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Abstract

Motivation: Recent technological developments have facilitated an expansion of microbiome–metabolome studies,
in which samples are assayed using both genomic and metabolomic technologies to characterize the abundances of
microbial taxa and metabolites. A common goal of these studies is to identify microbial species or genes that con-
tribute to differences in metabolite levels across samples. Previous work indicated that integrating these datasets
with reference knowledge on microbial metabolic capacities may enable more precise and confident inference of
microbe–metabolite links.

Results: We present MIMOSA2, an R package and web application for model-based integrative analysis of micro-
biome–metabolome datasets. MIMOSA2 uses genomic and metabolic reference databases to construct a commu-
nity metabolic model based on microbiome data and uses this model to predict differences in metabolite levels
across samples. These predictions are compared with metabolomics data to identify putative microbiome-governed
metabolites and taxonomic contributors to metabolite variation. MIMOSA2 supports various input data types and
customization with user-defined metabolic pathways. We establish MIMOSA2’s ability to identify ground truth mi-
crobial mechanisms in simulation datasets, compare its results with experimentally inferred mechanisms in honey-
bee microbiota, and demonstrate its application in two human studies of inflammatory bowel disease. Overall,
MIMOSA2 combines reference databases, a validated statistical framework, and a user-friendly interface to facilitate
modeling and evaluating relationships between members of the microbiota and their metabolic products.

Availability and implementation: MIMOSA2 is implemented in R under the GNU General Public License v3.0 and is
freely available as a web server at http://elbo-spice.cs.tau.ac.il/shiny/MIMOSA2shiny/ and as an R package from
http://www.borensteinlab.com/software_MIMOSA2.html.

Contact: elbo@tauex.tau.ac.il

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Microbial community metabolism contributes to global nutrient
cycling (McGuire and Treseder, 2010), metabolic dysregulation in
human disease (Kasubuchi et al., 2015) and detoxification of pollu-
tants (Hazen et al., 2010), among other crucial processes. A growing
number of studies investigate these processes by profiling the com-
position and metabolism of host-associated and environmental mi-
crobial communities using genomic and metabolomic technologies

(Shaffer et al., 2017). Such studies commonly seek to answer two
important questions: whether metabolic differences between envi-
ronments (e.g. between healthy and diseased settings) can be attrib-
uted to differences in microbial composition and ecology, and if so,
which specific microbial community members might be the key
players generating such differences.

Broad surveys of microbial taxa and metabolites, which we refer
to here as ‘microbiome–metabolome studies’, have great potential
utility to answer these two questions by uncovering associations
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between taxa and metabolite abundances across samples. However,
we have recently shown that calculating univariate correlations be-
tween taxa and metabolites may not identify mechanistic links be-
tween them with very high accuracy, depending on properties of the
communities under study (Noecker et al., 2019). Comparisons of
taxon–metabolite associations with metabolite production in mono-
culture have also suggested a high false positive rate for this ap-
proach (Hoyles et al., 2018). Some recently introduced tools address
this challenge by using machine learning to infer complex models
predicting metabolite abundances from microbial taxa (Mallick
et al., 2019; Morton et al., 2019; Reiman et al., 2021). However,
these can be difficult to interpret in terms of possible mechanisms,
and in general do not account for or incorporate prior knowledge of
microbial metabolism.

An alternative or complementary approach is to use metabolic
reference databases, such as the Kyoto Encyclopedia of Genes and
Genomes (KEGG) (Kanehisa and Goto, 2000), as well as collections
of genome-scale metabolic reconstructions, such as AGORA
(Magnúsdóttir et al., 2017) and embl_gems (Machado et al., 2018),
to generate and evaluate more precise hypotheses on the relation-
ships between microbes and metabolites. We previously demon-
strated that this conceptual approach can lead to new insights and
released a preliminary but widely used R package (Noecker et al.,
2016), Model-based Integration of Metabolite Observations and
Species Abundances (MIMOSA), for performing these analyses
(Adamovsky et al., 2020; Casero et al., 2017; Ilhan et al., 2019;
Sharon et al., 2019; Snijders et al., 2016; Stewart et al., 2017).
Other methods to integrate microbiome and metabolome data with
metabolic reference databases have also recently been introduced
(Garza et al., 2018; McHardy et al., 2013; Pedersen et al., 2018;
Shaffer et al., 2019). To date, however, these tools all have some
limitations in usability and/or compatibility with common data
types and reference databases. Furthermore, none have been system-
atically evaluated for their ability to accurately infer direct mechan-
istic links between microbes and metabolites.

