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WATER RESOURCES RESEARCH, VOL. 22, NO. 4, PAGES 483-488, APRIL 1986 

Risk Analysis for Reservoir Operation 

HUGO A. LOAICIGA AND MIGUEL A. MARI•IO 

Department of Land, Air and Water Resources and Department of Civil Engineering7, University of California, Davis 

The planning of reservoir operation presents decision makers with a trade-off between competing 
functions, which are energy production and flood control in this study. To optimally resolve the trade-off 
between maximization of energy revenues and minimization of downstream losses, the interaction be- 
tween the expected value and variance of revenues (accruing from the reservoir operation) is included in a 
stochastic daily reservoir operation planning model. By parametrically varying the expected value and 
variance of the objective function, the risk-averse nature of decision makers is incorporated, resulting in a 
range of feasible alternative policies that reflect the decision maker's attitude toward revenue maximiza- 
tion and poor performance of the reservoir operation. 

1. INTRODUCTION 

A major difficulty in the development of reservoir planning 
models is to derive a suitable objective function. This is pri- 
marily due to (1) the stochastic nature of several variables 
present in any planning model (e.g., streamflows), (2) the inad- 
equacy of expected or average performance criteria to reflect 
the typical decision maker's aversion to poor (or in the ex- 
treme case, catastrophic) outcome of an adopted set of release 
policies, and (3) the multiobjective nature of reservoir oper- 
ation [-Cohon and Marks, 1975-1. Items 1 and 2 above are 
closely related (item 3 is discussed in section 2). Since the 
objective function is a function of random variables, it is cus- 
tomary to average it by means of an expectation operator to 
make it mathematically tractable. This leads to the compu- 
tation of release policies that maximize the average per- 
formance of the reservoir but ignore serious negative effects 
that unusual, yet probable, events may have on those served 
by the reservoir functions. 

A critique of the average performance criterion is given by 
Eckstein [1958•, who pointed out that initiatives for structural 
measures (e.g., reservoirs) with flood control purposes arise 
largely from public reaction to catastrophic floods. Neverthe- 
less, justifying the economic feasibility of a flood control proj- 
ect is usually based on the concept of expected annual dam- 
ages (EAD). This type of analysis shows that the contribution 
of rare (i.e., with a long return period) floods to the EAD is 
relatively small. Even though the EAD is usually used to justi- 
fy a flood control project, the actual size of the flood control 
structure is actually larger than the size of the reservoir that 
would minimize long-term, average damages. This is so be- 
cause a structure that minimizes the EAD would protect 
against frequent (i.e., short to medium return period) floods 
that contribute most to the EAD but would not protect 
against the rare events, the ones that usually create the politi- 
cal pressure to implement such protection measures. 

The critique of the expected performance approach for 
sizing flood control reservoirs is also applicable to the use of 
release policies that maximize expected or average per- 
formance as the basis for the operation of a multipurpose 
reservoir. As an alternative to the expected performance cri- 
terion, Dantzig [-1956-1 proposed the use of a utility function to 
reflect the risk-averting attitudes of decision makers. Davis 
[-1975-] presented a method based on the average performance 
criterion but introduced a penalty factor to account for depar- 
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tures from expected targets. Datta and Burges [1984] and Or- 
lovski et al. [1984] discussed the shortcomings of the expected 
value criterion, and in the latter paper, a minimax approach 
was introduced to derive release policies that are more repre- 
sentative of the actual attitudes of decision makers toward risk 

arising from the probabilistic performance of a reservoir 
system. Marino and Loaiciga [1985a] analyzed the effect of 
conservative constraints on the flood control pool imposed by 
the Army Corps of Engineers on the operation schedules of a 
multireservoir system. They pointed out that risk aversion to 
poor performance of release schedules is reflected in practice 
by a stringent set of constraints on the flood control pool. 

