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Abstract

Optimizing for the Future Smart Grid:
Efficient Methods for Nonconvex AC Power Flow Problems

by

Elizabeth Glista

Doctor of Philosophy in Engineering – Mechanical Engineering

University of California, Berkeley

Assistant Professor Somayeh Sojoudi, Chair

The increased electrification of society and calls for improvements in electrical grid reliability
lend renewed attention to the domain of power systems optimization. For the future smart
grid, it will be crucial both to find better solutions to classical power grid optimization
problems such as optimal power flow (OPF) and state estimation (SE) as well as to develop
new optimization methods for the updated physical systems. Due to the nonlinearity of
alternating current (AC), many optimization problems in power systems are nonlinear and
nonconvex and thus are hard to solve with existing fast convex methods. In this dissertation,
we propose some efficient methods related to the OPF, post-contingency OPF, SE, and
power flow (PF) problems. These methods provide new optimization and machine learning
frameworks for ensuring the reliable and efficient operation of the power grid.

The OPF problem is an important tool for power systems operation that aims to minimize
the cost of electric power generation subject to consumer demand, the physics of power flow,
and technological constraints. OPF is a nonconvex problem that is known to have many local
minima in realistic test cases. Inspired by the frequent use of local search methods to solve
OPF, which may result in sub-optimal solutions and provide no guarantee on the quality of
the solution, we propose a convex method to bound the worst-case local minimum that can be
obtained by a local solver. In order to formulate the problem of finding the worst-case local
minimum of OPF, we start with a version of OPF modeled as a quadratically-constrained
quadratic program (QCQP) and characterize the local minima of the QCQP using first-
and second-order necessary optimality conditions. Because this derived worst-case local
minimum problem is also nonconvex, we implement a convex relaxation of the problem into
a semidefinite program (SDP) and show that it is exact for certain cases. Using some test
cases which are known to have multiple local minima, we demonstrate the effectiveness of
the proposed relaxation to bound the worst-case local minimum. We compare the obtained
upper bound on local minima to the lower bound provided by the standard SDP relaxation
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of the OPF problem to understand how much SDP outperforms local search for a given
problem.

In anticipation of component failures, such as transmission line or generator outages, it is also
important to incorporate contingency scenarios into OPF, yielding the security-constrained
OPF (SCOPF) problem and the related post-contingency OPF problem. However, finding
an optimal, or even feasible, post-contingency solution to the OPF problem is challenging
due to the nonconvexity of the power flow equations and the large number of possible con-
tingency cases in practice. With the goal of finding a global solution to the post-contingency
OPF problem of a stressed network, e.g. a network with a line or generator outage, we apply
a new homotopy method to the problem. By parametrizing the constraint set, we define
a series of optimization problems to represent a gradual outage and iteratively solve these
problems using local search. Using this homotopy method, we can find solutions to stressed
problems that did not initially converge or had a suboptimal cost. Under the condition that
the global minimum of the OPF problem for the base case is attainable, we find theoretical
guarantees to ensure that the post-contingency OPF problem will also converge to its global
minimum. With simulations on Polish and other European networks, we demonstrate that
the effectiveness of the proposed homotopy method is dependent on the choice of the ho-
motopy path and that homotopy yields an improved solution in many cases. For at least
5% of the test cases, bad local minima were identified, and the homotopy method yielded a
solution that was significantly better than state-of-the-art interior point methods in terms
of reducing the violation cost during a catastrophic contingency scenario.

After considering the classical OPF and post-contingency OPF problems, we focus on new
SE- and PF-related problems that aim to make use of the large amounts of data that are
increasingly available for power networks. The reliability of the electric power grid is linked
to the reliability of measured data which is used to understand the current state of the
system. Determining the current state of the electric grid is the basis for decision-making
related both to the normal operation of the grid as well as to operations in the case of an
emergency scenario. When some of this data is corrupted in the case of a cyberattack, it
is important that we can recover the true state of the system via SE. Inspired by recent
works in two-stage power systems SE, we propose a novel method using a notion in machine
learning to optimize the choice of measurements in a given power network, formulating the
problem as a mixed-integer linear program (MILP). Using this MILP, we study some test
cases and show that it is impossible to certify that the network is fully robust in the case of
bad data. However, we propose a method to optimally place the sensors in order to make
the network more robust in the case of cyberattacks.

Understanding an electric power system’s topology, including both its nodal connectivity and
physical parameters, is critically important to the reliable operation and control of the power
grid. In cases where this power system topology may be unavailable, due to data collection
deficiencies, real-time line switching, or intentional cyberattacks, it is important to be able to
estimate the real power system topology with high accuracy. We propose a new data-driven
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constrained support vector regression (SVR) method that aims to map voltage data collected
from phasor measurement units (PMUs) to data collected by Supervisory Data Acquisition
and Control (SCADA) systems. We show that the dual of the constrained SVR model can
be formulated as a quadratic program (QP) and solved efficiently with off-the-shelf solvers.
Testing our method on standard IEEE test cases, we demonstrate that our proposed method
significantly outperforms existing state-of-the-art SVR methods in learning the true network
topology, even in the presence of measurement noise, outliers, and missing data.
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Chapter 1

Background & Motivation

The power grid in the continental U.S. connects 145 million customers to over 7,300 power
plants with around 160,000 miles of high-voltage power lines and millions of low-voltage
power lines and transformers [1]. The traditional grid infrastructure follows a centralized,
tree-like approach, wherein power is generated at a few large power plants and then transmit-
ted to substations that distribute power to consumers [2]. In the power systems community,
the phrase “smart grid” is used to describe a vision of a future grid which integrates an
advanced metering infrastructure with renewable energy sources and automated building
controls [2, 3]. In this future decentralized grid, consumers actively participate by sending
energy from renewable energy sources back into the grid [2]. We are on the path to realize
this vision as renewable energy sources have become increasingly important in the operation
of the U.S. power system. Renewable energy generation doubled between 2008 and 2018,
accounting for 17.6% of electricity generation in 2018 [4]. However, after the recent power
outages in California and Texas, which resulted in hundreds of deaths and billions of dollars
in property damage [5–7], it appears that the “smart grid” is still a distant concept. In the
following sections, we discuss some challenges and opportunities faced by the power systems
community in dealing with both legacy and smart grid systems.

1.1 Challenges with Scalability

The enormous scale of this U.S. power system means that it is computationally intractable
to solve many critical power flow problems, such as optimal power flow (OPF), over the
complete network with existing techniques. For example, a realistic case of OPF has around
104 variables and 106 constraints and must be solved within a five-minute operating window
[8]. Thus, in practice, a large network such as the U.S. power system is divided into smaller
regions, but this strategy fails to take into account the global effects of local decisions. Poor
local decisions can result in cascading failures in the interconnected network, as was the case
for the Northeast blackout of 2003 which affected around 50 million people [9].

To achieve reliability in the U.S. power system, the system is divided into three in-
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terconnections — Eastern, Western, and Texas (ERCOT) — which operate primarily as
independent power distribution and transmission networks [1]. The operation of the elec-
tric system within these interconnections is controlled by independent systems operators
(ISOs) and certain utilities companies which function as “balancing authorities” [1]. The
continental U.S. has 66 of these balancing authorities, which are responsible for ensuring
the balance between power supply and consumer demand over the network [1]. Ideally, the
OPF problem would be solved over each of the three U.S. interconnections; however, this
is computationally intractable within the required operating window. To solve the problem
in practice, each of the 66 balancing authorities solves the OPF problem, which reduces the
size of the network for each problem.

1.2 Challenges with Optimality

Due to the nonlinear nature of the physics of alternating current (AC), many fundamental
power systems optimization problems such as OPF and state estimation (SE) are nonconvex.
The nonconvex nature of these problems means that modern algorithms, which are efficient
for solving convex optimization problems to global optimality, may not be able to find the
global minimum of these nonconvex problems that may have many local minima.

The current industry practice for solving nonconvex power systems optimization problems
within desired time limits is to simplify the AC power flow equations to a linearized (DC)
version for the optimization stage and then use heuristics to generate a feasible AC power
flow solution [10]. This method leads to an operating point which may not be a global
let alone local solution to the original problem. For example, the DC-OPF approximation
is only valid if voltage magnitudes are within tight bounds (per unit voltage magnitude is
approximately 1) and voltage phase angle differences are small between buses. The DC-
OPF approximation ignores important physics in AC power flow, such as reactive power and
voltage magnitudes, and may lead to a suboptimal solution. Based on the approximate cost
of electric power production, a 1% difference between a local and a global minimum of the
OPF problem would equate to between 1 and 5 billion dollars annually in the U.S. [8].

Modern interior point methods have been shown to efficiently solve AC-OPF and other
nonconvex PF-related problems such as SE but provide no guarantee on the quality of the
solution and may find a local minimum [11–13]. The development of optimization methods
with global guarantees, such as the relaxation of a nonconvex program into a convex program,
is promising for finding globally optimal solutions to these problems [14]. If one is able to find
a solution to a convex relaxation that is feasible for the original problem, it is guaranteed
that the point is globally optimal for the original problem. In recent years, relaxations
of OPF into semidefinite programs (SDPs) and second-order cone programs (SOCPs) have
gained attention [15, 16]. However, solving a convexified problem still requires a high level
of computational complexity, and its solution may not be feasible for the original problem,
although it provides a lower bound on the original solution. While the solution to the SDP
relaxation of OPF has been shown to be “exact,” i.e. feasible for the original problem and
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achieving global optimality, in certain real-world cases [17–22], these conditions are not met
in general for power networks. It has also been shown that several realistic OPF test cases
have many local minima due to cyclic network structures, excess real or reactive power,
large phase angle differences across lines, or other reasons [23]. Some work has been done
to address the non-zero duality gap by adding valid inequalities, by using branch-and-cut
approaches, or by implementing Lasserre hierarchies [24–26]. However, none of these convex
relaxation methods are able to guarantee the recovery of a feasible solution to the original
nonconvex problem for large-scale networks in the desired timeframe. In Chapter 2, we
leverage SDP relaxation techniques to study the problem of finding the worst-case local
minimum of the OPF problem.1

1.3 Impact of Renewable and Distributed Energy

Generation

Renewable and distributed energy sources have become increasingly important in the oper-
ation of the U.S. power system [4]. Adding renewable sources to the power system creates
new problems for finding solutions to classical problems such as OPF that make use of the
AC power flow equations. Consumers with solar panels on their homes may add power back
into the power network, making the network structure more cyclic and leading to a greater
number of local optima in the OPF problem [23]. Replacing thousands of generators with
tens of thousands of solar panels increases the scale of classical problems, and dependency on
wind power adds uncertainty to the power generation model. As renewable energy sources
generate an increasing share of U.S. electrical power, the importance of solving PF-based
problems on a mega-scale will grow.

1.4 Reliability in Case of Outages

The security of a power system in case of a contingency, such as a line or generator outage, is a
critical problem to ensuring grid reliability, classically formulated as the security-constrained
OPF (SCOPF) problem [28, 29]. While solving the SCOPF problem is difficult due to the
large number of contingencies, a variety of decomposition and approximation methods have
been effectively used on the problem [30–34]. The SCOPF problem solves for the optimal
operating point under normal conditions, i.e. a version of the base-OPF problem, provided
that some contingencies are possible. The related problem of contingency-OPF aims to find
the optimal operating point under the contingency scenario.

In addition to the existing difficulties solving OPF-based problems to global optimality,
the contingency-OPF problem faces further complications: a contingency creates an abrupt
change in the system, causing a disconnection between the base-OPF and the contingency-
OPF. The disconnection suggests that the initial point that is either provided to or obtained

1Chapter 2 includes materials from [27] that were previously published.
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from the base-OPF may not be desirable for the contingency-OPF and can mislead any
local search algorithms to become stuck at poor local solutions. In Chapter 3, we present a
homotopy-based method for finding better solutions to contingency-OPF problems.2

1.5 Prevalence of Cyberattacks

On December 23, 2015, a coordinated cyberattack hit three Ukrainian regional electric power
distribution companies, resulting in outages for approximately 225,000 different customers
[38]. It was determined that the outages were due to the hacking and hijack of the Supervisory
Control and Data Acquisition (SCADA) systems [38]. The 2015 Ukrainian attack was the
first publicly acknowledged grid attack, and the risk of cyberattacks on SCADA systems
continues to pose national security and grid reliability concerns [39, 40].

The 2015 Ukrainian attack demonstrated that many of the academic assumptions in
the false data injection attack (FDIA) literature regarding knowledge of cyberattackers are
plausible, including that attackers are capable of manipulating SCADA measurements and
may be aware of the network topology [41]. An FDIA corresponds to modifying stored or
transmitted data in the power system and can affect any process that uses measured data,
including SE [42, 43]. SE is a fundamental problem in power systems operation and is
performed every few minutes to monitor the state of a transmission or distribution network
[44]. FDIAs can lead the state estimator to find a perceived state that is wrong, leading to
bad decisions for real-time grid operation and control. Even if the attack is detected, part of
the system may become unobservable due to the measurement corruption [43]. Due to the
interconnected nature of the grid, a local physical attack may have effects that propagate to a
larger region, impacting overall system observability. System observability and SE robustness
against cyberattacks are directly related to the choice of sensors in a power system [45, 46].
In Chapter 4, we propose a method to optimally place sensors in a power system in order to
ensure the robustness of a state estimator in case of cyberattack.3

1.6 Abundance of System Data

One component of the smart grid vision is an advanced sensing infrastructure, which includes
smart meters and phasor measurement units (PMUs) [3, 48]. With an increase in the number
of physical sensors as well as an increase in data sampling rates, the amount of data available
and the opportunities for big data methods in the power systems domain continues to grow
[49]. Several machine learning (ML) methods have been proposed to exploit these large
datasets in order to learn power flow and OPF mappings [50–54]. While some recent papers
use ML techniques to effectively map the power flow equations when a network’s topology

2Chapter 3 includes materials from [35, 36] that were previously published. Some of this material also
appears in [37] due to the collaborative nature of this work with SangWoo Park.

3Chapter 4 includes materials from [47] that were previously published.
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or parameters are uncertain, these ML-based methods fail to account for the fundamental
physics of power networks [55, 56]. In Chapter 5, we develop a new data-driven and physics-
based method for learning a power system’s true topology and parameters that outperforms
existing methods.4
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Chapter 2

The Worst-case Local Minimum of
Optimal Power Flow

In this chapter, we present a convex model to evaluate the worst-case performance of local
search in the optimal power flow problem.1

2.1 Introduction

Optimal power flow (OPF) is a fundamental problem in power systems analysis that is
solved approximately every five minutes to find the steady-state operating point of power
flow over a network [2, 3]. The goal of this problem is to minimize the cost of electric
power generation subject to consumer demand, the physical constraints of power flow, and
technological bounds on voltage magnitude, power generation, and transmission line flow.
The nonlinearity of alternating current (AC) and the bounds on voltage magnitude create
nonconvexity in the feasible region of the OPF problem [4, 5].

The nonconvex nature of OPF makes it NP-hard to find a globally optimal solution to the
problem in general [6, 7]. However, finding a globally optimal solution to OPF via scalable,
fast methods remains a critical problem in power systems [3]. OPF is highly important to
ensure the reliable and efficient operation of the U.S. power grid. By finding a better solution
to the OPF problem over the U.S. power grid, it is likely that we would save billions of dollars
each year [3]. Additionally, by finding a more optimal solution to OPF, we could reduce the
amount of energy generation needed to satisfy the same amount of consumer demand, thereby
reducing dependence on fossil fuels without lowering the standard of living.

The OPF problem is related to a variety of other problems, such as security-constrained
optimal power flow (SCOPF) and unit commitment (UC) [8–11]. SCOPF is the version of
OPF typically solved in industry practice, as it ensures that the solution to OPF is robust to
contingency scenarios, such as transmission line or generator outages [12]. In this chapter,
we examine the OPF problem, noting that the results developed here could be applied to any

1Chapter 2 includes materials from [1] that were previously published.
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of these OPF-based problems. Additionally, since we develop results for the OPF problem
formulated as a canonical quadratically-constrained quadratic program (QCQP), it is clear
that many of the following results can apply to the broader class of nonconvex problems
that can be formulated as QCQPs, which are relevant to many domains including signal
processing and financial engineering such as in [13–15].

2.1.1 Existing Methods to Solve OPF

Two categories of well-studied techniques for solving the OPF problem are local search
methods and conic relaxations [16, 17]. Because the functions in the OPF problem are
typically continuous and twice differentiable, iterative local search methods that make use of
second-order derivatives are often implemented [16]. Two classical iterative search methods
for solving OPF are the Newton-Raphson and Gauss-Seidel methods, which are variations
of gradient descent [16, 18].

Barrier and interior point methods are the most commonly used local search methods
for solving OPF, and there exist a variety of algorithms based on these approaches [19–23].
These methods have been shown to efficiently find a solution to the OPF problem if a feasible
point is available. More recent work has been done to apply homotopy methods to solving
OPF [24, 25]. While these local search methods have been shown to efficiently find solutions
to OPF problems for many cases, they cannot be guaranteed to find a globally optimal, let
alone feasible, solution. They are also highly dependent on a good choice of the initial point,
which can be hard to find in general.

Another area of research concerns optimization methods with global guarantees, typically
in the form of conic relaxations of the original OPF problem. The paper [26] first developed
the semidefinite programming (SDP) relaxation for the OPF problem in the real domain.
In the following years, the SDP relaxation of the OPF problem has gained attention due to
several papers which show that the relaxation has a zero duality gap in certain cases [27],
implying that the SDP relaxation yields an exact solution to the original problem for many
real-world networks [28–31]. Nonetheless, there exist other realistic cases where there is a
non-zero duality gap, either due to the physics of the problem or the problem formulation
itself [32–34]. In these cases, the SDP relaxation can fail to find a feasible and globally
optimal solution to the OPF problem.

Other types of conic relaxations, such as quadratic programming and second-order cone
programming relaxations, of the OPF problem have been proposed [35], but these are typ-
ically dominated by the SDP relaxation [29]. More recent work has aimed to strengthen
existing conic relaxations by adding valid inequalities or using branch-and-cut approaches
[36, 37]. However, these methods cannot promise an exact solution to the original problem
in general.
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2.1.2 Existence of Local Optima

In practice, OPF solutions have been shown to be unique, i.e. there is typically only one
globally optimal solution to the problem [4]. Due to the nonconvex nature of the OPF
problem, there also may be many local optima. The possible existence of local optima
in the OPF problem is due to the intersection of nonlinear constraints from the physics of
power flow and the rest of the convex constraints. If the intersection of constraints results in a
disconnected feasible region for the problem, local optima will exist. Since each disconnected
feasible region has an optimal point for that region, there will be at least as many local optima
as there are disconnected feasible regions.

It has been shown that several realistic OPF test cases have many local minima [4].
Typical networks with many local minima include cyclic networks with losses or networks
with large phase angle differences. A few possible causes of local minima are:

• Loop flow with losses: Since voltage phases must sum to zero around a loop but
any increment of 2π (i.e. 2πk, k = 0, 1, 2, ...) is valid, there are multiple feasible,
disconnected operating regions. The circulating flow results in extra line losses, yielding
local optima in the problem.

• Reduced loads or excess reactive power: Reducing the loads in the network leads
to excess reactive power since loads absorb reactive power. If a line has phase angle
difference θij, the reactive power absorbed and real power lost in the line are both
proportional to 1− cos (θij), so increasing the reactive power absorbed in a line would
increase the real power lost when θij is held constant. When there is excess reactive
power in the network, there is an advantage to increasing the reactive power absorbed
in the network by choosing a high value for 1− cos (θij). This expression takes a high
value at either small or large θij, which leads to local optima.

• Excess real power: When there is excess real power in the network, there is also an
advantage to increasing 1− cos (θij), which increases the real power lost in a line. This
leads to local optima as described for excess reactive power. Excess real power in the
network can yield negative real power marginal prices, which are a documented case
of problems with local optima for which the SDP method fails [33].

• Large phase angle differences: When the voltage phase angle differences are too
large across lines, the feasible region may be widened such that it includes discontinu-
ities, resulting in a nonconvex feasible region.

While conic relaxation methods may find the global solution to many cases with local
minima, they fail in some of these cases, such as when there is excess real power in the
network or when the system is under stress [33, 38]. Additionally, there is no efficient way to
characterize all the local minima of the OPF problem. (Note that if there were, the original
problem would be easy to solve to global optimality.) To find a collection of local minima,
Monte-Carlo simulations with a randomization of the initial point used in the local search
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method could be implemented. With this procedure, one may find many local minima but
cannot guarantee that all the local minima of the problem have been detected.

2.1.3 Contributions

In this chapter, we propose a new method to characterize the worst-case local minimum of
the OPF problem. This allows us to quantify the quality of the solution obtained from a
local search method, independent of the initial point. In order to find the worst-case local
minimum of the OPF problem, we formulate a new maximization problem based on the
first-order and second-order optimality conditions applied to a QCQP model of the OPF.
Since this problem is also nonconvex, we propose an SDP relaxation to find an upper bound
on the worst-case local minimum of the original OPF problem. We prove that this SDP
relaxation is exact in a special case. While this relaxation is not tight in general, we show
that high-quality solutions can be obtained with the introduction of a penalty term. We
test the proposed SDP relaxation of the worst-case local minimum on benchmark networks
and compare its solution to known local minima for these networks. By comparing this
upper bound on the unknown local minima with the lower bound on the global minimum
obtained from the SDP relaxation of the original problem, one can bound the range of
solutions obtained from a local search method. We interpret this distance as a measure of
the hardness of the problem, i.e. an estimate of how far apart the global minimum is from
the worst-case local minimum, and thus as a measure for the usefulness of convex relaxation
techniques to improve solution quality.

2.1.4 Notations

The symbols R and C denote the sets of real and complex numbers, respectively. RN and
CN denote the spaces of N -dimensional real and complex vectors, respectively. The symbol
SN denotes the space of N × N symmetric real matrices. The symbol 0N denotes an N -
dimensional vector of zeros. The symbols (·)T and (·)∗ denote the transpose and conjugate
transpose of a vector or matrix. Re{·} and Im{·} denote the real and imaginary part of a
given scalar or matrix. The symbol | · | is the absolute value operator if the argument is a
scalar, vector, or matrix; otherwise, it is the cardinality of a measurable set. The imaginary
unit is denoted by j =

√
−1. Given a function f(x, ·), ∇xf(x, ·) and ∇2

xf(x, ·) denote the
Jacobian and Hessian of f with respect to x, respectively.

2.2 Problem Formulation

In this section, we present the mathematical formulations for the OPF problem and the new
problem of finding the worst-case local minimum of the OPF problem. In order to understand
the intuition behind the problem of finding the worst-case local minimum, Figure 2.1 presents
the problem for a one-dimensional minimization problem.
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Figure 2.1: The worst-case local minimum problem for a one-dimensional unconstrained
optimization problem, i.e. minx∈R f(x). The feasible set of the worst-case local minimum
problem is the collection of local minima, shown as orange dots. The objective of the worst-
case local minimum problem is the maximum of these minima, highlighted by a dashed
yellow line.

2.2.1 Classical AC-OPF Problem

Let the power network be defined by a graph N (V , E), where V is the set of buses and E is
the set of transmission or distribution lines. Let G ⊆ V be the set of buses that are attached
to generators.

The classical OPF problem can be written as:

min
v∈C|V|

∑
i∈G

fi(p
g
i ) (2.1a)

s.t. P g
i ≤ pgi ≤ P g

i , ∀i ∈ G (2.1b)

Qg
i ≤ qgi ≤ Qg

i , ∀i ∈ G (2.1c)

Vi ≤ |vi| ≤ Vi, ∀i ∈ V (2.1d)

pgi − P d
i =

∑
(i,j)∈E

Re{vi(vi − vj)∗Y ∗
ij}, ∀i ∈ G (2.1e)
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qgi −Qd
i =

∑
(i,j)∈E

Im{vi(vi − vj)∗Y ∗
ij}, ∀i ∈ G (2.1f)

− P d
i =

∑
(i,j)∈E

Re{vi(vi − vj)∗Y ∗
ij}, ∀i ∈ V \ G (2.1g)

−Qd
i =

∑
(i,j)∈E

Im{vi(vi − vj)∗Y ∗
ij}, ∀i ∈ V \ G (2.1h)

where fi(·) is the power generation cost at bus i, typically a convex polynomial or piecewise
linear function. The decision variable v is a vector of complex voltages, where vi is the
complex voltage at bus i. The variables pgi and qgi are the real and reactive power generated
at bus i and can be derived from the vector v. The fixed quantities P d

i and Qd
i are the

real and reactive power demanded at bus i. The parameters P g
i , P

g
i , Q

g
i , Q

g
i , Vi, Vi are

respectively the minimum real power generated, maximum real power generated, minimum
reactive power generated, maximum reactive power generated, minimum voltage magnitude,
and maximum voltage magnitude at bus i. The network parameters Yij, Gij, and Bij are
respectively the complex admittance, conductance, and susceptance for the transmission line
between buses i and j, where Yij = Gij + jBij. Equations (2.1b) through (2.1d) represent
the technological constraints on the power network: the real and reactive power bounds
and bounds on voltage magnitudes. Equations (2.1e) through (2.1h) represent Kirchoff’s
current and voltage laws that dictate the flow of energy in the power network based on
nodal voltages, branch admittances, and power injections.

Note that we can also add constraints on line flow capacity to Problem (2.1). To be
consistent with the following QCQP formulation, these constraints should have the form
Pij ≤ pij ≤ Pij, where pij is the real power flow over line (i, j) ∈ E and Pij and Pij are its
upper and lower bounds.

2.2.2 QCQP Formulation of OPF with Linear Costs

It is well-known that the OPF problem has a QCQP formulation [27]. In order to formulate
the OPF problem (2.1) as a QCQP and then find its corresponding worst-case local minimum
problem, we will look at power generation costs fi(·) of a particular form. First, we consider
the case where power generation cost functions fi(·) are linear in pgi for all i ∈ G and thus
are quadratic in terms of the decision vector v ∈ C|V|, i.e. generation costs of the form:

fi(p
g
i ) = ci1p

g
i + ci0, ∀i ∈ G (2.2)

where ci1, and ci0 are fixed cost coefficients for each generator i ∈ G.
By considering linear costs in pgi , both the objective function and all constraints can be

written as quadratic functions of the decision vector u ∈ R2|V| defined as:

u ≜
[
Re{v1} . . .Re{v|V|} Im{v1} . . . Im{v|V|}

]T
(2.3)
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We also introduce a vector of slack variables z ∈ R4|G|+2|V| whose entries are associated
with the inequality constraints in the OPF formulation (Equations (2.1b) through (2.1d)).
Using the slack variables, one can convert inequality constraints to equality constraints (by
adding z2i terms) and rewrite the OPF problem (2.1) as the general nonconvex QCQP:

min
x∈Rn

1

2
xTM0x+ a0

subject to:
1

2
xTMix+ ai = 0, ∀i = 1, . . . , k

(2.4)

where xT ≜
[
uT zT

]
, n ≜ 4|V|+4|G| and k ≜ 4|V|+2|G|. The matricesM0, . . . ,Mk ∈ Rn×n

and the scalars a0, a1, . . . , ak ∈ R can be easily derived from the power flow equations in the
OPF formulation (see Appendix 2.A). Note that the matrices M0, . . . ,Mk are symmetric by
construction.

2.2.3 QCQP Formulation of OPF with Quadratic Costs

Next, we broaden the formulation to include cost functions fi(·) that are quadratic in pgi ,
which is more representative of real-world power systems. We consider costs of the form:

fi(p
g
i ) = ci2(p

g
i )

2 + ci1p
g
i + ci0, ∀i ∈ G (2.5)

where ci2, ci1, and ci0 are fixed cost coefficients for each generator i ∈ G.
By considering costs of this form, the objective function and all constraints can be written

as quadratic functions of the decision vector u ∈ R2|V|+2|G| defined as:

u ≜
[
Re{v}T Im{v}T (pg)T (qg)T

]T
(2.6)

where pg ∈ R|G| and qg ∈ R|G| are the vectors formed by concatenating the pgi ’s and qgi ’s
respectively.

Just as in the formulation in the preceding section, we also introduce a vector of slack
variables z ∈ R4|G|+2|V| whose entries are associated with the inequality constraints in the
OPF formulation (Equations (2.1b) through (2.1d)). Using the slack variables, one can
convert inequality constraints to equality constraints (by adding z2i terms) and rewrite the
OPF problem (2.1) as the general nonconvex QCQP:

min
x∈Rn

1

2
xTM0x+ bT0 x+ a0

subject to:
1

2
xTMix+ bTi x+ ai = 0, ∀i = 1, . . . , k

(2.7)

where xT ≜
[
uT zT

]
, n ≜ 4|V| + 6|G|, and k ≜ 4|V| + 4|G|. The matrices M0, . . . ,Mk ∈

Sn, the vectors b0, . . . , bk ∈ Rn, and the scalars a0, . . . , ak ∈ R can be easily derived from
the equations in the OPF formulation (2.1) (see Appendix 2.B). Note that the matrices
M0, . . . ,Mk are symmetric by construction.
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We use this canonical QCQP (2.7) as the baseline problem throughout the following
sections, noting that (2.4) can be written as (2.7) by considering bi = 0n for all i ∈ {0, . . . , k}
and that n is defined differently whether we consider the voltage decision vector (2.3) or the
voltage and power decision vector (2.6).

Note that any arbitrary QCQP can be reformulated in this form (2.7). Therefore, the
results developed in the following sections extend beyond the OPF problem to a wide variety
of nonconvex problems that can be formulated as QCQPs. The QCQP in (2.7) may have
many local minima, local maxima, and saddle points and is NP-hard to solve in general.

