ(x) can be interpreted as the differential

probability of a ray terminating at an infinitesimal particle at location x. The expected

color C(r) of a camera ray r(t) = o+ td with near and far bounds tn and tf is as follows:
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C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t), d)dt, where T (t) = exp

(
−
∫ t

tn

σ(r(s))ds

)
(1)

The function T (t) represents the accumulated transmittance along the ray from tn

to t. Essentially, it denotes the probability that the ray travels from tn to t without

encountering other particles. Rendering a view from this continuous neural radiance field

requires estimating the integral C(r) for each pixel of the desired virtual camera’s traced

camera ray.

They employed quadrature to compute this continuous integral. By partitioning the

interval [tn, tf ] into N evenly-spaced bins and employing a stratified sampling approach

where one sample is uniformly drawn from each interval, we enhance the performance

of the representation’s resolution. Utilizing these samples, we can estimate C(r) using

the spherical law of cosines discussed in Max’s volume rendering review. The sampling

approach and the expression for estimating C(r) are as follows:

ti ∼ U

(
tn +

i− 1

N
(tf − tn), tn +

i

N
(tf − tn)

)
(2)

[Ĉ(r) =
N∑
i=1

Ti(1− exp(−σiδi))ci] (3)

Here, Ti = exp
(
−
∑i−1

j=1 σjδj

)
, and δi = ti+1 − ti represents the distance between

adjacent samples. This function for computing Ĉ(r) from the set of (ci, σi) values is

straightforwardly differentiable and reduces to traditional alpha compositing transformed

into αi = 1− exp(−σiδi).

Positional encoding When the network FΘ operates directly on the input coordinates

(x, y, z, θ, ϕ), it fails to properly capture high-frequency variations in color and geometry,

as highlighted in recent research [28], which indicates a bias of deep neural networks

towards learning low-frequency functions. To address this issue, significant performance

improvement can be achieved by reconfiguring FΘ as a composition of two functions,
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FΘ = FΘ
0 ◦ γ. Here, γ represents a mapping from R to a higher-dimensional space R2L,

while FΘ
0 remains a conventional MLP. The encoding function can be represented as

follows:

γ(p) =
(
sin2(0πp), cos2(0πp), . . . , sin2((L− 1)πp), cos2((L− 1)πp)

)
(4)

The function γ(·)is separately applied to each of the three coordinate values x, y, z and

to the three components of the Cartesian viewing direction unit vector d. This is referred

to as positional encoding, utilizing this function to map continuous input coordinates

into a higher dimensional space, thereby enabling the MLP to easily approximate higher

frequency functions.

Hierarchical volume sampling The rendering strategy of applying NeRF at N query

points along each camera ray has the inefficiency of repeatedly sampling free space and

occluded regions that do not contribute to the final rendered image. Hierarchical volume

sampling allocates samples proportionally to their expected impact on the final rendering

to overcome this inefficiency. Instead of using a single network to represent the scene,

”coarse” and ”fine” networks can be trained simultaneously.

Initially, hierarchical sampling is employed to sample a set of Nc locations, and the

”coarse” network is evaluated at these positions according to equations 2 and 3. Consid-

ering the output of this ”coarse” network, a more informed sampling of points along each

ray can be generated in a direction that better samples the volume. To achieve this, the

alpha-blended color values from the ”coarse” network, as described in Equation 3, can

be expressed as a weighted sum of all samples ci as follows:

Ĉ(r) =
N∑
i=1

Ti(1− exp(−σiδi))ci, where Ti = exp

(
−

i−1∑
j=1

σjδj

)
(5)

When normalizing these weights as ŵi = wi/
∑Nc

j=1 wj, it generates a piecewise con-

stant probability density function along each ray. From this distribution, we sample the

second set of Nf locations using inverse transform sampling, evaluate the ”fine” network
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at the union of the first and second set of samples, and compute the final rendered color

of the ray using all Nc +Nf samples. This procedure makes the rendering process more

efficient by allocating more samples to regions expected to contain visible content.

3.2 Instant-NGP

Instant Neural Graphics Primitives (INGP) [29] is a novel approach to decrease the

computational cost of training and evaluating neural graphics primitives. Through the

adoption of a novel input encoding technique, Multiresolution Hash Encoding 3.2, the

method enables the utilization of a smaller neural network without compromising quality.

This is achieved by integrating a multiresolution hash table of trainable feature vectors

into the network architecture. This design simplifies the structure and facilitates paral-

lelization on modern GPUs. Implementation with fully-fused CUDA kernels minimizes

wasted resources, resulting in a substantial acceleration of training high-fidelity neural

graphics primitives within seconds and rendering them in milliseconds.

