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ABSTRACT  

This paper describes the development of a new uncertainty estimator for slitting method residual stress 

measurements. The new uncertainty estimator accounts for uncertainty in the regularization-based 

smoothing included in the residual stress calculation procedure, which is called regularization 

uncertainty. The work describes a means to quantify regularization uncertainty and then, in the context 

of a numerical experiment, compares estimated uncertainty to known errors. The paper further compares 

a first-order uncertainty estimate, established by a repeatability experiment, to the new uncertainty 

estimator and finds good correlation between the two estimates of precision. Furthermore, the work 

establishes a procedure for automated determination of the regularization parameter value that 

minimizes total uncertainty. In summary, the work shows that uncertainty in the regularization 

parameter is a significant contributor to the total uncertainty in slitting method measurements and that 

the new uncertainty estimator provides a reasonable estimate of single measurement uncertainty.  

Keywords: Residual stress measurement, uncertainty, slitting method, crack compliance method, 
integral method, regularization, repeatability, precision 
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NOMENCLATURE 

L Specimen length (normal to slit direction) 
W Specimen width (parallel to slit direction) 
B Specimen out of plane thickness  
E Young’s Modulus 
E' plane strain Young’s Modulus 
ν Poisson’s ratio 
σ Vector of unknown residual stresses assumed to act over each slit depth increment,  
ε Vector of the measured strain at each cut depth 
G Compliance matrix (contains the strains that would be caused from assumed residual 

stress basis functions) 
Gpl-ε Plane-strain unit pulse compliance matrix 

F Matrix to alleviate singularity is stress calculation when slit depths are large 
C Matrix that evaluates the chosen derivative of the residual stress solution that is to be 

penalized 
S Matrix that contains the standard errors associated with the deformation data at each cut 

depth 
H Matrix that contains the normalized cut depth increment length 
Γ Scale correction to account for out-of-plane thickness of specimen 
β Regularization parameter 
α Modified regularization parameter (β = 10%/𝐸′)) 
𝜺+ Fit strain 

𝜺,-./-0 Strain misfit (difference between measured strain and fitted strain) 
e Lower limit of strain uncertainty taken as the precision inherent to the experimental 

apparatus 
Uε Vector of strain uncertainties  

𝑼2,456 Vector of stress uncertainty due to regularization uncertainty 
𝑼2,7 Vector of stress uncertainty due to strain uncertainty  
𝑼2,080 Vector of total stress uncertainty 

 

1. INTRODUCTION 

Slitting [1], hole-drilling [2], and ring-coring [3] are all established residual stress measurement 

techniques that determine a residual stress versus depth profile using measurements of deformation 

(typically strain at a given location) caused by cutting-induced release of residual stress. Measured 

deformation versus depth data are used to calculate a residual stress versus depth profile, most 

commonly using the integral method [4,5,6,7], which uses a numerical inverse. In a typical residual 

stress calculation, a regularization parameter is used to control smoothing of the deformation data that is 

useful in mitigating the amplification of measurement uncertainty in the computed residual stress versus 
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depth profile. Because the appropriate value of the regularization parameter is unknown to the 

experimenter, and the value assigned significantly affects the residual stress computed, there is a need to 

quantify the uncertainty associated with the regularization parameter.  

The objective of this work is to develop an improved residual stress uncertainty estimator for the 

slitting method by incorporating uncertainty associated with the regularization parameter. Typical 

uncertainty estimates for slitting are inadequate because they ignore this type of error, as noted recently 

by Prime [8]. This work consists of a description of the proposed error estimator and then two phases of 

application. In the first phase, a numerical experiment (with a known residual stress state) is performed 

to determine the relationship between measurement error and the selection of the regularization 

parameter. The numerical experiment guides the development of the regularization uncertainty estimate 

and provides some context to judge its usefulness. In the second phase, the proposed slitting method 

uncertainty estimator (including the regularization uncertainty) is evaluated using experimental data 

from a repeatability experiment. 

2. METHODS 

Slitting method overview 

A useful summary of the theoretical background for the stress calculations performed in a slitting 

method residual stress measurement is given in [7]. The key details are summarized here to provide 

context. To fix ideas, consider a slitting experiment in a rectangular plate of length L, width W, and out 

of plane thickness B, as shown in Fig. 1. The residual stress to be evaluated is a profile of the residual 

stress component acting along the length of the plate as a function of width, σxx(y). The slitting 

measurement consists of cutting a slit into the test specimen in small increments of depth at the 

specimen mid-length, x = L/2, in Fig. 1. At each increment of cut depth hi, the initial residual stresses 

redistribute and cause deformation that is recorded after each cut depth increment, often using a strain 
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gage located at the back face of the slitting measurement plane (e.g., centered at (x, y) = (L/2, W)). The 

strain versus slit depth data are used to calculate residual stress.  