2.2.4 Formulation of the Worst-case Local Minimum Problem

In order to formulate the problem of finding the worst-local minimum of the QCQP in (2.7),
we will define a problem whose feasible set is the set of local minima of (2.7) and whose
objective is to maximize the objective function of (2.7). We make the mild assumption
that all local minima of the OPF problem are regular points, which was shown to be true
for a generic OPF problem in [39] and can be extended to a valid QCQP formulation. A
local minimum x∗ of (2.7) is said to be a regular point if the gradients of the constraints
evaluated at x∗, given by M1x

∗ + b1, . . . ,Mkx
∗ + bk, are linearly independent. Any regular

local minimum of (2.7) will satisfy the Karush-Kuhn-Tucker (KKT) conditions. These KKT
conditions will be used to define the feasible set of the worst-case local minimum problem.

We introduce Lagrange multipliers λ ∈ Rk associated with the equality constraints and
write the Lagrangian of (2.7) as:

L(x, λ) =
1

2
xTM0x+ bT0 x+ a0 +

k∑
i=1

λi

(
1

2
xTMix+ bTi x+ ai

)
(2.8)

Then, the KKT conditions are given by the equations:

0 = ∇xL(x, λ) =M0x+ b0 +
k∑

i=1

λi(Mix+ bi) (2.9a)

0 =
∂L(x, λ)

∂λi
=

1

2
xTMix+ bTi x+ ai, ∀i = 1, . . . , k (2.9b)

The points x ∈ Rn that satisfy both KKT conditions (2.9a) and (2.9b) may be local
minima, local maxima, or saddle points. In order to narrow the feasible set of our worst-case
problem, we add a second-order optimality condition. Any point that satisfies this condition
is called a second-order critical point. Second-order critical points can include local minima
and certain saddle points. From [40], we have the second-order necessary condition:

yT (∇2
xL(x, λ))y ≥ 0

for all y such that yT (Mix+ bi) = 0, ∀i = 1, . . . , k
(2.10)
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where ∇2
xL(x, λ) =M0 +

∑k
i=1 λiMi.

At first glance, this second-order condition (2.10) involves a possibly infinite number of
constraints. Thus, it is more useful to reformulate the second-order necessary condition as
a finite-dimensional constraint. To do this, we define a new matrix M(x) ∈ Rn×k whose
columns are Mix+ bi for i = 1, . . . , k, so we can rewrite (2.10) as:

yT (∇2
xL(x, λ))y ≥ 0 for all y ∈ null

(
M(x)T

)
(2.11)

In order to incorporate the second-order necessary condition (2.11) into constraints of the
worst-case local minimum problem, we would have to solve for the nullspace of the matrix
M(x)T , which is a nonconvex operation and has no straightforward convex relaxation. Thus,
it is more useful to reformulate (2.11) into a different second-order constraint that is given
in the following lemma.

Lemma 1. An equivalent second-order condition to (2.10) or (2.11) is given as:

M0 +
k∑

i=1

λiMi + c
k∑

i=1

(Mix+ bi)(Mix+ bi)
T ⪰ 0 (2.12)

which is satisfied for every second-order critical point x, for all values of c above some
threshold, i.e. c > c.

Proof. First, we note that by definition of M(x), (2.10) and (2.11) are equivalent and∑k
i=1(Mix+ bi)(Mix+ bi)

T = M(x)M(x)T .

Next, we show that Condition (2.10) implies Condition (2.12). Define P ≜ M0 +∑k
i=1 λiMi and Q ≜ M(x)M(x)T , where P is positive semidefinite on the nullspace of Q. It

follows from Lemma 4.2.1 in [40] that (2.10) and (2.12) are equivalent for all large values of
c.

Lastly, we show that Condition (2.12) implies Condition (2.10). We have that (2.12) is
equivalent to:

yT
(
M0 +

∑k
i=1 λiMi + c ·M(x)M(x)T

)
y ≥ 0, ∀y ∈ Rn (2.13)

If y is selected to satisfy the equations yT (Mix+bi) = 0 for all i = 1, . . . , k, or equivalently
y ∈ null(M(x)T ), then the above inequality (2.13) reduces to:

yT
(
M0 +

∑k
i=1 λiMi

)
y ≥ 0 (2.14)

which combined with the equations yT (Mix + bi) = 0 for all i = 1, . . . , k is equivalent to
(2.10).

By combining the KKT first-order necessary conditions (2.9a) and (2.9b) with the second-
order necessary condition of the form (2.12), we can define the feasible set of the worst-
case local minimum problem. In this worst-case problem, the objective is to maximize the
objective of the original QCQP (2.7). The worst-case local minimum problem is formally
stated below.



CHAPTER 2. THE WORST-CASE LOCAL MINIMUM OF AC-OPF 19

Theorem 1. Let the objective function of the QCQP (2.7) be denoted as g(x) ≜ 1
2
xTM0x+

bT0 x+a0 and the sorted second-order critical points of the same QCQP be given as x(1), . . . , x(ℓ),
where g(x(1)) ≥ g(x(2)) ≥ · · · ≥ g(x(ℓ)). We take x∗ = x(i) to be any second-order critical
point with the highest objective value, i.e. g(x(i)) = g(x(1)). Then, it follows that x∗ is a
globally optimal solution of the following optimization problem (2.15) if c is selected to be
greater than a certain threshold c and there exists some point (x0, λ0) that satisfies (2.15b)
through (2.15d):

max
x∈Rn,λ∈Rk

1

2
xTM0x+ bT0 x+ a0 (2.15a)

subject to:
1

2
xTMix+ bTi x+ ai = 0, ∀i = 1, . . . , k (2.15b)

M0x+ b0 +
∑k

i=1 λi(Mix+ bi) = 0 (2.15c)

M0 +
∑k

i=1 λiMi + c ·M(x)M(x)T ⪰ 0 (2.15d)

Proof. Let (x∗, λ∗) be a globally optimal solution to optimization problem (2.15). If there
exists some feasible point (x0, λ0) to (2.15), then we know that any globally optimal solution
(x∗, λ∗) satisfies (2.15b) through (2.15d) since the problem (2.15) is deemed to be feasible.
Constraint (2.15b) ensures that x∗ is a feasible point of (2.7), constraint (2.15c) ensures that
x∗ is first-order critical point of (2.7), and constraint (2.15d) ensures that x∗ is a second-
order critical point of (2.7) (see Lemma 1). Since the objective (2.15a) is the same as that in
(2.7) and the goal is of (2.15) is to maximize the objective, we have that x∗ = x(i) for some
second-order critical point x(i) with the highest objective value, i.e. g(x(i)) = g(x(1)).

Note that Problem (2.15), which is nonconvex, finds the worst-case second-order critical
point. As a result, its optimal objective value serves as an upper bound on the objective
value at the worst-case local minimum.

2.2.5 Decision Version of Worst-case Local Minimum Problem

In the study of the worst-case local minimum problem, it is useful to also examine the related
feasibility problem for some given value α ∈ R:

max
x∈Rn,λ∈Rk

0 (2.16a)

subject to:
1

2
xTMix+ bTi x+ ai = 0, ∀i = 1, . . . , k (2.16b)

M0x+ b0 +
∑k

i=1 λi(Mix+ bi) = 0 (2.16c)

M0 +
∑k

i=1 λiMi + c ·M(x)M(x)T ⪰ 0 (2.16d)

1

2
xTM0x+ bT0 x+ a0 ≥ α (2.16e)
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If there is a local minimum to the OPF problem (2.7) whose corresponding cost is greater
than or equal to α, then the optimal value of the above problem will be 0. Otherwise, the
optimal value of this problem will be−∞. Thus, the problem (2.16) asks whether or not there
exists any local minima to the OPF problem above some threshold α. The interpretation of
this problem is to certify that any local search solution is a “near-global” solution, i.e. below
a given threshold.

For the rest of this chapter, we will focus on the optimization version (2.15) of the worst-
case local minimum problem since the decision version (2.16) can be easily deduced from
the result of the optimization version. However, we remark that notions from algebraic
geometry such as sum of squares and Positivstellensatz could be used to certify that there is
no solution to the decision problem. If there is no solution to the above problem, then there
exists a certificate that no real solution exists. However, the degree of this certificate may
be arbitrarily large, thus these techniques are not efficient in general. See [41–43] for more
details on these methods.

2.3 SDP Relaxation of Worst-case Local Min Problem

To bound the worst-case local minimum, Theorem 1 requires solving the nonconvex problem
(2.15) to global optimality, which cannot be achieved using local search methods. However,
any upper bound on the optimal objective value will still serve the same purpose, and this
can be accomplished using convex relaxations. In this chapter, we develop a tightened SDP
relaxation of the worst-case local minimum problem in (2.15).

We define a matrix W ∈ Sn+k+1 based on x ∈ Rn and λ ∈ Rk as follows:

W ≜

1x
λ

 [1 xT λT
]
=

1 xT λT

x xxT xλT

λ λxT λλT

 (2.17)

We regard W as a 3 × 3 block matrix with the block entries Wij for all i, j ∈ {1, 2, 3}.
By lifting the problem into a higher-dimensional matrix W , we move all the nonconvexity
of Problem (2.15) to a constraint on the rank of W , which we drop to generate the SDP
relaxation given in the theorem below.

Theorem 2. Having selected a sufficiently large value for the parameter c, the optimal
objective value of the following SDP provides an upper bound on the cost of the worst-case
local minimum of the OPF problem (2.7):

max
W∈Sn+k+1

1/2 · trace{M0W22}+ bT0W21 + a0 (2.18a)

subject to: 1/2 · trace{MiW22}+ bTi W21 + ai = 0, ∀i = 1, . . . , k (2.18b)

M0W21 + b0 +
k∑

i=1

Mi(W23)i + bi(W31)i = 0 (2.18c)
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M0 +
k∑

i=1

Mi(W31)i + c

k∑
i=1

(MiW22Mi + biW12Mi +MiW21b
T
i + bib

T
i ) ⪰ 0

(2.18d)

trace{M0W22}+ bT0W21 −
k∑

i=1

bTi (W23)i + 2ai(W31)i = 0 (2.18e)

W11 = 1 (2.18f)

W ⪰ 0 (2.18g)

where (W23)i is the i
th column of W23 and (W31)i is the i

th entry of W31 for all i ∈ {1, . . . , k}.

Proof. The objective (2.18a) and constraints (2.18b), (2.18c) and (2.18d) follow directly from
the objective (2.15a) and constraints (2.15b), (2.15c) and (2.15d), along with the definition of
W (2.17). To control the structure of matrix W , we have the constraints (2.18f) and (2.18g),
as well as the nonconvex constraint rank(W ) = 1. We drop the constraint rank(W ) = 1
to obtain a convex feasible region for the problem. Thus, the obtained relaxation (2.18)
is an upper bound on (2.15), which is an upper bound on the worst-case local minimum.
Finally, to strengthen the SDP relaxation of the worst-case local minimum problem, we add a
valid constraint, obtained by multiplying (2.15c) by xT . Combining this with the constraint
(2.15b), we have:

trace{M0xx
T}+ bT0 x+

k∑
i=1

λi(−bTi x− 2ai) = 0 (2.19)

By substituting the entries of W for the terms that depend on x and λ, this constraint
becomes constraint (2.18e) in the strengthened SDP relaxation.

2.4 Analysis of SDP Relaxation

Because the worst-case local minimum problem is a nonconvex problem, there could be a
non-zero gap between the optimal objective values of the nonconvex problem (2.15) and the
tightened convex relaxation (2.18). However, it is desirable to show that the gap is zero in a
fundamental class of QCQPs, and therefore the SDP relaxation yields an exact solution to
the worst-case local minimum problem for this class.

2.4.1 Particular Case with Exact SDP Relaxation

Consider a particular case of the canonical QCQP in (2.7):

min
x∈Rn

xTM0x

subject to: xTx = 1
(2.20)
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Figure 2.2: The three-dimensional curve shows the nonconvexity of a particular case of
the canonical QCQP, given by Equation (2.20), for a 3 × 3 symmetric matrix M0 with the
eigenvalues −0.4, 1.6, and 3.6. The maximum and minimum eigenvalues are plotted as
surfaces in the plane. There are also saddle points in between. The objective value of the
worst-case local minimum problem is the same as the minimum eigenvalue, i.e. −0.4.

where M0 is an arbitrary symmetric matrix with n distinct eigenvalues, ordered as µ1 <
· · · < µn. associated with the normalized eigenvectors y1, . . . , yn ∈ Rn. For this problem,
one can analytically compute all of the points that satisfy the KKT conditions of (2.20). It
can be shown that there are 2n KKT points: ±y1 are local minima, ±yn are local maxima,
and ±y2, ...,±yn−1 are saddle points. Thus, the cost corresponding to the worst-case local
minimum problem is equal to yT1M0y1. The optimization problem (2.15) provided in Theorem
1 can be written as:

max
x∈Rn,λ∈R

xTM0x (2.21a)

subject to: xTx = 1 (2.21b)

(M0 + λI)x = 0 (2.21c)

M0 + λI + cxxT ⪰ 0 (2.21d)
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In light of (2.21b) and (2.21c), the only possible solutions are x = ±yi and λ = −µi

for i = 1, 2, ..., n. However, the only solution satisfying (2.21d) is λ = −µ1 and x = ±y1.
In addition, (2.21d) is satisfied for any c greater than or equal to zero. This leads to the
following result.

Theorem 3. The SDP relaxation (2.18) returns the cost corresponding to the worst-case
local minimum problem (2.21) for c = 0, and provides an upper bound for c > 0.

Proof. Using the same methodology as described above, the SDP relaxation of (2.21) is:

max
W∈Sn+2

trace{M0W22} (2.22a)

subject to: trace{W22} = 1 (2.22b)

M0W21 +W23 = 0 (2.22c)

M0 +W31I + cW22 ⪰ 0 (2.22d)

trace{M0W22}+W31 = 0 (2.22e)

W11 = 1 (2.22f)

W ⪰ 0 (2.22g)

Since (2.22) is a relaxation of (2.21) we have that (2.22) upper bounds (2.21). For the
constraint M0 +W31I ⪰ 0 to hold ((2.22d) in the case where c = 0), W31 must be greater
than or equal to −µ1. Since trace{M0W22} = −W31, the optimal objective value of (2.22)
is less than or equal to µ1. In addition, the optimal objective value of (2.21) is equal to
µ1. Combining these inequalities yields the fact that the SDP relaxation (2.22) meant to
provide an upper bound on the optimal value of (2.21) also provides a lower bound. Thus,
the relaxation is exact.

Figure 2.2 exemplifies the nonconvexity of the QCQP (2.20) for n = 3. This problem
has 6 KKT points, and an SDP relaxation that does not incorporate the second-order opti-
mality condition will return the global maximum. However, in light of Theorem 3, the SDP
relaxation (2.22) will be able to correctly eliminate the local maxima and saddle points with
a negative curvature when c = 0.

2.4.2 Choice of Hyperparameter “ c ”

The hyperparameter c is used to convert the infinite-dimensional second-order optimality
condition to a finite-dimensional one. The exact value of c is not needed in the nonconvex
model (2.15) since Theorem 2 states that every sufficiently large c enables finding the worst-
case second-order critical point. However, since (2.18) is a relaxation of (2.15), selecting an
exorbitantly large value for c affects the quality of the solution to the SDP relaxation of the
worst-case local minimum problem (2.18).
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Figure 2.3: WB2 2-bus (left) and WB5 5-bus (right) networks.

For example, in the particular QCQP case described above, the relaxation is exact at
c = 0 and gradually becomes loose as c increases. This is due to the fact that the second-
order necessary condition (2.15d) holds for c = 0 at the local minima ±y1. In general, the
smallest c needed in Theorems 2 or 3 coincides with the smallest number c satisfying the
second-order condition (2.15d) at the worst-case second-order critical point x∗. Note that
x∗ is high-dimensional in general, whereas c is a single scalar. Finding a good upper bound
on this scalar requires a careful analysis of the matrices M1, ...,Mk and is an open question.

2.5 Simulations

To test the tightened SDP relaxation of the worst-case local minimum problem (2.18) on
benchmark networks, we use MATPOWER to compute the line admittance values and then
formulate the matricesM0, . . . ,Mk, the vectors b0, . . . , bk, and the scalars a0, a1, . . . , ak based
on the given OPF constraints (see Section 2.2.1 for details). We solve the SDP relaxation of
the worst-case local minimum problem using the SDPT3 solver [44]. Note that solving each
of the SDP relaxations took less than 30 seconds on a standard laptop.
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Figure 2.4: Objective values of the solutions to the strengthened SDP relaxation of the worst-
case local minimum problem given in (2.18) on the WB2 network (top) and WB5 network
(bottom) for varying values of the parameter c are shown by blue circles. The simulation
results are compared to the objective values at two known local minima for these networks,
shown as dashed lines.
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2.5.1 Cases with Known Local Optima

We start by modifying the parameter c in the second-order necessary condition (2.18d) and
observe how the choice of c affects the quality of the solution. First, we test the SDP
relaxation of the worst-case local minimum problem (2.18) on small networks with known
local minima. Using test networks from the online database [45], which are known to have
multiple local minima, we run a series of simulations of the SDP relaxation of the worst-case
local minimum problem, sweeping over a range of the parameter c (the networks are given
in Figure 2.3). From the simulations (see Figure 2.4), it can be observed that the objective
value of the relaxation increases with c, until a saturation point is reached. The objective
value at this saturation point provides an upper bound on the worst-case local minimum,
and it is not tight for the WB2 and WB5 networks. With an understanding of a good choice
of c, one can tighten this bound.

2.5.2 IEEE Test Cases with Linear Generation Costs

Next, we test the SDP relaxation of the worst-case local minimum problem (2.18) on some
IEEE test networks. Note that for these networks, we have removed the quadratic cost terms
so that the costs are linear in terms of real power generation (see Equation (2.2)). We run a
series of simulations of the SDP relaxation of the worst-case local minimum problem (2.18),
sweeping over a range of the parameter c. We also run 200 simulations of local search on
the canonical QCQP in Equation (2.4) with 200 random, feasible initial points. Out of these
200 simulations, we take the solutions of the simulations that converged as the “discovered”
local minima. Note that some of these discovered local minima may in fact be saddle points,
depending on solver performance. For these local search simulations, we use the FMINCON
solver in MATLAB.

It can be observed from the simulation results in Figure 2.5 that the objective value
increases with c until a saturation point is reached, at which point the value of c is too high
and the relaxation is not exact.

2.5.3 Comparison of Worst-case SDP with Original SDP

We compare the objective value of the solution to the SDP relaxation of the worst-case local
minimum problem (2.18) with that of the SDP relaxation of the original problem (the SDP
relaxation of (2.7)). Table 2.1 shows the objective value of the solution to the SDP relaxation
of the worst-case local minimum problem at the saturation point of c for each of the four
test cases. These values provide an upper bound on the worst-case local minimum.

By comparing the worst-case local minimum SDP relaxation to the SDP relaxation of
the original problem, we can compute a lower bound on the global optimality degree, which
is defined as:

Global optimality degree ≜ 100%×
(
1− upper bound - lower bound

|upper bound|

)
(2.23)
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Figure 2.5: Objective values of solutions to the strengthened SDP relaxation of the worst-case
local minimum problem (2.18) for the IEEE 9-bus (top) and 14-bus (bottom) networks for
varying values of the parameter c are shown by blue circles. These solutions are compared to
“discovered” local minima from randomized initializations of local search, shown as dashed
lines.
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Table 2.1: Objective value of solution to SDP relaxation of worst-case local minimum prob-
lem (2.18) (at saturation with respect to c) compared to the objective value of solution to
SDP Relaxation of original QCQP (2.7)

Case Worst-case SDP Worst-case SDP SDP relaxation of Optimality Degree
(2.18) Value of c (2.18) Objective (2.7) Objective Lower Bound

WB2 1 953.85 877.78 92.0%
WB5 0.3 1742.55 946.53 54.3%
case9 12 2537.59 1458.91 57.5%
case14 200 12268.8 5371.58 43.8%

The SDP relaxation of the original problem provides a lower bound on the optimal value
of the original nonconvex problem (2.7) and is given in Table 2.1. The SDP relaxation of the
worst-case local minimum problem (2.18) provides an upper bound on the objective value at
any local minima. Thus, by computing the global optimality degree using these two bounds,
we can find a lower bound on the global optimality degree for the problem. A summary of
how the worst-case problems relate to the original QCQP is given in Figure 2.6.

This lower bound on optimality degree provides a metric of how useful the original SDP
relaxation is for the given problem. If the lower bound on optimality degree is high, then
any local search solution will be relatively close to the SDP solution. For these cases, such as
the WB2 case, the more expensive SDP relaxation is less useful since local search solutions
are of relatively high quality. For cases with a larger gap between the SDP solution and the
worst-case local minimum, there is some benefit in using a convex relaxation instead of local
search for solving the OPF problem.

2.5.4 IEEE Test Cases with Quadratic Generation Costs

In the above simulations, we consider the case where we have linear power generation costs
and the voltage decision vector (2.3), such that the original QCQP is formulated as (2.4).
In those simulations, the choice of c directly affected the tightness of the SDP relaxation.
For that formulation, we see that the SDP relaxation is exact in certain cases and becomes
less tight as c increases. Note that due to the structurally different formulations when we
consider linear versus quadratic generation costs (due to the different decision vectors in the
original QCQP), the parameter c from the above simulations does not relate to the parameter
c from the simulations described below that consider quadratic power generation costs.

The situation changes with the QCQP formulation in (2.7) when we consider quadratic
power generation costs and the expanded decision variable (2.6). In Figures 2.7 and 2.8, we
can see that for the SDP formulation given by (2.18) the choice of c does not appear to have
much impact on the quality of the solution. While the choice of c may not have much impact
on relaxation tightness, it still must be a large enough value for the problem formulation to
be valid. In Table 2.2, we provide the minimum values of c required to satisfy the second-
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Figure 2.6: Hierarchy of worst-case and original problems and relaxations.

order necessary condition (2.15d) at local minima of various networks, all of which are known
to have multiple local minima [4].

Next, we modify the objective function given by (2.18a) to have a penalty term, in order
to improve the tightness of the relaxation. We introduce a penalty on the trace of matrix
W in order to reduce the rank of the matrix, a technique that is commonly used [46]. From
this trace penalty, we subtract out the elements that correspond to the squared real and
reactive power generation, so as not to favor local minima with lower objective values. The
new problem is given by (2.18) with the modified objective function defined as g̃(W ):

g̃(W ) ≜ 1/2 · trace{M0W22}+ bT0W21 + a0 − ϵ · (trace{W} − trace{W pq
22 }) (2.24)

where ϵ > 0 is the penalty parameter and W pq
22 refers to the block of W22 := xxT correspond-

ing to the pg and qg variables.
In Figures 2.7 and 2.8, we can see that the relaxation given by (2.18) with modified

objective (2.24) becomes tight when ϵ is sufficiently large. A range of values for the penalty
parameter will result in a high quality relaxation. However, methods to efficiently tune the
penalty parameter for these types of bi-objective problems are an area of open research. In
Table 2.3, we provide the solution to the SDP relaxation of the worst-case local minimum
problem (2.18) for a few test networks and choices of parameters c and ϵ and compare that
value to the objective at the worst-case local minimum as discovered by the local search
solver fmincon.
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Table 2.2: Minimum values of c which satisfy the second-order condition (2.15d) at some
local minima of networks from [45] when we consider the QCQP formulation with quadratic
generation costs

Network Type of Minimum Objective value Value of c
WB2 Global 877.78 0
WB2 Non-global 905.73 280569
WB5 Global 946.58 3
WB5 Non-global 1082.33 6617

LMBM3 Global 5694.54 0
LMBM3 Non-global 6833.68 1765
LMBM3 Non-global 9677.11 12542
case9mod Global 3087.84 1031921
case9mod Non-global 3398.03 2442355
case9mod Non-global 4265.15 905274
case22loop Global 4538.80 0
case22loop Non-global 5929.14 177

Table 2.3: Solution to SDP relaxation of worst-case local minimum problem (2.18) with
modified objective (2.24) for various networks from [45] when we consider the QCQP formu-
lation with quadratic generation costs

Network SDP (2.18) SDP (2.18) SDP (2.18) Discovered worst-case
parameter c parameter ϵ Objective min of QCQP (2.7)

WB2 280569 195 917.30 917.17
WB3 0 500 441.73 418.14
WB5 6617 195 1608.55 1082.33

2.6 Conclusions

This chapter formulates the problem of finding the worst-case local minimum for a canonical
QCQP, with a focus on the application to OPF. Since the problem is nonconvex, an SDP
relaxation is designed to find an upper bound on the objective value at the worst-case
local minimum. We show that this SDP relaxation is exact in a particular case with many
saddle points. Additionally, we find that the tightness of this upper bound depends on the
choice of a parameter in the second-order necessary optimality condition. While the SDP
relaxation is not tight in general, by modifying the parameter c and/or by introducing a
penalty term, it can become tight, thereby recovering the true worst-case local minimum
of OPF. Furthermore, we show that choices in the formulation, i.e. linear versus quadratic
power generation costs, affect the choice of the parameter in the second-order necessary
optimality condition. By comparing the objective value obtained from the SDP relaxation
of the worst-case local minimum problem to the objective value of the SDP relaxation of
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Figure 2.7: The objective value given by the strengthened SDP relaxation of the worst-case
local minimum problem on the WB2 2-bus network from [45] is shown in blue circles. The
left figure shows a sweep over various values of the second-order necessary parameter c for
ϵ = 0. The right figure shows a sweep over various values of the penalty parameter ϵ for
c = 280569. The local minima for this network, as found by fmincon, are shown by dashed
lines.

the original problem, we provide a metric on how much SDP can outperform local search.
These two SDP relaxations for the upper and lower bounds allow us to evaluate the projected
performance of local search methods when good initial points are not available. This method
is an efficient tool to bound the worst-case performance of any type of local search method
used to solve OPF or other types of nonconvex QCQPs.
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Figure 2.8: The objective value given by the SDP relaxation of the worst-case local minimum
problem on the IEEE 9-bus network is shown in blue circles. The top figure shows a sweep
over various values of the second-order necessary parameter c for ϵ = 0. The bottom figure
shows a sweep over various values of the penalty parameter ϵ for c = 0.025. The known local
minimum for this network is shown by dashed lines.
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Appendix

2.A Derivation of Canonical QCQP for AC-OPF

Problem with Linear Power Generation Costs

In this section, we will show how to derive the matricesM0, . . . ,Mk and scalars a0, a1, . . . , ap
for the canonical QCQP of the AC-OPF problem (2.4) with linear power generation costs
(2.2). We have u ∈ R2|V| as defined in (2.3). The real power flow over line (i, j) can be
written as:

pij = Gij(Re{vi}2 + Im{vi}2 − Re{vi}Re{vj} − Im{vi}Im{vj})
+Bij(Re{vi}Im{vj} − Re{vj}Im{vi}) (2.25a)

= Gij(u
2
i + u2i+n − uiuj − ui+nuj+n) +Bij(uiuj+n − ujui+n) (2.25b)

The reactive power flow over line (i, j) can be written as:

qij = −Bij(Re{vi}2 + Im{vi}2 − Re{vi}Re{vj} − Im{vi}Im{vj})
+Gij(Re{vi}Im{vj} − Re{vj}Im{vi}) (2.26a)

= −Bij(u
2
i + u2i+n − uiuj − ui+nuj+n) +Gij(uiuj+n − ujui+n) (2.26b)

Then, the real and reactive power flow over any line can be written as:

pij = uTAiju (2.27a)

qij = uTCiju (2.27b)

where Aij is a 2|V| × 2|V| matrix of zeros except for the [i, j, i+ n, j + n] submatrix is:

Aij[i, j, i+ n, j + n] =


Gi,j −1

2
Gi,j 0 1

2
Bi,j

−1
2
Gi,j 0 −1

2
Bi,j 0

0 −1
2
Bi,j Gi,j −1

2
Gi,j

1
2
Bi,j 0 −1

2
Gi,j 0

 (2.28)

where Cij is a 2|V| × 2|V| matrix of zeros except for the [i, j, i+ n, j + n] submatrix is:

Cij[i, j, i+ n, j + n] =


−Bi,j

1
2
Bi,j 0 1

2
Gi,j

1
2
Bi,j 0 −1

2
Gi,j 0

0 −1
2
Gi,j −Bi,j

1
2
Bi,j

1
2
Gi,j 0 1

2
Bi,j 0

 (2.29)
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The net real power flow out of any bus i is then:

pi =
∑

(i,j)∈E

pij =
∑

(i,j)∈E

uTAiju = uTAiu (2.30)

where Ai =
∑

(ij)∈E Aij.

The net reactive power flow out of any bus i is then:

qi =
∑

(i,j)∈E

qij =
∑

(i,j)∈E

uTCiju = uTCiu (2.31)

where Ci =
∑

(i,j)∈E Cij.