Multiresolution Hash Encoding Encoding inputs enhances the performance of our

fully connected neural network m(y; Φ) by improving the quality of its inputs y through

an encoding process enc(x; θ), which is adjustable to optimize approximation quality

and training speed across various applications. In addition to the weight parameters Φ,

our neural network incorporates trainable encoding parameters θ. These parameters are

structured into L levels, each comprising up to T feature vectors with a dimensionality

of F . Each level, as depicted in the figure by red and blue segments, operates indepen-

dently and stores feature vectors at the vertices of a grid. The resolution of this grid is

selected to follow a geometric progression ranging from the coarsest to the finest resolu-

tions [Nmin, Nmax]. By determining proper value of Nmax, we can calculate the resolution

for level l using the provided equations:

Nl :=
⌊
Nmin · bl

⌋
(6)

14



b := exp

(
lnNmax − lnNmin

L− 1

)
(7)

The input coordinate x ∈ Rd is scaled by that grid resolution of each level l before

rounding down and up by Equation 8. ⌊xl⌋ and ⌈xl⌉ span a voxel with 2d integer vertices

in Zd. These array has the maximum length of T .

⌊xl⌋ := ⌊x ·Nl⌋, ⌈xl⌉ := ⌈x ·Nl⌉ (8)

Each corner is mapped to the level’s corresponding feature vector array. To produce

y, which is the encoded input enc(x; θ) to the MLP m(y; Φ), feature vectors of each level

have to be interpolated. The feature vectors of the corners are d-linearly interpolated

within its hyper-cube, regarding the relative position of x. This process is independent

for each L levels. At coarser levels where a denser grid requires fewer than T parameters,

meaning the volume of the grid does not exceed T , the mapping corresponds one-to-one.

However, for finer levels, a hash function h : Zd → ZT is used to navigate within the array,

to essentially treat it as a hash table. Without explicit collision handling, optimization

with the gradient strategically stores relevant sparse detail information. Any potential

collisions are resolved by the subsequent neural network m(y; Φ). Here, O(T ) is the

number of trainable encoding parameters θ.

The hash algorithm [30] involves calculating the XOR of unique, large prime numbers

multiplied by the input coordinate x:

h(x) =
d⊕

i=1

xiπi) mod T (9)

where ⊕ means the bitwise XOR operation. XOR operation of the results of linear

congruential permutations on each dimension’s value reduces the correlation between

dimensions in the hashed value. Achieving independence typically requires only d− 1 of

the d dimensions to be permuted. Conventionally, in Instant-ngp, the values of π are set

as follows: π1 := 1, π2 = 2, 654, 435, 761, and π3 = 805, 459, 861.
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Implicit hash collision resolution By using complementary various resolution

levels, the encoding can retain sufficient scene information even in the presence of hash

collisions. In coarser levels, there are no collisions, but only low-resolution versions of the

scene can be represented. Conversely, finer levels can represent high-resolution versions

but suffer from many collisions. This is because finer grid resolutions lead to more occur-

rences of different points hashing to the same table entry. When such collisions occur, the

gradients of the training samples are averaged. Visually distinct features or surfaces with

high visibility and density contribute significantly to the reconstructed image, causing

substantial changes to the hash table entries. In contrast, points in empty space that

refer to the same table entry have a much smaller weight in the image reconstruction.

Consequently, the more important samples dominate the collision average, increasing the

influence of their gradients, and the aliased table entry is naturally optimized to reflect

the needs of the higher-weighted points. The multi-resolution of hash encoding covers

the range from a guaranteed collision-free minimum resolution Nmin to the required max-

imum resolution Nmax. Therefore, all scales where meaningful learning can occur can be

included.

3.3 Dual-DQN (DDQN)

One of the challenges in Q-Learning, and by extension DQN, is the overestimation

of Q-values. Overestimation occurs because Q-Learning uses the maximum estimated

Q-value for the next state to update the current state’s Q-value. Mathematically, the

Q-learning update rule is:

Q(s, a)← Q(s, a) + α
(
r + γmax

a′
Q(s′, a′)−Q(s, a)

)
(10)

Here, r is the reward, γ is the discount factor, and maxa′A(s
′, a′) is the maximum

Q-value for the next state s′. Since this update relies on the maximum estimated Q-value,

it can lead to an upward bias, resulting in overoptimistic value estimates.