The constitutive equation relating measured strain to residual stress is  

GFσ = Fε (1) 

where G is a compliance matrix that contains the strains that would be caused from assumed residual 

stress basis functions, σ is a vector of unknown residual stresses assumed to act over each slit depth 

increment, F is a diagonal matrix of factors that alleviates a singularity that occurs when the slit depth 

approaches the part width, and ε is a vector of the measured strain at each cut depth. G and F are square 

matrices of size NxN, with N equal to the number of cut depth increments used in the experiment. Each 

entry in the compliance matrix, Gij, is the strain that arises at the strain gage location when a uniform 

unit stress (stress basis function) acts over a slit depth increment specified by i (i.e., sxx(y) = 1 over 

hi – 1 < y < hi, where h0 = 0), for a specific depth of slit hj. Because this compliance matrix uses basis 

functions that are pulses of constant unit stress over each cut depth increment, it is called a unit pulse 

compliance matrix. The diagonal entries in F are given by F(i)(i) = [(W − hi)/W]2 [7]. The compliance 

matrix can be computed for plane strain (i.e., B >> W) and then modified to account for a smaller degree 

of plane strain in a specific thickness using  

G = Γ(B,W)Gpl-ε (2) 

Γ(𝐵,𝑊) = 1 + ?
𝜈)

1 − 𝜈)B C
1

1 + (𝐵 0.697𝑊⁄ ))I (3) 

where Gpl-ε is the unit pulse compliance matrix computed using a plane-strain constitutive equation, 

Γ(B, W) is a correction suggested in [9], and ν is Poisson’s ratio of the plate. Computation of the unit 

pulse plain-strain compliance is typically performed using elastic finite element stress analysis following 

procedures described elsewhere (e.g., [1]). 
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The formulation of Eq. (1) inherently assumes there is no noise in the measured strain, which is not 

possible in practice. To smooth out noise in the measured strain data, and prevent its amplification in 

computed residual stress, Schajer and Prime [7] suggested adding Tikhonov regularization to Eq. (1), 

resulting in  

[(GF)TGF + βCTSTHSC]σ = (GF)TFε (4) 

where C is a matrix that evaluates the chosen derivative of the residual stress solution that is to be 

penalized. Typically, C uses second derivative regularization where the first and last rows are zero and 

the other rows (i = 2, N - 1) have a tridiagonal structure given by Eq. (5): 

−2(𝑊/𝑁))

(ℎMNO − ℎMPO)(ℎM − ℎMPO)
,

2(𝑊/𝑁))

(ℎM − ℎMPO)(ℎMNO − ℎM)
,

−2(𝑊/𝑁))

(ℎMNO − ℎM)(ℎMNO − ℎMPO)
. (5) 

S is a diagonal matrix that contains the standard errors associated with the deformation data at each cut 

depth and is given by S(i)(i) = F(i)(i)Uε(i), where Uε is a vector of strain uncertainty versus depth described 

below. H is a diagonal matrix that contains the normalized cut depth increment length (i.e., 

H(i)(i) = (hi - hi-1)/W, where h0 = 0), and β is a scalar value called the regularization parameter. Often in 

practice, values of β can be very small (~10-15) and can vary significantly between materials with 

different elastic moduli. To alleviate these issues, in this work β is defined in terms of a new 

regularization parameter α, via  

β = 10%/𝐸). (6) 

where E is Young’s modulus. The term 𝐸) is included to make Eq. (4) dimensionally consistent.  

The above provides a means for computing the residual stress versus depth vector s given a vector 

of strain versus depth data, e and a specific value of a  

σ = Vε (7) 
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where 

𝑽 = [(𝑮𝑭)U𝑮𝑭 + (10%/𝐸))𝑪𝑻𝑺𝑻𝑯𝑺𝑪]PO(𝑮𝑭)𝑻𝑭. (8) 

Given the stress versus depth vector s, from Eq. (7), a fitted strain 𝜺+ is determined from  

𝜺+ = 𝑮𝝈. (9) 

The fitted and measured strains are nearly equal, 𝜺+ ≈ 𝜺, when the value of a is highly negative but for a 

typical value of a there is a finite strain misfit defined as  

𝜺,-./-0 = 𝜺 − 𝜺+. (10) 

The value of the regularization parameter α, and subsequently β in Eq. (4), significantly influences 

the calculated residual stress. In an extreme case with no regularization (a << 0, so β ≈ 0), the measured 

strains are fit exactly and strain measurement noise is amplified in the calculated residual stress. In the 

other extreme case, with α ≈ 0, the measured strains will be overly smoothed and the calculated residual 

stress versus depth profile will likely miss important features. A specific value of α must be selected 

during data reduction, and since the best value is not known a priori the selection increases uncertainty 

in the measured residual stress. 