The constraint Vi ≤ |vi| ≤ Vi in (2.1) can be written in the following forms:

Vi
2 ≤ |vi|2 ≤ Vi

2
(2.32a)

Vi
2 ≤ Re{vi}2 + Im{vi}2 ≤ Vi

2
(2.32b)

Vi
2 ≤ u2i + u2i+n ≤ Vi

2
(2.32c)

Then, the voltage magnitude bounds for bus i can be written:

Vi
2 ≤ uTDiu ≤ Vi

2
(2.33)

where Di is an 2|V| × 2|V| matrix of zeros except for the [i, i+ n] submatrix is:

Di[i, i+ n] =

(
1 0
0 1

)
(2.34)

To redefine the AC-OPF problem (2.1) in terms of u, we have:

min
u∈R2|V|

∑
i∈G

ci1(u
TAiu+ P d

i ) + ci0 (2.35a)

s.t. P g
i − P d

i ≤ uTAiu ≤ P g
i − P d

i , ∀i ∈ G (2.35b)

Qg
i −Qd

i ≤ uTCiu ≤ Qg
i −Qd

i , ∀i ∈ G (2.35c)

Vi
2 ≤ uTDiu ≤ Vi

2
, ∀i ∈ V (2.35d)

0 = uTAiu+ P d
i , ∀i ∈ V \ G (2.35e)

0 = uTCiu+Qd
i , ∀i ∈ V \ G (2.35f)

If we take z ∈ R4|G|+2|V| to be the slack variables corresponding to the inequality con-
straints and xT =

[
uT zT

]
, then we can convert inequality constraints of the form uTAu+
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bTu+ c ≤ 0 to equality constraints of the form uTAu+ bTu+ c+ z2 = 0. Using this method,
we arrive at (2.4) by finding the matricesM0, . . . ,Mk and scalars a0, a1, . . . , ak in the method
described below. Let ei be the i-th canonical basis vector in Rp. For the objective function,
we have:

M0 ≜ 2

[∑
i∈G ci1Ai 0
0 0

]
∈ R(n+k)×(n+k) (2.36a)

a0 ≜
∑
i∈G

ci1P
d
i + ci0 (2.36b)

For the upper bound on real power generation, we have:

Mi ≜ 2

[
Ai 0
0 eie

T
i

]
∈ R(n+k)×(n+k) (2.37a)

ai ≜ P d
i − P

g
i (2.37b)

Similar matrices can be found for the lower bound on real power generation, the upper
and lower bounds on reactive power generation, and the upper and lower bounds on voltage
magnitude.

For the real power equality constraints we have:

Mi ≜ 2

[
Ai 0
0 0

]
∈ R(n+k)×(n+k) (2.38a)

ai ≜ P d
i (2.38b)

Similarly for the reactive power equality constraints.

2.B Derivation of Canonical QCQP for AC-OPF

Problem with Quadratic Power Generation Costs

In this section, we will show how to derive the matrices M0, . . . ,Mk, vectors b0, . . . , bk, and
scalars a0, . . . , ak for the canonical QCQP of the AC-OPF problem (2.7) with quadratic
power generation costs (2.5). We have u ∈ R2|V|+2|G| as defined in (2.6). Just as in the
preceding section, we can write real power flow pij over line (i, j) as (2.27a) with Aij defined
by (2.28) and reactive power flow qij over line (i, j) as (2.27b) with Cij defined by (2.29). We
also have Equations (2.30) and (2.31) for real and reactive power injection in matrix form as
a function of u, and Equation (2.33) for voltage magnitude bounds as a function of u. Unlike
in the preceding formulation, we also have the following relations due to the structure of u:

pgi = eT2|V|+iu, ∀i = 1, . . . , |G| (2.39a)

qgi = eT2|V|+|G|+iu, ∀i = 1, . . . , |G| (2.39b)
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From these relations, we also have:

(pgi )
2 = uT e2|V|+ie

T
2|V|+iu, ∀i = 1, . . . , |G| (2.40)

Define the following:

M0 ≜ 1/2 ·
|G|∑
i=1

ci2e2|V|+ie
T
2|V|+i (2.41a)

b0 ≜
|G|∑
i=1

ci1e2|V|+i (2.41b)

a0 ≜
|G|∑
i=1

ci0 (2.41c)

bi ≜ e2|V|+i (2.41d)

di ≜ e2|V|+|G|+i (2.41e)

Then, can redefine the AC-OPF problem in terms of u:

min
x∈R2|V|+2|G|

1/2 · xTM0x+ bT0 x+ a0 (2.42a)

s.t. P g
i ≤ bTi x ≤ P g

i , ∀i ∈ G (2.42b)

Qg
i ≤ dTi x ≤ Qg

i , ∀i ∈ G (2.42c)

Vi
2 ≤ xTDix ≤ Vi

2
, ∀i ∈ V (2.42d)

0 = xTAix− bTi x+ P d
i , ∀i ∈ G (2.42e)

0 = xTCix− dTi x+Qd
i , ∀i ∈ G (2.42f)

0 = xTAix+ P d
i , ∀i ∈ V \ G (2.42g)

0 = xTCix+Qd
i , ∀i ∈ V \ G (2.42h)

We also add line capacity constraints:

|pij| ≤ Pij, ∀(i, j) ∈ E (2.43a)

⇕
xTAijx ≤ Pij, ∀(i, j) ∈ E (2.43b)

−xTAijx ≤ Pij, ∀(i, j) ∈ E (2.43c)

It is clear that this formulation (2.42) can be written in the canonical form (2.7) by
introducing the slack variable z corresponding to the inequality constraints as described in
the preceding section.
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Chapter 3

Homotopy Method for
Post-contingency Optimal Power Flow

In this chapter, we present an efficient homotopy method for finding the global solution of
post-contingency optimal power flow.1

3.1 Introduction

As presented in Chapter 2, optimal power flow (OPF) is a fundamental tool for power system
network analysis [4]. The goal of OPF is to find a minimum cost production of the committed
generating units while satisfying the technical constraints of the power system. To ensure
security, additional care must be taken so that the system is able to operate within the
technical limits even in the event of component failures, i.e. “contingencies.” A system that
is impaired by a contingency is “stressed” in the sense that a loss of a transmission line
or a generator will generally make it more difficult for the power system to meet consumer
demand. Thus, in practice, power operators are concerned with security-constrained OPF
(SCOPF) instead of an idealistic OPF problem (such as the one found in Equation (2.1)).

SCOPF can be regarded as a large number (as high as 10,000) of OPF problems coupled
to each other via physical constraints, where the first OPF corresponds to the operating
point of the system under the normal conditions and the remaining ones are associated with
a predetermined set of contingencies [5]. The SCOPF problem includes constraints that tie
the normal-operation OPF problem to the contingencies, such as constraints that impose
additional limits on line flows and bus voltages for the contingencies. Since the SCOPF
problem is a larger version of the original OPF problem, it is also nonconvex and thus is
hard to solve to global optimality.

1Chapter 3 includes materials from [1, 2] that were previously published. Some of this material also
appears in [3] due to the collaborative nature of this work with SangWoo Park.
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3.1.1 Existing Methods to Solve SCOPF Problems

SDP relaxations have been shown to yield high-quality solutions of SCOPF on small test
networks [6, 7]. However, convex relaxations such as SDP and even local search methods
are not scalable for some real-world SOCP problems that involve large contingency sets
[5]. There are two primary methods to address the huge size of the SCOPF problem. One
method is called “contingency filtering” or “screening,” in which a smaller subset of binding
contingencies is found to replace the full set of contingencies [8–10]. The goal of these meth-
ods is to find a contingency subset that is sufficient to recover the same SCOPF solution as
the case where the full set of contingencies is considered. However, sometimes this method
yields a set of binding contingencies that can still be quite large, producing a reduced SCOPF
problem that is still too computationally burdensome to be solved in the desired time. In
this case, it can be helpful to consider the second method: approximating or simplifying
the formulation of contingencies in the SCOPF problem. There have been many proposed
methods to simplify the model of post-contingency states in SCOPF, such as Benders de-
composition, linearization of the power flow equations, Lagrangian relaxation, and network
compression [11–14]. These contingency selection, approximation, and decomposition tech-
niques can be combined to generate heuristic solutions to large-scale SCOPF problems, as
in [15, 16]. Additionally, recent research has applied approaches from distributed control,
stochastic programming, and machine learning to solve the SCOPF problem [17–20]. Note
that for any of these simplification methods, there is no guarantee that the solution is locally
optimal or even feasible for the post-contingency state [5].

Combining both contingency filtering and approximation methods to reduce the SCOPF
problem, we can view the reduced SCOPF as a single OPF for the normal operating state
(denoted as the “base case”) subject to many surrogate contingency constraints expressed
in terms of the base case variables, as is done in [21]. We will refer to this reduced SCOPF
problem as the base-OPF problem. SDP and other methods may be used to solve such base-
OPF problems, but they are mainly helpful to find the operating voltages for the base case,
not those for each of the contingencies. While the base-OPF performs risk-aware decision
making for the base case scenario by considering contingencies, finding the optimal (or near
optimal) operating point for the base case considering the possibility of contingencies, it
fails to find globally optimal operating points for each of the contingency scenarios. Thus,
for each contingency, the system operator must solve an additional OPF-based optimization
or feasibility problem in order to find the operating point of the post-contingency system,
which leads to the post-contingency OPF problems.

3.1.2 Existing Methods to Solve Post-contingency OPF
Problems

Currently, there is a rather limited literature that attempts to optimize the post-contingency
scenarios. In the classic work [21], the optimal post-contingency actions were modeled as
sub-problems and explicitly included in the SCOPF formulation. In order to overcome
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the complexity of this two-level optimization problem, an algorithm based on Bender’s de-
composition was developed, for which convergence is not guaranteed for general nonconvex
problems. More recently, the work in [22] proposed an approach to determine an optimal
combination of preventive and corrective actions taking into the account the system dy-
namics, while [23] introduced a hybrid computational strategy to solve the pre-contingency
and post-contingency OPF problems. In [24], the authors perform optimization over the
post-contingency recourse variables using an interior-point solver. None of the previous
works have ventured into finding the global optimum of each of the post-contingency OPF
problems (which we refer to as the contingency-OPF problems), mainly because applying a
computationally burdensome algorithm such as SDP to each of the contingency scenarios is
unrealistic.

3.1.3 Contributions

In this chapter, we develop a fast homotopy method to solve each of the contingency-OPF
problems to global optimality given the solution to the base-OPF problem.

Instead of solving for the solution to a contingency-OPF problem directly via a descent
numerical algorithm or convex relaxation, we generate and solve (using local search) a series
of intermediate optimization problems wherein we gradually remove a component of the
power system. We show that the effectiveness of homotopy to find a global solution of the
contingency-OPF problem is dependent on the choice of homotopy path, and we introduce
new theory to characterize desirable homotopy paths.

The remainder of the chapter is organized as follows. In Section 3.2, we provide a
literature review on homotopy methods and explain how they relate to our approach. In
Section 3.3, we present the formulation of the two-stage Security-constrained Optimal Power
Flow that can be decomposed into the base-OPF and contingency-OPF. Next, in Sec-
tion 3.4, we introduce the homotopy method that connects contingency-OPF to base-OPF
via parametrization. In Section 3.5, we develop theoretical results to characterize cases when
homotopy will lead to a global solution of the deformed problem. Finally, in Section 3.6 we
implement the homotopy method on actual test cases and verify its effectiveness.

3.1.4 Notations

The symbols RN and CN denote the spaces of N -dimensional real and complex vectors,
respectively. The symbols (·)T and (·)∗ denote the transpose and conjugate transpose of a
vector or matrix. Re{·} and Im{·} denote the real and imaginary part of a given scalar or
matrix. The symbol | · | is the absolute value operator if the argument is a scalar, vector, or
matrix; otherwise, it is the cardinality of a measurable set. The elementwise multiplication
of two matrices A ∈ Rm×n and B ∈ Rm×n is denoted as A ⊙ B. Let 1n and 0n denote
the n-dimensional vectors of ones and zeros, respectively. Furthermore, 1k

n denotes an n-
dimensional vector of ones except for the k-th element that is zero. The imaginary unit is
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denoted by j =
√
−1. Given a function f(x, ·), ∇xf(x, ·) and ∇2

xf(x, ·) denote the Jacobian
and Hessian of f with respect to x, respectively.

3.2 Background on Homotopy Methods

Homotopy and continuation methods have long been used in mathematics and engineering to
solve systems of nonlinear algebraic equations [25]. Continuation methods in mathematics
describe the continuous transformation of an easy problem into the given hard problem
[26]. A parametrized homotopy map defines this transformation, which generates a family
of problems with each problem initialized by the solution from the previous problem. Path
tracing methods such as the predictor-corrector method are used to numerically trace the
homotopy map [27]. The benefit of homotopy methods compared to other iterative methods
is that homotopy methods may yield global rather than local convergence. While homotopy
methods have been shown to be accurate and robust, they are computationally expensive
and should be reserved for highly nonlinear problems [26]. These methods are most useful
for problems where convergence to a global solution is heavily dependent on a good initial
point, which can be hard to obtain.

The development of probability-one homotopy methods in the 1970s created a globally-
convergent framework for solving nonlinear systems of equations [28]. For these probability-
one methods, almost all choices of the parameter in the homotopy map yield no singular
points in the Jacobian and thereby global convergence.

3.2.1 Homotopy for Power Systems

Homotopy methods have been applied in the field of power systems, primarily to solve the
power flow (PF) problem for cases that do not converge. The continuation power flow (CPF)
problem is used to find a set of solutions of the power flow problem, starting at some base
load and ending at an operating point near the voltage stability limit [29]. The power flow
Jacobian is singular at the voltage stability limit, which results in convergence issues for
solving PF. However, the CPF formulation allows the problem to stay well-conditioned at
all possible loading conditions. Homotopy methods are also used to solve the PF problem
when the convergence of the problem is dependent on a good initial point, which may be
hard to find. It has been shown that standard iterative methods for power flow, such as
Newton-Raphson, may diverge due to a poor initial point [30]. Homotopy methods have
been shown to improve convergence of the PF problem [31, 32] and used to compute all
possible solutions to the PF problem [33].

3.2.2 Homotopy for Optimization

More recently, probability-one homotopy methods have been applied to solving optimization
problems. The applications include optimal control [34, 35] and statistical learning [36].
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Typically, the homotopy methods in optimization focus on parametrizing the KKT condi-
tions [26, 37] or the objective function [38, 39]. Our method is similar to the homotopy
optimization method described in [38], wherein a series of local minimization problems are
solved, rather than tracing a path of zeros to the KKT conditions. However, we will focus
on a more generalized theoretical analysis of homotopy, allowing for a homotopy map on the
set of constraints.

While convergence to a global minimum with probability one is guaranteed for a convex
optimization problem [38], this is generally not true for nonconvex problems. In order
to understand when homotopy can be effective in finding a global solution for nonconvex
optimization, we explore a minimization problem of the form: minx f(x) where f : Rn → R
is a nonconvex function of x ∈ Rn. This problem is named (P o). Note that the function
f(·) can incorporate exact/inexact penalty functions to enforce constraints on x, implying
that this formulation is general for both unconstrained and constrained optimization [40].
We refer to (P o) as the “base case” problem. A deformed version of the base case, which is
also a nonconvex minimization problem, is denoted by (P f ) and defined as minx f̃(x). For
our application, (P o) corresponds to the base-OPF problem and (P f ) corresponds to the
contingency-OPF problem (the definition of these two problems are provided in the next
section). We consider two possible methods for solving the deformed problem that are based
on local search algorithms:

1. One-shot method: Use the solution of P o as the initial point for any descent numerical
algorithm to solve P f .

2. Homotopy method: Generate a (discretized) homotopy map from P o to P f . Use the
solution of P o as the initial point, but update it at each step of the homotopy by
solving an intermediate problem using local search that is initialized at the solution of
the previous step. A linear (un-discretized) homotopy map can be defined as:

P (λ) ≜ min
x

{
λf̃(x) + (1− λ)f(x)

}
, 0 ≤ λ ≤ 1 (3.1)

with the property that P (0) = P o and P (1) = P f .

Depending on f(x) and f̃(x), homotopy may or may not lead to better results than
solving the deformed problem in one shot. In Figure 3.1, we see an example where homotopy
is effective to find the global minimum of a deformed problem and another example where
homotopy leads to a non-global local minimum whereas solving the problem in one shot
leads to the global minimum. Knowing when homotopy will be effective is highly dependent
on understanding how the shape of the function changes from the base case to the deformed
problem. In the current literature, there is a lack of theoretical results to characterize
the performance of homotopy in finding a global optimum. While [38] presents algorithms
that make use of homotopy to solve nonconvex, unconstrained minimization problems, these
algorithms are similar to other stochastic search methods in that they do not guarantee
convergence to the global minimum.
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Figure 3.1: Evaluating the performance of homotopy on one-dimensional unconstrained min-
imization problems. The figure compares two different problems (1) and (2), with two differ-
ent methods (a) and (b). The dotted lines show how the solution from the previous iteration
is used in local search algorithms to solve the next problem. The red dots show the solution
at each iteration using the position of the dotted lines as the initial point. For the one-shot
method (a), the result of P o is used as the initial point for P f . For the homotopy method
(b), the base problem P o is gradually transformed to P f over three iterations, updating the
initial point as the solution to the previous problem.

3.3 Formulation of base-OPF and contingency-OPF

Problems

In this section, we present the mathematical formulations for the base-OPF with security
constraints and the contingency-OPF. The base-OPF resembles the conventional SCOPF
that finds a base case operational point which is robust against potential contingencies
(as described in Section 3.1). The contingency-OPF focuses on a single contingency and
attempts to find an adjusted operating point that minimizes constraint violations.

To begin, let the power network be defined by a graph N (V , E) with the set of generators
G, where V and E are the vertex set and the edge set of this graph, respectively. The “classic”
optimal power flow problem without contingency considerations is a static optimization
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problem formulated as:

min
v∈Cn

f(v) + ψ(v) (3.2a)

s.t. pgi −
∑

(i,j)∈E

pij = P d
i , ∀i ∈ V (3.2b)

qgi −
∑

(i,j)∈E

qij = Qd
i , ∀i ∈ V (3.2c)

pij = Re{vi(vi − vj)∗Y ∗
ij}, ∀(i, j) ∈ E (3.2d)

qij = Im{vi(vi − vj)∗Y ∗
ij}, ∀(i, j) ∈ E (3.2e)

where f(·) represents the operating cost (usually a quadratic function of the active power
generations) and ψ(·) represents the exact penalty or inexact penalty function that forces
the variables to stay within the feasible set defined by:

Ψ ≜

{
v

∣∣∣∣∣
P g
i ≤pgi≤P g

i , ∀i∈G

Qg
i≤qgi ≤Qg

i , ∀i∈G
Vi≤|vi|≤Vi, ∀i∈V

|pij+jqij |≤Sij , ∀(i,j)∈E

}
(3.3)

In this problem, the decision variable v represents the vector of complex voltages of
the power system, and vi is the voltage at the i-th bus. Furthermore, pgi , q

g
i , pij, qij, P

d
i

and Qd
i are the active/reactive power generation at the i-th bus, active/reactive power flow

from bus i to j, and active/reactive power demand at bus i, respectively. Yij = Gij +
jBij is the line admittance, whose real and imaginary parts are the line conductance and
susceptance, respectively. The constraints model technical limits, such as the power flow
equations, bounds on voltage magnitudes, and bounds on power generations and flows.
Nonlinearities are introduced to the constraints with the AC power flow equations, and
these nonlinearities with the voltage magnitude lower bounds result in the nonconvexity
of the problem. In a standardized optimization form, the “classic” OPF problem can be
expressed in a compact form as follows:

min
v∈Cn

f(v) + ψ(v)

subject to: h(v) = 0
(3.4)

where we note that h(·) is a vector.

3.3.1 SCOPF as the base-OPF

Now, suppose that there is a set of possible contingencies, namely K, where each contingency
corresponds to a line or generator outage. Each contingency k ∈ K introduces a new set of
voltage variables vk, and therefore, for a network with |V| buses and |K| contingencies, the
SCOPF problem will involve optimizing over |V|(|K| + 1) scalar complex voltage variables.
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The contingencies also add operational constraints of their own. In addition, there are
physical limitations on how the post-contingency network can adapt from the base case, and
these limits are added as constraints that are functions of the base case voltages.

However, since this extremely high-dimensional problem is cumbersome to solve, in
practice the contingency constraints are approximated via methods such as LODF and
PTDF [41]. In essence, this approximates the contingency voltage vk as a function of the
base case voltage v. Therefore, post-contingency operating constraints for contingency k are
approximated by a composite function of the form hk(v) ≜ ck(ak(v)), where ak(v) represents
the control actions that are taken in the event of a contingency.

Finally, another important consideration is how SCOPF performs when the problem
is infeasible. In other words, the SCOPF modeling should be flexible enough to return a
best possible solution when all of the physical constraints cannot be met simultaneously.
Therefore, we model some operational limits using soft constraints with extra variables that
capture the amount of violation. The objective function that is minimized is the sum of active
power generation costs in the base case as well as a weighted sum of constraint violation
penalties in the base case and contingencies. The standard optimization form is presented
below:

[
base-OPF

] min
v,σ,σk

f(v) + ψ(v) + ϕ(σ) +

|K|∑
k=1

ϕk(σk)

s.t. h(v) = σ

hk(v) = σk, ∀ k = 1, . . . , |K|

(3.5)

where ϕ(·) and ϕk(·) represent the penalty functions for the violations. With no loss of
generality, we focus on the case when ϕ(σp, σq) =

∑
i{c

p
i (σ

p
i )

2+ cqi (σ
q
i )

2}, where cpi and c
q
i are

cost coefficients. We denote this SCOPF problem as the base-OPF, distinguishing it from
the contingency-OPF presented next.

3.3.2 Formulating the contingency-OPF

Recall that the base-OPF solves for the base case operating point by taking into account the
possible failures in the network. In the process, it approximates the relationship between
the contingency operation point vk and the base case operating point v. However, it does
not actually solve for the optimal vk’s. Therefore, for each contingency we propose to
solve a contingency-OPF formulated below to find the best operating point for the specific
contingency scenario, given the base case solution. This problem resembles the classic OPF
problem except that there are additional coupling constraints that tie the problem to the
original base case. For instance, the voltage magnitude at a bus must be equal to its base
case value unless the reactive capacity of the generators at that bus is exhausted. From an
operational standpoint, the relation between the base-OPF problem and the contingency-
OPF problems is shown in Figure 3.2.
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Figure 3.2: Relationship between the SCOPF (referred to as the base-OPF) and contingency-
OPF problems. Each contingency scenario corresponds to solving the contingency-OPF given
in (3.7).

We model a contingency, such as a line or generator outage, by changing the system
parameters from their base values. For example, a line outage physically means that power
cannot flow over that connection, which can be modeled by setting the impedance of the
line to infinity (or equivalently its admittance to zero). In the event of a line outage, the
power is re-routed through other paths and therefore the amount of loss in the system
changes. However, the difference in loss is small enough such that there is no need for
additional participation from other generators, unlike in the scenario of a generator outage.
Therefore, we fix the real power generation to be equal to the base case values and solve
for the remaining variables so that the violations for the bus balance equations are small
and distributed across the network as much as possible (note that the proposed method
can handle generator participation, which is explained in Section 3.4.2). This is because
a concentrated violation in a few buses can result in serious issues for the power network,
whereas small power mismatches can be dealt with by real-time feedback controllers. Taking
these into consideration, the contingency-OPF under study is given as:

min
v,σp,σq

ϕ(σp, σq) + ψ(v) (3.6a)

subject to: P g
i −

∑
(i,j)∈E

pij = P d
i + σp

i ∀i ∈ V (3.6b)

qgi −
∑

(i,j)∈E

qij = Qd
i + σq

i ∀i ∈ V (3.6c)
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pij = Re{vi(vi − vj)∗Ỹ ∗
ij} ∀(i, j) ∈ E (3.6d)

qij = Im{vi(vi − vj)∗Ỹ ∗
ij} ∀(i, j) ∈ E (3.6e)

|vi| = |vi|base ∀i ∈ V \ Vq (3.6f)

where ψ(·) represents a exact/inexact penalty function that forces the variables to stay within
the feasible set defined by Ψ in (3.3). The set Vq is the set of buses that hit their upper or
lower reactive power generation bounds in the base case, and |vi|base ∀i ∈ V is the voltage

magnitude of bus i in the base case. The notation Ỹij reflects the potential change in the
admittance matrix from the base case value. Note that real power generation is now a fixed
parameter obtained from a solution of the base-OPF and therefore has been denoted by
capital P g.

For generator outage contingencies, there is an additional aspect to consider. A generator
outage corresponds to setting the real power generation at that generator to zero. However,
in order to compensate for the lost generation, the system operator needs to increase the
power generation at other generators that participate in the outage response. The above
framework is general enough to incorporate this difference: simply set P g = P g,f where P g,f

is the new setpoint for the real power generation.
Denoting x = [v, σp, σq] as the combined variable, contingency-OPF in a standard opti-

mization form would be:

[contingency-OPF]
min
x

f(x)

subject to: h(x) = 0
(3.7)

Note that f(·) is the not the same as the objective function used in (3.4) or (3.5) but a
comprehensive objective function that includes all the penalty functions. Similarly, h(·) is
the not the same as the constraint functions used in (3.4) or (3.5).

If the optimal objective value of the contingency-OPF (3.7) is zero, it means that the
system is capable of maintaining zero violations by adjusting the parameters from the base
case. However, the primary focus of the proposed method is on hard instances with a nonzero
optimal cost, meaning that some of the constraints must be violated to accommodate the
outage. In these cases, since taking corrective actions to deal with nodal power violations is
expensive, it is essential to find a global solution.

3.4 Homotopy for Solving contingency-OPF

In the following subsections, we present a homotopy method that parametrizes the contin-
gency-OPF to model a gradual line or a generator outage.

3.4.1 Homotopy Method for a Line Outage

In order to solve the contingency-OPF problem, we propose a homotopy method that grad-
ually changes certain parameters of the problem from the base-OPF, rather than abruptly
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changing the structure of the network. For instance, a transmission line outage can be mod-
eled by physically removing the line from the network, by limiting the apparent power flow
over the line, or by assigning a low conductance and susceptance value to the line such that
effectively no power flows through it. We use the third method to construct a homotopy map
for a line outage. The benefit of this method is that it yields better numerical condition-
ing and is a straightforward method for constructing a homotopy map. For this homotopy
method, we solve a series of contingency-OPF problems, each with a slightly lower admit-
tance value than the previous problem which uses the solution of the previous problem as
an initial point.

Let ℓ ∈ E be a line that connects bus i and j. Now, consider a contingency scenario in
which the line ℓ is out. The active and reactive power over line ℓ can be expressed by the
following power flow equations:

pij = Re{vi(vi − vj)∗Y ∗
ij} (3.8)

qij = Im{vi(vi − vj)∗Y ∗
ij} (3.9)

To formalize the line outage contingency, we introduce an aggregate homotopy parameter
λ = [λ1, λ2] corresponding to the conductance and susceptance where λ1, λ2 ∈ R|E|. To be
more precise, we parameterize the admittance in contingency-OPF as:

Yij(λ) = G0
ijλ1,ℓ + jB0

ijλ2,ℓ, ∀(i, j) ∈ E (3.10)

where G0
ij and B0

ij represent the initial admittance of line ℓ. Notice that λo = [1|E|,1|E|]

corresponds to the original network before the line outage, and λf = [1ℓ
|E|,1

ℓ
|E|] corresponds to

the post-contingency network after the line outage. Then, the series of homotopy problems,
H(λ), parametrized by λ can be written in the standard form as:[

homotopy-OPF
H(λ)

] min
x

f(x, λ)

subject to: h(x, λ) = 0
(3.11)

By varying λ from λo to λf , the homotopy map allows us to create fictitious power
networks that constitute a series of intermediate OPF problems. An example flowchart
demonstrating the homotopy method for a line outage contingency is given in Figure 3.3.

3.4.2 Homotopy Method for a Generator Outage

A generator outage can also be modeled in a similar way by gradually removing it and
adjusting the participation of other generators to compensate for the loss in power. Our
proposed homotopy map gradually decreases the real power generation at the generators
that are out and gradually increases the real power generation at the generators participat-
ing in the contingency response. For the simplicity of presentation, consider contingencies
associated with a single generator (generator k) outage. This is common practice in power
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Figure 3.3: An example of a homotopy implementation on a contingency scenario correspond-
ing to a single line (connecting buses 2 and 4) outage. The left plot shows the homotopy path
(red dotted curve) and the discretized points (red circles) in the parameter space. The right
figure shows how solving the homotopy-OPF along the discretized homotopy path affects the
system parameters.
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systems and is referred to as the N − 1 criterion. Yet, note that the proposed method can
easily be extended to multiple generator outages and is incorporated in Algorithm 2.

Let P g,o ∈ R|V| be the real power generated at all generators in the base case. Using the
participation factors of generators that are still active in the contingency, we can compute
P g,f ∈ R|V|, the real power generated at all generators after the contingency. Since generator
k is down in this contingency scenario, P g,f

k = 0. One possible method to choose the partic-
ipation factors that determine P g,f is provided in the Appendix (see Algorithm 3). Similar
to the case for line outage contingencies, we introduce an aggregate homotopy parameter
λ = [γ, β] with γ, β ∈ R|V| to create the following homotopy map:

P g(γ) = P g,o ⊙ γ + P g,f ⊙ (1|V| − γ) (3.12a)

Qd(β) = Qd,o ⊙ β +Qd,f ⊙ (1|V| − β) (3.12b)

Focusing on the first equation where we parametrize the real power generation, notice
that λo = [1|V|,1|V|] corresponds to the original network before the generator outage, and
λf = [0|V|,0|V|] corresponds to the post-contingency network after the generator outage.
By varying λ from λo to λf , the homotopy map allows us to trace a gradual generator
outage. Equation (3.12b) parametrizes the reactive power demand, and we will set the value
Qd,f ≃ Qd,o. The justification for the extra parametrization of reactive power demand is
described in [2] which explains that a parametrization with high enough dimension results
in a good homotopy path with high probability. The series of homotopy problems have the
same form as those for the line outage, given by Equation (3.11).