Dual-DQN [31], aims to mitigate the overestimation bias by decoupling the action

selection and action evaluation processes. The core idea is to use two separate Q-value
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estimations to reduce the bias in Q-value updates. In Dual-DQN, two sets of weights are

maintained:

• Online Network: The primary network that is used to select actions.

• Target Network: A secondary network that is used to evaluate the Q-values of the

selected actions.

The update rule in Dual-DQN is modified to use the action selected by the online network

and the value evaluated by the target network:

Q(s, a)← Q(s, a) + α
(
r + γQtarget(s

′, argmax
a′

Qonline(s
′, a′))−Q(s, a)

)
(11)

Here, Qonline represents the Q-values from the online network, and Qtarget represents

the Q-values from the target network. Dual-DQN offers several significant advantages

over traditional DQN, making it a valuable improvement in the field of deep reinforcement

learning. One of the primary benefits is the reduction of overestimation bias in Q-

value predictions. By decoupling the action selection and action evaluation processes,

Dual-DQN mitigates the inherent upward bias found in standard DQN, leading to more

accurate and reliable value estimations. This is achieved by using the online network

to select actions and the target network to evaluate them, ensuring that the Q-values

are not overly optimistic. Additionally, this approach contributes to improved training

stability. The target network, which is updated less frequently, provides a stable reference

for the Q-value updates, preventing the fluctuations and divergence that can occur when

using a single network. Empirical studies have demonstrated that Dual-DQN consistently

outperforms DQN in various complex environments, including high-dimensional state

spaces and tasks with intricate dynamics. The combination of reduced bias and enhanced

stability enables more robust learning, ultimately leading to better performance and faster

convergence.
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4 Methodology

4.1 Dataset

Instead of directly manipulating robots, we plan to work in the Unity environment.

To accomplish this, we will initially enclose a target object made of bricks and create

a scene to contain this object. This target object will be used to simulate the leap of

an airplane and will be represented as a cage. Additionally, we will position a camera

within Unity to capture scene images and expect to obtain accurate camera coordinates

and rotation matrices.

Our dataset consists of images obtained from coordinates divided into 1-unit incre-

ments, where x and z coordinates range from -7 to 7, and y coordinates range from 4

to 7. This method of acquiring the dataset will be visually demonstrated in Figure ??.

Consequently, the dataset comprises a total of 900 images. This coordinate setup ensures

consistent division of the experimental space and provides various scenarios necessary for

evaluating the results.

(a) Camera distribution in the Unity envi-
ronment

(b) Embedding matrix of the camera dis-
tribution

Figure 1: An example of a camera distribution and its corresponding embedded form.
The camera poses are embedded as a spatial arrangement of cameras within the grid.
In this matrix, cells containing cameras are assigned a value of 1, while cells without
cameras are assigned a value of 0.

In this baseline experiment, images are randomly selected from the pool of 900. Each
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image is identified by a unique index number, and when selecting images randomly, a

random selection of n numbers from 0 to 899 is made, followed by the selection of the

corresponding images. Regarding reinforcement learning, the action space is also com-

posed of discrete index numbers ranging from 0 to 899. Selecting one number corresponds

to selecting the respective image. The order of these indices is arranged in ascending or-

der of x and z coordinates to flatten spatial information into one dimension. Thus, this

approach ensures the preservation of spatiotemporal information and ensures the consis-

tency and effectiveness of the experiments.

4.2 Reinforcement Learning Agent and Environment

To implement a more stable and effective reinforcement learning algorithm, we chose

DDQN, which is an improved version of Deep Q-Networks (DQN) that generally exhibits

high performance in Q-learning-based reinforcement learning. Additionally, DDQN helps

mitigate the overestimation bias issue present in DQN. The training steps for the DQN

agent is as follows:

1. Observation of environment and state: Initially, the agent interacts with the

environment and observes the current state. This state could be the pixel values

of a game screen or the sensor data of a robot, for example. In our research, this

state represents the information about which camera position is selected within the

space corresponding to the Unity environment. We represent this information as

a 15*15*4 grid, as shown in the Figure ??. The grid consists of blocks where the

value 1 indicates the coordinates where the camera is positioned, and the value 0

represents empty space in binary.

2. Action selection: Based on the observed state, the agent selects one of the possible

actions. This is done while maintaining a balance between random exploration and

optimal actions, for example, using the ϵ-greedy method. In our model, the agent

selects one of the 900 images by choosing one integer from 0 to 899.