This paper presents a stochastic daily model for short-term 
(i.e., 1-month ahead planning horizon) reservoir operation. 
The model produces a set of alternative feasible release poli- 
cies that represent various combinations of expected values 
and variances (a measure of risk, as shown later) of the objec- 
tive function. The daily model is imbedded within a monthly 
model (with a 1-year planning horizon) previously developed 
by the authors [Marino and Loaiciga, 1985b]. The relationship 
of our approach to a general optimization model based on the 
concept of expected utility maximization [Freund, 1956] is 
discussed, and an application to the planning of operations of 
Shasta reservoir, located in northern California, is presented. 
The remainder of the paper is organized as follows: Section 2 
presents the theoretical background and the development of 
the planning model. Section 3 contains an application of the 
model, as well as numerical data and details on computational 
aspects. Section 4 closes this paper with a summary and con- 
clusions of the findings. 

2. METHODOLOGY 

2.1. Objective Function 

The reservoir used as a test case, i.e., the Shasta reservoir, is 
a multipurpose dam located in northern California. The 
Shasta reservoir impounds the Sacramento River about 200 
miles north of the city of Sacramento. It operates to satisfy 
three functions: Flood control, energy production, and water 
supply for agricultural activities during the crop-growing 
season in California (June through September). During the 
rainy season (November through April), water supply de- 
mands are at negligible levels and flood control and hydro- 
electric energy production are the two main functions to be 
met. During the growing season, flood control is of no concern 
(at least in a short-term, daily basis) and hydroelectric energy 
production and water supply become the dominant functions. 
Marino and Loaiciga [1983] provided an extensive description 
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of the physical and contractual constraints imposed on the 
operation of Shasta reservoir, as well as the objectives of its 
operation. The authors also derived optimal monthly sched- 
ules that maximize annual benefits accruing from the oper- 
ation of Shasta [Marino and Loaiciga, 1985b]. The computed 
monthly storages are specified as probabilistic constraints to 
the daily model as discussed below. 

The stochastic daily model developed in this study consid- 
ers two operational functions: hydroelectric energy pro- 
duction and flood control. The model is applied to regulate 
daily storages during one month of the rainy season when 
water supply for agricultural use is of marginal importance. 
The objective is then given by 

max E { U[R - FCL] } (1) 

in which R denotes the revenues from energy sales, FCL rep- 
resents the monetary losses from flood control damages, u t 
specifies the daily (nonstochastic) penstock releases during the 
tth day, t denotes a time index for the entire planning horizon 
(i.e., 30 days, as explained later), and E{U[ ]} denotes the 
expected utility of the monetary payoff R- FCL. Utility 
refers to the preferences of the decision makers with regard to 
the monetary revenues accruing from the reservoir operation. 
Since R- FCL is a stochastic function, so is the utility of 
R- FCL, hence the need for the expectation operator E. It 
must be emphasized that expected utility of monetary benefits 
is not the same as the expected monetary benefits (or average 
or expected performance, as termed earlier); in particular, the 
former fully accounts for the risk-averse nature of system 
managers, whereas the latter does not. Furthermore, the 
choice of a utility function is necessary in this study only 
insofar as it provides a good theoretical background for the 
final methodology to develop a set of alternative feasible re- 
lease policies, as shown in subsection 2.3. Bechard et al. [1981] 
proposed a similar linear combination of functions as that 
given in equation (1) as a basis for the objective function in a 
reservoir operation model. They showed the suitability of such 
an objective function when a deterministic performance cri- 
terion is used with a sequential update of streamflow forecasts 
and storages. 

To express equation (1) in terms of releases ut, the conti- 
nuity equation for the reservoir, i.e., 

Xt-- Xt-1 -- rt- ut + wt (2) 

(where x t, r t, and w t denote the beginning of period storage, 
spillage, and the streamflows for the tth day, respectively) 
must be written in terms of the initial, known storage Xl. Since 
we consider a winter month in this application, evaporation 
losses are minimal and neglected in equation (2). Spillages are 
expressed as function of storages, 

r t = c + d(x t + xt+l) (3) 

in which c and d are coefficients of the linear approximation 
to spillages. Equation (3) was originally developed by Marlrio 
and Loaiciga [1985b]. By substituting (3) into (2) and ex- 
panding the right-hand side of (2) to express it as a function of 
the known, initial storage x•, one obtains 

t-1 t-1 t-1 

Xt -- at-lXl -- E blttt-I q- E blWt-I -- E Cl (4) 
/=1 I=1 /=1 

in which 

(5) 

(1 -- d) t-1 
bt= (1 +d) t (6) 

(1 -- d) l- 1 
C l -- c (1 -Jr- d) t (7) 

and t = 2, 3, -.., N, N + 1, where N is the number of days in 
the planning horizon. 