3.4.3 Connecting the contingency-OPF with the base-OPF

Starting with a solution to the base-OPF (3.5), we aim to iteratively solve a series of homo-
topy-OPF problems (3.11) to eventually arrive at the contingency-OPF problem (3.7). In
order to proceed, we assume that the base-OPF has a unique global solution that is available
(known). The availability of a global solution is a reasonable assumption because a good
initial point is usually provided for the base-OPF, and also because more time is allocated
to solving it compared to a large set of contingency-OPF problems for different outages,
allowing the use of various convex relaxation techniques.

If the violation cost for H(λo) is non-zero, the global solution will be unique with over-
whelming probability. Furthermore, even if the violation cost for H(λo) is zero, it will
immediately become non-zero during the next homotopy iteration if removing that line in-
troduces inflexibilities that the network cannot accommodate. In fact, these near-infeasible
problems where a contingency will make the system “stressed” are the cases where homotopy
can be useful and is the focus of this work. Note that the global minimum of the base-OPF
is also a global minimum of H(λo) because at λ = λo, the parameters of the homotopy-OPF
correspond to the pre-contingency network, for which the violations are zero.
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3.4.4 Implementation of homotopy-OPF

Now, we describe how the solution to the base-OPF can be used to find the solution to
the contingency-OPF via a homotopy method. First, a series of homotopy-OPF problems
is formulated as a parametrization of the contingency-OPF problem as described above.
To define a physically implementable homotopy map, we must discretize the homotopy
parameter λ. Then, the first homotopy-OPF problem is initialized as the solution to the base-
OPF problem. The series of homotopy-OPF problems is solved via local search methods,
and the initial point is updated at each iteration of homotopy to be the solution of the
previous homotopy-OPF problem. We define a stepsize that is sufficiently small so that the
convergence properties of the continuous homotopy map hold (see [26, 27, 42] for theoretical
subtleties). Note that the discretization of the homotopy path can also be represented
by the set Λ := {Λ1, . . . ,ΛT}, where Λi = λ(i) for i = 0, . . . , T , Λ1 = λ(0) = λo and
ΛT = λ(T ) = λf . Please refer to Algorithms 1 and 2 for complete details of the method.

By finding a solution to the problem at each step of the homotopy, we are tracing a path
of zeros to the KKT equations, assuming constraint qualification holds (see [2] for a complete
discussion of the assumptions in our method). The path-tracing becomes difficult if there
are bifurcations or turning points along the path. In this chapter, we use a sufficiently small
step-size which allows a “jump” over a bifurcation, as discussed in [27, 38].

To develop intuition on when a homotopy method may or may not lead to the global
solution, we consider the basin of attraction of the global solution to the contingency-OPF
problem. The “basin of attraction” of a local solution is the set of initial points that lead
to the solution using an iterative search method, and is dependent on both the problem
geometry and the choice of algorithm.

At each iteration of homotopy, the problem is initialized as the solution to the previous
problem with the hope that the previous point will be in the basin of attraction of the new
solution. The homotopy method will find the global solution of the final problem if at some
point along the homotopy path, the solution to the intermediate problem enters and stays
within the basin of attraction of the global solution to the final problem. Because of this,
homotopy is only useful for problems where the initial point, i.e. the solution to base-OPF, is
not in the basin of attraction of the global minimum of the final problem, contingency-OPF.
If the initial point is within the basin of attraction of the global solution to the final problem,
then the intermediate problems are unnecessary.

Proposition 1. If the global solution along the homotopy path is unique, then a sufficiently
small step-size ∆λ will ensure that the solution to each intermediate problem is a global
solution.

Under the uniqueness assumption mentioned above, the solution to some intermediate
problem will enter and remain within the basin of attraction of the global solution to the
final problem, and we will obtain the global minimum of the final problem. In the next
section, we find some conditions under which the global solution along the path is unique.
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Algorithm 1 Homotopy-OPF for Line Outages

Given:
1. Power network N (V , E) and generators G
2. Contingency set K with line outages Lk ⊂ E for each k ∈ K
3. Discretized homotopy path Λ

Initialize: Solve base-OPF problem given by Equation (3.5) to find a globally optimal
solution (|v|∗, θ∗, pg∗, qg∗ , {σk∗})
Formulate the contingency-OPF problem in Equation (3.7):
1. Fix real power generation to base case solution: P g := pg∗
2. Find Vq based on qg∗

for k ∈ K do
Set up homotopy-OPF family H(Λ) for given line outages Lk.
Initialize (|ṽ|, θ̃, q̃g, σ̃p, σ̃q)← (|v|∗, θ∗, pg∗, qg∗ , {σk∗})
for i ∈ {0, ..., T} do
Solve H(Λi) using initial point (|ṽ|, θ̃, q̃g, σ̃p, σ̃q), and obtain new solution
(|v|, θ, qg, σp, σq).
Update (|ṽ|, θ̃, q̃g, σ̃p, σ̃q)← (|v|, θ, qg, σp, σq)

end for
Return (|v|, θ, qg, σp, σq) and violation cost ϕ(σp, σq).

end for

3.5 Analysis of Homotopy Paths

While probability-one homotopy methods almost surely guarantee algorithm convergence,
they do not necessarily result in convergence to a global minimum [38]. In Section 3.2,
we offered two examples of nonconvex optimization: one in which the homotopy method
resulted in the global minimum and another in which the homotopy method resulted in
a non-global local minimum (see Figure 3.1). In this section, we describe a theoretical
framework that describes when homotopy can be used to obtain a global minimum. We
apply this framework to analyze the performance of homotopy-OPF in finding the global
solution of the contingency-OPF. The results developed in this section have implications
for homotopy methods in a broad range of optimization problems. See [2] for a complete
discussion of the convergence and complexity of the proposed homotopy-OPF method.

Remark 1. To simplify the presentation, we make the assumption that homotopy-OPF has
a unique global solution at the initial point of the path. The “uniqueness” of the global
solution (in this assumption and Theorem 4 to be presented next) can be replaced by the
“connectivity” of the set of all global solutions (this allows having infinitely many possible
solutions for contingency-OPF with zero violation cost).
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Algorithm 2 Homotopy-OPF for Generator Outages

Given:
1. Power network N (V , E) and generators G
2. Contingency set K with generator outages Rk ⊂ G for each k ∈ K
3. Discretized homotopy path Λ

Initialize: Solve base-OPF problem given by Equation (3.5) to find a globally optimal
solution (|v|∗, θ∗, pg∗, qg∗ , {σk∗})
for k ∈ K do
Formulate the contingency-OPF problem in Equation (3.7):
1. Define P g

r as the fixed real power generation at r ∈ G
2. Define ∆P g

k as the total lost real power generation at k: ∆P g
k ≜

∑
r∈Rk

pg∗,r
3. Find Vq.
4. Remove real power generation for generators in Rk: P

g
r ← 0 ∀r ∈ Rk

5. Compute participation factors αg
r for r ∈ G \Rk (see Algorithm 3 in the Appendix)

6. Add real power generation for participating generators:
for r ∈ G \Rk do
if αg

r > 0 then
P g
r ← max{αg

r∆P
g
k , P

g
r − pg∗,r}

end if
end for
Set up homotopy-OPF family H(Λ) for given generator outages Rk.
Let P g,o := pg∗ and P g,f := P g

Initialize (|ṽ|, θ̃, q̃g, σ̃p, σ̃q)← (|v|∗, θ∗, pg∗, qg∗ , {σk∗})
for i ∈ {0, ..., T} do
Solve H(Λi) using initial point (|ṽ|, θ̃, q̃g, σ̃p, σ̃q) and obtain new solution
(|v|, θ, qg, σp, σq)
Update (|ṽ|, θ̃, q̃g, σ̃p, σ̃q)← (|v|, θ, qg, σp, σq)

end for
Return (|v|, θ, qg, σp, σq) and violation cost ϕ(σp, σq)

end for
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Figure 3.4: Red dots denote the global min of the functions. Homotopy may not be effective
for cases where the global minimum of the base case becomes a non-global local minimum
of the deformed problem. For any problem where a global minimum for the initial problem
is transformed into a non-global local solution for the final problem, by continuity, there
must exist a point along the deformation path where the problem has two global minima. In
this example, continuously changing from the initial curve (1) to the final curve (4) requires
passing through curves (3) with two global minima. Point a is defined in Definition 1.

3.5.1 Characterization of Desirable Homotopy Path

The path we take to change the homotopy parameter λ defines how the constraints and
objective function of H(λ) will change, and this in turn affects the series of global solutions
obtained throughout the homotopy process. Therefore, choosing a good homotopy path is
directly correlated with the success of the method. Note that even though Algorithms 1 and
2 work on a discretized homotopy path, their analyses require working on the continuous
path. In Figure 3.4, we have presented an example in which homotopy fails to find the
global solution of the final problem. The major cause of this breakdown is the emergence
of two global solutions in the (continuous) homotopy path, which is followed by a change in
the relative positions of the global solution and next best local solution. In order to better
characterize this, consider the KKT conditions for the homotopy-OPF problem defined in
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(3.11):

∇f(x, λ) + νT∇h(x, λ) = 0

h(x, λ) = 0
(3.13)

where ν is the vector of dual variables. We assume that constraint qualifications hold for
the problem H(λ) defined in (3.11) for all λ ∈ Λ, which implies the KKT conditions are
satisfied for every local minimum. For a given λ, let X (λ) be the set of all x that satisfy the
KKT conditions in Equation (3.13). Note that the goal is not to solve the KKT conditions
directly but is to merely use them as a necessary condition for all local solutions. Before
proceeding to a main theorem of this work, below we make one basic assumption on the
KKT conditions and define a concept called the “dividing midpoint zone” (DMZ).

Assumption 1. The cardinality of set X (λ) as a function of λ is finite and constant for all
λ ∈ Λ.

The first part of Assumption 1 is essential to guarantee that a local solution does not
suddenly appear or disappear along the homotopy path, in which case we cannot trace it
back to the local solutions of the original problem to track it. Using techniques in algebraic
geometry, one can study the satisfaction of the first part of Assumption 1 [43]. The second
part of Assumption 1 is to make sure that we can apply the implicit function theorem.
In [44], it is shown that this is generically true under mild regularity conditions. Note that if
this assumption is violated, it is very hard to make any conclusions about the performance of
homotopy, since we may have the emergence of many local minima with small perturbations
in λ.

Definition 1. At λo, we order all the elements in X (λo) in a way such that f(x(1), λo) <
f(x(2), λo) ≤ · · · ≤ f(x(|X |), λo). Furthermore, let a be the midpoint objective value of the
first and second best KKT points. In other words,

a =
f(x(1), λo) + f(x(2), λo)

2
(3.14)

Define S to be the set of all λ for which there exists a KKT point with the objective value
equal to a:

S ≜ {λ ∈ Λ | f(x, λ) = a for some x ∈ X (λ)} (3.15)

Here, we define a to be the “dividing midpoint” between f(x(1), λo) and f(x(2), λo). In
practice, a wide range of values that are slightly above or below the point a, within the DMZ,
would lead to the same implications. The optimal choice of a depends on the knowledge of
how the shape of the curve changes with respect to λ. We are now ready to state the first
theorem.
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Theorem 4. Let ρ(λ) = 0 be a homotopy path of λ with two end-points λo and λf . In other
words, the set of λ’s satisfying ρ(λ) = 0 can be parametrized by t ∈ [0, T ] such that λ(0) = λo

and λ(T ) = λf . If ρ(λ) = 0 does not intersect with the set S, then the homotopy problem
(3.11) has a unique global minimum for all values of λ along the path ρ(λ) = 0.

Proof. The proof is provided in Appendix 3.B.

According to Theorem 4, the success of homotopy in finding the global optimum depends
on the geometry of the set S. To illustrate this, suppose that the set S is described by the
blue area in Figure 3.5. We wish to design a homotopy method that starts from λo = (1, 1)
and ends at λf = (0, 0). However, in some cases, this may not be possible without crossing
the set S. This could be because set S fully encompasses the final λf and blocks any path
from entering, such as in case (a) of Figure 3.5.

Directly analyzing the geometry of the set S is challenging. Therefore, we introduce
a method to certify whether a path is a successful homotopy path or not. The following
theorem offers a dual certificate.

Theorem 5. Let ρ(λ) = 0 define the homotopy path used to solve the homotopy-OPF problem
(3.11). Consider the following feasibility problem and denote it by (P ) :

(P ) p(x∗, λ∗, µ∗) =min
x,λ,µ

0 (3.16a)

s.t. ∇f(x, λ) + µT∇h(x, λ) = 0 (3.16b)

h(x, λ) = 0 (3.16c)

f(x, λ) = a (3.16d)

ρ(λ) = 0 (3.16e)

Let the corresponding dual problem be denoted by (D), written as:

max
ω1,ω2,ω3,ω4

d(ω1, ω2, ω3, ω4) (3.17)

where ω1, ω2, ω3, ω4 are the dual variables for the constraints (3.16b), (3.16c), (3.16d) and
(3.16e). If there exists a quadruplet (ω1, ω2, ω3, ω4) such that d(ω1, ω2, ω3, ω4) > 0, then the
homotopy-OPF problem (3.11) attains a unique global minimum along the path ρ(λ) = 0.

Proof. The proof is provided in Appendix 3.C.

Note that the dual problem is convex and finding it is easy for certain problems, for
example in the case where homotopy-OPF is cast as a nonconvex quadratically-constrained
quadratic program. In essence, finding a dual feasible point (ω1, ω2, ω3, ω4) for which
d(ω1, ω2, ω3, ω4) > 0 provides a certificate that guarantees that the homotopy path ρ(λ)
will never intersect with set S. Then, by Theorem 4, we can conclude that the homotopy
method will have a unique global minimum along its path and therefore Algorithms 1 and
2 are able to solve contingency-OPF to global optimality using iterative local search due to
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Figure 3.5: Examples of sets S (blue) and homotopy paths ρ(λ) (red). In Figure (a), we see
an example where it is impossible to design a homotopy path that reaches the origin without
intersecting S. In Figure (b), we see an example where homotopy will work with a carefully
designed path that avoids set S. In Figure (c), we see an example where any homotopy path
with probability 1 will avoid set S.

p12 p21

pd1 pd2

v1
∼

v2
∼

y = (λ̄1g)− j(λ̄2b)

Figure 3.6: Diagram of the two-bus network

Proposition 1. Note that the results of Theorem 4 are still valid if one adds valid inequalities
to (P ) to increase the likelihood of the existence of a desirable dual feasible point via reducing
the duality gap [45].

3.5.2 Geometry of the Homotopy Path: Two-bus Example

Consider a simple two-bus example as shown in Figure 3.6. Each bus has a corresponding
voltage magnitude and voltage angle associated with it. The voltage magnitude of bus i is
denoted by |vi| and the voltage angle of bus i is denoted by θi. The line connecting the two
buses have admittance y = (λ̄1g)− j(λ̄2b). The active power injection and demand at bus i
are denoted by pinji and P d

i > 0, respectively. Furthermore, there is a lower bound Qmin on
reactive power injection at both buses. Assume that (1) |v1| = |v2| = 1, (2)−∆ ≤ θ1−θ2 ≤ ∆
and (3) 0 < Qmin < q(∆), where ∆ = tan−1(λ2b/λ1g) and q(·) denotes the reactive power
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injection as a function of the solely the angle difference, which is due to the fact that voltage
magnitudes are fixed. Note that the second constraint on angle difference is reasonable for
the secure operation of power systems and is also used in [46] in order to restrict the two-bus
active power injection region to be within the Pareto front of the original feasible region. In
mathematical terms, suppose that the corresponding OPF problem takes the following form:

min
pinj
1 ,pinj

2

(pinj1 + P d
1 )

2 + c(pinj2 + P d
2 )

2

subject to: h(pinj1 , pinj2 ) = 0 (3.18)

The feasible set of the two-bus injection region belongs to the Pareto front of an ellipse,
which is partially removed due to the reactive power constraints (the details can be found
in [46]). The following lemma characterizes the set of homotopy parameters for which there
are at least two global solutions.

Lemma 2. Denote α = cos−1(−Qmin+bλ2

|y| ), and define two polynomial functions of λ =

(λ1, λ2) as follows:

w1(λ1, λ2) ≜
2λ2b

|y|
(
λ2b · sinα + α · λ1g

)
(3.19a)

w2(λ1, λ2) ≜ 2λ1g −
2λ1g

|y|
(
− λ1g · sinα + α · λ2b

)
(3.19b)

Define also the set S̃ as:

S̃ ≜ {λ ∈ R2 | (1−c) ·w1(λ1, λ2) ·w2(λ1, λ2)+2P d
1 ·w1(λ1, λ2)−2cP d

2 ·w1(λ1, λ2) = 0} (3.20)

If (λ̄1, λ̄2) ∈ S̃, then the two-bus OPF problem has two global solutions.

Proof. The proof is provided in Appendix 3.D.

We can view this set S̃ as an equivalent if not a subset of S. This is a set of measure zero
in general and as long as the homotopy path does not intersect with this set, our homotopy
algorithms will work.

The set S̃ for the two-bus network is depicted in Figure 3.7. In this case, we can see that
there is no homotopy path ρ(λ) moving from λo = (1, 1) to λf = (0, 0) that does not cross
this set and therefore cannot guarantee that the homotopy method will always converge to
the global solution.

3.6 Simulations

In this section, we illustrate the success of the homotopy method in finding the global solution
of the contingency-OPF. In doing so, we present simulations of different line and generator
outage scenarios on various networks. We also evaluate the performance using different
homotopy paths and discretizations, and verify our earlier theoretical results.



CHAPTER 3. HOMOTOPY METHOD FOR POST-CONTINGENCY OPF 62

Figure 3.7: An example of set S̃ for the two-bus network

3.6.1 Simulation Setup

These simulations are all run in MATLAB on a standard laptop (2.6 GHz 6-Core Intel Core
i7 with 16 GB 2400MHz RAM). The contingency-OPF problems with and without homotopy
all solve in less than two minutes and typically solve on the order of seconds. With the given
machine configuration, we were able to solve six homotopy-OPF problems in parallel in less
than three minutes. The typical time frame for solving OPF problems in practice is 5 to 15
minutes. The applicability of our methodology will depend on how much parallel-computing
resources are available to the user.

In these simulations, we considerN−1 contingencies wherein there is one line or generator
out as well as N − 2 and N − 3 contingencies wherein there are multiple outages. Although
N − 1 contingencies occur more frequently in practice, N − 2 and N − 3 contingencies are
catastrophic events that are worth considering as they are harder to correct. Extreme weather
events, attacks, or component aging could cause these N − k (where k ≥ 2) contingency
scenarios to occur [47]. Adding uncertain renewable energy sources such as wind energy
to power networks increases the probability of correlated faults and thus the possibility
of N − 2 and N − 3 contingencies [48]. Additionally, these multi-contingency scenarios
can capture cascading failures that occur in a short window where corrective action is not
possible between contingencies [48].

In order to implement the contingency-OPF within the MATPOWER format [49], we
introduce virtual generators that model the violations of real and reactive power balance
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equations (σp and σq). Virtual generators are modeled so that they only generate or con-
sume (virtual) power when there is a nonzero violation in the respective power balance
equation. Therefore, by penalizing the virtual generation in the modified objective function,
we fully implement the contingency-OPF as formulated in Section 3.3.2. The benefit of this
formulation is that there always exists a feasible solution to contingency-OPF. By adding
power generation flexibility with virtual generators, we aim to find a feasible point (equiva-
lent to a zero objective value) or an infeasible point for the network but with the minimum
violations (such solutions could still be implemented via corrective actions taken by real-time
feedback controllers). To solve each of the homotopy simulations, we use the MATPOWER
Interior Point Solver (MIPS) [50].

For both line and generator outages, we solve the corresponding contingency-OPF prob-
lems via both homotopy and the one-shot method. The one-shot method uses the solution
for the base-OPF as the initial point for directly solving the contingency-OPF. We compare
various homotopy discretization schemes to the one-shot method. Note that the one-shot
method is equivalent to solving the contingency-OPF problem via interior point methods
and thus represents the current state-of-the-art.

3.6.2 Simulated Line Outages

For the line outages, we consider three different homotopy paths. If we take line ℓ connecting
buses i and j to be out, then the three homotopy paths are given by:

• Scheme 1: Uniformly decrease (λ1,ℓ, λ2,ℓ) from (1, 1)→ (0, 0)

• Scheme 2: Decrease λ1,ℓ from 1→ 0, then λ2,ℓ from 1→ 0

• Scheme 3: Decrease λ2,ℓ from 1→ 0, then λ1,ℓ from 1→ 0

These schemes can be applied to multiple line outages by simultaneously modifying λ1,ℓ
and λ2,ℓ for each line ℓ ∈ E that is out. For line outage scenarios on the 3375-bus and
3120-bus Polish networks [49], Figures 3.8 and 3.9 show the evolution of the violation cost
over these homotopy schemes (with a 10-iteration discretization) compared to the violation
cost of the one-shot method.

Next, we consider changing the discretization of homotopy scheme 1 in a line outage
scenario. Figure 3.10 shows line outage scenarios on the 3375-bus and 3120-bus Polish
networks [49] using homotopy scheme 1 with a varying number of iterations. For these line
outages, we implement Scheme 1 described above that decreases λ1,ℓ and λ2,ℓ simultaneously
from 1 to 0 at each of the outed lines ℓ ∈ E . We consider three possible discretizations of
this homotopy path, using 3, 5, and 10 iterations of homotopy and compare them to the
one-shot method.
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Figure 3.8: Performance of proposed homotopy method on the 3375-bus Polish network
(case3375wp with real and reactive power demand scaled up by 10%) with single line outages.
Homotopy schemes 1 through 3 are tested with 10 iterations. In the top left figure (line out
ID: 3596, with about 370 MW flowing from bus 553 to bus 554 in the base case), we have
a scenario where all three homotopy schemes outperform the one-shot method. In the top
right figure (line out ID: 3551, with about 180 MW flowing from bus 451 to bus 450 in the
base case), we have a scenario where only homotopy schemes 1 and 3 significantly outperform
the one-shot method. In the bottom figure (line out ID: 268, with about 198 MW flowing
from bus 26 to bus 77 in the base case), we have a scenario where the one-shot method
performs the same as all three homotopy methods. This was the most common scenario
for our experiments on the 3375-bus network, representing about 95% of 4161 tested single
line outages. While homotopy in general yielded the same solution as the one-shot method,
in scenarios where it outperformed the one-shot method, the results were often better by a
factor of 105, as seen in the top two figures. Note that all solutions shown here are convergent,
compared to the scenarios for the 3120-bus Polish network shown in Figure 3.9 which have
some non-convergent solutions.
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Figure 3.9: Performance of proposed homotopy method on the 3120-bus Polish network
(case3120sp with real and reactive power demand scaled up by 10%) with multiple line
outages. Homotopy schemes 1 through 3 are tested with 10 iterations. By introducing
multiple line outages, we make the contingency-OPF problem more difficult to solve, which
makes it a good candidate for the proposed homotopy method. In both of these scenarios,
homotopy schemes 1 and 2 find a convergent solution while the one-shot method does not.
In the top figure, the IDs of the outed lines are 438 (with about 67 MW flowing from bus
710 to bus 797 in the base case), 439 (with about 67 MW flowing from bus 797 to bus 578
in the base case), and 3150 (with about 59 MW flowing from bus 578 to bus 577 in the base
case). In the bottom figure, the IDs of the outed lines are 2056 (with about 3 MW flowing
from bus 1625 to bus 1145 in the base case) and 3082 (with about 51 MW flowing from bus
336 to bus 337 in the base case).
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Figure 3.10: Performance of proposed homotopy scheme 1 tested with a varying number of
iterations. The top figure shows the 3375-bus Polish network (case3375wp with real and
reactive power demand scaled up by 10%) with a single line outage (line out ID: 3551, with
about 180 MW flowing from bus 451 to bus 450 in the base case). In this scenario, we see
that the 2, 5, and 10-iteration homotopy methods converge to a solution that is much better
than that obtained by the one-shot method. The bottom figure shows the 3012-bus Polish
network (case3012wp with real and reactive power demand scaled up by 8%) with a single
line outage (line out ID: 1604, with about 68 MW flowing from bus 1590 to bus 1360 in
the base case). In this scenario, we see that the 2, 5, and 10-iteration homotopy methods
result in a convergent solution while the one-shot method does not. For both scenarios, by
introducing even a 2-iteration homotopy scheme, we outperform the one-shot method.

3.6.3 Simulated Generator Outages

For generator outages, we implement a homotopy path that decreases λ from [1|V|,1|V|] to
[0|V|,0|V|] uniformly throughout the iterations. For this homotopy path, we also consider
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varying the discretization of the path. Figure 3.11 shows generator outage scenarios on the
89-bus and 1354-bus PEGASE networks [51, 52]. Figure 3.12 shows the homotopy results on
the 3375-bus Polish network with a single generator outage. From these figures, we can see
that the final violation cost obtained using the given homotopy paths can vary significantly
depending on the number of iterations (or equivalently the step-size ∆λ) of homotopy-OPF.

3.6.4 Comparison of Homotopy and One-shot Methods

In some of the examples from Figures 3.8, 3.10, and 3.12, we can see that solving the
contingency-OPF problems with our homotopy method results in a lower violation cost than
solving the same problems via the one-shot method. We also considered how far the bus
voltages in the contingency-OPF problem were from the base case voltages when we solved
the problem with homotopy versus one-shot methods, as shown in Figure 3.13 and 3.14. To
quantify the severity of the contingency, we also show the voltage variations when using a
simple powerflow solver after a contingency. The results show that with homotopy we can
obtain a solution that is relatively close to that of the base case, while the solution obtained
without homotopy can be unnecessarily far away from that of the base case.

In other cases from Figures 3.9, 3.10, and 3.11, solving the contingency-OPF problems
via the one-shot method results in non-convergence while the homotopy method can find a
convergent solution.

In order to formally compare the performance of homotopy versus the one-shot method,
we say that homotopy “outperforms” the one-shot method if either of the following are true:

1. If the homotopy scheme converges and the one-shot method does not converge.

2. If the homotopy scheme converges to a value that is better than that of the one-shot
method by at least 0.01% of the optimal base-OPF cost.

For the 1354-bus PEGASE network, we tested 1, 2, and 3 line and generator outages,
testing 100 simulations of each type of outage. The homotopy paths for these line and
generator outages are the same as those described for the simulations in Figures 3.10, 3.11,
and 3.12. The percent of simulations where homotopy outperformed the one-shot method
is given in Table 3.1 for the network with base-level demand and with demand scaled up
by 10%. It can be observed that for the line outage contingencies, the homotopy methods
appear to be more useful when the demand is higher. This is likely because the increased
demand makes the problem harder, and thus homotopy is more useful. However, the inverse
appears true for the generator outage scenarios, i.e. the homotopy methods appear to be
more useful when demand is at the base-level. This could be because the removal of a
generator could lead to many possibilities for operating the post-contingency network in a
lower demand scenario, which may introduce bad local minima.

Although the percent of simulations where homotopy outperforms the one-shot method
is less than 20% for the considered cases, it is important to note that in these cases the ho-
motopy method can lead to a significant reduction in the violation cost during a contingency
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Figure 3.11: Performance of proposed homotopy method for generator outages. The top
figure shows a 2 generator outage (generator out IDs: 4 and 7 that respectively generate
about 667 MW at bus 37 and about 532 MW at bus 56 in the base case) in the 89-bus PE-
GASE network (case89pegase). The bottom figure shows a 1 generator outage (generator
out ID: 30 that generates 1.2 GW at bus 152 in the base case) in the 1354-bus PEGASE
network (case1354pegase). In these scenarios, the homotopy method can be used to find a
convergent solution when the one-shot method fails to find one.

scenario or to a convergent solution when the one-shot method fails to converge. Since a
small penalty price is applied to minor violations and an extremely severe penalty is applied
to high violations, having even a single contingency scenario with a high violation is prob-
lematic for the entire SCOPF problem. Therefore, even if this methodology can improve the
current industry solution for 1 out of 10 contingency scenarios, it is extremely beneficial for
the security of the entire system. For the cases where the proposed homotopy method does
not outperform the one-shot method, the homotopy method typically is at least as good as
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Figure 3.12: Performance of proposed homotopy method on the 3375-bus Polish network
(case3375wp with real and reactive power demand scaled up by 10%) with a single generator
outage. The figure (generator out ID: 100 that generates 370 MW at bus 400 in the base
case) shows a scenario where all homotopy discretization schemes result in a violation cost
much lower than that obtained by the one-shot method.

Table 3.1: Percent of simulations where 5-iteration homotopy scheme outperformed
one-shot method for 1354-bus PEGASE network. For each type of contingency and
demand level, we have tested 100 random outage scenarios.

Type of Base-level 10% greater
contingency power demand power demand
1 line outage 10% 12%
2 line outage 7% 12%
3 line outage 12% 15%

1 generator outage 9% 7%
2 generator outage 10% 9%
3 generator outage 17% 12%

the one-shot method.