3. Execution of action and acquisition of reward: The selected action is applied
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to the environment, and the agent receives a reward from the environment. At each

step, the NeRF model is trained with the selected images, and rewards are obtained

based on PSNR and SSIM scores. These rewards indicate the performance of taking

a specific action in a given state, and the agent’s goal is to maximize these rewards.

4. Experience storage: The agent stores the state, selected action, reward, and next

state in memory. These experiences are used for future learning. In this experiment,

the reward function is set to vary according to PSNR and SSIM scores.

5. Mini-batch learning: Periodically, the agent selects random mini-batches from

memory and trains the network using the Q-learning algorithm. The double Q-

learning technique, one of the key improvements of DQN, is applied, separating the

Q-values of actions chosen in the current state and actions chosen in the next state

to reduce overestimation bias.

6. Target Q-value computation: DDQN also computes target Q-values using a

target network. This is used during network parameter updates to enhance the

stability of learning.

7. Network update: The network parameters are updated using gradients obtained

from mini-batch learning. This process is performed to more accurately estimate

the value of actions in a given state.

8. Iteration: The above process is repeated, allowing the agent to accumulate ex-

perience, update Q-values, and adapt to the environment to learn better policies.

This enables the agent to select optimal actions and obtain maximum rewards in a

given environment.

4.3 Implementation

In this study, we employed Instant Neural Graphics Primitives (Instant NGP) with

the Neural Radiance Field (NeRF) model. Instant NGP is particularly noted for its
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Figure 2: Overall process of reinforcement learning framework

rapid training times among NeRF models. Given that the reinforcement learning (RL)

agent must train the selected image at each step and perform evaluations to compute

rewards, we prioritized models with swift training capabilities. Instant NGP achieves

comparable quality to state-of-the-art techniques after only a few seconds of training,

facilitating rapid prototyping, iterative experiments, and offering significant benefits for

real-time graphics applications. Despite its quick training time, Instant NGP maintains

high visual quality, including high resolution and detailed local features, enabling more

realistic environment reconstruction.

Furthermore, Instant NGP features an adaptive and efficient model using multi-

resolution hash encoding, which allows for efficient data storage and processing, providing

flexibility for various tasks. Utilizing a multi-layer perceptron (MLP), it demonstrates

excellent performance even with a small model size, conserving storage space and re-

ducing the resources required for model deployment and execution. In our experiments,

training for 1,000 iterations takes approximately one minute, demonstrating remarkably

fast learning as evidenced by the performance detailed in Section 4.

The overall flow of reinforcement learning (RL) training is depicted in Figure 2 and

Algorithm 1. As shown in the figure, we encode the state of the camera distribution in

space to create the model input as a matrix. By placing a grid around the target scene in

the Unity environment and positioning cameras at these grid points, if a cell contains a
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Algorithm 1 Step Procedure in the Environment

Input: The newly selected camera position chosen by the agent.
Output: State S and reward R

1: Update S ← new pose ▷ Update the state matrix as shown in Figure ??
2: Update training dataset← new pose ▷ Include the new pose in the training dataset
3: Train Instant-ngp with the updated training dataset
4: Validate Instant-ngp to obtain PSNR and SSIM metrics
5: R← reward function(PSNR, SSIM) ▷ Compute the reward using Equation ??
6: Output S and R

camera (i.e., a camera is present at that location), the corresponding value in the matrix

is set to 1; otherwise, it is set to 0. This model input is the State S as described in

Algorithm 1. The reinforcement learning model processes this matrix input to generate

the output ẑ from the deep neural network (DNN) model. From ẑ, we extract k actions,

where k is a predetermined hyperparameter representing the number of camera positions

to be predicted at each step. We construct a set K containing the indices of the top-k

values in ẑ. The images corresponding to these indices are then used to train the NeRF

model, from which we obtain the reward.

At each step, the model predicts k new positions, updates S, and computes the reward

R. In this study, we design the reward function using PSNR and SSIM scores. These

rewards are used to update the reinforcement learning model and evaluate the selected k

camera positions. This approach leverages the efficiency and rapid training capabilities of

Instant NGP to facilitate real-time reinforcement learning in dynamic environments. The

adaptive nature of the model, combined with its ability to maintain high visual quality,

makes it a robust solution for applications requiring frequent updates and evaluations of

camera positions.