The revenues, R, accruing from hydroelectric energy sales 
equal the sum of daily revenues, i.e., 

N 

R = tp • [a + b(xt + xt+ 1)]/./t (8) 
t=l 

in which ½ denotes the unit price of energy ($/MWh), a + 
b(xt + xt+ •) is an energy production rate (MWh/volume of 
release), and a and b are coefficients developed previously by 
Marifio and Loaiciga [1985b]. 

The flood losses component of the objective, FCL, is ex- 
pressed as 

N 

FCL = Z [a' + b'(ut + r0] (9) 
t=l 

in which a' and b' are coefficients. Equation (9) was derived by 
approximating damage-release relationships linearly within 
the feasible range of total release u t + r t (see subsection 2.2). 
By substituting (4) into (8) and (9) and by substituting the 
resulting expressions for (8) and (9) into (1), one obtains, after 
lengthy algebraic operations, the linearized expression 

max E U qtttt + K (10) 
ut,¾t t = 

in which 

N-t 

qt = -- E (dt + lbt) - b'(1 - 2dmt) t = 1, 2, ..., N -- 1 
/=1 

qt = --b' t = N 

dt = b(wt + wt-•) - 2W(ad + bc) t = 2, 3,'", N 

(11) 

(13) 

U(R - FCL) = 1 - e -4•(R-FCL) (16) 

in which 

N 

R- FCL = • qttlt + K 
t=l 

N-t 

mr= • b t t= 1,2,-",N-1 (14) 
/=1 

K = b' -2d mtwt + Nc + 2dxi • a t _• 
t=l t=2 

-- 2d (N- OC t + 2dx I (15) 
/=1 

Coefficients a, b, and tp are defined after equation (8); b t and b' 
are defined after equations (6) and (9), respectively; coefficients 
c and d are given in equation (3); K is a random term, inde- 
pendent of releases, in which at-1, Cl, and mt are given by 
equations (5), (7), and (14), respectively. The coefficients qt, 
t = 1, 2, -.., N -- 1, in equation (10) are random since they are 
a linear function of the random streamflows (see equation 
(13)). 

Without any loss of generality, the following utility function 
is proposed to model the preferences of the decision makers, 
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The exponential utility function in (16) has the concavity 
property typical of conservative (i.e., risk-averse) decision 
makers. The decision maker's risk aversion is determined by 
the coefficient of risk aversion •b in (16). The larger the •b, the 
more conservative the decision maker is. The exponential util- 
ity function in (16) is a sUbcase of the general HARA/LRT 
family of utility functions I-Cass and Stiglitz, 1970], in whic•h 
the coefficient of risk aversion is constant. Such utility func- 
tions are widely accepted to model risk aversion [e.g., Dantzig, 
1956; Freund, 1956; Wiens, 1976; Paris, 1979]. 

If one assumes that linear combinations of streamflows (i.e., 
Eatw•, as the one appearing in (13)) are normally distributed (a 
mild assumption due to the central limit theorem), then, after 
substitud'ng (16) into (10) and taking expectations, one obtains 
the following objective function: 

N •b (u'Au + 2u'o•_) (17) max • utE(qt)--• ut,¾t t= 1 

in which A is the covariance of the vector q whose elements 
are q•, q•_, ..., q3/' a•_ is the vector covariance between the 
vector q and K; and u' is a row vector whose elements are u•, 
u2,"', uw In equation (17)2 constant terms that have no 
influence*on the maximization (i:e., E(K) and a•_•_, the variance 
of K) are left •out. Covariances A and a•_ must be estimated, 
as explained'below. 