3.7 Conclusions

This chapter studies the contingency-OPF problem, which is used to find an optimal oper-
ating point in the case of a line or generator outage. Unlike the base-OPF problem that is a
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Figure 3.13: Solution analysis for the 3375-bus Polish network (case3375wp with real and
reactive power demand scaled up by 10%) with a single generator outage (generator out ID:
100 that generates 370 MW at bus 400 in the base case). In these figures, we compare the
voltage variation between the solutions of the contingency-OPF problem, solved with the
3-iteration homotopy and one-shot methods, to the solution of the post-contingency power
flow (PF) problem, solved with Newton-Raphson. For all these post-contingency voltage
solutions, we subtract out the base case voltage to determine the variation of the solution
from the base case. The twenty generator buses with the largest variation from the base
case voltage magnitude in the PF solution are shown here since they provide a measure on
the severity of the contingency. In this scenario, all three homotopy methods converge to
the same solution, as shown in Figure (3.12), so we only compare the solution from the 3-
iteration method to that obtained by the one-shot method. For this scenario, the homotopy
method gradually deforms the base case to yield a solution that is much closer to the base
case while the one-shot method yields a solution that is far from the base case.
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Figure 3.14: Solution analysis for the 3375-bus Polish network (case3375wp with real and
reactive power demand scaled up by 10%) with a single generator outage (generator out ID:
100 that generates 370 MW at bus 400 in the base case). In these figures, we compare the
voltage variation between the solutions of the contingency-OPF problem, solved with the
3-iteration homotopy and one-shot methods, to the solution of the post-contingency power
flow (PF) problem, solved with Newton-Raphson. For all these post-contingency voltage
solutions, we subtract out the base case voltage to determine the variation of the solution
from the base case. The twenty load buses with the largest variation from the base case
voltage magnitude in the PF solution are shown here since they provide a measure on the
severity of the contingency. See Figures (3.12) and (3.13) for more details on this scenario.
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single optimization problem, there are many contingency-OPF problems that should all be
solved in a short period of time. Recognizing that the contingency-OPF problem is a chal-
lenging variant of the classical OPF problem, we introduce a new homotopy method to find
the best solution of the contingency-OPF problem. This method involves solving a series
of intermediate homotopy-OPF problems using simple local search methods, and we study
conditions that guarantee convergence to a global solution of the contingency-OPF. We per-
form simulations on real-world networks and show that the proposed homotopy method can
result in a lower objective value than existing methods. In the majority of considered cases,
the proposed homotopy method resulted in the same solution as that obtained by current
state-of-the-art methods. However, in other critical cases, homotopy significantly outper-
formed state-of-the-art interior point methods as measured by both violation cost reduction
and solver convergence. Our work improves the security of the grid against low-probability
events with catastrophic effects.
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Appendix

3.A Computation of Participation Factors for

Generator Outage

During the outage of one or more generators, a collection of other generators will increase
their power generation in order to respond to the outage and meet power demand. The
“participation factor” of a generator determines the portion of the generation response that
is assigned to that generator. There are a variety of ways to compute participation factors,
including scaling the participation factors based on the remaining power capacity. In Algo-
rithm 3, we present one method for computing participation factors which is based on the
topology of the network, i.e. it redirects generation from the outed generators to generators
that supply the same set of buses as the outed generators in the base-OPF. This method
is based on the work [53]. In our simulations of generator outages, we use this method for
computing participation factors with Algorithm 2.

3.B Proof of Theorem 4

Let the homotopy-OPF problem at λo, H(λo), have a set of KKT points
X (λo) = {x(1), . . . , x(|X |)} that are ordered in a way such that f(x(1), λo) < f(x(2), λo) ≤ ... ≤
f(x(|X |), λo). The first strict inequality between the global minimum and the next best local
minimum implies that there is a unique global minimum x(1), which is the assumption made
in Remark 1. Therefore, by definition, λo /∈ S. We will prove the theorem by proving its
contrapositive. Suppose that there exists a τ ∈ [0, T ] for which the homotopy-OPF problem

H(λ(τ)) has two global solutions, x
(1)
τ and x

(2)
τ . To show that the contrapositive is true, we

have to show that the path described by ρ(λ) = 0 intersects with the set S. There are two
scenarios that can happen:

(i) When f(x
(1)
τ , λ(τ)) = f(x

(2)
τ , λ(τ)) ≥ a

(ii) When f(x
(1)
τ , λ(τ)) = f(x

(2)
τ , λ(τ)) < a

Note that a is defined in Definition 1. For scenario (i), since f(x(1), λo) < a, ∃t ∈ [0, τ ]

such that f(x
(1)
t , λ(t)) = a where ρ(λ(t)) = 0. This is due to Assumption 1 and the fact
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Algorithm 3 Calculation of Participation Factors for Power Redistribution, Contingency k

Given:
(i) Power network N (V , E) and generators G
(ii) Solution to base-OPF problem (|v|∗, θ∗, pg∗, qg∗ , {σk∗})
(iii) Generators out in contingency k: Rk ⊂ G
Let (|v|, θ, pg, qg, {σk})← (|v|∗, θ∗, pg∗, qg∗ , {σk∗})
Compute real power flow for all (i, j) ∈ E in the base case:

pij = Gij|vi|2 −Gij|vi||vj| cos(θij) +Bij|vi||vj| sin(θij)
Generate a directed graph D(V ,A) based on direction of power flow: (i, j) ∈ A if pij ≥ 0
Use shortest path algorithm to compute the domain of each generator
Group the buses supplied by the same set of generators into commons C (see [53])
Use algorithm in [53] to determine the contribution Crj of each generator r to common j
Remove contribution of generators that are out:

Crj ← 0, ∀r ∈ Rk, ∀j ∈ C
Distribute lost generation over generations that supply the same common:
for j ∈ C do
Define Cj ≜

∑
r Crj

if Cj ̸= 0 then
for r ∈ G do
Crj ← Crj/Cj

end for
end if

end for
Initialize participation factors: αg

r = 0 for all r ∈ G
Define participation factors based on contribution to common:
for r ∈ Rk do
for j ∈ C do
αg
t ← αg

t + Ctj for all generators t in common j
end for

end for
Normalize the participation factors αg so that

∑
r∈G α

g
r = 1

that the KKT points change continuously with respect to the parameter λ. Similarly, for
scenario (ii), since f(x(2), λo) > a, ∃t ∈ [0, τ ] such that f(x

(2)
t , λ(t)) = a where ρ(λ(t)) = 0.

In both scenarios, the path described by ρ(λ) = 0 intersects with the set S, which proves
the contrapositive and completes the proof.
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3.C Proof of Theorem 5

Due to Theorem 4, it is sufficient to show the equivalence between the following two state-
ments:

(i) The path described by ρ(λ) = 0 does not intersect with the set S.

(ii) There exists a dual variable quadruplet (ω1, ω2, ω3, ω4) such that d(ω1, ω2, ω3, ω4) > 0.

By definition of the set S, statement (i) is equivalent to saying that the following set of
equations do not have a solution:

∇f(x, λ) + µT∇h(x, λ) = 0

h(x, λ) = 0

f(x, λ) = a

ρ(λ) = 0

(3.21)

In other words, the following feasibility problem is infeasible:

(P ) min
x,λ,µ

0 (3.22a)

s.t. ∇f(x, λ) + µT∇h(x, λ) = 0 (3.22b)

h(x, λ) = 0 (3.22c)

f(x, λ) = a (3.22d)

ρ(λ) = 0 (3.22e)

By duality theory, if the dual problem (D) is unbounded, then the primal problem (P)
must be infeasible. However, since the primal objective value is zero and the dual problem
should provide a lower bound to the primal, finding a dual certificate that gives a positive
dual objective value is sufficient in proving that the primal problem is infeasible. This
completes the proof.

3.D Proof of Lemma 2

Let us start with the equation for the reactive power injections. Let θ1 and θ2 denote the
voltage phasor angles at bus 1 and 2, respectively. Then after denoting θ = θ1− θ2, we have
the following:

qinj1 = λ2b− λ1g · sin θ − λ2b · cos θ (3.23a)

qinj2 = λ2b+ λ1g · sin θ − λ2b · cos θ (3.23b)

A lower bound of Qmin on qinj1 results in the following calculations:

Qmin ≤ λ2b− λ1g · sin θ − λ2b · cos θ
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⇐⇒ −Qmin + λ2b ≥ λ1g · sin θ + λ2b · cos θ

=
√

(λ1g)2 + (λ2b)2 · cos (θ −∆) where ∆ = tan−1

(
λ1g

λ2b

)
⇐⇒ cos (θ −∆) ≤ −Qmin + b · λ2√

(λ1g)2 + (λ2b)2

⇐⇒ θ ≥ cos−1

(
−Qmin + b · λ2√
(λ1g)2 + (λ2b)2

)
+∆

or θ ≤ − cos−1

(
−Qmin + b · λ2√
(λ1g)2 + (λ2b)2

)
+∆ (3.24)

From the lower bound on qinj2 , we can perform a similar derivation and arrive at the
following inequality:

θ ≥ cos−1

(
−Qmin + b · λ2√
(λ1g)2 + (λ2b)2

)
−∆

or θ ≤ − cos−1

(
−Qmin + b · λ2√
(λ1g)2 + (λ2b)2

)
−∆ (3.25)

Therefore, combining inequalities (3.24) and (3.25), we derive the following inequality:

θ ≥ cos−1

(
−Qmin + b · λ2√
(λ1g)2 + (λ2b)2

)
+∆

or θ ≤ − cos−1

(
−Qmin + b · λ2√
(λ1g)2 + (λ2b)2

)
−∆. (3.26)

Furthermore, we assume that

− tan−1

(
λ2b

λ1g

)
≤ θ ≤ tan−1

(
λ2b

λ1g

)
(3.27)

which is equivalent to the following using basic trigonometry:

−
(π
2
−∆

)
≤ θ ≤

(π
2
−∆

)
(3.28)

Combining the two inequalities (3.26) and (3.28), and using the definition of α, we get
the final constraint on θ:

α +∆ ≤ θ ≤

(
π

2
−∆

)
or −

(
π

2
−∆

)
≤ θ ≤ −α−∆. (3.29)
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Figure 3.15: An example of two-bus network for which there are two global solutions to the
OPF.

This feasible region of θ is reflected in the feasible region of the active power injections,
as shown in the bolded part of the ellipse in Figure 3.15. As illustrated in the figure, the two
red points are active power injections, corresponding to θ = α+∆ and θ = −α−∆. Let the
first red point, (P inj

1 , P inj
2 ), be generated by θ = α+∆. Then, the following is true for P inj

1 :

P inj
1 = λ1g + λ2b · sin θ − λ1g · cos θ

= λ1g + λ2b · sin (α +∆)− λ1g · cos (α +∆)

= λ1g + λ2b · (sinα · cos∆ + α sin∆)− λ1g · (α cos∆− sinα · sin∆)

= λ1g +
λ2b

|y|
(λ2b · sinα + α · λ1g)−

λ1g

|y|
(α · λ2b− λ1g · sinα) (3.30)

Similarly, if we let the second red point (P̄ inj
1 , P̄ inj

2 ), be generated by θ = −α − ∆, we
have

P̄ inj
1 = λ1g −

λ2b

|y|
(λ2b · sinα + α · λ1g)−

λ1g

|y|
(α · λ2b− λ1g · sinα) (3.31)

Also, note that due to symmetry, P inj
2 = P̄ inj

1 and P̄ inj
2 = P inj

1 . Let’s define the following
two functions:

w1(λ1, λ2) ≜ P inj
1 − P̄ inj

1 =
2λ2b

|y|
(
λ2b · sinα + α · λ1g

)
(3.32a)
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w2(λ1, λ2) ≜ P inj
1 + P̄ inj

1 = 2λ1g −
2λ1g

|y|
(
− λ1g · sinα + α · λ2b

)
(3.32b)

If the two points (P inj
1 , P inj

2 ) and (P̄ inj
1 , P̄ inj

2 ) are both globally optimal, their objective
values must be equal. In other words,

(P inj
1 + P d

1 )
2 + c(P inj

2 + P d
2 )

2 = (P̄ inj
1 + P d

1 )
2 + c(P̄ inj

2 + P d
2 )

2

⇐⇒ (1− c){(P inj
1 )2 − (P̄ inj

1 )2}+ 2P d
1 (P

inj
1 − P̄ inj

1 )− 2cP d
2 (P

inj
1 − P̄ inj

1 ) = 0

⇐⇒ (1− c) · w1(λ1, λ2) · w2(λ1, λ2) + 2P d
1 · w1(λ1, λ2)− 2cP d

2 · w1(λ1, λ2) = 0 (3.33)

This completes the proof.
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Chapter 4

Optimal Measurement Choice in
Robust Robust Power System State
Estimation

In this chapter, we present a framework for Optimal Measurement Choice in Robust Power
Grid State Estimation.1

4.1 Introduction

Power system state estimation (SE) is a critical problem for the reliability of the electric
grid [2, 3]. SE uses data from sensors throughout a transmission or distribution network to
monitor the state of the network [4]. The estimated state is in turn used to make decisions
about real-time power dispatch, implement voltage control, and take action in the case of
a contingency, such as a line or generator outage, as shown in Figure 4.1 [2]. During the
Northeast power blackout of 2003, which affected over 50 million people in the U.S. and
Canada, the propagation of cascading failures could have been mitigated had the operators
been able to recover the true state of the network [5]. Because sensor measurements may
be subject to both random noise and intentional cyberattacks, it is important to consider a
robust version of the SE problem [6]. Furthermore, as cyberattacks increase in frequency,
robust SE will become more important in the design of algorithms for the future smart grid
[7–9].

A special case of graph-structured quadratic sensing, SE is formulated as the minimization
of a loss function representing the difference between the actual set of measurements and
the measurements that would be observed for the estimated state [10]. The state of a power
network is defined by a complex voltage at each bus in the network. Due to the nonlinearity
of alternating current (AC) power flow, the classical SE problem is nonlinear, making the
problem NP-hard. In practice, nonlinear SE is often formulated as a weighted least-squares

1Chapter 4 includes materials from [1] that were previously published.
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Figure 4.1: Role of state estimation in power systems operation.

problem and is solved with local search algorithms such as Newton’s method or approximated
with linearizations [11–14]. However, local search methods may yield spurious local minima
with no physical meaning since SE does not satisfy the restricted isometry property (RIP)
from quadratic sensing that can be used to certify a lack of spurious local minima [15–17].
Spurious local minima have no physical meaning in relation to the true state of the power
system and are hard to distinguish from the global minimum that corresponds to the true
state. Because of this, there is growing interest in methods that can yield global solutions
to the SE problem such as stochastic and convex methods [18–25]. The paper [10] proposes
a two-step power system SE method which allows for the recovery of the true state of the
system in the case without noise or bad data. Because this method involves solving a linear
SE problem, it is convex and can be solved to global optimality efficiently with existing local
search methods. Additionally, [10] introduces a sufficient condition to verify the robustness
of SE that explicitly depends on the support of the bad data, and [26] extends this work to
propose a method which certifies that a network is locally robust to bad data without any
dependence on the bad data support.

With the increasing number of phasor measurement units (PMUs) in power systems,
there is growing interest in SE methods that make use of PMU data [27–30]. Because sensors
such as PMUs are typically expensive, it is not always economical to install sensors at every
possible location in a power network [31]. Thus, there is interest in optimizing the placement
of sensors in a power network, with various objectives with regards to SE such as ensuring the
system is observable [32–40]. Many of these methods formulate the measurement placement
problem as a mixed-integer program (MIP), which is a natural formulation for making the
binary choice whether or not to place a sensor at a particular location. While some papers
attempt to optimize measurement placement in order to ensure SE robustness, these methods
focus on ensuring overall redundancy rather than directly considering how bad data at some
buses affect the rest of the measurements in the connected network [41]. Our work builds
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on the existing literature by considering how bad data propagates in a power system SE
problem in order to optimize measurement choice.

4.1.1 Contributions

This work proposes a novel framework to optimize the placement of sensors in a network in
order to satisfy a machine learning condition for SE robustness. To do this, we leveraged a
linearized SE framework and the concept of local partitioning in order to define a MILP that
formalizes the measurement choice problem. The MILP is a coupled optimization problem
over all lines in the network that has the goal of optimizing the local mutual incoherence
metric for each line in the network. The coupling occurs through the choice of measurement
set, which affects the mutual incoherence for all lines. The proposed framework provides
measurement placement choices that yield greater system observability in case of cyberattack.

4.1.2 Notations

The symbol R denotes the set of real numbers, and RN denotes the space of N -dimensional
real vectors. The symbol (·)T denotes the transpose of a vector or matrix. The symbol | · | is
the absolute value operator if the argument is a scalar, vector, or matrix; otherwise, it is the
cardinality of a measurable set. The imaginary unit is denoted by j =

√
−1. The elementwise

multiplication of two matrices A ∈ Rm×n and B ∈ Rm×n is denoted as A⊙ B. The symbol
† denotes the left pseudoinverse of a matrix given as A† ≜ (ATA)−1AT . The notation ||A||∞
corresponds to the matrix infinity norm, e.g. the maximum absolute column sum of matrix
A. The expression 1n is a vector of ones of dimension n, and the expression 1{ζ} is the
indicator function which is 1 if ζ is true and 0 otherwise. The notation A[B, C] or AB,C
represents a submatrix of matrix A formed by taking the rows and columns corresponding
respectively to the sets B and C. The notation A \ B denotes the subtraction of set B from
set A, and A∪B denotes the union of sets A and B. The notation [n] denotes the index set
{1, . . . , n}.

4.2 Background

4.2.1 Power System State Estimation (SE)

Let a power network be defined as the graph N (V , E), where V is the set of buses and E is the
set of lines. The goal of SE is to recover the true state of the network, given as the complex
voltage vi ≜ |vi|ejθi at each bus i ∈ V . We are given some set of measurementsM, which can
include measurements of the real or reactive power flows pij, qij on line (i, j) ∈ E , the real
or reactive power injected pi, qi at bus i ∈ V , or the voltage magnitude |vi| at bus i ∈ V . We
can also extend this method to include phase angle measurements θi for i ∈ V from phasor
measurement units (PMUs). We will use the SE method from [10], which introduces a linear
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basis using the unknown state variables:

xmg
i ≜ |vi|2 ∀i ∈ V (4.1a)

xreij ≜ |vi||vj| cos(θij) ∀(i, j) ∈ E (4.1b)

ximij ≜ |vi||vj| sin(θij) ∀(i, j) ∈ E (4.1c)

where θij ≜ θi − θj for all (i, j) ∈ E . We will take the set

X ≜
{
{xmg

i }∀∈V , {xreij}∀(i,j)∈E , {ximij }∀(i,j)∈E
}

(4.2)

to be the set of all states for the network, which is fixed given the network topology.
Given this linear basis, the equations which relate the measurements to the unknown

state are:

|vi|2 = xmg
i ∀i ∈ V (4.3a)

pij = Gijx
mg
i −Gijx

re
ij −Bijx

im
ij ∀(i, j) ∈ E (4.3b)

pji = Gijx
mg
j −Gijx

re
ij +Bijx

im
ij ∀(i, j) ∈ E (4.3c)

qij = −B∗
ijx

mg
i +Bijx

re
ij −Gijx

im
ij ∀(i, j) ∈ E (4.3d)

qji = −B∗
ijx

mg
j +Bijx

re
ij +Gijx

im
ij ∀(i, j) ∈ E (4.3e)

pi =
∑

j:(i,j)∈E

pij +
∑

j:(j,i)∈E

pij ∀i ∈ V (4.3f)

qi =
∑

j:(i,j)∈E

qij +
∑

j:(j,i)∈E

qij ∀i ∈ V (4.3g)

where Gij is the conductance, Bij is the susceptance, and B∗
ij ≜ Bij +

1
2
Bsh

ij with shunt
susceptance Bsh

ij for line (i, j) ∈ E . Using the set of equations (4.3), we can define a state
equation of the formm = Ax where A ∈ Rm×n is the sensing matrix that relates the unknown
state x ∈ Rn to the vector of measurements m ∈ Rm. We have that n ≜ |X | = |V| + 2|E|
and m ≜ |M|. Note that A is sparse due to the sparse nature of power networks.

When m > n, the equation m = Ax represents an over-determined power flow problem.
We will assume that we always have m ≥ n. In a realistic scenario, the measurements m are
corrupted with random noise and potentially other bad data, and therefore we cannot just
solve this over-determined power flow to determine the true state. We can model the noisy
and/or corrupted measurements y ∈ Rm as:

y = Ax+w+ b (4.4)

where w ∈ Rm represents random noise and b ∈ Rm represents the bad data vector. Typical
assumptions on these vectors are that w follows a Gaussian distribution and that b is a
sparse vector [42–45]. Note that the local recovery method in [26] is one of the most general
methods as it does not make assumptions on the sparsity of b.

The SE methods of [10] and [26] use a two-step process:
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1. Solve SE problem defined by (4.4) to get an estimate x̂.

2. Recover an estimate of the complex voltages using the relations:

• Voltage magnitudes : |v̂i| =
√
x̂mg
i for all i ∈ V

• Voltage phase angle differences : θ̂ij = arc tan
(
x̂imij /x̂

re
ij

)
for all (i, j) ∈ E

• Voltage phase angles recovered by solving least-squares (LS) problem:

θ̂ = arg min
θ∈R|V|

∑
(i,j)∈E

(θi − θj − θ̂ij)2 (4.5)

If step 1 is able to recover the true state, then step 2 will recover the true complex voltage
vector [10]. In the case of corrupted and/or noisy data, it will be impossible to recover the
true state in step 1, but it is stated in [10] that the propagation of error is not too great
in step 2. Thus, the focus of this work for robust SE is on step 1, which we will call ℓ-SE
(linearized SE) from this point forward.

Consider the case when we have sparse corruption b but no random noise w = 0. The
ℓ-SE problem would be to solve the L1 minimization problem given in [10]:

x̂ = min
x,b
||b||1 s.t. Ax+ b = y (4.6)

In the case when both random Gaussian noise and sparse corruption are present, one
version of ℓ-SE problem would be to solve the LASSO problem given in [10]:

x̂ = min
x,b

1

2|M|
||y− Ax− b||22 + λ||b||1 (4.7)

for some regularization parameter λ > 0 that promotes the sparsity of b. As an alternative,
the paper [26] proposes minimizing a Huber loss which is more robust to outliers.

4.2.2 Mutual Incoherence

Mutual coherence is a measure of the cross-correlation of the columns of a matrix A ∈ Rm×n,
which is a powerful notion in the area of compressed sensing [46–48]. The authors of [10]
propose a new metric, which they call “mutual incoherence,” a measure of the alignment of
two particular submatrices of the sensing matrix A, one related to the clean data and one
related to the corrupted data. As it is proposed in [10], this metric relies on the knowledge
of the support of the bad data vector b, denoted as B ⊂M. The mutual incoherence metric
ρ(B) is then defined as:

ρ(B) ≜
∣∣∣∣∣∣AT †

BcAT
B

∣∣∣∣∣∣
∞

(4.8)

where Bc ≜ M \ B, AB is the submatrix of A with rows corresponding to B, and ABc is
the submatrix of A with rows corresponding to Bc. The mutual incoherence metric (4.8)
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is a measure of how correlated the measurements are in B to the variables determined by
measurements in Bc. If ρ(B) < 1, then ℓ-SE recovers x̂ with small error from the true state
as shown in [10].

We need to make a few assumptions about the matrix A in order to use the mutual
incoherence metric to certify the robustness of the ℓ-SE problem.

Assumption 2 (Preconditioning of sensing matrix). Each row of A is normalized so that
||ai||2 = 1, ∀i ∈ [m], where ai is the i

th row of A.

Assumption 3 (Lower eigenvalue condition).

min

{
λmin

(
AT

BcABc

)
, λmin

([
A
IB

] [
AT ITB

])}
> 0 (4.9)

where IB corresponds to a submatrix formed by the B rows of the identity matrix I ∈ Rm×n

and λmin(·) denotes the minimum eigenvalue of a matrix.

This second assumption implies that the true vector must be identifiable if the bad data
support B were known. The authors of [10] show that under these assumptions on A, if
ρ(B) < 1, then problem (4.7) with a given choice of regularization parameter λ recovers an
estimated state with a small error from the true state as well as a large degree of bad data
detection with high probability. However, because this method relies on knowledge of the
support of the bad data vector, its application is limited.

The paper [26] builds on [10] and proposes a way to avoid using the bad data support, by
developing a method for certification which can be ensured locally for each line in the network
(i, j) ∈ E without considering the actual attack set. This method partitions the graph into
attack, boundary, and safe regions for a given line (i, j) ∈ E and then looks at the mutual
incoherence metric defined on subsections of the partitioned boundary measurements, which
are fixed for a given line (i, j) ∈ E and measurement set M. During an actual attack, if
measurements at a node i are attacked and if every line (i, j) ∈ E attached to node i satisfies
the mutual incoherence condition, then the attack will not propagate through the network.

In the next section, we present a modified version of the graph partitioning that was first
introduced in [26]. While [26] partitions based on kth-connected neighbors in the network,
this method partitions through variable coupling in the sensing matrix and thus takes into
account the choice of measurements to determine the variable partition. Unlike that in [26],
our method results in the minimum number of boundary variables and maximum number
of safe variables and measurements. This version is effectively the same as that in [26], i.e.
it does not change the mutual incoherence metric or results of [26], but it streamlines the
partitioning process and results in a more intuitive partition for the application.

4.3 Graph Partitioning for Local Certification

For a given line of attack i → j, we aim to partition the set of state variables X into the
sets of attacked variables X ij

a , boundary variables X ij
b , and safe variables X ij

s , where we use
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the superscript ij to indicate that the partition is specific to the chosen attack line i → j.
It is desirable to partition the measurement sets into the following subsets:

Mij
a attacked measurements → depend only on X ij

a

Mij
db dependent boundary measurements → depend on both X ij

a and X ij
b

Mij
ib independent boundary measurements → depend only on X ij

b

Mij
s safe measurements → all remaining measurements,

can depend on both X ij
s and X ij

b

We note that the “independent” and “dependent” boundary measurements are defined as
dependent in relation to the attacked variables X ij

a . The algorithm to formulate the variable
and measurement partitions is given in Algorithm 4.

Algorithm 4 Sensing matrix partition for local attack i→ j

Inputs: N (V , E),M, X , (i, j)
Compute sensing matrix A from N (V , E)
Set X ij

a ← {x
mg
i , xreij , x

im
ij }

SetMij
a ← {all-zero rows of A[: , (X \ X ij

a )]}
SetMij

db ← {non-zero rows of A[: ,X ij
a ]} \Mij

a

Set X ij
b ← {non-zero columns of A[Mij

db , :]} \ Xa

SetMij
ib ← {non-zero rows of A[: ,X ij

b ]} \Mij
db

SetMij
s ←M\ (Mij

a ∪M
ij
db ∪M

ij
ib)

Set X ij
s ← X \ (X ij

a ∪ X
ij
b )

Outputs: {X ij
a ,X

ij
b ,X ij

s }, {Mij
a ,M

ij
db,M

ij
ib,Mij

s }

With this partition, we can rewrite the sensing matrix A as coupled through the boundary
region:

A =


AMij

a ,X ij
a

0 0

AMij
db,X

ij
a

AMij
db,X

ij
b

0

0 AMij
ib,X

ij
b

0

0 AMij
s ,X ij

b
AMij

s ,X ij
s

 (4.10)

If the matrix A satisfies some mutual incoherence condition for independent and depen-
dent boundary measurement sets given by the partition in Algorithm 4, then line i → j is
robust and bad data cannot propagate from i to j. In this case, if node i is part of the
unknown attack set, then it will still be possible to recover a reasonable estimate of the state
at node j with high probability. The required local mutual incoherence condition is given
as:

ρij ≜
∣∣∣∣∣∣AT †

Mij
ib,X

ij
b

AT
Mij

db,X
ij
b

∣∣∣∣∣∣
∞
< 1 (4.11)

Proof. Same as in [26].



CHAPTER 4. OPTIMAL MEASUREMENT CHOICE IN ROBUST SE 90

We can see that condition (4.11) depends on the measurement-variable partition. In
this case, the mutual incoherence ρij captures the alignment between measurements in the
independent boundary set and the dependent boundary set. This condition ensures that at-
tacked measurements do not propagate from the dependent boundary set to the independent
boundary set.

Because condition (4.11) depends on the measurement set, it is apparent that we can
optimize the choice of measurements M in order to decrease ρij with the goal of finding
measurements such that ρij < 1. If we can find a measurement set M such that ρij < 1
for all i → j and j → i for (i, j) ∈ E , then we can say that the network is fully robust. If
the network is fully robust, then we can find good estimates for local recovery of the safe
and boundary region state variables via the method in [26]. In order to formalize the goal of
placing sensors in a power network so that the network is robust, we will consider this mutual
incoherence condition in an optimization framework, as presented in the next section.

4.4 Problem Formulation

In this section, we present the measurement choice MILP and its LP and SDP relaxations.

4.4.1 Formulation of the Measurement Choice MILP

The goal is to find a minimum choice of measurements over the network such that the
mutual incoherence condition is satisfied for all boundary measurement sets {Mij

db,M
ij
ib} in

both i → j and j → i directions for every line (i, j) ∈ E . Note that in the formulations
below we will use the notation (i, j) ∈ E to denote lines in both i→ j and j → i directions.
Let ϕ ∈ {0, 1}m be a binary vector which indicates the choice of measurements such that
ϕi = 1 if measurement i ∈ [m] is chosen and ϕi = 0 otherwise. Note that m is equal to the
total possible number of measurements for a given power network.