Slitting method uncertainty estimation 

The uncertainty in the calculated residual stress due to the uncertainty in the measured strain data has 

previously been established by Prime and Hill [10] for both Legendre polynomials as well as unit pulse 

basis functions. The uncertainty in stress caused by strain uncertainty is given by  

𝑼2,7𝟐 = 𝑑𝑖𝑎𝑔(𝑽[𝐷𝐼𝐴𝐺(𝑼7𝟐)]𝑽f) (11) 

where Us,e is a vector of residual stress uncertainty versus depth due to uncertainty in the measured 

strain at each cut depth, diag is an operator that provides a vector of the diagonal elements of a square 
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matrix, DIAG is an operator that provides a diagonal matrix from a vector, V is defined in Eq. (8), and 

Uε is a vector of strain uncertainties  

𝑼7 = 𝑚𝑎𝑥(𝜺,-./-0, 𝑒) (12) 

where e is a lower limit of strain uncertainty taken as the precision inherent to the experimental 

apparatus and typically on the order of 1 µe. 

Improved slitting method uncertainty estimation 

This work proposes an improved slitting method uncertainty estimator that adds an additional term 

to account for uncertainty associated with the selection of the regularization parameter, called the 

regularization uncertainty. With the addition of regularization uncertainty, the total uncertainty is taken 

as the root of the sum of squares (RSS) of the two uncertainty sources  

𝑼2,080) = 𝑼2,7) + 𝑼2,456) . (13) 

For a specific value of α = αk, the regularization uncertainty is established by assessing a set of 

residual stress versus depth results computed using different values of α near αk (i.e., different amounts 

of regularization), which defines the sensitivity of the computed residual stress to α. Each member of the 

set of residual stress results is computed for a range of α called αsubset. The range αsubset is defined by two 

key characteristics, the number of values that it contains, M, and the range of α that it spans. The present 

work uses a logarithmically spaced set of M = 60 values of α spanning a range αsubset = [αk ± R] where 

R = 1.5. The justification for these values of parameters M and R is presented later. A vector of 

regularization uncertainty versus depth, Uσ,reg, is then defined as the standard deviation of the set of 

residual stress values at each depth computed for the different values of α in αsubset 
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𝑼2,456(𝛼+) 	= n
1

𝑀 − 1p
[𝝈M − 𝝈q])

r

MsO

 (14) 

where the vectors si reflect the stresses computed for the range αsubset and 𝝈q is the average residual stress 

versus depth vector computed for the range αsubset (the bracketed terms on the right side of Eq. (14) are 

vectors, and the square and square root operations are performed element-by-element). 

Automated regularization parameter selection 

Although there have been suggestions on choosing an appropriate value of regularization parameter 

[7], a new method is suggested here to select a value of α = αk during the data reduction process. The 

selected value αk is one that minimizes the root-mean-square (RMS) of the total uncertainty vector of 

Eq. (13). A comparison of different approaches to selecting αk is presented later, in the discussion 

section. To limit the possible α values to useful values, residual stress is calculated from Eq. (4) with 

values of α ranging from a highly negative value (α = -15) to progressively less negative values, ending 

when the maximum strain misfit exceeds 100 με (the high misfit indicating excessive regularization).  

Slitting numerical experiment 

To determine whether the regularization uncertainty as defined above was a useful predictor of 

regularization error, a numerical experiment was performed. The numerical experiment consisted of 

three steps. In the first step, a residual stress distribution (initialized residual stress) was chosen and 

introduced as an initial condition in an elastic finite element stress analysis of the plate shown in Fig. 1, 

and then strain versus slit depth data were extracted from the model. This defined the numerical 

experiment strain. The initialized residual stress was a parabolic shape similar to the residual stress 

profile that might be achieved from quenching [11], defined using a second order Legendre polynomial 

σxx(y) = 100[3(2y/W-1)2 – 1]/2 MPa. (15) 
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The stress analysis used commercial software [12] and had the geometry shown in Fig. 1 with 

L = 3W and a strain gage of size gL = 0.01W. The simulated slit was at x = L/2 and had a slit width of 

0.001W. Elements were removed from the mesh to simulate cut depths from h1 = 0.02W to h49 = 0.98W 

in cut depth increments of 0.02W. The model used a refined, biased mesh where the node spacing was 

0.0033W at the cut plane and increased to 0.01W at x = 0 and x = L with a total number of elements of 

115,600. Details of finite element models typical of slitting are given by Lee and Hill [13]. Each element 

was a two-dimensional, plane strain quadrilateral with biquadratic displacement interpolation. The 

elastic material properties were E = 70,000 GPa, and ν = 0.3. The computed initial residual stress (at 

zero slit depth) is shown in Fig. 2a, and strain as a function of slit depth is shown in Fig. 2b. 

The second step of the numerical experiment determined the compliance matrix in Eq. (4). The 

compliance matrix used the same approach and model as was used for the first step, but with constant 

stress (unit pulses) applied over each cut depth increment and for each cut depth (instead of the 

initialized residual stress distribution at each cut depth).  

In the third step of the numerical experiment, noise was added to the numerical experiment strain 

and residual stress and uncertainties were calculated for a range of α values. The added noise was 

normally distributed with a magnitude of 1 με (Fig. 3). The strain precision was set to e = 0.5 με. Since 

the numerical experiment used a known residual stress, the error arising from the added noise could be 

directly determined and provides a useful benchmark to assess the proposed uncertainty estimator. 