Here, we introduce MIMOSA2, an R package and web applica-
tion (http://borensteinlab.com/software_MIMOSA2.html) for
model-based integration of microbiome and metabolome data.
MIMOSA2 uses metabolic reference databases to analyze paired
microbiome and metabolite profiles, identifying metabolite differen-
ces that can be explained by specific microbiome features.
MIMOSA2 expands and improves on the original proof-of-concept
version of MIMOSA in several ways (described in detail in
Supplementary Table S1): first, it applies a new statistical algorithm
for quantifying links between taxa and metabolites, which we have
validated here using simulated microbiome–metabolome data and
experimental comparisons. It also implements several distinct strat-
egies for constructing community metabolic models from different
types of microbiome data and reference databases. Finally, it can be
run either locally or via a web server with greatly improved ease of
use, flexibility and documentation.

2 Implementation

MIMOSA2 integrates paired microbiome–metabolome datasets
with reference reaction databases to generate specific mechanistic
hypotheses. It constructs community metabolic models using micro-
biome compositional data and a reaction database, assesses whether
measured metabolite concentrations are consistent with estimated
community metabolic potential (CMP) across a set of samples, and
identifies specific taxa and reactions that can explain observed me-
tabolite variation (Fig. 1). Below, we describe the analysis workflow
steps and how to run an analysis using the web application.

2.1 Data input
The basic input requirement for MIMOSA2 is a pair of datasets
from the same set of samples: one of microbiome measurements and
the other of metabolites. Each of these datasets may take a variety of
forms (Fig. 1), depending on the study’s design, experimental assays
and processing techniques.

Users can provide microbiome data generated from 16S rRNA
or shotgun metagenomic sequencing studies. 16S rRNA data can be
provided as a feature table of amplicon sequence variants, or of
closed-reference operational taxonomic units (OTUs) using either
the GreenGenes or SILVA databases (McDonald et al., 2012; Quast
et al., 2013). Data from a shotgun metagenomic study can be pro-
vided in the form of a table of KEGG Ortholog (Kanehisa and Goto,
2000) functional abundances. Metagenomic data can be either
unstratified (total KEGG Ortholog abundances in each sample) or
stratified by microbial taxa [in the formats produced by the latest
versions of either HUMAnN or PICRUSt2 software (Beghini et al.,
2021; Douglas et al., 2020)].

Metabolite data can be produced from any metabolomics plat-
form (Fig. 1), but it must contain putative metabolite identifications
in the form of metabolite names, Human Metabolome Database
(HMDB) IDs or KEGG compound IDs. If metabolite names or
HMDB IDs are provided, they are mapped to KEGG IDs for the
main analysis using the Chemical Translation Service database
(Wohlgemuth et al., 2010), accessed via the R package webchem
(Szöcs et al., 2020).

2.2 Reference data and metabolic model construction
MIMOSA2 uses reference data to estimate how CMP varies across a
set of microbiome samples. It takes advantage of genome-scale
metabolic model data from multiple alternative sources to use the
most appropriate reference data for a given dataset. Specifically,
MIMOSA2 can currently generate a metabolic model based on one
of three sources. First, it can use a curated set of reactions from the
KEGG database. If OTU data are provided, KEGG reactions are
inferred for each OTU using PICRUSt (Langille et al., 2013) pre-
computed outputs. Alternatively, MIMOSA2 can link 16S rRNA
amplicon data to one of two large collections of genome-scale meta-
bolic reconstructions: the AGORA collection of genome-scale meta-
bolic models of gut microbial species (v1.0.2) (Magnúsdóttir et al.,
2017), or the embl_gems library of genome-scale metabolic models
for all 5587 reference and representative bacterial genomes in
RefSeq (Machado et al., 2018).

The method used to map microbiome taxa abundances to meta-
bolic reactions depends on the input data type (described fully in
Supplementary Text and Fig. S1). 16S rRNA sequence variants are
mapped using vsearch to either RNA genes for the AGORA genome
collection (see Supplementary Text), or to Greengenes 99% OTU
representative sequences. Greengenes OTUs are mapped to KEGG
using the pre-computed genome inferences from PICRUSt 1.1.3
(Langille et al., 2013), and are linked to AGORA models using a
pre-calculated alignment between the two databases. KEGG
Ortholog abundances provided from a shotgun metagenomic data-
set or another method [such as from PICRUSt2 (Douglas et al.,
2020)] can be directly linked to KEGG reactions.