The proposed Self-supervised NeRF Image Selector (SNIS) is designed to apply the

reward function learning paradigm of reinforcement learning to train a simple structure

neural network. Rather than iteratively selecting images at each episode, our model pre-

dicts image poses in a single inference step utilizing an efficient neural network architec-

ture. This methodology substantially mitigates computational complexity by employing a

lightweight neural network that integrates convolutional neural network (CNN) and mul-

tilayer perceptron (MLP) architectures. The comprehensive process of SNIS is depicted
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Figure 3: Overall process of SNIS framework

in Figure 3. The input to the SNIS model comprises the encoded camera distribution of

the target scene, represented as a matrix where each position is assigned a zero in the

absence of a camera. This matrix constitutes the foundational data from which the SNIS

model generates its output, specifically designed to form the Top-k Index set K. This set

identifies the most pertinent camera positions for subsequent processing.

To facilitate effective training of our network, we generate temporary labels z and their

corresponding inverse labels 1− z. The values at the indices in the index set K are set to

1, while all other positions are set to 0, creating a binary vector z. The inverse labels 1−z

are binary vectors with values flipped from z. When the performance of the NeRF model,

trained with the selected k images, satisfies the predefined criteria, the labels remain as

z. Conversely, if the performance is suboptimal, the inverse labels 1 − z are utilized

for training. This adaptive labeling strategy ensures the network consistently receives

informative feedback, optimizing its learning process. The training of the SNIS network

leverages the label y, with the objective function defined as L(ẑ, y) = CrossEntropy(ẑ, y).

This loss function is instrumental in fine-tuning the network, guiding it towards accurate

predictions of optimal camera positions. By employing this training framework, SNIS

offers a highly efficient and effective method for selecting image poses in NeRF models.

This approach significantly reduces computational overhead, enabling rapid processing

without sacrificing performance quality. Consequently, SNIS is well-suited for real-time

applications and iterative experimentation, providing a robust solution for dynamic and

high-demand environments.
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5 Results and Discussion

In this section, we analyze and compare the NeRF training performance improve-

ments achieved by applying the RL framework and the SNIS methodology. Specifically,

we delve into the efficacy of each approach in enhancing the quality and efficiency of

NeRF training. By systematically applying the RL framework, we assess its ability to it-

eratively optimize camera positions through reinforcement learning, evaluating its impact

on both the training duration and the resultant image quality. On the other hand, we

examine the SNIS methodology’s capacity to streamline the image selection process using

a single-step neural network inference, highlighting its potential to significantly reduce

computational overhead while maintaining high visual fidelity. Furthermore, we explore

a range of experimental configurations to identify the critical factors that contribute to

the optimization of NeRF training. These experiments are designed to investigate vari-

ous elements such as the effect of different neural network architectures, the influence of

hyperparameter settings, and the impact of varying the number of selected camera posi-

tions on the overall performance of NeRF models. By comparing these approaches under

diverse conditions, we aim to provide a comprehensive understanding of the mechanisms

that drive NeRF training optimization.

5.1 Optimal Selection of Camera Positions

5.1.1 Reinforcement Learning for NeRF Training

To evaluate how well reinforcement learning selects optimal images and how beneficial

the images selected by reinforcement learning are for training the NeRF model, we set

two baselines and compare their performance with our approach. First, let us consider

a NeRF model trained with n0 initial images. We train the NeRF model over a pre-

determined number of iterations k, adding more images during each iteration. Thus,

the NeRF model is ultimately trained with n0 + n1 + . . . + nk = N images. The NeRF

model trained with N randomly selected images at once is referred to as Baseline 1. For

Baseline 2, we start with a NeRF model trained with n0 images and then further train
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(a) Reference Images (b) Samples from 5.2 (c) Samples from 5.1.1

Figure 4: Sample evaluation result images. Column (b) shows the evaluation results from
5.2, which trained the NeRF network with 100 images with SNIS. Column (b) shows
the evaluation results from 5.1.1, which trained the NeRF network with 130 randomly
sampled images.
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it with additional n1 + . . . + nk images in the same configuration as our reinforcement

learning approach.

For each case, the number of iterations is fixed at 20,000. The final performance metric

is the average of 100 training runs for each scenario. Given a model initially trained with

n0 random images, the results of using reinforcement learning to select and train with

additional n1 + . . .+ nk images are shown in Figure 5. The training was conducted over

a total of 100 episodes, with the early episodes represented by blue points and the later

episodes by red points. Since DDQN was used, the evaluations with the target network

are shown with the yellow line. ”All random BL” refers to Baseline 1, which is the model

trained with N random sample images at once, and ”Ini + addi BL” refers to Baseline 2,

which is the model trained initially with n0 images followed by additional training with

the remaining images. Sample evaluation result of Baseline 1 with N = 130 is represented

in Figure 4.