2.2. Constraints 

The ending storage x3/+ • is random and unknown. From 
the optimal monthly storage policies developed by Marit•o and 
Loaiciga [1985b-I, a target value x3/+ •r is used as a reference 
value in the following probabilistic (or chance) constraint' 

r _ 6• _< < XN r (18) P(X N + I X N + I -- +1 + C$u) --> •/ 

which specifies that the ending storage be within the range 
T • {•l, XN T (XN+• +• + 6u) with probability 7, where 6 t and 6u 

r In addition, there are are deviations about the target XN+• ß 
probabilistic constraints on the minimum and maximum 
values of the storages, 

P(x, _> Xmin) • • t = 2, 3,''', N + 1 (19) 

P(xt _< Xmax) • fl t = 2, 3, '", N + 1 (20) 

and there are constraints on penstock releases ut, i.e., 

U t • Umi n t = 1, 2, '", N (21) 

U t • Uma x t = 1, 2,---, N (22) 

in which Xmi n and Xma x denote minimum and maximum stor- 
ages, respectively; • and • are the probabilities with which 
constraints (19)-(20) are satisfied; and Umi n and Umax are mini- 
mum and maxi. rnum penstock releases, respectively. Notice 
that the continuity equation (4) has already been substituted 
into the objective function and that spillages are implicitly 
constrained since they are expressed as a function of storages 
(equation (3))'. The deterministic equivalents of (18)-(20) are 
given in the next subsection where the planning model is sum- 
marized. 

2.3. Summary and Discussion of Planning Model 

After substituting (4) into (18)-(20) and converting the 
chance con, straints (18)-(20) into their deterministic equiva- 
lents, the planning model can be stated as 

N •b (u'Au + 2u'•2) (23) max • utE(qt) -- • ut,t= 1,2,...,3/ t= 1 

subject to 
N N 

__ T__ •u q- aNX1 E C• < • b•u,_• k {•) x3/+ • -- _ 
/=1 /=1 

N 

_< g(•)-- XN+ • + 6• + aNX 1 -- E Ct (24) 
t=l 

t-1 t-1 

.,_,a, _< a?'+ - Xmin - Z C, (25) 
t=l /=1 

t=2,3,...,N+l 

t-1 t-1 

• ut-tbt • bt (• + at-•x• - Xm,• -- • Ct (26) 
t=l t=l 

t=2,3,'",N+ 1 

ut • Umin t = 1, 2, -'-, N (27) 

ut • Um,• t = 1, 2,"', N (28) 

Equations (24•26) are the deterministic equivalents of the 
chance constraints (18•20), respectively. In equation (24), k (• 
and g(• are the values for which 

P btwt_t • k (•) • y 
l= 

P • b•wt_• > g(•> > 7 
l=• • 

respectively. In equations (25) and (26), a, ('• and b? • are the 
values for which 

(ts P btwt_t • at (•) • • 
t=l 

P btwt_ t • bt (•) • • 
t=l 

respectively. The distribution of the convolution 
t--1 

/=1 

is derived in section 3. 

The solution to the model given by (23•28) requires the 
specification of ?, •, and fi in (18•20), respectively' fur- 
thermore, the risk aversion coe•cient & in (23) must be 
known. Paris •1979] has shown that & can be determined 
from the values of ?, •, and fi in some kinds of economic 
models' for our problem, the required information in Paris' 
approach is not available. The approach followed herein is 
then to specify ?, •, and fi based on information available from 
previous studies on suitable reliability levels (i.e., ?, •, and fi) 
for reservoirs in northern California •Mari•o and Mohammadi, 
1983; Marino and Loaiciga, 1983]. The lack of information 
about & is adequately overcome by noticing that the sto- 
chastic revenue function 

N 

R- FCL = • qtut + K 
t=l 

has a variance equal to u'Au + 2u'•: + %: (all terms pre- 
viously defined). Then, the problem of maximizing expected 
utility (i.e., equation (23)) is paired to that of minimizing the 
variability or dispersion of revenues R- FCL (such varia- 
bility introduces the uncertainty in the outcome of any release 
policy and is the source of risk) subject to a parametric con- 
straint on the level of expected revenues, i.e., 

N 

E ueE(q,) + E(K) 
t=l 
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see equation (16). The parametric constraint specifies that the 
level of expected revenue be at least at some minimum mone- 
tary threshold. Minimization of the variance of revenues sub- 
ject to constraints (24)-(28) plus a constraint on expected reve- 
nues that is varied parametrically yields a trade-off curve be- 
tween the variance of the revenue (i.e., the risk) and its ex- 
pected value. The idea is then that the decision maker chooses 
any variance-expected value combination on such a curve and 
that will imply the choice of a specific release policy, for each 
point in the variance-expected value curve has an associated 
feasible release policy. The. decision maker is then certain that 
any release policy entails a given level of risk and expected 
level of revenues. The adopted release policy would be the one 
that the decision maker would choose if problem (23)-(28) was 
solved with the correct value for the risk aversion coefficient 