Additionally, users can specify custom additions, subtractions or
modifications to any of the MIMOSA2 model templates. These can
be provided at the gene, reaction or taxon level. Example modifica-
tion files are provided in the MIMOSA2 documentation. Adding or
removing a particular reaction can be useful to assess the impact of
suspected incomplete or incorrect annotations in the reference data-
base, as we have observed in analyses using MIMOSA version 1
(Sharon et al., 2019). Full details on the implementation of each of
the metabolic model construction options are provided in the
Supplementary Text.

2.3 Core algorithm and identification of species–

metabolite contributors
Using the constructed metabolic models, MIMOSA2 next calculates
CMP scores for each taxon, sample and metabolite. These scores
represent the predicted capacity of each taxon in each sample to syn-
thesize or utilize the metabolite in question, facilitating downstream
analysis of the links between individual taxa and metabolites. These
metabolic potential scores are then aggregated at the community
level and compared with the relevant metabolite measurements.
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An example analysis for a toy metabolite and dataset is shown in
Figure 2.

Specifically, metabolic potential scores are calculated as a linear
combination of the abundances of genes predicted to contribute to
synthesis or utilization of a metabolite multiplied by their expected
stoichiometric effects (Fig. 2A and B). This method is similar to the
approach used by MIMOSA version 1 (Noecker et al., 2016), but
importantly, these scores are now calculated at the level of individ-
ual community members, rather than for the community as a whole.
The score smij for metabolite m, taxon i and sample j can be
expressed as the sum of the estimated effects of all synthesis reac-
tions (s) minus the effects of all utilization reactions (u). The esti-
mated effect of a reaction is approximated as the product of the
estimated abundance of linked gene families (A) and a normalized
stoichiometric coefficient for the metabolite in question (bÞ:

smij ¼
Xn

s¼1

bsmAsj �
Xm

u¼1

bumAuj:

The total CMP score for metabolite m in sample j is then the
sum of the taxon-level scores:

smj ¼
Xn

i¼1

smij:

MIMOSA2 next evaluates the relationship between total CMP
scores and metabolites by fitting a linear regression model of metab-
olite levels across samples (Fig. 2C). By default, the regression model
is fit using rank-based estimation (Kloke and McKean, 2012)
(referred to here as MIMOSA2-rank), although an option for ordin-
ary least-squares (OLS) estimation is also provided (MIMOSA2-
OLS). Notably, rank-based estimation achieves a more robust fit for
noisy data (Kloke and McKean, 2012), as the error function incor-
porates both the rank and the magnitude of the model residuals.
OLS estimation, in contrast, provides greater computational effi-
ciency in both the model fitting and the subsequent calculation of
the contributions of specific taxa.

A metabolite is identified as putatively microbiome-governed if
the overall regression model fit meets a significance threshold (F test
or drop-in-deviance test P < 0.1 by default). MIMOSA2 then
decomposes the share of metabolite variation explained by the
model into linear contributions from each taxon (Fig. 2D), and mi-
crobial taxa with large contributions to model variation are identi-
fied as potential contributors. The calculation of this decomposition
is analogous to our previous approach for calculating taxonomic
contributors based on simulated metabolic fluxes (Noecker et al.,
2019). This metric prioritizes taxa whose estimated metabolic po-
tential is relatively abundant, variable and associated with the

measured metabolite concentrations (Fig. 2B and D). For analyses
using OLS regression, contributions are calculated as the covariance
of the metabolic potential scores from each taxon with metabolite
concentrations. For analyses using rank-based regression, this metric
is calculated using a permutation-based analysis of the importance
of each taxon’s scores to the model fit. A full explanation of these
contribution calculations can be found in the Supplementary Text.
Notably, this approach is different from the taxonomic contributor
metric used in MIMOSA version 1, which prioritized taxa based on
the correlation coefficient of their metabolic potential with metabo-
lites across samples. It also differs from standard approaches for
assessing covariate importance in a regression model in that it
accounts for both the association and relative magnitude of contri-
butions from each taxon, without any scaling.

