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" EROSION IN A CURVED PIPE

Woon-Shing Yeung

' Materials and Molecular Research Division
~ Lawrence Berkeley Laboratory
Unjversity of California
Berkeley, California 94720

ABSTRACT

The erosion in a curved pipe carryfng a gas-particle mixture has
been investigated. The fluid mechanics of such a system were solved
under éevekél idealized assumptions to obtain information about impact
velocities, impingement angle, and mass of particles striking per unit
time per unit area. The results have been presented in terms of the
maximum relative érosion rate at the éentra] plane of the curved pipe,
and it has been found that, under the assumptions used, the maximum

relative erosion rate E .  can be expressed as proportionate to_w32L for

X
large W and to w3-93zL for small W, where W is the initial flow velocity

of mixture and Z, is the Toading ratio (in.mass of particles/mass of gas).
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LIST OF SYMBOLS

Capital Letters:

A

o =2

o o O

vre]
VCELL

area element

distance traveled in cell

curvature ratio used in Reference 8

relative erosion per unit time per unit area

maximum relative erosion rate per unit area at the central
plane of the curved pipe

functional designation

column vector

Froude number

non-dimensional momentum equilibration length, wrm/a
local mass of particles striking per unit time per unit area
number f]oW rate of particles in particles/sec
number of particles in cell

impact vé]dcity

impact velocity vector

mean radius of pipe axis

Reynolds number

equation for pipe surface |

“initial velocity

characteristic velocity

relative speed of particle to fluid
vo1ume-0f cell

entry velocity of curved pipe flow

column vector
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A | particle loading in % by weight of particles in mixture
Z, . particle loading in mass’particle/maSS'Qas

 Small letters:

a pipe radius

dp particle diameter

(e Ly g¢) ~ unit vector for.toroid§1'cqordinates

f - number of partic]es‘per unitfvolume'of mixture
g acceleration due to gravity |

n _eXponent for Q in'erosion correlation

n .'outward;normal vector for pfbe surface

(n,m) grid designation at initial b]ane

(r,¥,¢) coordinate variables forvtoroidai system_
(r,0,0)  n6n-dimensiona1 cbordihatés for toroidal system
t ~ time coordinate | | |
t ndn-dimensiona] time coordinate

| (u,v,w) velocity components

‘(G}V}W) non-dimensional velocity components

W mean wear rate, used in Ref. 8

a jmpingement ang]é

8 . curvature ratio |
A avefégefinterparticle distance
p materia1 density

o " phase density at wall

c particle radius
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-

kinematic viscosity

viscosity

residence time in cell of particle stream
momentum equilibration time

gradient .operator

small quantity

particle volume

fluid variables

value relating to impact
index for particle trajectory
maximum value

initial conditions

particle variables
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INTRODUCTION'.

Erosion has been observed in various vessels and components that
handle gas-particle flow. Mény comppnents:fai] at an earlier stage
than expected because erosion is not adequately accounted for in the
design process.

_ The mechanisms and.factors ngernihg the rate.of-erosion have
attracted wide interest during thé.1ast decade. uFinnie]‘has derived a

formuTa relating thé volume removal of the eroded surface to several

paraméters of the eroding particles, among which are the impact velocity,

1mpingément angle and mass of particles striking the surface per unit

time and unit area. It is therefore necessary to solve for the particle
trajectofies and particle density at the surface being eroded in order
to'détermine accurately the rate of erdsidh. This éa]]s for investigation
ofythe fluid dynamics of the gas-particle two'phase f16w in certain

geometries, particular1y/flows-through a pipe bend, which is a common

'component in many piping systems.

- THEQRY

The problem of general gas-particle flow is notoriously complicated

‘and there are only-a few ana]ytica]_so]utions, most of which are for flow

over a semi-infinite f1ét plate. For a rather comb]ete bibliography,
seé Soo.2 The problem becomes more difficult when one considers the gas-
particle flow through a curved pipe. Heré the flow field becomes complex
because of the secondary flow resu]fing from the three dimensional

pipe bend.



In order to simplify the problem as much as possibie, the following
asSumptibns have been made:

(a) The particle loading is sufficiently small so that particle-
particle interaction is negligible compared with particle-fluid interaction.
This is true when the average interparticle distance is large compared
with the size of the particle. If we assume each particle is spherical
with a diameter dp, and denote the material density of the particles by
pp, the material density of the fluid by pf’ and the particle loading in
mass of particles per unit mass of fluid by ZL’ we can approximate the

average interparticle distance by

The material density ratio of the particle and;the fluid is about 1000
for many practical cases, so that the interparticle distance can be
| roughly 10 times the particle diameter for a loading ratio of about 1.
Furthermore,vsince the mixture is assumed di]ufe, the volume fraction of
the particle phase is much less than unity, and we can neglect the volume
occupied by the particles.