•b. The trade-off curve between variance and expected value is 
appealing, for it shows the set of feasible risk-monetary payoff 
combinations available to the decision maker. To Summarize, 
the problem to be solved is 

subject to 

min u'Au + 2U'½I•2 (29) 
ut,t= 1,2,...,N 

N 

• utE(q,) + E(K) z M oo (30) 

and constraints (24)-(28). The parametric constraint (30) speci- 
fies that the expected revenue is to exceed some level M ø'), 
where k denotes that the minimization in (29) will be done for 
different values of M oo to develop the feasible variance- 
expected revenue curve. 

3. MODEL APPLICATION 

3.1. Basic Data 

The model developed in the preceding section (equations 
(29)-(30) and (24)-(28)) was applied to daily flow regulation of 
Shasta reservoir during the month of April of the water year 
(October-September) 1979-1980. Table 1 contains the values 
of key input variables. Table 2 contains the values of the 
coefficients (c, d), (a, b), and (a', b') appearing in (3), (8), and (9), 
respectively. Those coefficients are the basis for many other 
expressions in the model (e.g., (5)-(7) and (11)-(15)). 

3.2. Estimation of Expected Values and Covariances 

The model implementation requires the expected values 
E(qt) and E(K) (see equations (11) and (15), respectively), t = 1, 

TABLE 1. Basic Data for the Optimization Model 

Value 

Reliabilities 
• 0.90 

0 0.99 
y 0.99 

Storages, m 3 
x: 4.6626 x 109 
XN+ i T 4.8106 X 10 9 
•i• 0.3700 X 10 9 
•i u 0.1234 X 10 9 

Bounds 

Storages, m 3 
Xmi n 0.7401 x 109 
Xma x 5.0573 x 109 

Releases, m3/d 
Umi n 1.2335 x 107 
Urea x 6.1674 x 107 

TABLE 2. Values of Coefficients 

Equation Coefficient Value 

(3) c -274 
d 0.0360 

(8) a 234 
b 0.0231 
W 50 

(9) a' - 187,500 
b' 18,750 

Use of equations (3), (8), and (9) requires that storages, releases, and 
spillages be expressed in units of volume that are measured in thou- 
sands of acre-feet (kaf)' 1 kaf - 1.23 x 10 a m 3. 

2, "', N- 1 (q•. is constant, as indicated in equation (12)). 
Moment estimators for qt, t = 1, 2, ---, N- 1, and K were 
computed from daily data for the period 1921-1980. The esti- 
mators are 

I NY N-t 

• • dt+,O'b,- b'(1- 2din,) (31) E(q,) = cj, = NY j= t= 
t= 1,2,-'.,N--1 

in which dt+t (J) is given by equation (13) and the superscript j 
is an index for the year number (i.e., j = 1 for 1921, j- 2 for 
1922, ..-, NY = 60 for 1980), 

E(K): K: Ny•Ek--2b'd mtw, 0') 
t=2 

in which wt ø• denotes the tth day in April of the jth year. 
The covariance of the vector q whose elements are q•, qz, 

ß .-, q•, denoted by A, is estimated by means of the expression 

- • qiø•q• ø•- NY•i• (33) 60 - (NY -1) •:• 
for i, j = 1, 2, ..-, N - 1; 6 o denotes the estimator of the ijth 
element of A (a symmetric matrix); and q?• denotes the ob- 
served value for q• during the jth year. Since q• is a constant, 
the (N - 1)th row and column of A are zero. The estimator of 
•, the covariance between q and K, •s given by 

-- q•ø•Kø•-- NY• (34) 

i=l, 2,...,N--1 

in which • denotes the estimator for the ith element of 
(•s = 0) and K ø• denotes the observed value for K during the 
jth year. 