Importantly, each of the steps in the MIMOSA2 workflow is
modular. For instance, CMP is currently calculated from the com-
munity metabolic model using the gene abundance-based scoring
approach described above, but these values could in the future be
replaced with estimates of metabolic fluxes using Flux Balance
Analysis or other simulation methods (Varma and Palsson, 1994).

2.4 Interface, results and visualization
The MIMOSA2 workflow can be run via either a web application
or an R package. In both options, the input file names and analysis
parameters are encoded in a configuration file, which can be used to
reproduce the analysis.

MIMOSA2 produces several detailed results for each analyzed
metabolite: the model fit between CMP and metabolite measure-
ments, the primary taxa contributors to metabolite variation and the
specific reactions that formed the basis of the metabolic potential
calculation. When an analysis is run using the web application, these
results are summarized in an interactive table with a row for each
metabolite (Fig. 3). Processed result tables are made available for
download, along with the analysis configuration file. The web appli-
cation also includes an option to view results of an example analysis
of cecal samples from mice treated with the antibiotic cefoperazone
(Theriot et al., 2014).

3 Results

3.1 Application of MIMOSA2 to simulated datasets with

known microbe–metabolite interactions
We validated the MIMOSA2 method by applying it first to two
simulated microbiome–metabolome datasets [previously described
in Noecker et al. (2019)]. We used these simulation datasets to
evaluate the ability of MIMOSA2 to achieve two main objectives:

Fig. 1. Summary of the MIMOSA2 analysis pipeline. In a MIMOSA2 analysis, microbiome data features are first linked to pre-processed reference databases to construct a

community metabolic model describing the predicted metabolic reaction capabilities of each community member taxon (Step 1). Next, this network model is combined with

microbiome feature abundances to calculate CMP scores for each metabolite, taxon and sample, representing the approximate relative capacity to synthesize or utilize that me-

tabolite (Step 2). Total CMP scores for each metabolite are linked to metabolomics measurements using a regression model (Step 3). For metabolites with a significant relation-

ship between concentration and potential, the specific taxonomic contributors to each metabolite are then analyzed (Step 4)
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(i) to classify whether metabolite levels are likely determined by
microbiome metabolism, and (ii) to identify key contributors for
those metabolites and the relevant genes and reactions. In our previ-
ous study, we defined ‘key contributors’ as the set of microbial taxa
(or exogenous environmental influences) that are responsible for a
substantial share of the variation in the levels of a metabolite across
samples, based on their quantitative metabolite fluxes. Notably,
these two objectives differ from the objectives of other recently pub-
lished microbiome–metabolome analysis methods (Mallick et al.,
2019; Morton et al., 2019), which are designed primarily to predict
metabolite levels from microbiome data with high accuracy without
incorporating additional information or generating mechanistic
hypotheses. In this study, we compared the performance of
MIMOSA2 using both rank-based and OLS regression estimation
with five alternative approaches: a species-metabolite pairwise
Spearman correlation analysis, a modified correlation analysis in
which significant taxa-metabolite correlations are only retained if
the taxon is known to possess reactions linked to the metabolite (see
Supplementary Text for additional details), a cross-validated ran-
dom forest regression model following Muller et al. (2021),
MelonnPan (Mallick et al., 2019) and the original implementation
of MIMOSA.

The two simulation datasets describe divergent sets of hypothet-
ical microbiome samples (Fig. 4A) and have been previously used to
evaluate microbiome–metabolome analysis (Noecker et al., 2019).
They were generated using a multi-species dynamic Flux Balance
Analysis framework to simulate gut bacterial metabolism in a fixed
nutrient environment, using metabolic network reconstructions
from the AGORA collection (Magnúsdóttir et al., 2017; Noecker
et al., 2019). In this framework, simulated microbial uptake and se-
cretion dynamically impact concentrations of metabolites in the
shared environment. Both datasets consisted of species and metabol-
ite concentrations at the final time point of several 144-h dynamic
multi-species simulations. Both datasets included small random var-
iations in the simulated environmental metabolite concentrations
available to the simulated species across samples (see Supplementary
Text), but microbial fluxes are the primary drivers of final concen-
trations for a large share of compounds. Using this method, Dataset

1 consists of communities with varying compositions of 10 represen-
tative gut species and 3% variation in environmental metabolite
concentrations. Dataset 2 is more complex, consisting of 57 samples
whose initial compositions were designed to emulate Human
Microbiome Project (HMP) gut samples (Huttenhower et al., 2012),
along with 1% variation in nutrient inflow. These species composi-
tions were determined by aligning HMP 16S rRNA sequencing var-
iants against genomes linked to AGORA reconstructions, resulting
in a total of 131 species unevenly distributed across the dataset. To
construct community metabolic network models for MIMOSA2, we
used the unconstrained community metabolic reconstructions,
which formed the basis for each set of simulations.