(b) The presence of the particies does not influence the gas flow
field. This is the so-called "one-sided momentum coupling" assumption

and is justified because the mixture is very dilute.
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(c) Of all the forces that act on the particle, only the aerodynamic
drag'force caused by a difference in velocity of'the-fluidvand pértic]e
phase is significant. The gravity force can be neglected since the

La

particle Froude number, defined as

Y

~ where Vp is a characteristic ve]bcity of the paftfc]e and o is the partic}e_
radius, is usually very large under normal circumstances. Other negligible
forcés-inq]ude the pressure force in the gas ffow field, the virtua]_mass
effect, and thevshear stress of a particulate cloud, etc. This assumption
greatly simplifies the equation of motion of the particle, which is rather

complicated in its general form.3

(d) The drag force is assumed to be given by Stokes Taw throughout
the analysis. This holds true when the particle Reynolds number, based
on the relative speed Vre1 of the particle to thevf1uid, is less than or

of order unity. Hence, we assume

“where Ve is the kinematic viscosity of the fluid.



(e) The gas-particle mixture enters the .curved pipe with a uniform
velocity. The particles are assumed to be in dynamic equilibrium with
the gas and are distributed uniformly through the gas on entering the. ‘ -
pipe with a loading ratio Z in percent by weight of particles in the
mixture. Furthermore, if the Dean number* of the flow is large, the
uniforﬁ_region is negligib]y_perturbéd,except.for a thin boundary layer |
near the wa]];4 We can assume the motion of thé gas is uniform throughout
the bent section of the pipe (i.e. a slug flow model). |

Having listed the assumptions used in- the Ana]ysis, we shall proceed
to formulate the fluid dynamics of the two phase flow system. We choose

a set of toroidal coordinates (r,p,¢) as shown in Fig. 1. Denote the

XBL78!-205

Figure 1. Toroidal coordinate system.

* Dean number is defined here as Re(a/R)]/z. See Fig. 1



velocity by u in increasing r-direction, v in increasing y-direction
and w in increasing ¢-direction. In addition, we shall use the subscript

f to denote values pertaining to[the fTuid phase and p to thé‘partic1e

‘phase. By virtue of assumption (e), we can write down the motion of the

fluid correspohding to a slug flow mode] as .

Ug = Ve = 0
- (1)
We = W
where W is the initial ve]bcity at ¢ = 0.

We are now in a position to formulate the particle phase. This can

“be done using two approaches: (1) the Eulerian approach, in which the

particles are treated as a continuum and conservation laws are formulated

accofdinQTy,s and (2) the Lagrangian'approach in which attention is fixed

upon a particular pahtic]é along its whole trajectory in the domain of

~interest. These two abproécheS‘lead’to_two rather different problems,

both mathematically and conceptua]iy. In most cases, the Eulerian
approach is morevdifficultvthan the Lagrangian approach. In the case of
a curved‘pipe,_thé Lagrangian technique ié fbund-to be easier than the
Eulerian counterpérf; at Teast’from entry into.the éUrve;ub to the first
particle impact. (The phenomenon of mu]tip]é réflgqtion within a curved |
pipe is problematic in both approaches;) We shall thus use the Lagrangian

approach in our analysis here and leave the Eulerian formulation to a
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separate report of the author. In view of assumption (c), the equations

of motion for a single particle in toroidal coordinates are

du W 2cosw v 2

u
P__P _P - __B (2)
dt R+rcosy r T
dvp wpzsinw upvp XE
at " R+rcosy e o T (3)
and
d W si -
wp‘+ Epypcosw ) vaps1nw ) w W @)
dt R+rcosy R+rcosy T _

taking into account the Coriolis and centripetal acceleration terms and
making use of Eq. (1). In Egs. (2) to (4), T is known as the momentum

equilibration time and can easily be shown to.be equal to

02
<2_‘ia> .
9 Mg
and R is the mean radius of the pipe axis, as in Fig. 1. Furthermore, for

a particle positioned at (r,y,9), the Lagrangian velocity components are

given by



]

00 ¢ o800 1 402

-11-
d : ,
Ty | (5)
dv _ 'p | -
% = 2 | (6)
W
d . _p v (7)
. R+rcosy ' .