The distribution of the convolution 

t-1 

• b•w,_• 
/=1 

required to specify (24•26) is simply that of a linear combi- 
nation of random normal variables; therefore, such convolu- 
tion is also normally distributed With expected value 

t-1 

• brat- t 
1=1 

where ½•-t is the expected value of w•-t, which is estimated by 

w,_t w (35) 
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'• 3.0 X I0 4 
z 

,-, 2.0 XlO 4 

z 

I.O x IO 4 

3 

EXPECTED REVENUE (10 6 dollors ) 

Fig. 1. Standard deviation versus expected value of revenues. 

in which w,_• u) is the observed streamflow during the (t -/)th 
day of the jth year. The covariance of the convolution 

t-1 

• btw,-t 
/=1 

is given by 
t-1 

E bl2V(Wt-l) "}- 2 E E bkbm cov (Wk, Wm) 
l= 1 k<m m 

(36) 

l<k<t-2 

2<m<t-1 

in which V(w,_t) and cov (%, Wm) denote the variance of w,_t 
and the covariance of wk and W,n, respectively, and are esti- 
mated by 

I {Nr u)):} (37) = • •, rw,_t('h'] :z _ Nr(•t_ t P(w,_,) (NY -- 1) •=• 

c6v (w•,, win) = (NY-- 1• •=, 
in which P( ) and c6v ( ) denote estimaters; •?) denotes 
the expected value of streamflow during the sth day of the jth 
year (where s is a suitable subindex, i.e., s = t - l, k or m) and 
is estimated by (35). 

3.3. Computational Aspects and Analysis of Results 

The solution of (29)-(30) plus constraints (24)-(28) was ob- 
tained by means of a reduced-gradient method [Murtaugh and 
Saunders, 1978]. Computations were performed in a DEC 
VAX 11/780 computer with CPU processing time of about 30 

4.7- 

4.6 

4.5. 

TIME (doys) 

Fig. 2. Range of feasible storage policies. 

TABLE 3. Penstock Releases (ut) and Spillages (rt) for Policies 1 
and 3 (in 10 ? m3/d) 

Day 
t Policy 1 Policy 3 Policy 1 Policy 3 

1 1.2 6.2 

2 1.2 6.2 

3 1.2 6.2 
4 1.2 5.3 

5 1.2 4.2 0.1 

6 1.2 2.9 0.2 
7 1.2 1.4 0.3 

8 1.2 1.2 0.3 

9 1.2 1.2 0.4 
10 1.2 1.2 0.4 
!1 1.2 1.2 0.5 
12 1.2 1.2 0.5 

13 1.2 1.2 0.6 
14 1.2 1.2 0.6 
15 1.2 1.2 0.6 
16 1.2 1.2 0.7 

17 1.2 1.2 0.7 
18 1.2 1.2 0.7 

19 1.2 1.2 0.7 
20 1.7 1.2 0.8 

21 1.9 1.2 0.7 
22 1.7 1.2 0.7 

23 1.8 1.2 0.7 

24 1.7 1.2 0.7 

25 1.8 1.2 0.7 

26 1.7 1.2 0.7 

27 3.3 1.2 0.6 
28 3.8 1.2 0.5 
29 6.2 1.2 0.3 
30 6.2 1.2 

0.1 

0.2 
0.3 

0.3 

0.4 

0.4 
0.5 

0.5 

0.6 

0.6 

0.6 

0.7 

0.7 

s in all runs (each run for a different level of expected revenue; 
see equation (30)). 