We first evaluated the ability of MIMOSA2 to identify true
microbiome-governed metabolites in these datasets. We found that
MIMOSA2 identifies these metabolites with somewhat low sensitiv-
ity but very high precision, especially in the higher-complexity data-
set. Specifically, in Dataset 1, 50 of 85 simulated metabolites were
true microbiome-governed metabolites (i.e. at least 10% of variation
in their concentrations is determined by the microbiome as opposed
to external fluctuations). Using a significance cutoff of P < 0.1,
MIMOSA2-OLS recovered 19 of these metabolites with only 3 false
positives (86% precision), and MIMOSA2-rank recovered 17 with
only 2 false positives (89% precision). A large share of the metabo-
lites missed by either MIMOSA2 method (n ¼ 19) were not able to
be analyzed at all by MIMOSA2 due to a lack of linked non-
reversible reactions. MIMOSA version 1 had a higher false positive
rate, as it identified 32 metabolites as consistent with metabolic po-
tential of which 21 were true microbiome-governed metabolites
(65.6% precision). Using significant taxon-metabolite correlations
(q-value <0.01) as a basis for inferring microbiome-governed
metabolites resulted in similar performance, correctly identifying 30
of the 50 metabolites as microbiome-governed, with 2 false posi-
tives; as did MelonnPan (37 correct with 2 false positives) and the
random forest method (36 correct with 2 false positives). In Dataset
2, nearly all simulated metabolites were classified as true
microbiome-governed compounds: 193 of 221. MIMOSA2 again
identified these with high precision: 73 metabolites were detected by
MIMOSA2-rank, with 0 false positives (MIMOSA2-OLS, 68 with 0
false positives), out of 156 analyzed metabolites, while MIMOSA 1
identified 93 microbiome-governed compounds and 6 false positives
(93.9% precision), MelonnPan identified 99 with 4 false positives
(96.1%) and the random forest method identified 158 with 0 false
positives. We investigated factors that may influence MIMOSA2’s
ability to detect metabolites as microbiome-governed, and found
that larger numbers of taxa capable of producing or utilizing a
metabolite were negatively associated with predictability
(Supplementary Fig. S3). However, a subset of metabolites modified
by large numbers of taxa are still correctly identified as microbiome-
governed in both datasets, and the compounds linked to many taxa
and not detected are often abundant and universal metabolites, such
as phosphate, which are accordingly less likely to have substantial
interindividual variation attributable to microbiome composition.
The larger share of metabolites identified as microbiome-governed
by MIMOSA2-rank compared to MIMOSA2-OLS suggests that it
may be able to detect microbial contributions with higher sensitivity
in complex datasets. Overall, MIMOSA2 displayed high precision
and lower sensitivity than other methods in identifying microbiome-
governed metabolites. This result is somewhat expected, since
MIMOSA2’s sensitivity is constrained by the quality of reference re-
action information used to calculate metabolic potential.

A central advantage of MIMOSA2 is its ability to link metabo-
lites with microbial taxa and mechanisms that appear to be respon-
sible for the observed variation. Notably, MIMOSA2 only aims to
identify contributors for metabolites that are predicted well by its
model, and this prioritization of metabolites that are meaningfully
associated with microbial profiles is an important advantage of the
framework. Therefore, we focused our evaluation on each method’s
performance in identifying key microbial contributors to metabolites
for only the set of metabolites that were detected as microbiome-
governed by either MIMOSA2-rank and/or MIMOSA2-OLS (22
from Dataset 1, 78 from Dataset 2), although results of the same
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evaluation across all metabolites are shown in Figure 4D and E. Key
microbial contributors were identified with comparable sensitivity
and higher specificity and precision overall by MIMOSA2 than any
alternative approach at standard significance cutoffs (Fig. 4B and D).
Specifically, both MIMOSA2 methods outperform all other methods
across a range of significance thresholds, particularly at low recall
thresholds and in the noisier and more diverse Dataset 2 (Fig. 4C
and E), highlighting that methods optimized to predict metabolite
abundances from microbiome data (such as MelonnPan) may not be
optimal for precise identification of the key microbial players. We
further confirmed that the MIMOSA2-OLS and MIMOSA2-rank
models are not overfitted by performing the same evaluations on
datasets with permuted sample labels (Supplementary Text and
Fig. S2). Overall, these results, including MIMOSA2’s higher preci-
sion and lower sensitivity, can be understood in light of its reliance
on an approximate metabolic model that acts as a filter for spurious
associations, but cannot detect mechanisms that are not described
by the model.