When we consider the mutual incoherence condition across a line i→ j, we can define a
partition of all possible measurements M̃, which is invariant to the choice of measurements
ϕ and depends only on the graph topology. Given this partition, let M̃ij

db be the set of total
possible dependent boundary measurements and M̃ij

ib be the set of total possible independent
boundary measurements, where the dependency is defined in relation to the attacked vari-
ables as in Section 4.3. Let mij

db ≜ |M̃ij
db|, m

ij
ib ≜ |M̃ij

ib|, and n
ij
b ≜ |X ij

b |. We could formulate
an optimization problem with condition (4.11) as a constraint. However, this problem may
be infeasible if the constraints (4.11) cannot be satisfied for all lines (i, j) ∈ E . Thus, it is
more useful to consider the following mixed-integer nonlinear program (MINLP):

min
β∈R,ϕ∈{0,1}m

Xij ,Eij ,Jij ,∀(i,j)∈E

β (4.12a)

subject to: M ≤
∑m

i=1
ϕi ≤M (4.12b)(

Rij ⊙ Eij
)
X ij = Sij ⊙ J ij ∀(i, j) ∈ E (4.12c)
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Eij
k = ϕ[M̃ij

ib(k)] 1nij
b

∀k ∈ [mij
ib], ∀(i, j) ∈ E (4.12d)

J ij
k = ϕ[M̃ij

db(k)] 1nij
b

∀k ∈ [mij
db], ∀(i, j) ∈ E (4.12e)

||X ij||∞ ≤ β ∀(i, j) ∈ E (4.12f)

where Rij ≜ AT
M̃ij

ib,X
ij
b

∈ Rnij
b ×mij

ib and Sij ≜ AT
M̃ij

db,X
ij
b

∈ Rnij
b ×mij

db are subsets of the transposed

sensing matrix AT . We have introduced the variable X ij ∈ Rmij
ib×mij

db in order to represent
the mutual incoherence as ||X ij||∞ for each line (i, j) ∈ E . The matrix variables Eij ∈
Rnij

b ×mij
ib and J ij ∈ Rnij

b ×mij
db are used to choose columns of the sensing matrix corresponding

respectively to independent and dependent boundary measurements. Eij
k and J ij

k represent
the kth columns of Eij and J ij, respectively. The notation ϕ[M̃ij

ib(k)] represents the element
of ϕ corresponding to the kth entry of M̃ij

ib (similarly for ϕ[M̃ij
db(k)]). The given parameters

M and M are respectively the minimum and maximum numbers of measurements, where
we select M such that M ≥ n.

Theorem 6. If the objective of (4.12) is strictly less than 1, then a measurement set can be
found such that the network is robust in terms of the mutual incoherence condition (4.11).

Proof. Using equations (4.12d) and (4.12e), we have that Rij ⊙Eij is equivalent to AT
Mij

ib,X
ij
b

and Sij ⊙ J ij is equivalent to AT
Mij

db,X
ij
b

, thus X ij = AT †
Mij

ib,X
ij
b

AT
Mij

db,X
ij
b

by constraint (4.12c).

We have that ||X ij||∞ corresponds to ρij as defined in Equation (4.11), and if β < 1 then
(4.12f) enforces that ρij is under 1 for every line (i, j) ∈ E .

Note that Problem (4.12) is nonconvex due to both the discrete nature of the binary
variables ϕ and the nonlinearity of the EijX ij term in constraint (4.12c). If we examine the
constraint (4.12c) for some line (i, j) ∈ E , we see that it is equivalent to:∑mij

ib

r=1
Rij

krX
ij
rlϕ[M̃

ij
ib(r)] = Sij

klϕ[M̃
ij
db(l)], ∀k ∈ [nij

b ], ∀l ∈ [mij
db] (4.13)

We can relax the nonconvexity due to the nonlinearity by introducing new variables:

Zij
rl ≜ X ij

rlϕ[M̃
ij
ib(r)] ∈ R, ∀r ∈ [mij

ib], ∀l ∈ [mij
db] (4.14)

Then we can reformulate (4.13) with linear relations:

mij
ib∑

r=1

Rij
krZ

ij
rl = Sij

klϕ[M̃
ij
db(l)], ∀k ∈ [nij

b ], ∀l ∈ [mij
db] (4.15)

With this reformulation, all the nonlinearity is in the constraints (4.14). If we relax
(4.14), we have:

Zij
rl ≤ X ij

rlϕ[M̃
ij
ib(r)], ∀r ∈ [mij

ib], ∀l ∈ [mij
db] (4.16)
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We also note that X ij
rl = Zij

rl . If ϕ[M̃ij
ib(r)] = 1, this is obvious. If ϕ[M̃ij

ib(r)] = 0, then
the only constraint X ij

rl appears in is (4.12f), and since we are minimizing the infinity norm
of X ij, we have that X ij

rl will be equal to zero. Thus, we can substitute Zij into (4.12f) and
(4.16) in place of X ij. We can also reformulate constraint (4.16) using the big-M method by
introducing some large constant C > 0 such that Zij

rl ≤ C for all r ∈ [mij
ib], l ∈ [mij

db], for all
(i, j) ∈ E to yield the constraints:

Zij
rl ≤ Cϕ[M̃ij

ib(r)], ∀r ∈ [mij
ib], ∀l ∈ [mij

db] (4.17)

To reformulate the constraint (4.12f) in order to yield a MILP, we introduce a new variable
Y ij
rl corresponding to |Zij

rl | for all r ∈ [mij
ib] and l ∈ [mij

db] which can be related to Zij
rl by the

following constraints:

Y ij
rl ≥ max{−Zij

rl , Z
ij
rl}, ∀r ∈ [mij

ib], ∀l ∈ [mij
db] (4.18)

We modify (4.17) to be upper bounds on Y ij:

Y ij
rl ≤ Cϕ[M̃ij

ib(r)], ∀r ∈ [mij
ib], ∀l ∈ [mij

db] (4.19)

This formulation allows (4.12f) to be recast in terms of Y ij:∑mij
db

l=1
Y ij
rl ≤ β, ∀r ∈ [mij

ib] (4.20)

In order for the power flow solution to be fully defined in the case without noise, i.e.
m = Ax, we need A to be full rank, as the authors suggest in [10]. Instead of enforcing
the rank constraint in this optimization problem, we can enforce a weaker constraint which
says that every variable must appear in at least one of the measurement equations. We
can model this by taking ϕx ∈ Rm to be the indicator variables corresponding to the set of
measurements that depend on the variable x ∈ X defined as:

ϕx
i ≜

{
ϕi if measurement i depends on variable x

0 otherwise
(4.21)

where ϕx
i corresponds to the ith element of ϕx for x ∈ X .

The variables ϕx for all x ∈ X are defined based on the structure of the graph and
therefore can easily be incorporated into the constraints. To enforce that every variable
appears at least once in the chosen measurement equations, we use the constraints:∑m

i=1
ϕx
i ≥ 1, ∀x ∈ X (4.22)
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Combining these constraints, we have the MILP of interest:

min
β∈R,ϕ∈{0,1}m
Zij ,Y ij ,∀(i,j)∈E

β (4.23a)

s.t. M ≤
∑m

i=1
ϕi ≤M (4.23b)∑m

i=1
ϕx
i ≥ 1 ∀x ∈ X (4.23c)

mij
ib∑

r=1

Rij
krZ

ij
rl = Sij

klϕ[M̃
ij
db(l)] ∀k ∈ [nij

b ],∀l ∈ [mij
db],∀(i, j) ∈ E (4.23d)

Y ij
rl ≥ max{−Zij

rl , Z
ij
rl} ∀r ∈ [mij

ib],∀l ∈ [mij
db],∀(i, j) ∈ E (4.23e)

Y ij
rl ≤ Cϕ[M̃ij

ib(r)] ∀r ∈ [mij
ib],∀l ∈ [mij

db],∀(i, j) ∈ E (4.23f)∑mij
db

l=1
Y ij
rl ≤ β ∀r ∈ [mij

ib],∀(i, j) ∈ E (4.23g)

For Problem (4.23), it may be impossible to recover a set of measurements that yields
β < 1 (if the mutual incoherence condition (4.11) cannot be satisfied for all lines (i, j) ∈ E).
Thus, it will be more helpful to minimize the number of violations of the mutual incoherence
condition, i.e. where ||Y ij||∞ ≥ 1. We can do this by solving the related MIP:

min
ϕ∈{0,1}m

Zij ,Y ij ,βij ,∀(i,j)∈E

∑
(i,j)∈E

1{βij ≥ 1} (4.24a)

s.t. M ≤
∑m

i=1
ϕi ≤M (4.24b)∑m

i=1
ϕx
i ≥ 1 ∀x ∈ X (4.24c)

mij
ib∑

r=1

Rij
krZ

ij
rl = Sij

klϕ[M̃
ij
db(l)] ∀k ∈ [nij

b ], ∀l ∈ [mij
db],∀(i, j) ∈ E (4.24d)

Y ij
rl ≥ max{−Zij

rl , Z
ij
rl} ∀r ∈ [mij

ib], ∀l ∈ [mij
db],∀(i, j) ∈ E (4.24e)

Y ij
rl ≤ Cϕ[M̃ij

ib(r)] ∀r ∈ [mij
ib], ∀l ∈ [mij

db],∀(i, j) ∈ E (4.24f)∑mij
db

l=1
Y ij
rl ≤ βij ∀r ∈ [mij

ib] (4.24g)

which is converted to a MILP by introducing binary variables αij corresponding to the
indicators 1{βij ≥ 1} and using the big-M method to recast the constraints in linear form.

Because existing MILP methods do not scale well with the number of binary variables,
we can see that solving Problem (4.23) or (4.24) on a large network will be computationally
burdensome. Thus, we can always fix some of the measurements and consider a subset of
measurement choices to modify. Even by just considering some of the measurements, we can
improve the network robustness for SE in terms of mutual incoherence. Another possible
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method for dealing with the mixed-integer formulation is to consider a relaxation of the
binary variables, as discussed in the following section.

4.4.2 Formulation of Measurement Choice Relaxations

Instead of solving the MILPs in (4.23) or (4.24) which involve nonconvexity in the form of
the binary variables ϕ ∈ {0, 1}m (and αij ∈ {0, 1} for all (i, j) ∈ E for (4.24)), we can solve
convex relaxations of the problems. The relaxation of (4.23) into an LP is given by solving
for ϕ ∈ [0, 1]m, and the relaxation of (4.24) into an LP is given by solving for ϕ ∈ [0, 1]m

and αij ∈ [0, 1] for all (i, j) ∈ E . For the SDP relaxation of (4.23), we note that the binary
constraint ϕ ∈ {0, 1}m is equivalent to:

ϕi(ϕi − 1) = 0, ∀i ∈ {1, . . . ,m} (4.25)

If we define Φ ≜ ϕϕT ∈ Sm, then constraint (4.25) becomes:

Φii − ϕi = 0, ∀i ∈ {1, . . . ,m} (4.26)

Then, SDP relaxation of Φ = ϕϕT is given by:

Φ ⪰ ϕϕT (4.27)

Combining these, we have the SDP relaxation of (4.23):

min
β∈R

Zij ,Y ij ,∀(i,j)∈E
ϕ∈[0,1]m,Φ∈Sm

β (4.28a)

s.t. M ≤
∑m

i=1
ϕi ≤M (4.28b)∑m

i=1
ϕx
i ≥ 1 ∀x ∈ X (4.28c)

Φii − ϕi = 0 ∀i ∈ [m] (4.28d)

Φ ⪰ ϕϕT (4.28e)

mij
ib∑

r=1

Rij
krZ

ij
rl = Sij

klϕ[M̃
ij
db(l)] ∀k ∈ [nij

b ],∀l ∈ [mij
db],∀(i, j) ∈ E (4.28f)

Y ij
rl ≥ max{−Zij

rl , Z
ij
rl} ∀r ∈ [mij

ib],∀l ∈ [mij
db],∀(i, j) ∈ E (4.28g)

Y ij
rl ≤ Cϕ[M̃ij

ib(r)] ∀r ∈ [mij
ib],∀l ∈ [mij

db],∀(i, j) ∈ E (4.28h)∑mij
db

l=1
Y ij
rl ≤ β ∀r ∈ [mij

ib],∀(i, j) ∈ E (4.28i)

Similarly, for the αij variables in (4.24), we can define a matrix inequality of the form
A ⪰ ααT for some matrix A ∈ S|E| and the corresponding SDP problem of (4.24).
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Figure 4.2: Four bus network showing all possible voltage magnitude measurements, real
power flow measurements, and real power injection measurements. Note that because real
power injections at buses 1 and 4 are equivalent to p12 and p43 respectively, these measure-
ments are not considered.

4.5 Simulations

The simulations are run on a standard laptop using the Pyomo modeling language in Python
3.8. The MILPs given by (4.23) and (4.24) are solved with the Gurobi solver, which uses
a branch-and-bound method to determine the binary variables. Note that for all examined
test cases both (4.23) and (4.24) yield sensing matrices that are full rank.

4.5.1 Four-Bus Test Case

We first consider the four-bus test network shown in Figure 4.2. In [26], the authors con-
sidered this network and showed that different combinations of measurement choices yielded
mutual incoherence metrics that were greater than 1 for certain lines in the network. By
considering Problems (4.23) and (4.24), we formalize their guess-and-check process.

For the four-bus network, the set of variables is given by

X = {xmg
1 , xmg

2 , xmg
3 , xmg

4 , xre12, x
im
12 , x

re
23, x

im
23 , x

re
34, x

im
34} (4.29)

And the set of all possible measurements is given by:

M̃ = {|v1|2, |v2|2, |v3|2, |v4|2, p12, q12, p21, q21, p2, q2, p23, q23, p32, q32, p3, q3, p34, q34, p43, q43}
(4.30)

We take the line parameters to be Gij = 5, Bij = −20, and Bsh
ij = 0.5 in per unit values.

If we setM = 3|V|−2 = 10, andM = m = 20, then for the four-bus network, we find that it
is impossible to recover a set of measurements such that the mutual incoherence condition is
satisfied in both directions for every line (i, j) ∈ E , as shown in the second column of Table
4.1. The choice of measurement set given by (4.23) is

M = {|v1|2, |v2|2, |v3|2, |v4|2, p12, p43, q12, q23, q34, q21, q32, q43, p2, p3} (4.31)
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Table 4.1: Mutual incoherence metric for four-bus network

Line i→ j Mutual incoherence ρij Mutual incoherence ρij

from solving (4.23) from solving (4.24)
1→ 2 0.91 0.00
2→ 3 1.02 0.90
3→ 4 1.39 1.52
2→ 1 1.39 1.52
3→ 2 1.02 0.93
4→ 3 0.91 0.19

which yields a full rank matrix A. The values for mutual incoherence over the network with
this measurement set are given in the second column of Table 4.1. We can see that in this
case, there is no choice of measurements which yields all mutual incoherence metrics below
1. Instead, we can solve (4.24) to yield a choice of measurements that minimizes the number
of violations of the mutual incoherence metric. Using this problem, we find the optimal set
of measurements to be:

M = {|v1|2, |v2|2, |v3|2, |v4|2, p12, p23, p32, p43, q12, q23, q32, q43} (4.32)

By solving (4.24), we see that it is possible to create a measurement set such that 2
out of 3 of the lines are robust in both directions, as shown in the third column of Table
4.1. We see that a mutual incoherence of 0 is obtained for line 1→ 2. This occurs because
the chosen measurement set has no coupling between attack variables and the rest of the
variables, resulting in X 12

b = ∅. Note that for this test case both (4.23) and (4.24) yield
sensing matrices that are full rank, thus the network variables are fully defined in terms of
the measurements.

In Figures 4.3 and 4.4, we visualize two attack scenarios and how the choice of mea-
surement set affects the mutual incoherence condition, thereby affecting which states are
recoverable during the attacks. From these simulated attacks, we can see that the measure-
ment set in (4.32) is superior to the measurement set in (4.31) in terms of recovering the
maximum unknown state in SE during a cyberattack.

4.5.2 IEEE Test Cases with MILP

Then, we solve Problem (4.23) for some IEEE test cases [49], finding that there is no choice
of measurements such that mutual incoherence is below 1 for every line on the network.
The results are given in Table 4.2. However, we can still solve problem (4.24) to yield the
optimal choice of measurements for the mutual incoherence robustness condition. The results
of (4.24) are given in Table 4.3. Note that if the data for a part of the network is under
attack, having more lines satisfy the mutual incoherence condition guarantees a reduction in
the impact of the attack on the SE for nodes far away from the attacked region [26].
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Figure 4.3: Visualization of data cyberattack on bus 1 in four-bus network. In this case, for
either measurement set given by (4.31) or (4.32), we can contain the data attack to node 1
since ρ12 < 1 (see Table 4.1).

Table 4.2: Solution to (4.23) for various IEEE test cases

Network Fraction of chosen Max ρij Solve time (s)
measurements for (i, j) ∈ E

case5 29 / 39 1.26 0.69
case9 42 / 57 1.48 1.12
case14 95 / 120 1.61 9.33
case30 193 / 248 1.61 39.3

Table 4.3: Solution to (4.24) for various IEEE test cases

Network Fraction of chosen Fraction of lines Solve time (s)
measurements with ρij < 1

case5 30 / 39 6 / 12 1.89
case9 36 / 57 12 / 18 1.49
case14 92 / 120 18 / 40 120.5
case30 190 / 248 37 / 82 831.1
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Figure 4.4: Visualization of data cyberattack on bus 2 in four-bus network. The top figure
(a) corresponds to the measurement set (4.31), and the bottom figure (b) corresponds to the
measurement set (4.32). The choice of measurement set affects the parameters ρij, which in
turn affect which data we can recover in case of cyberattack. In the case of a cyberattack on
bus 2, we can only recover the true state for nodes 3 and 4 if we have chosen measurement
set (4.32) and cannot recover the true state for any nodes if we have chosen measurement
set (4.31). This is due to the fact that ρ23 < 1 for measurement set (4.32) and ρ23 > 1 for
measurement set (4.31) as seen in Table 4.1.

4.5.3 Test Cases with Relaxations

Next, we test relaxations of the MILPs (4.23) and (4.24) into LPs and SDPs. In Table 4.4,
we can see that the objective value of the SDP relaxation of (4.24) will be 0.0 for the four-bus
network shown in Figure 4.2. We note that the solution ϕ to the SDP relaxation is fractional,
which does not make physical sense when we consider that ϕ corresponds to placing or not
placing a sensor. Thus, we will round the solution to find a binary ϕ̃. However, there are no
guarantees that the new ϕ will satisfy the constraints on the number of measurements or the
dependencies on variables. For the four-bus network, the SDP with rounding method gives
a good solution, shown in Table 4.5. Note that this solution satisfies the condition that A
has full rank.

In Tables 4.6 and 4.7, we have the results from the MILPs (4.23) and (4.24) and their LP
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Table 4.4: Solution to SDP relaxation of (4.24) on four-bus network

Line i→ j βij from solving SDP
relaxation of (4.24)

1→ 2 0.70
2→ 3 0.43
3→ 4 0.86
2→ 1 0.86
3→ 2 0.43
4→ 3 0.70

Table 4.5: Mutual incoherence metric for four-bus network from solving SDP relaxation of
(4.24) and rounding ϕ

Mutual incoherence ρij

Line i→ j from solving SDP of (4.24)
and rounding ϕ

1→ 2 0.00
2→ 3 0.24
3→ 4 0.93
2→ 1 0.93
3→ 2 0.24
4→ 3 0.00

Table 4.6: Objective values of MILP (4.23) and its relaxations

Network Obj. of MILP (4.23) Obj. of LP of (4.23) Obj. of SDP (4.28)
4-bus 1.39 0.458 0.458
case5 1.26 0.263 0.263
case9 1.48 0.334 0.318
case14 1.61 0.245 0.318
case30 1.61 0.271 0.271

and SDP relaxations on various networks. In Tables 4.8 and 4.9, we compare the solution
times of the different methods. From these tables, we see that the LP and SDP are more
computationally scalable than the MILP for larger networks, with the LP being the most
efficient method for large networks.

4.6 Conclusions

This chapter presented an original framework for optimizing the choice of measurements in a
power system to protect against false data injection. By examining a local metric for robust
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Table 4.7: Comparison of solution quality for MILP (4.24) and its relaxations

Network Fraction of lines with Fraction of lines with Fraction of lines with
ρij < 1 for MILP (4.24) ρij < 1 for LP of (4.24) ρij < 1 for SDP of (4.24)

4-bus 4 / 6 2 / 6 6 / 6
case5 6 / 12 6 / 12 6 / 12
case9 12 / 18 8 / 18 18 / 18
case14 18 / 40 18 / 40 10 / 40
case30 37 / 82 25 / 82 82 / 82

Table 4.8: Solve times for MILP (4.23) and its relaxations

Network Sol. time of MILP (4.23) Sol. time of LP of (4.23) Sol. time of SDP (4.28)
4-bus 0.18 0.98 19.11
case5 0.69 7.69 87.58
case9 1.12 7.86 130.26
case14 9.33 56.50 731.13
case30 39.3 168.89 2941.22

Table 4.9: Solve times for MILP (4.24) and its relaxations

Network Sol. time of MILP (4.24) Sol. time of LP of (4.24) Sol. time of SDP of (4.24)
4-bus 0.11 0.89 4.23
case5 1.89 7.18 11.64
case9 1.49 7.79 17.26
case14 120.5 55.29 82.33
case30 831.1 181.68 607.16

SE, we were able to define a coupled optimization problem over all lines of the network. We
showed that for some test cases, there is no choice of measurements such that every line can
be certified as robust in both directions. However, this framework allows us to find subsets
of measurements that are more optimal than others in terms of SE robustness. Having more
lines satisfy the mutual incoherence condition guarantees a reduction in the impact of the
attack on SE for nodes far from the attacked region.

This measurement choice method could be used to design new smart grids such that
measurements are optimally placed for SE robustness. Another application could be to
place new sensors in an existing legacy power network in order to improve SE robustness, by
considering a subset of possible measurement placements. This method could also be used to
identify measurements that are the most immune or most susceptible for error propagation
in order to classify critical measurements.
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[30] Y. Weng, M. D. Ilić, Q. Li, and R. Negi, “Convexification of bad data and topology error
detection and identification problems in AC electric power systems,” IET Generation,
Transmission & Distribution, vol. 9, no. 16, pp. 2760–2767, 2015.

[31] M. Young and A. Silverstein, “Factors affecting PMU installation costs,” US Department
of Energy-Office of Electricity Delivery and Energy Reliability, 2014.

[32] M. Netto, V. Krishnan, Y. Zhang, and L. Mili, “Measurement placement in electric
power transmission and distribution grids: Review of concepts, methods, and research
needs,” IET Generation, Transmission & Distribution, vol. 16, no. 5, pp. 805–838, 2022.

[33] N. M. Manousakis, G. N. Korres, and P. S. Georgilakis, “Taxonomy of PMU placement
methodologies,” IEEE Transactions on power Systems, vol. 27, no. 2, pp. 1070–1077,
2012.

[34] N. H. Abbasy and H. M. Ismail, “A unified approach for the optimal PMU location for
power system state estimation,” IEEE Transactions on Power Systems, vol. 24, no. 2,
pp. 806–813, 2009.

[35] T. L. Baldwin, L. Mili, M. B. Boisen, and R. Adapa, “Power system observability with
minimal phasor measurement placement,” IEEE Transactions on Power systems, vol. 8,
no. 2, pp. 707–715, 1993.

[36] L. Mili, T. Baldwin, and R. Adapa, “Phasor measurement placement for voltage stability
analysis of power systems,” in 29th IEEE conference on decision and control. IEEE,
1990, pp. 3033–3038.

[37] D. J. Brueni, Minimal PMU placement for graph observability: A decomposition ap-
proach. Virginia Polytechnic Institute and State University, 1993.

[38] S. Chakrabarti and E. Kyriakides, “Optimal placement of phasor measurement units
for power system observability,” IEEE Transactions on power systems, vol. 23, no. 3,
pp. 1433–1440, 2008.



CHAPTER 4. OPTIMAL MEASUREMENT CHOICE IN ROBUST SE 104

[39] N. M. Manousakis and G. N. Korres, “A weighted least squares algorithm for optimal
PMU placement,” IEEE Transactions on Power Systems, vol. 28, no. 3, pp. 3499–3500,
2013.

[40] A. Almunif and L. Fan, “Mixed integer linear programming and nonlinear program-
ming for optimal PMU placement,” in 2017 North American power symposium (NAPS).
IEEE, 2017, pp. 1–6.

[41] M. Göl and A. Abur, “PMU placement for robust state estimation,” in 2013 North
American Power Symposium (NAPS), 2013, pp. 1–5.

[42] J. Hao, R. J. Piechocki, D. Kaleshi, W. H. Chin, and Z. Fan, “Sparse malicious false
data injection attacks and defense mechanisms in smart grids,” IEEE Transactions on
Industrial Informatics, vol. 11, no. 5, pp. 1–12, 2015.

[43] L. Liu, M. Esmalifalak, Q. Ding, V. A. Emesih, and Z. Han, “Detecting false data
injection attacks on power grid by sparse optimization,” IEEE Transactions on Smart
Grid, vol. 5, no. 2, pp. 612–621, 2014.

[44] F. Broussolle, “State estimation in power systems: Detecting bad data through the
sparse inverse matrix method,” IEEE Transactions on Power Apparatus and Systems,
vol. PAS-97, no. 3, pp. 678–682, 1978.

[45] W. Xu, M. Wang, J.-F. Cai, and A. Tang, “Sparse error correction from nonlinear mea-
surements with applications in bad data detection for power networks,” IEEE Transac-
tions on Signal Processing, vol. 61, no. 24, pp. 6175–6187, 2013.

[46] V. Abolghasemi, S. Ferdowsi, B. Makkiabadi, and S. Sanei, “On optimization of the
measurement matrix for compressive sensing,” in 2010 18th European Signal Processing
Conference. IEEE, 2010, pp. 427–431.

[47] M. Elad, “Optimized projections for compressed sensing,” IEEE Transactions on Signal
Processing, vol. 55, no. 12, pp. 5695–5702, 2007.

[48] L. C. Potter, E. Ertin, J. T. Parker, and M. Cetin, “Sparsity and compressed sensing
in radar imaging,” Proceedings of the IEEE, vol. 98, no. 6, pp. 1006–1020, 2010.

[49] “EGRET: Electrical grid research and engineering tools.” [Online]. Available:
https://github.com/grid-parity-exchange/Egret

https://github.com/grid-parity-exchange/Egret


105

Chapter 5

Physics-Informed Support Vector
Regression for Power System
Topology Identification

In this chapter, we present a constrained support vector regression (SVR) method that can
be used to accurately recover a power network’s unknown topology.1

5.1 Introduction

With the adoption of new smart grid technologies such as smart meters, distributed and
renewable generation, and an increased prevalence of phasor measurement units (PMUs)
in power networks, the optimization and monitoring methods of legacy power systems will
need to evolve [2]. Additionally, as the risk of cyberattacks grows, many of the classical
optimization problems such as state estimation (SE) take on increased importance in ensuring
the reliability of the electric grid [3, 4]. The safe and effective operation of the power grid
depends on solving a variety of optimization and control problems, including SE, power flow
(PF), optimal power flow (OPF), unit commitment (UC), false data detection (FDD), and
voltage control [5–10]. The fundamental bases for many of these problems are the nonlinear
AC power flow equations, which define the physics of power flow in a network. Using the
power flow equations in most applications relies on an awareness of the power network
topology and line parameters. However, knowledge of the network topology and/or the
line parameters can be limited due to cyberattacks, real-time topology switching, variable
environmental conditions affecting material properties or other data collection deficiencies
and inaccuracies [11, 12]. In order to deal with these uncertainties, we consider a system
identification problem that aims to learn the power flow mapping. By learning the power
flow mapping, the goal is to recover the true system parameters and topology.

1Chapter 5 includes materials from [1].
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A variety of machine learning and optimization methods have been proposed to learn the
power flow mapping in a generic network, including compressed sensing [13], maximum like-
lihood estimation [14], neural networks (NN) [15–20], and support vector regression (SVR)
[11, 21]. Many of these data-driven methods exploit the abundance of power system data
from both traditional SCADA measurements and PMUs to learn the mapping [16]. However,
these black- and gray-box methods suffer from overfitting and lack a physical representation
in the power network. These methods do not explicitly make use of the sparsity inherent
in power networks, which has been effectively exploited in other power applications such as
OPF to efficiently solve hard, nonconvex problems [22–25].

While recent papers show that SVR can be effective at learning forward and inverse
mappings between power system inputs and outputs, these papers apply classic SVR methods
that fail to recover the true system parameters because they do not account for power
network sparsity [11, 21]. In [11], it is shown that the power flow equations can be exactly
written as a quadratic kernel within the reproducing kernel Hilbert space (RKHS). However,
we will demonstrate later that the feature vector corresponding this RKHS contains many
features that do not contribute to the power flow equations and should be associated with
parameters equal to zero. However, in [11] and [21], the authors’ methods do not ensure that
these parameters are zero and will thus recover a dense parameter set that has no realistic
physical meaning. In this work, we fix these shortcomings in the existing literature by
proposing a new constrained SVR method that considers the actual power network sparsity.
We show that this method can recover the true physical parameters and topology of a power
system with high accuracy.

5.1.1 Support Vector Regression (SVR) and Prior Knowledge

SVR was developed in the 1990s as an extension of the support vector machine (SVM)
classification learning algorithm [26, 27]. The idea of SVM is to find a hyperplane decision
boundary that maximizes the margin between differently classified sets of data [26]. The
fast implementation of SVM in nonlinear settings relies on the kernel trick which maps
nonlinear features into a high-dimensional space that corresponds to a linear classifier. SVR
is the regression extension of SVM. While SVM aims to find a classification hyperplane that
minimizes data proximity to the plane, SVR aims to find a linear estimator that maximizes
data proximity around the estimator, penalizing data points outside of an ϵ-tube around the
estimator [28]. Like SVM, SVR makes use of the kernel trick to efficiently estimate nonlinear
functions.