Slitting repeatability experiment 

To further evaluate the usefulness of the proposed uncertainty estimator, the calculated uncertainty 

was compared to the precision defined by a repeatability experiment comprising a set of repeated slitting 
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measurements on samples prepared identically. The repeatability experiment consisted of 10 slitting 

measurements on aluminum blocks removed from a larger quenched aluminum plate. The parent 

aluminum plate was composed of alloy 7050‑T7451 and had a width, length, and height of 190.5 mm 

(7.5 in), 381 mm (15 in), and 22.9 mm (0.9 in). The plate was heat treated, including a quench, to induce 

residual stresses. The heat treatment consisted of heating the plate to 477°C (890°F) for 3 hours, 

quenching in room temperature water, artificial aging at 121°C (250°F) for 8 hours followed by 

additional aging at 177°C (350°F) for 8 hours (following the approach in [14]). A set of blocks for use in 

the repeatability experiment was extracted near the center of the parent plate, each block having a 

length, width, and out of plane thickness of L = 63.5 mm (2.5 in), W = 22.9 mm (0.9 in), and 

B = 45.7 mm (1.8 in), as shown in Fig. 4. Each slitting measurement was performed on a separate block. 

The measurements determined the length direction residual stress (σxx in Fig. 4) as a function of depth 

into 22.9 mm block width (y in Fig. 4) at the mid-length of the sample (x = 31.75 mm (1.25 in)). 

The slitting method experiments followed the approach described by Hill [1] and Prime [15]. Each 

measurement used a single strain gage mounted on the back face of the sample (y = 22.9 mm) with a 

0.787 mm (0.031 in) gage length, and self-temperature compensated for aluminum. Each slitting 

measurement consisted of 30 cut depth increments, ranging in size from 0.05 to 1.27 mm. A compliance 

matrix for each experiment was determined from a 2D, plane strain, finite element model and unit pulse 

basis functions. The model had E of 71,710 MPa (10,400 ksi) and n of 0.33, to match the specimen 

material properties. The compliance matrix model had approximately 300,000 eight-node, biquadratic 

elements, with 1,000 elements across the width and biased node spacing away from the cut plane, with 

square elements at the cut plane and element size approximately 10x larger at the free ends. Lastly, since 

the compliance matrix is computed using a plane strain model, it was scaled using the correction scheme 

developed by Aydiner and Prime [9] to account for the finite out of plane thickness of the block, as 

given above in Eq. (3). 
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Uncertainty estimator acceptance criterion 

To test the usefulness of the uncertainty estimator an acceptance criterion was used. The acceptance 

criterion determined the acceptance fraction which is the percentage of points where the calculated 

residual stress ± uncertainty contains the true value. The true value was known for the numerical 

experiment. However, the true value is unknown in the repeatability study and was assumed to be the 

mean of the data at each depth from all 10 measurements. This was chosen as the reference value 

because it is expected to be the best representation of the underlying residual stress field. Further, the 

standard deviation of the 10 measurements provides an approximation of the measurement precision 

(i.e., first order uncertainty estimate), assuming each specimen has an identical initial residual stress 

state. Assuming the uncertainty estimator is useful and that the underlying uncertainty has a normal 

distribution, we would expect 68% of the points in the depth profile to meet the acceptance criterion 

(i.e., acceptance fraction = 68% to correspond with ± one standard deviation). 

3. RESULTS 

Numerical experiment 

The calculated residual stress from the numerical experiment with various levels of regularization 

and the associated misfits can be seen in Fig. 5. The calculated residual stresses (Fig. 5a) show that very 

low regularization (a = -15) results in residual stress with large fluctuations that arise from the added 

noise. Use of more positive values of a are effective in mitigating the effect of the added noise and 

provide better approximation of the initialized residual stress. However, more positive a increases the 

misfit in strain (Fig. 5b), and when high regularization is chosen the large misfit indicates the calculated 

residual stress profile is overly smoothed. The strain misfit for the chosen value of a closely resembles 

the added noise.  
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The estimated measurement uncertainties from the numerical experiment with various levels of 

regularization are shown in Fig. 6. The regularization uncertainty 𝑼2,456 (Fig. 6a) is low (nearly zero) 

for a low α value, moderate for the chosen α value (peak uncertainties around 2 MPa), and large for a 

high α value (peak uncertainties around 6 MPa). The low 𝑼2,456 for low α occurs because the calculated 

residual stress is relatively insensitive to values of a within asubset. The uncertainty in stress due to strain 

uncertainty 𝑼2,7 (Fig. 6b) is high for a low α value (peak uncertainties around 19 MPa). This occurs 

because the calculated residual stress is sensitive to noise without regularization (i.e., V in Eq. (8) is 

poorly conditioned). For the chosen or high values of a, 𝑼2,7 is low (peak uncertainties around 1 MPa). 