3.2 MIMOSA2 results compare favorably with

experimentally inferred microbe–metabolite links in

insect microbiomes
We next applied MIMOSA2 to re-analyze a publicly available data-
set of taxonomic and metabolomics measurements from the gut
microbiota of the honeybee Apis mellifera (Ke�snerová et al., 2017).
This dataset consists of samples from medium-complexity natural
communities as well as monocolonization experiments, which
allowed us to compare MIMOSA2’s inferences of taxon–metabolite
links with independent experimental data. We applied MIMOSA2

to a set of 18 samples from gnotobiotic bees, each colonized with a
synthetic community of resident gut microbial strains. We then com-
pared MIMOSA2’s inference with metabolomics data from
microbiota-depleted (i.e. nearly germ-free) and monocolonized sam-
ples (Fig. 5A). Specifically, we used the metabolomics data from
microbiota-depleted and monocolonized samples to define experi-
mentally inferred microbiome-governed metabolites (EIMM) and
key contributing strains. We defined EIMM as those that differed in
colonized bee samples compared with microbiota-depleted control
bee samples. Similarly, experimentally inferred key contributor
strains (EIKC) were defined by comparing metabolite levels in bees
monocolonized with each individual gut strain with levels from
community-colonized bees, following the approach used in the ori-
ginal study (see Supplementary Text). We compared these experi-
mentally inferred metabolites and contributions with the results of
MIMOSA2-rank applied to just the set of 18 community samples
(Fig. 5A).

MIMOSA2 results were largely consistent with experimental
findings. The abundances of EIMM were predicted with higher
accuracy by MIMOSA2-rank than other metabolites (Fig. 5B)
(P ¼ 0.04, Wilcoxon rank-sum test), suggesting that MIMOSA2
correctly identified metabolites affected by microbial composition.
Strikingly, MIMOSA2-inferred key contributors were 6.02 times
more likely than expected by chance to also be EIKC (Fisher exact
test, P ¼ 0.0099). MIMOSA2-identified contributors were also
more predictive of EIKC than correlation-based contributors:
MIMOSA2 predicted EIKC with 23% precision and an area under
the ROC curve (AUC) of 0.76 among microbiome-governed metab-
olites, compared with 20.6% precision and AUC of 0.68 for correl-
ation analysis in the same set of metabolites. Across all EIMM

Fig. 3. Interactive results interface for the MIMOSA2 web application. In addition to making all processed results available for download, the application displays an inter-

active table in which each row summarizes the results for a single metabolite. The best-predicted metabolites are shown first, along with associated information including

model statistics, plots of the data and top contributors and lists of the top contributing taxa and reactions predicted via both synthesis and utilization
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(i.e. including those not identified as microbiome-governed by
MIMOSA2), microbe-metabolite correlations were strikingly not
predictive of EIKC, with a precision of 18.8% and AUC of 0.52 for
correlation magnitude across all EIMM (Fig. 5C), suggesting that
metabolite shifts in this dataset are not well described by univariate
associations. Filtering correlations based on genomic potential of
the associated strain only slightly improved these values (precision
21.7%, AUC 0.53).