Figure 1 shows the curve depicting the 1ocii of expected 
revenue versus the square root of the variance (i.e., the stan- 
dard deviation) of revenue. Notice that the standard deviation 
of revenues remains relatively constant up to an expected 
value of about $5,000,000. For larger expected revenues, the 
corresponding standard deviation increases rapidly. An in- 
teresting feature of Figure 1 is that any increase in revenues is 
at the expense of an increase in the variance and, conse- 
quently, in the risk associated with a given release policy. Such 
one-to-one relationship explain s why reservoir managers do 
not follow release policies that would maximize expected pro- 
fits, i.e., do not choose a release policy associated with point 3 
in Figure 1. Instead, release policies associated with less risky 
outcomes, predictably between points 1 and 2, are adopted. 
For the planning of operations, the decision maker would 
enter Figure 1 at a point which is consistent with his or her 
preferences about the level of expected revenue and corre- 
sponding risk. This point uniquely defines an optimal release 
policy. The curve depicted in Figure 1 is restricted to the 
regions between points 1 and 3 by the constraint set. The 
storage policies corresponding to points 1 and 3 define a range 
of feasible storages that can be chosen and that correspond to 
points in the curve of Figure 1. Figure 2 shows such a range of 
feasible storage policies (i.e., the region comprehended be- 
tween the curves labeled policy 1 and policy 3, which corre- 
spond to the points 1 and 3 of Figure 1). Penstock releases 
and spillages corresponding to any storage policy are readily 
computed by means of equations (2) and (3). Table 3 displays 
the releases u t and spillages r, corresponding to storages poli- 
cies 1 and 3 in Figure 2. The model developed in subsection 
2.3 yields u,, ¾t, from which spillages and storages were 
derived from equations (3) and (4), respectively. By parametri- 
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cally varying equation (30), different operation strategies are 
readily obtained. 

4. SUMMARY AND CONCLUSIONS 

Decision making under uncertainty commonly involves 
having to choose between a set of feasible strategies. Some 
strategies offer a relatively high expected benefit or revenue 
but at the expense of an increased variability (or risk) on the 
probable outcome associated with a given strategy or policy, 
The problem of trading expected revenue by variability of the 
outcome has been analyzed in relation to reservoir operation. 
The drawback of using the expected performance criterion for 
planning reservoir operation has been discussed. As an alter- 
native approach, a model that incorporates the risk-averse 
nature of reservoir managers has been developed. This model 
is based on a general class of utility functions and, from a 
computational standpoint, has been expressed as a parametric, 
quadratic, mean-variance model. 

The set of feasible storage policies has been derived. Also, 
the corresponding trade-off curve between the expected re- 
venue and the standard deviation of such revenues is given for 
the daily operation of Shasta reservoir. The decision maker 
can set a specific level of expected revenues accruing from a 
two-purpose (i.e., hydropower production and flood control) 
operation and the proposed model yields the corresponding 
releases, spillages, storages, and a level of revenue variability. 

Computationally, the model has been found quite efficient; 
from a conceptual standpoint, the model yields not only infor- 
mation about alternative operation policies, but also on the 
basic elements that characterize the decision making process 
with which reservoir managers are faced, namely, expected 
performance and uncertainty on the outcome of any oper- 
ational schedule. 

NOTATION 

a coefficient in the energy revenue equation (8). 
a' coefficient in the flood loss equation (9). 

at_ • initial storage term in the continuity equation (4). 
b coefficient in the energy revenue equation (8). 
b' coefficient in the flood loss equation (9). 
bt coefficient in the continuity equation specified in 

equation (6). 
Ct coefficient in the continuity equation specified in 

equation (7). 
c coefficient in the spillage equation (3). 
d coefficient in the spillage equation (3). 
dt coefficient in the objective function specified by 

equation (13). 
FCL flood loss damage equation (9). 

K random revenue in equation (10). 
/• expected value of random revenue. 

M {k> parametric value of expected revenue in equation (30). 
rn t coefficient of the objective function given by 

equation (14). 
N number of periods (days) in the planning horizon. 

NY number of years of daily records. 
qt random coefficient of penstock releases in objective 

function. 

•t expected value of qt. 
R energy revenues equation (8). 
rt releases (spillages) during tth day. 
•i estimator of the ith element of •2. 

Umax maximum penstock release. 
Umin minimum penstock release. 

ut penstock releases during tth day. 
u vector of penstock releases for entire planning horizoti. 

wt streamflow during the tth day. 
½t expected value of streamflow during the tth day. 

Xmax maximum storage. 
Xmin minimum storage. 

xt beginning storage during tth day. 
0• reliability level for exceeding minimum storage. 
/• reliabilit• level for being below maximum storage. 
), reliability level for chance constraint on final storage. 

rSu deviation above target storage. 
rSt deviation below target storage. 
A •ovariance matrix of random coefficients qt. 
8ij •Stimatør of the ijth element of A. 

a a2 covariance between matrix coefficients q, and random 
term K. 

a22 variance of K. 
4> i'isk aversion coefficient. 
½ unit price per MWh energy. 
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