SVM and SVR have been shown to be effective in a variety of nonlinear applications,
including image classification [29–31] and load forecasting [32, 33]. However, SVR fails to
take into account prior information known about the space of the estimator which may result
in estimators that do not accurately represent the corresponding systems. For various types
of estimators such as the least-squares estimator, some proposed methods to include prior
knowledge in the estimator calculation include adding regularization terms such as a Lasso
term to encourage constraint satisfaction [34–36]. Another method is to add constraints to
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the estimation problem, such as in constrained least-squares estimation [37–39]. However,
these constraints can often increase the difficulty of solving the problem, e.g. the least-
squares estimator has a closed-form solution while the non-negative least-squares (NNLS)
estimator does not although there exist many fast methods to solve the NNLS problem
[40–42].

Recent research has considered a constrained SVR problem in the case where both the
kernel and the constraints are linear [43]. The authors of [43] show that their constrained SVR
method can recover better estimators in terms of root-mean-square error (RMSE) compared
to both classic SVR and other constrained regression methods, such as constrained least
squares, in various biomedical and weather data settings where information is known a priori
about the space of the estimator. Building on the work in [43], we propose a constrained
SVR method that incorporates a nonlinear kernel and linear constraints. While our main
focus is the power flow mapping application, the proposed constrained SVR methodology
could be applied to other network mapping problems as well as more general supervised
learning settings in which information is known a priori about the system.

5.1.2 Contributions

In this chapter, we propose a data-driven approach to learn the true topology and parameters
of a power network. By leveraging a modified SVR formulation, we show that sparsity-
enforcing constraints allow the SVR model to capture the true physics of the power system.
We show that the dual of the constrained SVR problem can be written as a quadratic
program and solved with efficient convex methods. In simulations on realistic test cases, we
show that our method outperforms existing state-of-the-art methods in terms of accuracy in
recovering the system parameters and in terms of solution time.

5.1.3 Notations

The symbols R and C denote the sets of real and complex numbers, respectively. RN and
CN denote the spaces of N -dimensional real and complex vectors, respectively. The symbol
RN

+ denotes the space of real vectors with non-negative entries. The symbol SN denotes the
space of N×N symmetric real matrices. The symbols (·)T and (·)∗ denote the transpose and
conjugate transpose of a vector or matrix. Re{·} and Im{·} denote the real and imaginary
part of a given scalar or matrix. The symbol | · | is the absolute value operator if the
argument is a scalar, vector, or matrix; otherwise, it is the cardinality of a measurable set.
The imaginary unit is denoted by j =

√
−1. Given a function f(x, ·), ∇xf(x, ·) and ∇2

xf(x, ·)
denote the Jacobian and Hessian of f with respect to x, respectively.

5.2 Problem Background

In this section, we present the mathematical formulation of the power flow mapping problem.
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5.2.1 Alternating Current (AC) Power Flow Mapping

Let the power network be defined by a graph N (V , E), where V is the set of buses and E
is the set of transmission or distribution lines. Let G ⊆ V be the buses that are attached
to generators. The equations that govern AC power flow between buses in the network are
given as:

pij = |vi||vj|
(
Gij cos θij +Bij sin θij

)
, ∀(i, j) ∈ E (5.1a)

qij = |vi||vj|
(
Gij sin θij −Bij cos θij

)
, ∀(i, j) ∈ E (5.1b)

where the complex voltage at each bus i is given as vi ≜ |vi|ejθi ∈ C. The expressions pij
and qij respectively represent the real and reactive power flows between buses i and j. The
expression θij is the difference in voltage angle between buses i and j, given as θij ≜ θi− θj.
The network parameters Gij and Bij are respectively the conductance and susceptance for
the line between buses i and j, where the complex admittance is given as Yij = Gij + jBij.

In the power flow mapping problem, the conductanceGij and susceptance Bij are taken to
be part of the unknown parameter set, and some subset of possible SCADA measurementsM
are assumed to be available. These measurements can consist of real power flows pij, reactive
power flows qij, real power injections pi, and reactive power injections qi. Additionally, we
have PMU readings at some buses that provide estimates for voltage magnitudes |vi| and
voltage angles θi.

Note that while this formulation does assume some awareness of the power network topol-
ogy, provided by the graph (V , E), we can model uncertainty in some portion of the topology
using only the line parameters. To accomplish this, we consider E to include all possible
connected lines in the network. If the line (i, j) is switched off or does not actually exist in
the network, the line parameters Gij and Bij will be zero. Thus, we can model uncertainty in
the network topology by considering only the line parameters as unknowns. However, we will
assume that there is some baseline understanding of the network topology, including some
awareness of the number of buses in the network and how they are interconnected. This is
a reasonable assumption for most realistic test cases in which a system operator would have
full understanding of the baseline network topology but might not be aware of lines that
have switched open or closed due to information delay or cyberattacks.

In order to formulate the power flow equations (5.1) as a kernel within the RKHS so
that the kernel trick can be used for SVR, we introduce new variables di ≜ |vi| cos θi and
ei ≜ |vi| sin θi for all i ∈ V that correspond to the rectangular coordinates of the complex
voltage. Then, using trigonometric identities, we can rewrite the power flow equations as:

pij = Gij(didj + eiej) +Bij(eidj − diej), ∀(i, j) ∈ E (5.2a)

qij = Gij(eidj − diej)−Bij(didj + eiej), ∀(i, j) ∈ E (5.2b)

We can do the same for real and reactive power injections to get the following relations:

pi = Giid
2
i +Giie

2
i +

∑
j ̸=i

Gij(didj + eiej) +Bij(eidj − diej), ∀i ∈ V (5.3a)
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qi = −Biid
2
i −Biie

2
i +

∑
j ̸=i

Gij(eidj − diej)−Bij(didj + eiej), ∀i ∈ V (5.3b)

whereGii is the self conductance at bus i, composed of the shunt conductanceGsh
i and mutual

conductances Gij as Gii = Gsh
i −

∑
j ̸=iGij. Similarly, Bii is the self susceptance at bus i,

composed of the shunt susceptance Bsh
i and mutual susceptances Bij as Bii = Bsh

i −
∑

j ̸=iBij.
These parameters are also assumed to be unknown for the network.

5.2.2 Availability of PMU Data

There is strong interest in using increasingly available PMU data in state estimation and
false data detection [44–46]. PMUs provide measurements of voltage and current phasors and
have been shown to be helpful in improving the reliability of grid monitoring and detection
tools [44]. While PMU penetration in the grid is growing but still somewhat limited due to
high PMU installation costs, PMUs provide a larger quantity of real-time data than existing
SCADA systems. While SCADA systems collect samples about every 4 seconds, PMUs
typically collect about 30-60 samples per second [44, 47]. The large amount of PMU is well-
suited for machine learning applications such as the power flow mapping problem presented
in the preceding section.

We consider the case where we obtain voltage magnitude |vi| and angle data θi from
PMUs on some subset of buses in the network. The PMU data serve as the input data for
our mapping problem (appearing as x in Equation (5.12)), and the SCADA data serve as
the output (appearing as y in Equation (5.12)). In order to reconcile the synchronization
gap between PMU and SCADA data, we associate some set of PMU data to each SCADA
measurement, i.e. we take 10 PMU samples collected both before and after a given SCADA
measurement and associate those to the SCADA measurement. Thus, for one time step of
SCADA data, we have created duplicate yt SCADA measurements corresponding to each
xt PMU measurement. Other types of time synchronization smoothing methods could also
be used to reconcile the PMU and SCADA datasets such as averaging the PMU data or
estimation fusion approaches [48, 49].

5.3 Constrained SVR Problem Formulation

In this section, we present the primal SVR formulation of the power system mapping problem
and show how sparsity-enforcing constraints can be added to the classic SVR problem. Then,
we find the dual of this constrained SVR problem and show that it is a convex quadratic
program.
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5.3.1 Power Flow as Represented by the Quadratic Kernel

In [11], it was shown that AC power flow can be represented exactly by the quadratic kernel,
which is given as:

K(x1,x2) = (⟨x1,x2⟩)2, ∀x ∈ X = R2n (5.4)

where n ≤ |V| corresponds to the number of buses in the network where PMU data is
available and x ∈ R2n corresponds to the real and reactive components in the complex
voltage vector v ∈ Cn, where x is given as:

x ≜
[
d1 d2 . . . dn e1 e2 . . . en

]T
(5.5)

Then, the feature mapping corresponding to the quadratic kernel ϕ(x) ∈ RD is given by:

ϕ(x) = [d21 . . . d2n e21 . . . e2n
√
2d1d2 . . .

√
2d1e2 . . .

√
2en−1en]

T (5.6)

where we have that D =
(
2n+1

2

)
= 2n2 + n. By construction, we have that K(x1,x2) =

ϕ(x1)
Tϕ(x2), a relation that allows for the kernel trick in the dual SVR formulation, i.e. the

replacement of ϕ(x1)
Tϕ(x2) terms by K(x1,x2).

Based on this formulation, we can rewrite each of the real and reactive power flow and
injection measurement relations given by Equations (5.2) and (5.3) as a dot product of the
quadratic feature mapping ϕ(x) given in (5.6) and a specific parameter vector with known
structure and unknown values. The power flow measurement equations (5.2a) and (5.2b)
can be written as:

pij = ⟨µpij , ϕ(x)⟩, ∀(i, j) ∈ E (5.7a)

qij = ⟨µqij , ϕ(x)⟩, ∀(i, j) ∈ E (5.7b)

where µpij , µqij ∈ RD with the kth entries of µpij and µqij are defined as:

(µpij)k ≜


Gij, if ϕ(x

ij)k =
√
2didj or

√
2eiej

Bij, if ϕ(x
ij)k =

√
2eidj

−Bij, if ϕ(x
ij)k =

√
2diej

0, otherwise

(5.8a)

(µqij)k ≜


−Bij, if ϕ(x

ij)k =
√
2didj or

√
2eiej

Gij, if ϕ(x
ij)k =

√
2eidj

−Gij, if ϕ(x
ij)k =

√
2diej

0, otherwise

(5.8b)

Similarly, the power injection measurement equations (5.3a) and (5.3b) can be written
as:

pi = ⟨µpi , ϕ(x)⟩, ∀i ∈ V (5.9a)



CHAPTER 5. PHYSICS-INFORMED SVR FOR TOPOLOGY IDENTIFICATION 111

qi = ⟨µqi , ϕ(x)⟩, ∀i ∈ V (5.9b)

where µpi , µqi ∈ RD with the kth entries µpi and µqi are defined as:

(µpi)k ≜

{
Gii, if ϕ(x)k = d2i or e2i
(µpij)k, otherwise

(5.10a)

(µqi)k ≜

{
−Bii, if ϕ(x)k = d2i or e2i
(µpij)k, otherwise

(5.10b)

The dot product relations (5.7) and (5.9) can be shown to be respectively equivalent to
(5.2) and (5.3) by expanding the equations (5.7) and (5.9) with the defined µ-parameters
given by (5.8) and (5.10) and using trigonometric relations to simplify the equations. Note
that the Gij and Bij entries should be equal to zero in the case where there is no line that
connects buses i and j. However, in the case where the line topology is only partially known,
we can associate Gij and Bij parameters to any possible line in the network.

We can observe that due to the sparsity inherent in power networks [22], most of the
entries in the µ-parameters should be zero. We formalize this observation in the following
lemma.

Lemma 3. The maximum ratio of non-zero entries to zero entries in µpij or µqij is 4 :
2n2 + n − 4, and the maximum ratio of non-zero entries to zero entries in µpi or µqi is
4|E(i)|+ 2 : 2n2 + n− 4|E(i)| − 2 where E(i) is the set of lines attached to bus i.

Proof. In the case of real (or reactive) power flows, only 4 of the entries in each µpij (or µqij)
could possibly be non-zero by definition in (5.8). Similarly, in the case of real (or reactive)
power injections, only 4|E(i)|+ 2 of the entries in each µpi or µqi could possibly be non-zero
by definition in (5.10). The minimum number of zero entries is found by subtracting these
from the number of features, given by D = 2n2 + n.

We will exploit the inherent sparsity of the µ-parameters in order to learn the network
line parameters and topology via a constrained SVR method described in the sections below.

5.3.2 Constrained SVR with Multiple Measurement Types

For a complete background on support vector regression methods, see [28]. Most of the
SVR methods in the literature try to learn a mapping between vectors xt and scalars yt,
for multiple time steps t = 1, . . . , T . However, for power flow mapping, we want to learn
the relationship between vectors xt ∈ R2n and vectors yt ∈ RM , for multiple time steps
t = 1, . . . , T , where the vector yt contains multiple types of pij, qij, pi, and qi SCADA
measurements and the mapping xt → yt is given by the equations (5.7) and (5.9). Given a
set of measurementsM, where M ≜ |M|, and a set of data collection time steps 1, . . . , T ,
we can write the corresponding state equation model in concise form as:

yt = Wϕ(xt), ∀t ∈ {1, . . . , T} (5.11)
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where the weight matrix W ∈ RM×D relates the features corresponding to PMU voltage
measurements to the SCADA measurements inM. Each row in matrix W corresponds to
a µ-parameter defined in Equations (5.8) and (5.10). In Lemma 3, we observed that these
µ-parameters are very sparse, which translates to W having this same sparse structure.
We want to enforce this sparsity pattern, which we will take as some matrix E ∈ RM×D

composed of a sparse set of variables as defined in the next section, on the weight matrix
W , providing the constraint W − E = 0. Combining this constraint with the SVR model,
we arrive at the primal version of the constrained SVR problem:

min
W,ξ,E

1

2
||W ||2F + C

M∑
m=1

T∑
t=1

(ξm,t + ξ∗m,t) (5.12a)

s.t. yt −Wϕ(xt) ≤ ϵ+ ξt, ∀t ∈ {1, . . . , T} (5.12b)

Wϕ(xt)− yt ≤ ϵ+ ξ∗t , ∀t ∈ {1, . . . , T} (5.12c)

ξt, ξ
∗
t ≥ 0, ∀t ∈ {1, . . . , T} (5.12d)

W − E = 0 (5.12e)

where ϵ ∈ RM , ϵi ≥ 0 for all i ∈ {1, . . . ,M} defines the ϵ-tube around the estimator inside
which errors are not penalized. The variables ξt, ξ

∗
t ∈ RM defined for all t ∈ {1, . . . , T} are the

penalty terms for violating the state equations (5.11) outside of the ϵ-tube. A linear penalty
on these errors, scaled by the hyperparameter C > 0, is added to the Frobenius norm of the
weight matrix W to form the objective function. The inclusion of the Frobenius norm in the
objective serves to encourage flatness in the weight parameters, thus promoting parameters
that are physically realistic. The hyperparameter C determines the trade-off between the
bi-objectives of promoting flatness and minimizing violations of the state equations.

Our modification from the classical SVR problem that maps xt to yt ∈ R is that the
weight vector becomes a matrix given by W and ξt, ξ

∗
t , and ϵ are now vectors in RM . If

we ignore the sparsity constraint (5.12e), we can decouple this matrix version of the SVR
problem (5.12) into the standard vector-version SVR problems for each measurement type
ym, for all m = 1, . . . ,M . Thus, the matrix E ∈ RM×D serves to couple the different
SVR problems that correspond to each measurement type in the vector yt. Intuitively, this
matrix E allows us to use information obtained about the parameters corresponding to one
measurement type to learn the parameters corresponding to a different measurement type.
For example, the line conductance Gij of some line (i, j) ∈ E appears in the measurement
equations for both pij and qi (as well as qij and pi), thus its predicted value should be the
same whether we predict the mapping from x to pij or from x to qi.

5.3.3 Defining the Sparsity Pattern on a Two-Bus Network

To define structure of the sparsity pattern E, let us first consider a two-bus network (shown
in Figure 5.1), with one line connecting buses 1 and 2. We consider the case where yt ∈ RM

with M = 4 that corresponds to the following measurement vectors for each time step
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Figure 5.1: Example of two-bus network with selected SCADA measurements from Equation
(5.13)

t ∈ {1, . . . , T}:
y =

[
p12 q12 p1 q1

]T
(5.13)

Using the quadratic feature vector given by (5.6), where ϕ(x) ∈ RD with D = 10 cor-
responding to the two-bus network, and the sparse relations for the µ-parameters given by
(5.8) and (5.10), we know that W will have the following sparsity pattern E:

E ≜


0 0 0 0 G12 0 B12 −B12 0 G12

0 0 0 0 B12 0 −G12 G12 0 B12

G11 0 G11 0 G12 0 B12 −B12 0 G12

−B11 0 −B11 0 B12 0 −G12 G12 0 B12

 (5.14)

We have used Equations (5.8a), (5.8b), (5.10a), and (5.10b) to respectively construct
rows 1, 2, 3, and 4 of matrix E corresponding to the measurements p12, q12, p1, and q1.
Construction of the matrix E depends solely on the choice of measurement set and the
baseline network topology, both of which are known a priori. Note that all the G and B
terms in matrix E are unknown parameters. Using this example definition of E, we can
formulate the dual of (5.12) for the two-bus network example. We will then generalize our
formulation to larger networks.

5.3.4 Formulating the Dual of the Constrained SVR Problem

In the primal constrained SVR problem (5.12), the constraints (5.12b) and (5.12c) will slow
down a generic quadratic program solver due to the high dimension of the feature vector
ϕ(x), which scales with n2. Thus, it is more computationally useful to consider the dual
form of (5.12), making use of the kernel trick to eliminate most instances of ϕ(x).

In order to take the dual of (5.12), we introduce the Lagrange multipliers αt, α
∗
t ∈ RM

+

corresponding to the (5.12b) and (5.12c) inequality constraints, βt, β
∗
t ∈ RM

+ corresponding
to the (5.12d) inequality constraints, and λ ∈ RM×D corresponding to the (5.12e) equality
constraints. Then, the Lagrangian of (5.12) can be written as:
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L =
1

2
||W ||2F + C

M∑
m=1

T∑
t=1

(ξm,t + ξ∗m,t)−
T∑
t=1

(αt + α∗
t )

T ϵ+
T∑
t=1

(αt − α∗
t )

T (yt −Wϕ(xt))

−
T∑
t=1

(
αT
t ξt + βt

T ξt + (α∗
t )

T ξ∗t + (β∗
t )

T ξ∗t
)
+ trace{λT (E −W )} (5.15)

For the two-bus network example, given Equation (5.14) defining E, we can expand the
trace{λTE} term as:

trace{λTE} = λ1,5G12 + λ1,7B12 − λ1,8B12 + λ1,10G12 + λ2,5B12 − λ2,7G12

+ λ2,8G12 + λ2,10B12 + λ3,1G11 + λ3,3G11 + λ3,5G12 + λ3,7B12

− λ3,8B12 + λ3,10G12 − λ4,1B11 − λ4,3B11 + λ4,5B12 − λ4,7G12

+ λ4,8G12 + λ4,10B12 (5.16)

The equations ensuring stationarity of the Lagrangian (5.15) with respect to the G and
B unknown parameters are:

∂L/∂G11 = λ3,1 + λ3,3 = 0 (5.17a)

∂L/∂B11 = −λ4,1 − λ4,3 = 0 (5.17b)

∂L/∂G12 = λ1,5 + λ1,10 − λ2,7 + λ2,8 + λ3,5 + λ3,10 − λ4,7 + λ4,8 = 0 (5.17c)

∂L/∂B12 = λ1,7 − λ1,8 + λ2,5 + λ2,10 + λ3,7 − λ3,8 + λ4,5 + λ4,10 = 0 (5.17d)

The equations (5.17) can be written in more concise form as:

trace{λTLr} = 0, ∀r ∈ {1, . . . , R} (5.18)

where R = 4 for the given two-bus example and measurement set. More generally, R is
a known integer corresponding to the number of unique unknown line parameters in the
network, as defined by the chosen measurement set M and the given baseline network
topology. The matrices Lr ∈ RM×D for all r ∈ {1, . . . , R} are also explicitly known given
the chosen measurement set and line topology.

For example, on the given two-bus example, Equation (5.17c) corresponding to the sta-
tionarity of the Lagrangian with respect to G12 can be written as trace{λTL3} = 0 by
defining L3 as:

L3 ≜


0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 −1 1 0 0
0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 −1 1 0 0

 (5.19)

The equations ensuring stationarity of the Lagrangian (5.15) with respect to the error
penalty variables ξt, and ξ

∗
t for all t ∈ {1, . . . , T} are:

∂L/∂ξm,t = C − αm,t − βm,t = 0 (5.20a)
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∂L/∂ξ∗m,t = C − α∗
m,t − β∗

m,t = 0 (5.20b)

Finding the stationarity of the Lagrangian (5.15) with respect to the weight matrix W
yields the relationship between the primal weight matrix W and the dual support vectors αt

and α∗
t for all t ∈ {1, . . . , T}:

W =
T∑
t=1

(αt − α∗
t )ϕ(xt)

T + λ (5.21)

Combining these constraints and plugging the definition of W in (5.21) back into the
Lagrangian (5.15), we arrive at the dual form of the constrained SVR problem, given in the
theorem below.

Theorem 7. The dual of the constrained SVR problem (5.12) corresponding to the power
mapping problem can be written as the convex quadratic program:

min
α,α∗,λ

f(α, α∗, λ) (5.22a)

s.t. αm,t, α
∗
m,t ∈ [0, C], ∀m ∈ {1, . . . ,M}, ∀t ∈ {1, . . . , T} (5.22b)

trace{λTLr} = 0, ∀r ∈ {1, . . . , R} (5.22c)

where we have α, α∗ ∈ RM×T , λ ∈ RM×D, and the objective function:

f(αt, α
∗
t , λ) =

1

2

T∑
t=1

T∑
s=1

(αt − α∗
t )

T (αs − α∗
s)K(xs,xt) +

T∑
t=1

(αt + α∗
t )

T ϵ

−
T∑
t=1

(αt − α∗
t )

Tyt +
1

2
||λ||2F +

T∑
t=1

(αt − α∗
t )

Tλϕ(xt) (5.23)

Proof. See Appendix 5.A.

To see that the dual problem (5.22) is a convex quadratic program, we can introduce the

variable Z ≜
[
α α∗ λ

]T ∈ R(2T+D)×M and rewrite the problem in stacked form as:

min
Z

1

2
trace{ZTA0Z}+ trace{AT

1Z} (5.24a)

subject to: Z ≤ Z ≤ Z (5.24b)

trace{ZT L̃r} = 0, ∀r = 1, . . . , R (5.24c)

where the lower and upper bounds Z and Z follow from (5.22b) and the matrices L̃r are
expanded versions of Lr such that trace{ZT L̃r} = trace{λTLr} for all r ∈ {1, . . . , R}.
Additionally, we define the matrices A0 ∈ S(2T+D) and A1 ∈ R(2T+D)×M as:

A0 ≜

 Q −Q ΦT

−Q Q −ΦT

Φ −Φ ID

 (5.25a)
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A1 ≜

[(ϵT )×T ]− Y T

[(ϵT )×T ] + Y T

0D×M

 (5.25b)

where we have Φ ∈ RD×T as the matrix composed of columns ϕ(xt) ∈ RD and Y ∈ RM×T as
the matrix composed of columns yt ∈ RD for all t ∈ {1, . . . , T}. We define the kernel matrix
Q ∈ RT×T as having entries Qs,t = K(xs,xt) for all s, t ∈ {1, . . . , T}, noting that Q = ΦTΦ.
The notation [(ϵT )×T ] indicates a T ×M matrix where every row equals ϵT , the notation
ID indicates an identity matrix of dimension D, and the notation 0D×M indicates a D ×M
matrix composed of all zeros. In this stacked formulation, we can observe that A0 = aaT

where a ≜
[
Φ −Φ ID

]T
, thus A0 ⪰ 0 and the program is convex.

5.4 Analysis of Constrained SVR Approach

5.4.1 Strong Duality of Constrained SVR Problem

Similar to the classic SVR approach where the dual problem is used as a solution for the
primal, we show that the proposed dual of the constrained SVR problem can also be used
as a solution to the primal.

Theorem 8. The dual of the constrained SVR problem given by (5.22) is exact. Therefore,
solving (5.22) will recover the solution to (5.12).

Proof. Since the primal problem (5.12) is a convex quadratic program, we just need to show
that it satisfies the weak Slater’s condition to prove strong duality. To show that there exists
some point strictly within the feasible space of (5.12), we can set W = E = 0 and ξm,t >
max{0, (yt − ϵ)m} and ξ∗m,t > max{0, (−yt − ϵ)m} for all t ∈ {1, . . . , T}, m ∈ {1, . . . ,M}.
Then, we can see that the inequality constraints (5.12b),(5.12c), and (5.12d) are all strictly
feasible for this point and weak Slater’s holds.

5.4.2 Effect of Measurement Availability on Constrained SVR

The availability of measurements, both in terms of SCADA measurements and PMU mea-
surements, directly affects which line parameters we are able to accurately learn with the
constrained SVR method. For example, in the case where two buses i and j both have PMUs
and the SCADA measurements pij and qij are the only available measurements, we are able
to exactly recover Gij and Bij when there is no measurement noise and are able to recover
good estimates for these parameters when there is noise. This is evident by considering
Equations (5.8a) and (5.8b) in relation to the constrained SVR problem (5.12) where C is
sufficiently high. Similarly, if we have all possible PMU and SCADA measurements available
in the network, we can recover all the exact G and B parameters in the network when there
is no measurement noise and good estimates when there is noise. However, in the more re-
alistic case where PMU measurements are not available at every bus, the formulation (5.12)
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attributes the discrepancy due observed and unobserved PMU measurements to the penalty
terms ξ and ξ∗. When there is no available PMU at bus i, it will be impossible to recover
the parameters Gij, Bij, Gii and Bii since the features d2i , e

2
i ,
√
2didj,

√
2eidj,

√
2diej, and√

2eiej do not appear in the feature vector ϕ(x). Thus, SCADA measurements pij and qij
are not helpful to learn Gij and Bij if either bus i or bus j is not equipped with a PMU. On
the contrary, the real and reactive power injection measurements at bus i can still be useful
to learn some parameters even if not all buses attached to bus i are equipped with PMUs.

While limited access to PMU measurements does prevent the constrained SVR problem
from accurately learning all the network parameters, there are many realistic cases where
most of network parameters and topology are known but there is some uncertainty in parts
of the network. For example, some line (i, j) ∈ E might often switch from open to closed
in real-time such that its status is often unknown. By placing PMUs at buses i and j and
solving the constrained SVR problem, this method could accurately recover Gij and Bij for
the line and thus determine the status of the line. Future work should consider how strategic
PMU placement can improve power flow mapping recovery.

5.5 Simulations

The simulations are run on a standard laptop (2.6 GHz 6-Core Intel Core i7 with 16 GB
2400MHz RAM). The software MATPOWER is used to import test networks, formulate
admittance matrices, and generate sample data points based on solving power flow problems
with the known system parameters [50]. Then, the constrained SVR model is formulated
using the Pyomo modeling language in Python 3.8. The convex quadratic program (5.22)
is solved with the Gurobi solver. Another possible algorithm based on Sequential Minimal
Optimization (SMO) is presented in Appendix 5.D.

In the following simulations, we test our method on cases with various signal-to-noise
(SNR) ratios in the SCADA measurements, cases with outliers in the SCADA or PMU
measurements, and networks where measurements are only partially observed. For all of
these test cases, we assume that the noise in PMU magnitude measurements follows a zero-
mean Gaussian distribution with 0.005 p.u. standard deviation (SNR of 46 dB) and that the
noise in PMU angle measurements follows a zero-mean Gaussian distribution with 0.01 p.u.
standard deviation (SNR of 40 dB). These values are consistent with the existing literature
on PMU errors [51]. For these simulations, we consider the case where we have 10 PMU
measurements associated to each SCADA measurement at any time step, as discussed in
Section 5.2.2.

5.5.1 Performance Metrics

To compare the performance of the propsed constrained SVR method with the classic SVR
method, we consider the following performance metrics. Root-mean-square error (RMSE)
measures how well the estimator fits the SCADA measurements y by penalizing the squared
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error discrepancy, i.e. RMSE =
√

1
MT

∑T
t=1

∑M
i=1(ym,t − ŷm,t)2 , where ŷm,t is output pre-

dicted by the estimator for some time step t and measurement type m. Mean absolute error
(MAE) measures how well the estimator fits the SCADA measurements y by penalizing the
absolute error discrepancy, i.e. MAE = 1

MT

∑T
t=1

∑M
i=1 |ym,t − ŷm,t|. The benefit of MAE

is that it is less sensitive to outliers than RMSE, so it provides another useful metric when
comparing model performance. In terms of RMSE and MAE, the classic SVR method has
been shown to perform well in the power flow mapping problem [11, 21]. This is because the
classic SVR method has good performance learning the overall mapping between xt’s and
yt’s, and RMSE and MAE do not penalize overfitting. Thus, a more useful metric to see if
the method really learns the true line parameters is to consider the error between the ac-
tual line parameters and the estimated line parameters. In the case of mutual conductance,
denoted by the subscript m.c., we take Gm.c. to be the vector of true mutual conductances
Gij for all lines (i, j) where we have obtained estimates Ĝij using the SVR method and take

Ĝm.c. to be the corresponding vector of Ĝij’s. Then, the normalized estimation error for
mutual conductance over all estimated lines is given by:

Γm.c. ≜
||Gm.c. − Ĝm.c.||2
||Gm.c.||2

(5.26)

We have similar normalized error relations for the mutual susceptances (given as Γm.s.),
self conductances (given as Γs.c.), and self susceptances (given as Γs.s.).