In the graph, the x-axis represents the iteration for NeRF training. In this experiment,

k = 10, meaning the image selection and performance improvement processes for the

NeRF model were carried out over 10 iterations. A large reward was given when Baseline

2 was exceeded, and moderate rewards were given whenever there were slight performance

improvements.

The results indicate that while Baseline 1 is easily surpassed, Baseline 2 proves to be

a more challenging benchmark. It can be observed that the models struggle to consis-

tently outperform Baseline 2. This is especially evident in the evaluations shown with

the yellow line, where the performance consistently falls short of exceeding Baseline 2.

Despite surpassing Baseline 1 with relative ease, the difficulty in surpassing Baseline 2

highlights the increased challenge posed by this benchmark. The yellow line evaluations,

which represent the target network evaluations using DDQN, consistently fail to outper-

form either of the baselines, demonstrating the significant difficulty in achieving superior

performance compared to Baseline 2. The results for the experiment where k is reduced

to 5 are shown in the Figure 6. In this scenario, the number of camera poses predicted

by the RL agent at each step is increased to 10, with n1 = n2 = . . . = n5 = 10. In this
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(a) 80 randomly sampled images + 50 images selected by RL

(b) 100 randomly sampled images + 50 images selected by RL

Figure 5: Performance comparison of training with RL (our method) and randomly
sampled images, when k is 10.

case, the model ultimately fails to surpass Baseline 2 as well consistently.

To enhance the effectiveness of the reinforcement learning (RL) agent’s training, an

experiment was conducted in which episodes were terminated with a substantial reward

once a predetermined criterion was met. The results of this experiment with k = 10

are illustrated in Figure 7. As in previous figures, the red lines represent more recent

performance, while the blue lines indicate initial performance. The yellow line represents

evaluation performance. When these lines exceed the Baseline 2 score, the episode ter-

minates. As observed, the impact on the agent’s learning efficiency remains modest. By

setting the episodes to conclude upon exceeding a specific threshold, it was anticipated

that this approach would significantly improve learning outcomes. However, the results

did not meet these expectations. As depicted in Figure 7, the strategy of terminating
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(a) 80 randomly sampled images + 50 images selected by RL

(b) 100 randomly sampled images + 50 images selected by RL

Figure 6: Performance comparison of training with RL (our method) and randomly
sampled images, when k is 5.

episodes upon reaching the defined criterion did not lead to a notable improvement in

the agent’s performance. This suggests that concluding episodes when the RL agent

surpasses a set threshold may not substantially enhance learning efficiency.

5.1.2 Self-supervised NeRF Image Selector (SNIS)

We also proposed a self-supervised SNIS with a simple neural network structure. In

this case, since images are not selected iteratively, k = 1. Therefore, when a NeRF model

is already trained with n0 images, SNIS predicts n1 camera positions. We experimented

with n1 = 50 for the cases where n0 is 80, 100, and 150. The results are shown in Figure 8.

In the graph, we chose Baseline 1 from the previous section as the baseline, which has the

same number of randomly selected images and the same iteration number configuration.
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(a) 80 randomly sampled images + 50 images selected by RL

(b) 100 randomly sampled images + 50 images selected by RL

Figure 7: Performance comparison of training with RL where the episode ends once scores
exceed the baseline.

Given that NeRF training is highly susceptible to random noise, we conducted exper-

iments using various random seeds. The graph illustrates that, in the majority of cases,

the performance of SNIS training surpasses the baseline before stabilizing within five iter-

ations of image selection. This stability is attributed to the learning method where, upon

selecting an optimal camera pose, the loss function is structured to favor the selection of

similar camera poses, thereby updating the SNIS weights accordingly. Even if the per-

formance is suboptimal during the initial iterations, once a good result is achieved, the

SNIS weights are updated to reflect this improvement, allowing the model to consistently

surpass the baseline performance. These results demonstrate the effectiveness of the SNIS

approach in selecting optimal camera poses, highlighting the improved training efficiency

and performance of NeRF models. Particularly in scenarios where iterative selection and
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(a) 80 randomly sampled images + 50 images selected by RL

(b) 100 randomly sampled images + 50 images selected by RL

(c) 150 randomly sampled images + 50 images selected by RL

Figure 8: Performance comparison of training with RL (our method) and randomly
sampled images. The yellow line shows the baseline performance in which images are
randomly selected. The brighter yellow line and the darker one indicate BL2 and BL1,
respectively. Blue bars represent the ranges of 15 different random seed experiments.
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training can be costly or impractical, SNIS can be a promising alternative for achieving

good results with low computational requirements.