The total uncertainty in residual stress 𝑼2,080 (Fig. 6c) follows 𝑼2,7 for low α values, and 𝑼2,456 for the 

chosen and high α values.  

The maximum and RMS values of 𝑼2,7, 𝑼2,456 and 𝑼2,080 are shown as functions of α for the 

numerical experiment in Fig. 7a. The maximum and RMS values of uncertainty each follow similar 

trends. 𝑼2,456 is low for highly negative α, increasing to a maximum, decreasing to a local minimum, 

and then increasing again. 𝑼2,7 is constant for highly negative α values, decreasing to a local minimum, 

and then increasing again. 𝑼2,080 follows the uncertainty due to strain uncertainty, 𝑼2,7, for highly 

negative α values and follows the regularization uncertainty for the most positive α values.  

The maximum and RMS error in stress for the numerical experiment is shown in Fig. 7b (solid 

lines), where error at each depth is the calculated residual stress minus the initialized residual stress. The 

error is large and constant for highly negative α, decreases with increasing α to a minimum and then 

increases. Fig. 7b shows that 𝑼2,080 follows the trend of the error and is larger than the error near the 

minimum uncertainty. Furthermore, the minimums of uncertainty and error occur at similar α values. 

This shows 𝑼2,080 is a useful predictor of error.  
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The calculated residual stress at the chosen α value is shown in Fig. 8a for the numerical experiment. 

The calculated residual stress matches the initialized residual stress well. The total uncertainty provides 

a good approximation of the error overall, as shown in Fig. 8b, with both having a maximum value at the 

initial cut depth (1.7 MPa error and 2.0 MPa total uncertainty) and uncertainty and error falling between 

1.5 and 0.25 MPa at larger cut depths. Regularization and strain uncertainties are both significant 

contributors to the total uncertainty.  

The calculated residual stress ± the total uncertainty in Fig. 8 contains the initialized residual stress 

at 81.6% of points. Over 50 additional assessments with independent, noisy data added to the initialized 

strain, the calculated residual stress ± the total uncertainty includes the initialized stress at 73.0% of 

points. This is nominally consistent with the level of agreement that would be expected if the uncertainty 

followed a normal distribution (68% of points within ± one standard deviation). 

Repeatability study 

The results of the repeatability study can be seen in Fig. 9. The results show that all ten 

measurements (Fig. 9a) are consistently measuring a nearly parabolic residual stress distribution with a 

minimum value near the surface of ‑70 MPa and maximum value near the mid-width of 25 MPa. The 

repeatability standard deviation (Fig. 9b) has a maximum value at the surface (3.2 MPa) and is between 

0.3 to 1.8 MPa for larger cut depths, where the repeatability standard deviation is the standard deviation 

of measurements of nominally identical test specimens performed by the same operator, at the same 

laboratory over a short interval of time. The estimated total uncertainty for each of the ten measurements 

is also shown in Fig. 9b. The estimated total uncertainty and repeatability standard deviation follow 

similar trends, with the uncertainty being somewhat larger at initial cut depths (3.0 to 5.2 MPa versus 

3.2 MPa) and somewhat (about 1 MPa) smaller between y = 8 to 15 mm. 
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The acceptance criterion was assessed for each measurement as the fraction of points in the residual 

stress depth profile where the calculated residual stress ± the total uncertainty contains the mean residual 

stress and is shown in Fig. 10. The acceptance criterion was met on average at 61.3% of points, with 

individual measurements meeting the criterion at 30 to 100% of the points.  

The RMS regularization, strain, and total uncertainties for each of the ten measurements as a 

function of α are shown in Fig. 11. The RMS regularization, strain, and total uncertainty generally 

follow the same trends found in the numerical experiment; however, the regularization uncertainty has a 

broad range of a, between about -10 and -6, where the uncertainty is nearly constant (for most 

measurements). Despite this difference, the RMS total uncertainty has a well-defined minimum (Fig. 

11b) that provides for a clear selection of α. The RMS repeatability standard deviation (labeled as Std in 

Fig. 11c) shows the repeatability standard deviation is similar to the total uncertainty for α near where 

the total uncertainty minimized for each measurement.  

The RMS misfit values are shown for the repeatability experiment in Fig. 12a. The results show that 

for the α selection strategy used here (selected α values are shown as square markers), the RMS misfits 

are small (ranging from 0.8 to 1.2 με). The misfit as a function of cut depth for each of the 10 

measurements is shown in Fig. 12b. The misfits exhibit significant form that does not appear to be 

random noise (peak misfits near ±2 με). This indicates the calculated residual stress could be somewhat 

over smoothed; however, the misfit trend also has a saw-tooth profile that is consistent with a quantizing 

error [16].  