The contributors identified by both methods are shown for
microbiome-governed metabolites in Figure 5D. These span a var-
iety of metabolic categories including vitamins, amino acid metabo-
lites, fatty acids and nucleoside metabolites, which were noted as a
particularly enriched category in the original study (Ke�snerová
et al., 2017). Notably, although some of these metabolites could the-
oretically be produced or modified by both the host and the micro-
biota, the MIMOSA2 analysis provides evidence that variation in
their levels is best explained by shifts in microbial metabolism. For
example, the metabolite best explained by MIMOSA2, anthranilate,
is an aromatic compound in the tryptophan biosynthesis pathway,
and variation in its levels is attributed to the microbes Lactobacillus
Firm-5 and Snodgrassella alvi, coinciding exactly with the contribu-
tors identified in the monocolonization data. It should also be noted
that discrepancies observed between experimental inferences and
MIMOSA2 findings for other metabolites are not necessarily due to
inaccurate inference by MIMOSA2, but could alternatively indicate
context-dependent metabolism, in which the metabolic effects of a

microbe differ between a community setting and monocolonized

samples. For example, the strong contribution to sn-glycerol-3-phos-
phate by Lactobacillus Firm-5 inferred by MIMOSA2 could indicate
a true effect, but one that occurs at lower levels in isolation than in a

complex community. Overall, these results show that insights on the
metabolic contributions of specific members of the honeybee gut

microbiota, which were obtained in the original study through ex-
tensive microbial depletion and monocolonization experiments, can
be partially recapitulated by MIMOSA2 using metabolic models

and interindividual variation across a small number of community
samples.

3.3 MIMOSA2 analysis of human gut microbiota

identifies potential microbial modulators of

disease-associated metabolites
To demonstrate the use of MIMOSA2 in a more complex setting,

we applied it to two large datasets describing the fecal microbiome
and metabolome of patients with inflammatory bowel disease (IBD)

and healthy controls (Franzosa et al., 2018; IBDMDB Investigators
et al., 2019) (Supplementary Text). Notably, although these datasets
have hundreds of samples, species and metabolites, MIMOSA2 runs

quickly (Supplementary Fig. S4), as the community metabolic net-
work model only needs to be constructed once and the workflow fits

a single parameter for each metabolite.
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A relatively small number of metabolites were identified as
microbiome-governed in these datasets (eight for Franzosa and six
for IBDMDB) (Fig. 6A and B), likely due to the heterogeneous and
dynamic gut environment. However, the identified compounds,
including lactate, fumarate and bile acids, are generally consistent
with prior knowledge, and some were reported as associated with
specific taxa in the original studies. Interestingly, the compounds
pyrocatechol and 4-methylcatechol are decreased in subjects with
IBD in both datasets, and both were identified as microbiome-
governed in at least one dataset. Catechol compounds, which may
be derived from the diet or from microbial sources and can have a
range of biological functions (Maini Rekdal et al., 2020), were pre-
dicted by MIMOSA2 on the basis of shifts in abundance of catechol
2,3-dioxygenase ring-opening enzymes in Streptococcus and
Enterococcus. Because the reactions catalyzed by these enzymes are
oxygen-dependent, this result suggests catechol depletion could be a
possible metabolic consequence of increased barrier permeability
and oxidative stress in IBD (Bourgonje et al., 2020).

Several compounds were also negatively predicted by metabolic
potential (Fig. 6A and B), including phenylacetate in both datasets.
While negative associations can occur for multiple reasons [as we

previously showed with MIMOSA version 1 (Snijders et al., 2016)],
in this setting a strong association may suggest that the metabolite is
microbiome-governed but the utilization and synthesis reactions and
their distribution across taxa may not be represented well by the
metabolic network model. Indeed, the KEGG model used for this
analysis included two phenylacetate production reactions and two
utilization reactions, distributed broadly across 44 different taxa,
suggesting that custom curation of the linked genes and reaction
annotations may improve the model.

4 Conclusions

Here, we have described MIMOSA2, a comprehensive software
framework for generating and evaluating mechanistic metabolic
hypotheses from microbiome–metabolome datasets. MIMOSA2
evaluates whether metabolite levels across a set of microbial com-
munities are consistent with the communities’ estimated metabolic
capacities. The software has multiple interfaces, is compatible with
several microbiome data formats, and can provide evidence of meta-
bolic mechanisms from varied microbiomes measured in their nat-
ural context. The MIMOSA2 framework can assess possible
microbial causes of differing metabolite phenotypes between health
and disease (Sharon et al., 2019), and can evaluate the metabolic
consequences of microbiome shifts across lifestyle or environmental
factors (Snijders et al., 2016).