The reinforcement learning (RL) approach exhibited suboptimal performance, con-

sistently failing to surpass the baseline. Furthermore, it required a substantial num-

ber of iterations, with each step necessitating a fixed number of iterations for training.

This extensive computational demand resulted in prolonged training times, making the

RL approach less efficient and more resource-intensive. In contrast, the SNIS approach

demonstrated the capability to surpass the baseline with significantly fewer iterations,

maintaining stable and reliable performance throughout. This efficiency, coupled with its

ability to achieve superior results in a shorter time frame, underscores the advantages of

SNIS over RL.

Given these findings, we have decided to shift our focus toward SNIS for further

experimentation. By concentrating our efforts on this method, we aim to explore its full

potential and further validate its effectiveness in optimizing camera pose selection and

enhancing the performance of NeRF models.

5.2 SNIS Performance of Training from Scratch

Figure 9: Performance of training from scratch with 130 images. The yellow line shows the
baseline performance, where 130 images are randomly selected. Each blue bar represents
the range of 15 different random seed experiments.

In addition to experiments with initial images already present, we also conducted

experiments where no existing cameras are available, setting n0 = 0 and n1 = N , N ∈

100, 150, 200. In this scenario, the SNIS input is simply an empty zero matrix. This setup
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height
Image Number

Random Selection
SNIS

Mean after iter=10 Max performance
PSNR SSIM PSNR SSIM PSNR SSIM

100 23.7269 0.8899 24.0438 0.8976 24.912 0.9074
150 24.4078 0.9016 25.3959 0.9149 25.911 0.9199
200 24.896 0.9086 25.786375 0.9208 26.519 0.9273

Table 1: Training results for different image number sets. ’Mean after iter=10’ indicates
the average performance score after the SNIS prediction has stabilized. ’Max performance’
represents the highest performance scores achieved.

allows us to evaluate whether SNIS can achieve performance that surpasses the baseline

without referencing the existing camera distribution.

As shown in Figure 9 and Table 1, even when starting from scratch, the image selection

using SNIS significantly outperforms the random image selection method. When n1 =

100, the sample images are visualized in Figure 4. This improvement is due to the

ability of SNIS to identify and prioritize optimal camera poses from the outset, thereby

facilitating more efficient and effective training. From these results, it is evident that SNIS

is capable of providing substantial performance enhancements over random selection, even

in scenarios where no initial camera data is available. This highlights the robustness and

versatility of the SNIS approach in optimizing NeRF model training.

5.3 Investigation for Image Number Configuration

To determine the optimal extent of existing camera distribution for SNIS to achieve the

best performance relative to the baseline, we conducted experiments by varying n0 and n1.

We fixed n0+n1 = N = 150 and tested scenarios with n0 = 0, 5, 10, 20 . . . , 120, 140, 145, 150

and n1 = N − n0. The results of these experiments, showing the average performance

over 5 trials at 30 iterations, are summarized in the Figure 10.

The bars represent the minimum and maximum performance values after 5 iterations

of training, reflecting the range of performance stabilization. The solid line graph rep-

resents the average performance values across 5 trials at the conclusion of the training

phase. From this graph, it is evident that our model achieves its highest performance

when n0 = 30 and n1 = 120. However, there is a noticeable decline in performance for the
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Figure 10: Performance of training from scratch.

n1 PSNR SSIM n1 PSNR SSIM
0 24.4077 0.9016452 80 25.047 0.9065955
5 24.6704 0.9042506 100 25.489 0.913193
10 24.7776 0.9053156 120 25.5255 0.9141115
20 25.076 0.9090505 140 23.6584 0.8892766
40 24.7625 0.9064165 145 21.8358 0.8528506
60 24.7995 0.905633 150 24.7765 0.9067615

Table 2: Detailed scores of PSNR and SSIM of each n1 case. Each score is the average
of 5 trials. The total training Image number is n0 + n1 = N = 150.

case of n1 = 140 and 145. This decline can be attributed to the specific characteristics of

the NeRF model utilized in our experiments (Instant-NGP). The Instant NGP tends to

exhibit poor learning progression when an excessively small number of images are used

during the initial training phase. In this case, the model was initially trained using only

10 and 5 random images. Subsequently, the training continued with 140 and 145 im-

ages predicted by SNIS. The inadequate initial training with a few images hindered the

model’s ability to learn effectively in later stages, resulting in diminished performance.