4. DISCUSSION 

Both the numerical experiment and the repeatability experiment provide useful information to 

inform a strategy for selection of an appropriate value of regularization parameter. The numerical 

experiment is especially useful since the noise in the data and error in residual stress are known. A 
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pragmatic way to define an optimal amount of regularization is to determine the value of a where the 

RMS misfit matches the RMS added noise. For the numerical experiment, the RMS values of error, 

uncertainties, and misfit are plotted as functions of α in Fig. 13; also indicated are the RMS of added 

noise and the optimal α (where the RMS misfit is equal to the RMS noise). The optimal α occurs at 

α ≈ -6. It is noteworthy that this working definition of an optimal α does not provide for a minimum 

error in residual stress; this occurs at α ≈ -6.7. Furthermore, Fig. 13 shows that the RMS total 

uncertainty and RMS regulation uncertainty are minimized near the value of α where the RMS error is a 

minimum.  

In preliminary parts of this work, the RMS misfit as a function of α, and its first and second 

derivatives (with respect to α) were studied as potential ways to select α. These parameters are shown 

for the numerical experiment in Fig. 14. The misfit increases rapidly with α for α < -12, increases 

moderately with α for -12 < α < -6, and increases rapidly with α for -6 < α . The minimum of the first 

derivative of the misfit RMS (circle marker in Fig. 14) shows where misfit is changing most slowly. 

Selecting this value of α would result in insufficient smoothing of the data (α too negative) relative to 

the optimal value of α. The maximum of the second derivative of the RMS misfit gives the maximum 

rate of change of the misfit slope (triangle marker in Fig. 14). This value of α is near the optimal α (Fig. 

14b) and would be a good selection. Use of the misfit derivatives was promising in the context of the 

numerical experiment; however, use of the misfit derivatives was rendered ineffective when assessing 

data from the repeatability experiment (that contain typical noise), and was subsequently abandoned 

(e.g., the first and second derivatives of the RMS misfit for the repeatability experiment are shown in 

Fig. 15 and show no useful trend that could be reliably assessed).  

To better illustrate some possible α selection strategies, the numerical experiment was repeated with 

50 sets of independent noise added to the numerical experiment strain and the 50 data sets were assessed 
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using seven different α selection strategies. Fig. 16a shows the optimal α (where RMS misfit equals 

RMS noise) versus the selected α for each of the 50 data sets and Fig. 16b shows the average and 

standard deviation of the difference between the selected and the optimal α for each α selection strategy. 

The solid line in Fig. 16a and Fig. 16b is where the optimal α equals the selected α and above that line 

the data would be over-smoothed (α too positive) and below that line the data would be under-smoothed 

(α too negative). The results show that selecting α at the minimum RMS total uncertainty or the 

minimum RMS regularization uncertainty each under-smooths the data. Selecting α at the minimum 

RMS strain uncertainty over-smooths the data. Selecting α at the minimum of the RMS misfit first 

derivative under-smooths the data with a large dispersion. Selecting α at maximum of the RMS misfit 

second derivative essentially fits the data optimally with a narrow dispersion. But using RMS misfit 

derivatives when assessing the repeatability experiments showed those approaches to be flawed. Two 

additional α selection strategies were tested. One strategy chose α when the RMS misfit was equal to the 

precision of the measurement, which was 1 με in the numerical experiment (the magnitude of the added 

noise). This α selection strategy performed well, with the α values being near optimal, but with 

significant dispersion; furthermore, this strategy is impractical because the strain precision is seldom 

known for a given experiment. A final α selection strategy is as described in [7], based on a “standard 

error” computed from the strain data. This approach appears to over-smooth the data and is very 

consistent. These assessments led to the approach described above: select α that minimizes the RMS 

total uncertainty. 

Computing the total uncertainty requires establishing the sensitivity of residual stress to the selected 

value of α. In the present formulation, we define this sensitivity by computing the standard deviation of 

values of residual stress determined for values of α in αsubset = [αk ± R]. Two important characteristics of 

αsubset are the number of terms it contains, M, and the size of the sampled range, R. To minimize 

computation time, it is useful to minimize M. To determine a useful value of M, trial calculations were 
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run using different values of M from 2 to 100. Fig. 17 shows that the RMS regularization uncertainty 

changes significantly with M, but a plateau occurs near M = 40. We selected M = 60 because the RMS 

regularization uncertainty was within 1% of the value at 100 terms (Fig. 17).  

To determine the appropriate range of α values to sample when calculating the regularization 

uncertainty (i.e., to define R), the numerical experiment was repeated with various values of R from 0 to 

3 (for R = 0, the regularization uncertainty is zero). For each value of R, the numerical experiment was 

repeated with 50 sets of independent random noise added to the strain data (same set of strain data for 

each R). The fraction of points meeting the acceptance criterion was determined for each of the 50 

numerical experiments and the mean of the 50 acceptance fractions is shown in Fig. 18a. This 

assessment shows that an R value of 1.0 provides the expected acceptance fraction of 68%. A similar 

assessment was performed using data from the repeatability experiment, where R was varied and the 

fraction of points meeting the acceptance criterion was determined for each of the 10 measurements. The 

mean of the 10 acceptance fractions is shown in Fig. 18b as a function of R (“Quenched Al” in the 

figure) and shows that an R value of 1.6 provides the expected acceptance fraction of 68%. Furthermore, 

similar assessments were performed to elucidate a useful value of R. An additional numerical 

experiment used a residual stress profile with a sharp near-surface gradient where the stresses decays 

from -70 MPa to 20 MPa over 20% of the thickness (details are omitted for brevity), and R of 1.31 

provided the expected acceptance fraction (“LSP” in Fig. 18a). Data from two other repeatability 

experiments were assessed, one using shot peened aluminum blocks (unpublished) and the other using 

laser shock peened (LSP) stainless steel blocks [17]. The results of these assessments are shown in Fig. 