(8)
w.. = W, r = Y‘O,w '_“PO

- where (ro,wo,O) is the initial position occupied by therpartic1e whose
trajectory we wish to compute. It is convenient for numerical analysis
purpoées to rewrite Egs. (2) to (7) in matrix form. Thus, introduce

column vectors Y and F, where
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u\
p
v
p
w
Yy = (P}
r
lp,
[ ¢ )
([ 2
w_ cos Vv u
v + P __P
R+rcosy r T
m
w 2sinw uv v
- - - b
R+rcosy r T
m
F = <
u_cos v siny
i-wj"’_p + L
Tn p \R+rcosy R+rcosy Tn

..SI_U< [=

-3

R+rcosy

Equations (2) to (7) can be rewritten as, in matrix form,

(9)

(10)
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dy |
a = E(tsY) (11)
subject to the ihitia];Conditions
Y=Y (12)

Equation (11) together with initial condition (12) must fheh be solved
numerically. In order to gain some quantitafive insight ihtO'the problem
before obtaining a numerical so]ution,'ft is always desirable to non-
dimenéiona]ize the governing equations. Therefore, we define the

dimensionless variables as follows



where a is the radius of
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= %
up=w
Vv

v = P
vp W
W

w = P
Wp W
t -
m
Foer
a
b= Y
b = ¢
the pipe.

Making use of (13), Egs. (2) to (7) then become

~

- L

ol a
o+ =l

[=8 (=N
%12
-+
h
5 l

m

W'zcosﬁ
B

S+rcosy

N
sin uv
Hp ST

v
+ D
r

+ PP
L6+Fcosw r

[ — _—— ., —
cosp-v_sin
up osy vp Y

S+rcosy-

(13)

(14)

(16)
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dr _ ~— | ’
i Lmup (17)
dt r . ' '
— tv
slg = _mp (19)

T = = . (20)
§ = g | | - (21)

It is thus shown that the particle trajectory is a function of two
dimensionless parameters, th and 6. Physically, tﬁ is the dimensionless
"momentum equilibration 1ength2 and 8 is the curvature ratio which dis-

tinguishes curved pipe flow from the corresponding straight pipe flow.
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We can expand tﬁ'in the simple case when T is given by Stokes drag

Taw as

T

Equation (22) c]eak1y indicates various effects that influence the
trajectory. Since th is a measure of how far a particle will travel
before it is adjusted to the gas flow field, the larger the value of tﬁ,
the larger the deviation of the particle trajectories from the gas stream-
lines. Fast moving (particle Reynolds number gg-will be large), dense
(SE-Will be.large), and large particles (o/a wi?] be large) will be‘
ex;ected to be influenced less dramatically by fhe gas flow field, and

their trajectories will deviate drastically from the gas streamlines.

EROSION CALCULATION

F1‘nn1'e1 has given a formula for calculating the relative erosion

rate per unit area of surface being eroded as

E = MQ" Fla)

F(a)

sin(2a) - 4 sinza d<]4°

Fla) = cosa/d o> 14° - (23)
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whefe M is the mass of particles striking per unit area and unit time;
Q is the magnitude of the impact velocity;
o is the impingement angle measured from the tangent plane of
.the impact ]ocation on the pipe wa]]?
E is thevré1ative erosion per unit time and unit area; and
n is tHe exponent of the impaét velocity and depends on the type
of particles and material of surface being eroded.

For a curved pipe,>the pipe surface is represented by the equation

'S = ra =0 . ‘ o (28)

Hence the normal to the pipe surface is given by the gradient of S, or
where V is giveh by, in toroidal coordinatesB,'

sr'l']F—a—_e +__]____.i.e ) (26)

v = 2
~ ar oY ~p  Rtrcosy 3¢ ~¢

ithe , e,
wit e, gw g¢
- If the impact velocity vector is denoted by Q, with components

being-the unit vector in r,y,¢ directions respectively.

represented by ui, vi'and'wi,then the angle between Q and the normal

vector p is just
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Q-n = 19l Inl cos(Q,n)
or

cos(g,g) = u,/Q (27)

In (27), cos(g,ﬂ) represents the angle between the impact velocity Q and
outward normal n. The impingement angle is simply the complimentary angle

of cos(g,g), or
a = sinl(u/Q) | (28)

Since Q and o can be easily obtained from the solution of Eq. (11) subject
to the initial conditions (12) for the calculation of E, it only remains
to determine M. If we knbw the phase density of particles at the wall,

then M is simply given by
M = 50 | | (29)

where.Eb is the phase density of the particles. The determination of Bh
from the solution of Lagrangian equations of motion is not trivial and

will be discussed in the next section.
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Numefical'So]ufiqn |

Having deciped_the kind of particle and gas one wants to work with,
the flow conditions and'the geometry of the pipe, ohe.can evaluate T
and other parameters nécessary for the.numerical solution of (11). The
initia] partic]e'distrfbution is discretized at a.finite number of
stafions with a corresponding particle flow rate depending on its
,represéntative Surface area, ‘as shown invFig. 2 by the shaded area. The

number flow rate of particles is found for'each station and is assumed

constant along the trajectory, as is done in Cir'owe.6

' XBL 782 - 203

Figure 2. Grid representation.