MIMOSA2 supports a variety of analysis options with distinct
benefits and caveats. For example, 16S rRNA amplicon sequencing
datasets are cost-accessible and easy to link to reference databases,
but sequence divergence in this gene is imperfectly linked to meta-
bolic and phenotypic divergence (Bauer et al., 2015). Nevertheless, a
large share of functional information can be accurately predicted
from 16S rRNA amplicon datasets (Langille et al., 2013; Mallick
et al., 2019). Additionally, the use of metatranscriptomic data may
provide better information on metabolic activity compared to meta-
genomics or amplicon sequencing, but it also presents difficulties in
data acquisition and processing that may outweigh these benefits in
some settings (Yin et al., 2020). The best database options may be
similarly context dependent—e.g. the AGORA v1.0.3 database
(Magnúsdóttir et al., 2017) contains high-quality metabolic network
reconstructions, but only for 818 microbial species commonly found
in the human gut.

Although our validation analyses have demonstrated that
MIMOSA2 infers true microbe–metabolite links with high precision,
it does have several limitations. First, a strong statistical relationship
between CMP and metabolite concentrations can arise for reasons
other than direct microbial production, including selection,
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regulation and differences in host metabolism or the surrounding en-
vironment. This possibility is more likely if the MIMOSA2 metabol-
ic model is a poor representation of the core metabolic activities of
the community (i.e. in environments not well represented in refer-
ence databases). Moreover, MIMOSA2 currently uses a relatively
simple approach to calculate CMP. Therefore, its ability to detect
microbiome effects involving large numbers of taxa may be lower
(Supplementary Fig. S3), and it is not optimized to handle dynamic
changes in metabolic activity or non-monotonic relationships be-
tween microbes and metabolites. Finally, we have not fully eval-
uated how MIMOSA2 performance may be affected by other
properties of microbiome–metabolome studies, including sample
size and number of metabolites, although we expect these to have
relatively small effects on performance given the structure of the
model and workflow.

Notably, a diverse set of tools for microbiome–metabolome ana-
lysis are now available, with different approaches, aims and prior-
ities. These tools include machine-learning methods to predict the
metabolome from the microbiome (Mallick et al., 2019; Morton
et al., 2019), methods to construct detailed constraint-based com-
munity metabolic models (Baldini et al., 2018), resources to discover
links between biosynthetic gene clusters and specialized metabolites
(Schorn et al., 2021) and methods to annotate metabolites based on
microbial genes (Shaffer et al., 2019). MIMOSA2 fills a unique
niche, performing a generalizable and user-friendly analysis that
generates hypotheses about metabolic mechanisms by quantitatively
synthesizing microbiome and metabolome data with reference
knowledge.

Availability of data and materials

The simulated microbiome–metabolome datasets analyzed in this
study and the code used to generate them are available from http://
www.borensteinlab.com/pub/mmcorr/SimulationData.zip. The hon-
eybee microbiota data are available from the Supplementary Data S1
and S2 of Ke�snerová et al. (2017). Metadata and processed metabolo-
mics data from Franzosa et al. (2018) were obtained from the publi-
cation’s supplementary data, and metagenomic data were obtained
from NCBI SRA PRJNA400072. The data described in IBDMDB
Investigators et al. (2019) was obtained from the IBDMDB data por-
tal (https://ibdmdb.org/tunnel/public/summary.html). The processed
versions of the AGORA and embl_gems databases generated for use
in the MIMOSA2 software are available at http://elbo-spice.cs.tau.ac.
il/shiny/MIMOSA2shiny/refData/. The processed version of KEGG
data can be provided upon request with confirmation of a KEGG sub-
scription. The code for processing raw KEGG files is available at
www.github.com/borenstein-lab/MIMOSA2shiny.
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Ke�snerová,L. et al. (2017) Disentangling metabolic functions of bacteria in the

honey bee gut. PLoS Biol., 15, e2003467.

Kloke,J.D. and McKean,J.W. (2012) Rfit: rank-based estimation for linear

models. R J., 4, 57–64.

Langille,M.G.I. et al. (2013) Predictive functional profiling of microbial com-

munities using 16S rRNA marker gene sequences. Nat. Biotechnol., 31,

814–821.

Machado,D. et al. (2018) Fast automated reconstruction of genome-scale

metabolic models for microbial species and communities. Nucleic Acids

Res., 46, 7542–7553.
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