Conversely, for the case of n0 = 150, the model was trained directly with the images

predicted by SNIS, without prior training on a smaller set of images. This approach led

to a significantly better performance compared to the case of n0 = 145. The detailed

numeric scores are represented in Table 2

By adjusting the values of n0 and n1, we aimed to identify the optimal balance that

allows SNIS to maximize its effectiveness. The table provides a clear comparison of the

performance metrics, offering insights into how different initial distributions of camera

poses influence the efficiency and accuracy of the SNIS approach.
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5.4 Label Coefficient Exploration

To further optimize SNIS, we introduced a parameter called alpha when creating the

jet vector. Alpha is defined and utilized in the following equation to adjust the training

process of SNIS: y = α∗z if NeRF training score > history scores. This equation implies

that during training, if the NeRF training score reaches a new peak, the corresponding

label is given additional weight. We conducted experiments with alpha values set to 1,

2, 5, and 20. When alpha is 1, the equation simplifies to y = z, meaning no additional

weight is applied. The graph in Figure 11 illustrates the results of these experiments.

This outcome suggests that introducing additional weights to the labels when the NeRF

training achieves the new best score does not necessarily enhance the learning process

of SNIS. Instead, it indicates that small values of α lead to comparably stable training

results.

From these findings, we can infer that adding complexity through the alpha param-

eter may not always be beneficial. This insight is crucial for developing more efficient

training strategies for SNIS, highlighting the importance of simplicity in optimizing the

training process. In conclusion, our experiments demonstrate that while it is possible to

adjust the training process of SNIS by introducing parameters such as alpha, the simplest

approach—where y = z—proves to be the most effective. This discovery underscores the

value of simplicity in the training algorithms and suggests that further research should

focus on refining straightforward methods to enhance SNIS performance.

6 Conclusion

In this study, we conducted a comprehensive analysis of the NeRF training perfor-

mance improvements achieved by applying both reinforcement learning (RL) and the

Self-supervised NeRF Image Selector (SNIS) methodology. Our investigation focused

on the efficacy of each approach in enhancing the quality and efficiency of NeRF train-

ing, considering various experimental configurations and performance metrics. The RL

framework was designed to iteratively optimize camera positions through reinforcement
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(a) α = 1

(b) α = 2

(c) α = 5

(d) α = 20

Figure 11: Performance comparison of training with various value of α where label y =
α ∗ z.
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learning, which indicated that this approach had a modest impact on learning efficiency.

Specifically, using RL for the training NeRF model where episodes were terminated with

substantial rewards upon meeting a predetermined criterion did not yield the anticipated

improvements. This suggests that the strategy of selecting new images by training RL

agent may not significantly enhance the efficiency of reinforcement learning in NeRF

training.

In contrast, the Self-supervised NeRF Image Selector (SNIS) methodology demon-

strated a remarkable capacity to streamline the image selection process using a single-step

neural network inference. The experiments showed that when compared to both Baseline

1 and Baseline 2, SNIS consistently achieved superior performance. The stability of SNIS

performance, even after a small number of training iterations, highlights its robustness

and efficiency. Our experiments also explored the impact of different configurations, such

as varying the number of initial images (n0) and the additional images predicted by SNIS

(n1). We found that the model achieved its highest performance when n0 was set to 30

and n1 to 120. However, performance declined when n1 was set to 140 and 145, likely

due to the inadequate initial training with few images. Conversely, direct training with

150 images predicted by SNIS, without prior training on a smaller set, led to significantly

better performance.

Moreover, we evaluated the SNIS performance from scratch, setting n0 to 0 and n1

to N. The results were compelling, as SNIS significantly outperformed random image

selection, demonstrating its ability to identify and prioritize optimal camera poses from

the outset. This highlights the versatility and robustness of SNIS in optimizing NeRF

model training, even in the absence of initial camera data.

To sum up, the reinforcement learning approach exhibited suboptimal performance

and required extensive computational resources. The need for a substantial number of

iterations and the fixed number of iterations per step resulted in prolonged training times,

making this approach less efficient and more resource-intensive compared to SNIS. Fu-

ture research will delve deeper into the optimization of SNIS parameters and explore its

integration with other advanced neural network architectures. Additionally, we plan to
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investigate the potential of combining SNIS with other machine learning techniques to

further enhance its performance. By continuing to refine and validate the SNIS method-

ology, we hope to contribute to the development of more efficient and effective NeRF

training frameworks, ultimately advancing the state-of-the-art in 3D scene reconstruc-

tion and rendering technologies.
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