18b and values of R providing the expected acceptance fraction of 68% were 1.52 for the shot peened 

aluminum and 2.35 for the LSP stainless steel. It is promising that similar values of R provide the 

expected acceptance fraction in both the repeatability studies and the numerical experiments. The 

somewhat smaller values of R in the numerical experiments is consistent with the reduced number of 
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extraneous factors in a numerical experiment compared with those in the physical repeatability 

experiments (e.g., one clear extraneous factor in the physical experiments is the variation in residual 

stress that should be expected in identically prepared samples). Based on these results R = 1.5 was used 

for computing regularization uncertainty. This value is conservative (i.e., over-estimates the 

measurement uncertainty) for the two numerical experiments and correlates well with results from 2 of 

the 3 repeatability studies. 

The numerical experiment used random noise that had a magnitude of 1 με and a strain precision of 

e = 0.5 με. To evaluate the effect of these parameters, the relationship between R and the acceptance 

fraction was determined for different amounts of strain noise (0.25 με and 1 με) and as well as using 

different values of strain precision (e = 0, 0.25, 0.5, 1, and 2 με). The results can be seen in Fig. 19a for 

1 με added noise and in Fig. 19b for 0.25 με added noise. The results show that for a given R the 

acceptance fraction increases with e for a given level of strain noise. The results also show the R 

required to meet the expected acceptance fraction is similar when e is smaller than the added noise (i.e., 

in Fig. 19a the acceptance fraction is ≈ 68% for R near 1 when e = 0, 0.25, or 0.5 με). When e is equal to 

the added noise the acceptance fraction at R = 1.5 is about 5% larger than the expected. 

To further evaluate the acceptance fraction and the implementation of the total uncertainty estimator 

in the context of the numerical experiment, the total uncertainty was scaled by a factor corresponding to 

different confidence intervals, assuming that the uncertainty follows the normal distribution. The 

acceptance fraction versus R is shown for different confidence intervals is shown in Fig. 20. The scaling 

factors used for the normal distribution are: 0.674 (50% confidence interval), 1 (68% confidence 

interval), 1.282 (80% confidence interval), 1.645 (90% confidence interval), and 1.96 (95% confidence 

interval). The results show that R of 1.0 provides the expected acceptance fraction for the 50%, 68%, 

and 80% confidence intervals, with R of 1.2 and 1.4 providing expected acceptance fractions for the 
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90% and 95% confidence intervals. The consistent values of R for the range of confidence intervals 

supports the soundness of the new uncertainty estimator.  

It is interesting that the RMS of the repeatability standard deviation (Std in Fig. 11c) monotonically 

decreases as α increases, even though the calculated residual stress becomes over smoothed as α nears 

zero (as indicated by the large RMS misfits in Fig. 12a). Highly smoothed results are precise (i.e., 

repeatable), but are not necessarily accurate. This affirms the principle that a good experimental method 

provides both good precision and good accuracy to the extent possible.  

The correlation between the uncertainty estimate with the error in the numerical experiment and with 

the repeatability standard deviation of the repeatability experiment has led to the following procedure to 

determine the regularization parameter. First, select a highly negative αk value (e.g., αk = -15), then begin 

computing stress over αsubset. The range of αsubset starts from αk - R= αk - 1.5, ends at αk + R= αk + 1.5 and 

has 60 equally spaced values. Next, determine the strain, regularization, and total uncertainty for αk 

(using the stresses computed over the range of αsubset values for the regularization uncertainty and at αk 

for the strain uncertainty). Then repeat the same procedure with incrementally more positive αk values 

(e.g., incrementally increase αk by 0.1), until a large RMS misfit occurs (e.g., 100 με). After the stress 

calculation is complete for the various αk values, compute the RMS uncertainties and select the stress 

where the minimum of the RMS total uncertainty occurs.  

5. CONCLUSIONS 

This work provides a new single-measurement uncertainty estimator for slitting method residual 

stress measurements. The total uncertainty is defined as the root sum square of uncertainties from strain 

measurement imprecision and regularization. Uncertainty due to strain measurement imprecision was 

defined in earlier work. The regularization uncertainty arises from uncertainty in the appropriate level of 

smoothing to be applied to measured strain versus cut depth data. We provide a means to estimate the 
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regularization uncertainty and recommend choosing a value of regularization parameter (a) that 

minimizes the RMS of total uncertainty (RMS of values of uncertainty over all depth positions).  