5.5.2 Effectiveness in the Presence of Noise

We start with the case that all buses are equipped with PMUs so that the voltages in the
network are fully observable. For the IEEE 14-bus test case, we generate PMU measurements
based on the initial voltage state of the MATPOWER case file, adding Gaussian-distributed
random noise as described in the methodology above. We consider a SCADA measurement
set that consists of all real and reactive power flow measurements as well as real and reactive
power injection measurements at buses 2 and 3. For this test case setup, we consider the
scenario where we have zero noise (SNR=∞) and 50 simulations at various SNRs from 45 to 0
dB. The results of these experiments are given in Table 5.1. These experiments demonstrate
that the constrained SVR method outperforms the classic SVR method in terms of both
line parameter recovery and solution speed and has similar performance to the classic SVR
method in terms of RMSE and MAE. In Figure 5.2, we have plotted Γm.c. and Γm.s. as a
function of the SNR of the SCADA measurements, noting that similar plots were obtained for
the normalized estimation errors of the other line parameters (omitted for concision). Even
when SCADA measurement errors are present, the constrained SVR method can recover
decent estimates for the line parameters (within 14% of the true values on average) as long
as the SNR in the measurements is greater than or equal to 15 dB. Conversely, the classic
SVR method consistently fails to recover the true line parameters even when no noise is
present in the SCADA measurements.
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Figure 5.2: The normalized estimation error for mutual conductance (Gij’s) (top figure) and
mutual susceptance (Bij’s) (bottom figure) as a function of signal-to-noise ratio (SNR) is
presented for the 14-bus test case. Each box plot corresponds to 50 simulations of Gaussian-
distributed random noise added to the SCADA measurements of this test case. The red lines
are box plots of normalized estimation errors (Γm.c. and Γm.s.) for the classic SVR method,
and the blue box plots correspond to the normalized estimation errors (Γm.c. and Γm.s.) for
our proposed constrained SVR method.



CHAPTER 5. PHYSICS-INFORMED SVR FOR TOPOLOGY IDENTIFICATION 120

Table 5.1: Comparison of Methods on 14-bus Network with Noise

Model SNR Avg. Avg. Avg. solve Avg. Avg.
RMSE MAE time (s) Γm.c Γs.c.

∞ 0.0013 0.0010 46.86 0.9889 1.0003
Classic 45 0.0009 0.0009 44.26 0.9889 1.0003
SVR 30 0.0009 0.0008 44.49 0.9889 1.0003

15 0.0009 0.0009 45.25 0.9889 1.0003
0 0.0001 0.0009 42.71 0.9890 1.0003
∞ 0.0535 0.0272 5.25 0.0048 0.0043

Constr. 45 0.0535 0.0272 5.21 0.0063 0.0045
SVR 30 0.0536 0.0272 5.17 0.0246 0.0134

15 0.0539 0.0273 5.19 0.1332 0.0813
0 0.0664 0.0346 5.24 0.7501 0.4093

5.5.3 Robustness in the Case of Outliers

Next, we consider the same 14-bus test case as above with a SNR of 40 dB in the SCADAmea-
surements but allow for outliers to be present in 0 to 8% in some of the PMU or SCADA mea-
surement data. The subset of outlier-affected measurements within the PMU and SCADA
datasets is chosen on a uniform distribution over all possible measurements, and the values
of the outlier-affected measurements are chosen on a uniform distribution from [−2, 2] per
unit, scaled in relation to the chosen measurement type. The results from these simulations
are given in Table 5.2 and Figure 5.3.

In Figure 5.4, we compare our proposed constrained SVR method to the classic SVR
method in terms of solution time. From these simulations, it is clear that our proposed
constrained SVR method outperformed existing SVR methods in terms of solution time and
quality.

5.5.4 Effectiveness in Partially-Observable Networks

Finally, we consider the case where only a subset of buses in the network are equipped with
PMUs. For these simulations, we consider the IEEE 14- and 30-bus networks and perform a
sweep over varying PMU penetration levels in the network. For these simulations, we take
the SNR of the SCADA noise as 40 dB and consider cases with and without outliers. Some
results from these simulations are given in Figures 5.5, 5.6, and 5.7. From these simulations,
we see that the sparse SVR model provides better average normalized estimation error and
lower solution times at all PMU penetration levels than the classic SVR method, but that
its benefits are more apparent at higher PMU penetrations.



CHAPTER 5. PHYSICS-INFORMED SVR FOR TOPOLOGY IDENTIFICATION 121

Table 5.2: Performance Comparison of SVR Methods on 14-bus Network with Outliers

Model % Avg. sol. Avg. Avg. Avg. Avg.
outlier time (s) Γm.c Γs.c. Γm.s. Γs.s.

0.00 43.42 0.9906 1.0003 1.0005 1.0000
Classic 1.02 43.89 0.9900 1.0005 1.0003 1.0000
SVR 2.04 47.46 0.9914 1.0004 1.0004 1.0000

3.06 48.02 0.9914 0.9997 1.0004 1.0000
4.08 48.21 0.9922 1.0003 1.0003 1.0000
5.10 47.81 0.9921 1.0002 1.0003 1.0001
6.12 47.74 0.9917 1.0004 1.0004 1.0000
7.14 48.09 0.9926 1.0003 1.0001 0.9999
8.16 47.79 0.9925 0.9999 1.0002 0.9999
0.00 5.31 0.0089 0.0064 0.0083 0.0049

Constr. 1.02 5.38 0.4296 0.1257 0.2001 0.0629
SVR 2.04 5.89 0.6211 0.2000 0.4078 0.0853

3.06 5.86 0.9983 0.3181 0.5015 0.0995
4.08 5.84 0.9450 0.3332 0.3823 0.1284
5.10 5.85 1.3664 0.3543 0.5388 0.2383
6.12 5.80 1.8727 0.5187 0.8018 0.2609
7.14 5.88 1.6363 0.5128 0.7053 0.3181
8.16 5.87 2.0223 0.5204 0.9563 0.2962

5.6 Conclusions

In this chapter, we proposed a new constrained SVR method that can learn the true power
network topology of a network. Based on simulations on IEEE test cases, we showed that
the proposed constrained SVR method is much better at recovering the true line parameters
of a network, even in the presence of SCADA measurement noise, outliers, and missing data,
than existing SVR methods.
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Figure 5.3: The normalized estimation error for self susceptances (Bii’s) as a function of
the percent of outliers is presented for the 14-bus test case. Each box plot corresponds to
50 simulations of uniformly-distributed random outliers added to some percent of the total
PMU and SCADA measurements. The red lines are box plots for the classic SVR method,
and the blue box plots correspond to our proposed constrained SVR method.
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Figure 5.4: Average solution time for constrained and classic SVR methods on the 14-bus
network over various signal-to-noise ratios in the SCADA data (top figure) and over various
outlier levels (bottom figure). Each data point corresponds to the average over 50 simulations
of randomly generated SCADA noise and/or outliers.
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Figure 5.5: The top figure shows the average normalized estimation error for mutual con-
ductances (Gij’s) and mutual susceptances (Bij’s) as a function of the PMU penetration, i.e.
the percent of buses in the network from which PMU measurements are available, for the
14-bus test case with SCADA noise of 40 dB without outliers. Each data point corresponds
to the average over 50 simulations. The bottom figure shows the average solution time for
each set of 50 simulations.
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Figure 5.6: The top figure shows the average normalized estimation error for mutual con-
ductances (Gij’s and mutual susceptances (Bij’s) as a function of the PMU penetration, i.e.
the percent of buses in the network from which PMU measurements are available, for the
14-bus test case with SCADA noise of 40 dB and 2% outliers in all measurements. Each
data point corresponds to the average over 50 simulations. In this figure, we see that the
sparse SVR model provides better average normalized estimation error at all PMU penetra-
tion levels than the classic SVR method, but that its benefits are more apparent at higher
PMU penetrations. The bottom figure shows the average solution time for each set of 50
simulations.
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Figure 5.7: The top figure shows the average normalized estimation error of mutual conduc-
tance and mutual susceptance line parameters for the 30-bus network, with varying amounts
of PMU penetration in the network. During each simulation, some subset of buses is ran-
domly selected to be equipped with PMUs. Each data point corresponds to the average
over 20 random simulations. The time limit per problem was chosen to be 3 minutes. The
bottom figure shows the average solution time over the 20 simulations.
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Appendix

5.A Proof of Theorem 7

The negative of the dual objective f(αt, α
∗
t , λ), i.e. g(αt, α

∗
t , λ) ≜ −f(αt, α

∗
t , λ), is given by

expanding (5.15) using (5.20) and (5.21):

g(αt, α
∗
t , λ) =

1

2
||
∑T

t=1(αt − α∗
t )ϕ(xt)

T + λ||2F −
∑T

t=1(αt + α∗
t )

T ϵ

+
∑T

t=1(αt − α∗
t )

Tyt −
∑T

t=1(αt − α∗
t )

T
(∑T

t=1(αt − α∗
t )ϕ(xt)

T + λ
)
ϕ(xt)

+ trace{λTE} − trace
{
λT
∑T

t=1(αt − α∗
t )ϕ(xt)

T
}
− trace{λTλ} (5.27)

We expand the Frobenius norm to get:

1

2
||
∑T

t=1(αt − α∗
t )ϕ(xt)

T + λ||2F = 1
2

∑T
t=1

∑T
s=1(αt − α∗

t )
T (αs − α∗

s)ϕ(xs)
Tϕ(xt)

+ trace
{
λT
∑T

t=1(αt − α∗
t )ϕ(xt)

T
}
+

3

2
· trace

{
λTλ

}
(5.28)

Combining this with the observation that (5.18) results in trace{λTE} = 0 and simpli-
fying terms, we arrive at the relation:

g(αt, α
∗
t , λ) = −

1

2

T∑
t=1

T∑
s=1

(αt − α∗
t )

T (αs − α∗
s)ϕ(xs)

Tϕ(xt)−
1

2
· trace

{
λTλ

}
−

T∑
t=1

(αt + α∗
t )

T ϵ+
T∑
t=1

(αt − α∗
t )

Tyt −
T∑
t=1

(αt − α∗
t )

Tλϕ(xt) (5.29)

Then, we substitute K(xs,xt) for ϕ(xs)
Tϕ(xt) terms for all s, t ∈ {1, . . . , T} using the

kernel trick. We have then shown that g(αt, α
∗
t , λ) = −f(αt, α

∗
t , λ) as defined in Theorem

7, and we have that max g(αt, α
∗
t , λ) = min f(αt, α

∗
t , λ). The (5.22b) constraints of the dual

problem follow from the stationarity relations (5.20) plus the dual feasibility constraints
αm,t, α

∗
m,t, βm,t, β

∗
m,t ≥ 0 for all t ∈ {1, . . . , T}, m ∈ {1, . . . ,M}. This completes the proof.
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5.B Variation on State Equation with Linear Term

In our work, we also considered the state equation with a linear term:

yt = Wϕ(xt) + r, ∀t ∈ {1, . . . , T} (5.30)

which is a typical form of the state equation in classical SVR. Note that this form does
not make as much sense as (5.11) for power flow equations without error since they can be
exactly written as (5.11) as discussed in Section 5.3.1.

However, we thought this version of the state equation (5.30) may be helpful in the case
where there is measurement discrepancy due to unobserved buses, as discussed in Section
5.4.2. In this case, instead of lumping the discrepancy error into the ξ and ξ∗ penalty terms
in (5.12), we could consider that the discrepancy error is part of the r term in Equation
(5.30).

For this modified formulation, the same analysis holds but the dual problem (5.22) is
modified to have the following constraint:

T∑
t=1

αt − α∗
t = 0 (5.31)

where the derivation of this constraint comes from taking the derivative of the modified
Lagrangian with respect to r.

In Figure 5.8, we show simulations with this formulation on the 30-bus network in the
case where we have SCADA measurement noise and varying levels of PMU penetration.

5.C Alternative Formulation with Corrupted PMU

Measurements

The SVR formulation in Section 5.3.2 is flexible enough to handle other types of cyberattacks
and uncertainty in the system. For example, in the case where there could be some corrupted
or attacked PMU measurements and we want to explicitly model those attacks to solve for
their attack values (as opposed to the formulation in Section 5.3.2 which treats these attacks
as outliers), we can define the corrupted voltage magnitude as |v̂i| and the corrupted voltage
angle as θ̂i. We relate the corrupted values to the true values for voltage magnitude |vi| and
angle θi with the equations:

|vi| = κi|v̂i| (5.32a)

θi = θ̂i + ζi (5.32b)

where κi and ζi are the unknown corruption terms associated with the measurements. Note
that we distinguish these corruption terms from normal noise or errors in the PMU mea-
surements that fluctuate.
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Figure 5.8: Comparison of solution quality (top figure) and solution time (bottom figure)
for constrained SVR variations with and without the parameter r in the state equation (see
Equation 5.30). From these simulations, we found that including the parameter r in the
state equation resulted in worse outcomes in terms of line parameter recovery, even in the
case of missing PMU measurements.
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For this formulation, we define the state vector in relation to d̂i = |v̂i| cos(θ̂i) and êi =
|v̂i| sin(θ̂i):

x ≜
[
d̂1 d̂2 . . . d̂n ê1 ê2 . . . ên

]T
(5.33)

Then, the feature mapping corresponding to the quadratic kernel ϕ(x) ∈ RD is given by:

ϕ(x) = [d̂21 . . . d̂2n ê21 . . . ê2n
√
2d̂1d̂2 . . .

√
2d̂1ê2 . . .

√
2ên−1ên]

T (5.34)

Similar to the formulation in Section 5.3.1, we can rewrite the real and reactive power
flow and injection measurement relations given by Equations (5.2) and (5.3) as a dot product
of the quadratic feature mapping ϕ(x) given in (5.34) and a specific parameter vector with
known structure and unknown values. The power flow measurement equations (5.2a) and
(5.2b) can be written as (5.7) when we take ϕ(x) as that in (5.34) and define µpij ∈ RD and
µqij ∈ RD as having the kth entries:

(µpij)k ≜


1√
2
Gijκiκj cos(ζi − ζj) + 1√

2
Bijκiκj sin(ζi − ζj), if ϕ(xij)k =

√
2d̂id̂j or

√
2êiêj

− 1√
2
Gijκiκj sin(ζi − ζj) + 1√

2
Bijκiκj cos(ζi − ζj), if ϕ(xij)k =

√
2êid̂j

1√
2
Gijκiκj sin(ζi − ζj)− 1√

2
Bijκiκj cos(ζi − ζj), if ϕ(xij)k =

√
2d̂iêj

0, otherwise

(5.35)

(µqij)k ≜


1√
2
Gijκiκj sin(ζi − ζj)− 1√

2
Bijκiκj cos(ζi − ζj), if ϕ(xij)k =

√
2d̂id̂j or

√
2êiêj

1√
2
Gijκiκj cos(ζi − ζj) + 1√

2
Bijκiκj sin(ζi − ζj), if ϕ(xij)k =

√
2êid̂j

− 1√
2
Gijκiκj cos(ζi − ζj)− 1√

2
Bijκiκj sin(ζi − ζj), if ϕ(xij)k =

√
2d̂iêj

0, otherwise

(5.36)
where the proof for these relations can be given by expanding (5.7) with the definitions of
µpij , µqij , and ϕ(x) and simplifying with trigonometric identities.

Similarly, for real and reactive power injection, we can rewrite the power injection mea-
surements (5.3) as (5.9) using the definitions of µpi and µqi as:

(µpi)k ≜

{
Giiκ

2
i , if ϕ(x)k = d̂2i or ê2i

(µpij)k, otherwise
(5.37)

(µqi)k ≜

{
−Biiκ

2
i , if ϕ(x)k = d̂2i or ê2i

(µqij)k, otherwise
(5.38)

Using this formulation, if the Gij and Bij parameters are unavailable, we would be able
to learn expressions for 1√

2
Gijκiκj sin(ζi − ζj)− 1√

2
Bijκiκj cos(ζi − ζj),
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− 1√
2
Gijκiκj sin(ζi − ζj) + 1√

2
Bijκiκj cos(ζi − ζj), Giiκ

2
i , and −Biiκ

2
i . While this formulation

would not be able to exactly recover the true line parameters and corruption values, it
would be able to learn a sparse mapping between the PMU measurements and the SCADA
measurements. In the case where some Gij, Bij, Gii, and Bii parameters are available, it
may be possible to solve for some of the corruption values κi and ζi − ζj given estimates for
µpij , µqij , µpi , and µqi .

5.D Sequential Minimal Optimization (SMO)

Algorithm for Constrained SVR

In this section, we propose a SMO algorithm for the dual form of the constrained SVR
problem in (5.22). Based on the existing SMO algorithm [52], we propose a method that
chooses the most violating set of variables in the α and α∗ blocks (where most violating is
defined in relation to the first-order optimality conditions), optimize a subproblem in these
blocks, and then solve a closed-form optimization problem to find the value of λ. The classical
SMO algorithm was shown to converge in [53] and [54] proved its linear convergence. In some
simulations, we found that the modified SMO algorithm for constrained SVR converges on
small test cases, but that the built-in QP solver in Gurobi outperforms the current SMO
implementation in Python. A faster implementation of SMO is needed for a true comparison
of methods.

5.D.1 Derivation of Optimality Conditions for Dual (5.22)

Let σ ≥ 0 and σ∗ ≥ 0 be the Lagrangian multipliers corresponding to the respective con-
straints α ≥ 0 and α∗ ≥ 0 in (5.22), let γ ≥ 0 and γ∗ ≥ 0 be the Lagrangian multipliers
corresponding to the respective constraints α ≤ C and α∗ ≤ C in (5.22), and let ηr corre-
spond to the Lagrangian multipliers of the (5.22c) constraints. The Lagrangian of (5.22) is
then:

L = f(α, α∗, λ)−
T∑
t=1

M∑
m=1

σm,tαm,t −
T∑
t=1

M∑
m=1

σ∗
m,tα

∗
m,t −

T∑
t=1

M∑
m=1

γm,t(C − αm,t)

−
T∑
t=1

M∑
m=1

γ∗m,t(C − α∗
m,t) +

R∑
r=1

ηrtrace{λTLr} (5.39)

Then, the stationarity of the Lagrangian is given by the equations:

∂L

∂αm,t

=
∂f

∂αm,t

− σm,t + γm,t = 0 (5.40a)

∂L

∂α∗
m,t

=
∂f

∂α∗
m,t

− σ∗
m,t + γ∗m,t = 0 (5.40b)
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∂L

∂λi,j
=

∂f

∂λi,j
+

R∑
r=1

ηrLr,i,j = 0 (5.40c)

The equations for complementary slackness are:

σm,tαm,t = 0 (5.41a)

σ∗
m,tα

∗
m,t = 0 (5.41b)

γm,t(C − αm,t) = 0 (5.41c)

γ∗m,t(C − α∗
m,t) = 0 (5.41d)

We can consider different cases for various αm,t:

• Case 1: αm,t = 0 which implies that σm,t ≥ 0 and γm,t = 0:

∂f

∂αm,t

− σm,t + γm,t = 0 ⇒ ∂f

∂αm,t

≥ 0 (5.42)

• Case 2: αm,t = C which implies that σm,t = 0 and γm,t ≥ 0:

∂f

∂αm,t

− σm,t + γm,t = 0 ⇒ ∂f

∂αm,t

≤ 0 (5.43)

• Case 3: 0 < αm,t < C which implies that σm,t = 0 and γm,t = 0:

∂f

∂αm,t

− σm,t + γm,t = 0 ⇒ ∂f

∂αm,t

= 0 (5.44)

We have similar relations for α∗
t,i cases. We will use this form of the optimality conditions

of (5.22) in order to derive the SMO algorithm for the constrained SVR problem. Next, we
will derive a closed-form solution for λ given α and α∗ that will be useful for the algorithm.

5.D.2 Subproblem for λ

Given that α, α∗ are fixed, we can derive a closed-form solution for λ in (5.22). Removing
terms in (5.22) that do not depend on λ, we arrive at the problem:

min
λ

1

2
trace{λTλ}+

T∑
t=1

(αt − α∗
t )

Tλϕ(xt) (5.45a)

subject to: trace{λTLr} = 0, ∀r ∈ {1, . . . , R} (5.45b)



CHAPTER 5. PHYSICS-INFORMED SVR FOR TOPOLOGY IDENTIFICATION 133

Introducing ηr corresponding to the equality constraints, we can write the Lagrangian of
(5.45) as:

L =
1

2
trace{λTλ}+

T∑
t=1

(αt − α∗
t )

Tλϕ(xt) +
R∑

r=1

ηrtrace{λTLr} (5.46)

Taking the stationarity of the Lagrangian with respect to λ, we get the relation:

λ = −
T∑
t=1

(αt − α∗
t )ϕ

T (xt)−
R∑

r=1

ηrLr (5.47)

Plugging this back into the Lagrangian and cancelling some terms, we have:

g(η) = −1

2

T∑
t=1

T∑
s=1

(αt − α∗
t )

T (αs − α∗
s)ϕ

T (xs)ϕ(xt)−
T∑
t=1

R∑
r=1

ηr(αt − α∗
t )

TLrϕ(xt)

− 1

2

R∑
r=1

R∑
s=1

ηrηstrace
{
LT
r Ls

}
(5.48)

Thus, the dual of (5.45) is given by:

min
η

1/2 · ηT Ãη + b̃Tη + c̃ (5.49)

where we have defined:

• Matrix Ã ∈ SR with entries Ãs,r ≜ trace
{
LT
r Ls

}
• Vector b̃ ∈ RR with entries b̃r ≜

∑T
t=1(αt − α∗

t )
TLrϕ(xt)

• Scalar c̃ ≜ 1
2

∑T
t=1

∑T
s=1(αt − α∗

t )
T (αs − α∗

s)ϕ
T (xs)ϕ(xt)

With these definitions, g(η) can be rewritten as g(η) = −c̃−
∑R

r=1 ηrb̃r−
1
2

∑R
r=1

∑R
s=1 ηrηsÃs,r.

To optimize (5.49), we solve the first-order stationarity equation:

Ãη + b̃ = 0 (5.50)

which has a closed-form solution as long as A is invertible.

Thus, we see that we can solve for η, given α and α∗. To find λ from η, we simply note
Equation (5.47).
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5.D.3 Derivation of SMO Algorithm for Constrained SVR

Based on the optimality conditions given in Appendix 5.D.1, we will define a variable αm,t

to be a violating variable if one of the following is true:

(m, t) ∈MTup and
∂f

∂αm,t

< 0 (5.51a)

or

(m, t) ∈MTlow and
∂f

∂αm,t

> 0 (5.51b)

where the sets MTup and MTlow are defined as:

MTup(α) ≜ {(m, t) ∈ {1, . . . ,M} × {1, . . . , T} : αm,t < C} (5.52a)

MTlow(α) ≜ {(m, t) ∈ {1, . . . ,M} × {1, . . . , T} : αm,t > 0} (5.52b)

For an exact solution in a finite number of steps, we will define τ -violating variables as:

(m, t) ∈MTup and
∂f

∂αm,t

< τ (5.53a)

or

(m, t) ∈MTlow and
∂f

∂αm,t

> τ (5.53b)

for some small τ > 0. We have similar equations as (5.53) for the α∗ variables as well.

Then, at each iteration, we will choose the most violating variables out of MTup, MTlow,
MT ∗

up, and MT ∗
low:

∆up ← −min(m,t)∈MTup

∂f

∂αm,t

(m, t)← argmin(m,t)∈MTup

∂f

∂αm,t

(5.54a)

∆low ← max(l,s)∈MTlow

∂f

∂αl,s

(l, s)← argmax(l,s)∈MTlow

∂f

∂αl,s

(5.54b)

∆∗
up ← −min(m,t)∈MT ∗

up

∂f

∂α∗
m,t

(m∗, t∗)← argmin(m,t)∈MT ∗
up

∂f

∂α∗
m,t

(5.54c)

∆∗
low ← max(l,s)∈MT ∗

low

∂f

∂α∗
l,s

(l∗, s∗)← argmax(l,s)∈MT ∗
low

∂f

∂α∗
l,s

(5.54d)

For the SMO algorithm, we can select either the maximum violating variable (i.e. ∆ =
max{∆up,∆low,∆

∗
up,∆

∗
low}) and just modify that variable, or we can select some subset of

the maximum violating variables and modify those. In Algorithm 5, we have presented a
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form of the algorithm in which we modify all four of the maximum violating variables at
each iteration of the algorithm.

In the next section, we will see that each of the subproblems for αm,t and αl,s are inde-
pendent of each other (similarly for α∗

m,t and α∗
l,s), given that (m, t) ̸= (l, s) which is true

considering how we define the violating variables in (5.54d) as long as some variables are
still considered to be τ -violating (i.e. max{∆up,∆low,∆

∗
up,∆

∗
low} > τ).

5.D.4 Subproblems for α and α∗

For any α update at iteration k+1, we will only modify the variable by up to two coordinates:
(m, t) and (l, s) where αm,t and αl,s are taken to be τ -violating variables as defined in the
preceding section. Let a be a matrix of zeros except for the (m, t)th entry which is δm
and the (l, s)th entry which is δl. We can find values for these entries by minimizing the
following optimization problem that rewrites the stacked form in (5.24c) using the relation
α(k+1) = α(k) + a:

min
a

1

2
trace{(Z(k) + a)TA0(Z

(k) + a)}+ trace{AT
1 (Z

(k) + a)} (5.55a)

subject to: α
(k)
m,t + δm ≥ 0 (5.55b)

α
(k)
m,t + δm ≤ C (5.55c)

α
(k)
l,s + δl ≥ 0 (5.55d)

α
(k)
l,s + δl ≤ C (5.55e)

We can write the objective of Problem (5.55) as:

Ψ(a) =
1

2
trace{aTA0a}+ trace{aTA0Z

(k)}+ trace{AT
1 a}+K (5.56)

where K ≜ 1
2
trace{(Z(k))TA0Z

(k)}+ trace{AT
1Z

(k)} are the terms that do not depend on a.

We also have that ∇Zf(Z
(k)) = A0Z

(k) + A1, yielding:

Ψ(a) =
1

2
trace{aTA0a}+ trace{aT∇Zf(Z

(k))}+K (5.57)

Substituting in the structure of a, we have:

Ψ(δm, δl) =
1

2
δ2m[A0]t,t +

1

2
δ2l [A0]s,s + δm

∂f

∂αm,t

(Z(k)) + δl
∂f

∂αl,s

(Z(k)) +K (5.58)

To find the unconstrained minimum, we have:

∂Ψ

∂δm
= δm[A0]t,t +

∂f

∂αm,t

(Z(k)) = 0 (5.59a)
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∂Ψ

∂δl
= δl[A0]s,s +

∂f

∂αl,s

(Z(k)) = 0 (5.59b)

Solving these equations and clipping at the constraints, we have:

δm = max

(
min

(
− 1

[A0]t,t

∂f(Z(k))

∂αm,t

, C − α(k)
m,t

)
,−α(k)

m,t

)
(5.60a)

δl = max

(
min

(
− 1

[A0]s,s

∂f(Z(k))

∂αl,s

, C − α(k)
l,s

)
,−α(k)

l,s

)
(5.60b)

α
(k+1)
m,t ← α

(k)
m,t + δm (5.60c)

α
(k+1)
l,s ← α

(k)
l,s + δl (5.60d)

We can derive similar update equations for α∗
m,t and α

∗
l,s. Then, we can define the modified

SMO algorithm for constrained SVR in Algorithm 5.

Algorithm 5 Modified SMO for Constrained SVR

Initialize: τ > 0; α(0), (α∗)(0) ∈ RM×T and set k = 0
while ∆ > τ do
∆up ← −min(m,t)∈MTup

∂f
∂αm,t

(m, t)← argmin(m,t)∈MTup

∂f
∂αm,t

∆low ← max(l,s)∈MTlow

∂f
∂αl,s

(l, s)← argmax(l,s)∈MTlow

∂f
∂αl,s

∆∗
up ← −min(m,t)∈MT ∗

up

∂f
∂α∗

m,t
(m∗, t∗)← argmin(m,t)∈MT ∗

up

∂f
∂α∗

m,t

∆∗
low ← max(l,s)∈MT ∗

low

∂f
∂α∗

l,s
(l∗, s∗)← argmax(l,s)∈MT ∗

low

∂f
∂α∗

l,s

α(k+1) ← Solution of subproblem for αm,t and αl,s given by (5.60)
(α∗)(k+1) ← Solution of subproblem for α∗

m,t and α
∗
l,s

Given α(k+1), (α∗)(k+1), find closed-form update of λ(k+1)

k ← k + 1
end while

Note that for the state equation with a linear violation term given in (5.30), we can also
consider a modified SMO algorithm. However, in this formulation, due to constraint (5.31),
the subproblems for αm,t, αl,s, α

∗
m,t and α

∗
l,s are coupled. In this case, we select a maximum

violating pair of α or α∗ variables and solve a one-dimensional subproblem that optimizes
these variables, just as in [52]. Then, we solve for a closed-form update of λ given α and α∗.

5.D.5 Testing of SMO Algorithm

The results using Algorithm 5 to solve (5.22) compared to the results of using the GUROBI
QP solver to solve (5.22) are given in Figure 5.9.



CHAPTER 5. PHYSICS-INFORMED SVR FOR TOPOLOGY IDENTIFICATION 137

Figure 5.9: Modified Sequential Minimal Optimization (SMO) for Constrained SVR prob-
lem. The results of Algorithm 5 on the 14-bus test case with SCADA measurement noise
(SNR=40dB) are shown. The blue line shows the SMO objective at iteration k, and the
orange line is the objective found using GUROBI to solve the QP in (5.22).
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