The new single-measurement uncertainty estimator was demonstrated and tested in the context of a 

numerical experiment, which showed that the point values and spatial trends of estimated uncertainty 

follow the known errors. The estimated uncertainty also meets the defined acceptance criterion: the 

estimated stress ± uncertainty contains the known stress at 68% of points. Further, the numerical 

experiment showed that reporting only uncertainty due to measurement imprecision is non-conservative.  

The new single-measurement uncertainty estimator was demonstrated and validated in the context of 

a physical repeatability experiment. The point values and spatial trends of the estimated uncertainty for 

each single measurement were consistent with the precision defined by the standard deviation of the 

repeated measurements.  

The regularization uncertainty is a significant contributor to the total uncertainty in slitting residual 

stress measurements.  Regularization uncertainty may also be important for similar residual stress 

measurement techniques (e.g., hole drilling).  
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FIGURES 

 

 

Fig. 1 – Diagram of a typical slitting measurement. The measurement plane is at x = L/2 and 
incrementally cuts the sample from y = 0 to W to measure σxx(L/2, y). The strain gage has a length of 

gL and its mid-length is affixed to the back face of the specimen at (x, y) = (L/2, W). B is the out of 
plane thickness  

 

 

 

(a) (b) 

Fig. 2 – Data for the numerical experiment: (a) initialized residual stress and (b) numerical 
experiment strain 
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Fig. 3 – Data for the numerical experiment: noise added to the numerical experiment strain 

 

 

Fig. 4 – Geometry of the quenched aluminum blocks used in the repeatability experiment 
(dimensions in inches) 
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(a) (b) 

Fig. 5 – Results for the numerical experiment with various choices of α: (a) calculated residual 
stress and (b) resulting misfit and applied noise  
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(a) (b) 

 
(c) 

Fig. 6 – Uncertainties in stress for the numerical experiment for a range of α values: 
(a) regularization, (b) strain, and (c) total uncertainty  
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(a) (b) 
Fig. 7 – Results for the numerical experiment: (a) Maximum and RMS regularization, strain, and 

total uncertainty as a function of α and (b) maximum and RMS error and total uncertainty  

 

 

 

(a) (b) 

Fig. 8 – Results for the numerical experiment: (a) initialized and calculated residual stress, and (b) 
uncertainty and error  
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(a) (b) 

Fig. 9 – Results for the repeatability experiment: (a) calculated residual stress with mean and error 
bars showing the repeatability standard deviation, and (b) total uncertainty and repeatability 

standard deviation  

 

 

Fig. 10 – Acceptance fraction for the repeatability experiment: percentage of points where the 
acceptance criterion was met (i.e., calculated residual stress ± the total uncertainty contains the 

mean residual stress) for each measurement. The mean acceptance fraction is 61.3% 
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(a) (b) 

 
(c) 

Fig. 11 – Results for the repeatability experiment as a function of α: RMS uncertainty in stress due 
to (a) regularization, (b) strain, and (c) total with repeatability standard deviation  
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(a) (b) 

Fig. 12 – Results for the repeatability experiment for each of the ten measurements: (a) RMS misfit 
as a function of α and (b) misfit versus cut depth at the chosen α  

 

 

Fig. 13 – Results for the numerical experiment as a function of α: RMS error and uncertainties in 
stress   
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(a) (b) 

Fig. 14 – Results for the numerical experiment as a function of α: RMS misfit and its first (Misfit 
RMSʹ) and second derivatives (Misfit RMSʹʹ) with respect to a over (a) full α range and (b) over a 

smaller α range (dashed lines showing the RMS noise and optimal α)  
 

 

 

(a) (b) 

Fig. 15 – Results for the repeatability experiment as a function of α: derivatives of RMS misfit with 
respect to a: (a) first derivative and (b) second derivative 
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(a) (b) 

Fig. 16 – Results for additional numerical experiments and several α selection strategies: (a) α 
optimal versus α selected for several α selection strategies with 50 sets of randomly added noise, 
and (b) the average and standard deviation of the difference between the selected and optimal α 
values (note: the solid line in (a) and (b) is where the optimal and selected values of α are equal) 

 

 

Fig. 17 – Additional calculation showing the RMS regularization uncertainty as a function of the 
number of terms in αsubset (M)  
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(a) (b) 

Fig. 18 – Mean acceptance fraction as a function of R for (a) numerical experiments (with 50 
iterations of random noise), and for (b) repeatability experiments. Note: LSP is a different numerical 
experiment (not shown) and Shot peened Al and LSP SS are different repeatability experiments (not 

shown) 

 

 

 

(a) (b) 

Fig. 19 – Mean acceptance fraction as a function of R for various values of e when the magnitude of 
the noise added to the initialized strain is (a) 1 με and (b) 0.25 με 
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Fig. 20 – Mean acceptance fraction as a function of R for the numerical experiment for several 
different confidence intervals 

 