Since the initial distribution of particles is uniform, and is characterized
by Z% by weight of the particle in the mixture, the initial number density

of a particle at ¢ = 0 is then given by
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Z P A
feoorTy (30)
p

where T' is the volume of a particle
I o= 3w | (31)

Thus the number flow rate at station (n,m) is given by
N = fWA(n,m) (32)

with A(n,m) denoting the surface area with center at station (n,m). N
will be different for different stations because A(n,m) changes over the
initial plane ¢ = 0 in general. Having determined N énd solutions for
particle trajectories, for all n and m, we can approximate the wall
particle phase density Eh using a technique employed by Crowe.6 We

begin by dividing the immediate neighborhood of the pipe wall into cells

of volume represented by VCELL; one of such cells is shown in Fig. 3.
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Figure 3. Cell designation-at wall.

Thus VCELL is given by, for Ar, Ay, A¢ small,

VCELL = (R+acosy) (a) (ar) (Aw) (A9) (33)
From the partlc]e trajectories so]ut1on we can compute the tota] number
of part1c1es in a-particular ce]] by know1ng the res1dence t1me in the
cell of each part1c1e traJectory that 1ntersects the cell, and sum up atl
such trajectories. Thus if there are a total of i part1c]e trajectories

that intersect a particular cell, the total number of particles in that

- cell is

i : .
P = ZNka R (34)
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where Nk is the number flow rate of the kth p;rtic]e trajectory. This is
given by (32) because we can trace back the point from which this kth
particle trajectory originates and Ty is the corresponding residence time
of the kth particle path. The mean particle phase density over the cell

volume is then

o= e (35)

where mp is the mass of a particle. Since VCELL is necessarily finite‘
for numerical purposes, (35) does not give the actual local particle
phase density, which is defined at a point, or as VCELL approaches zero.
However, it is erroneous to assume that the smaller the VCELL we choose,
the closer the mean particle phase density will approximate the local
particle phase density, since we do not have a continuous distribution
of particles at the first place. (Recall the discretization procesé
‘at ¢ =0).

To illustrate this, suppose a uniformly distributed particle-gas
mikturé enters the initi&]'p]ane with a uniform velocity U. (Fig. 4)
We further assume that the particle paths are all perpendicular to the
initial plane and the boundary. The initial particle distribution is
then discretized to, say, 4 stations, each having a particle flow rate
of N particTes/sec. The thickness of the cells is Ay and we consider
unit depth in the direction perpendicular to the plane of the paper so
that the size of each cell is dependent on the size of ¢ we choose. For
this simple case, the residence time is the same for all particle paths,

and will be denoted by t. The following graph shows the effect of the

choice of 2 (hence the choice of VCELL) on Eﬁ at the boundary. (Fig. 5)
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We know from the conditions given that the particle phase density
- should be uniform everywhere, particularly at the boundary. Figure 5
shows that for £ <Ax, the normalized particle density distribution

Ayp

ﬁrﬁg' becomes more and more ﬁrregu]ar, and for 2=>Ax, we obtain the

p .
correct particle distribution at the wall. This simple example at least

suggests that the grid size at the boundary surface should be compatible
with the initial grid size and in no case smaller than the initial grid
size. Thus the accuracy of computing EE at the boundary surface isv
actually restricted by the initial discretization scheme and approaches
the real point particle phase density when one considers every individual
particle entering the initial plane. '

In the case of the curved pipe where the geometry is much moré
complicated than the example given above, the ﬁriterion for choosing
the grid size at the pipe surface is the same as mentioned above.
However, it is found useful to use a much larger grid size at the
boundary than that at the initial plane so as to obtain a smooth
distribution.

Let us return to the determination of M, thé mass of particles
striking per unit time and unit area at a certain location. Consider
the kth particlé trajectory intersecting the cell corfesponding to that

location. From Eq. (29), the value of M due to this kth stream is

m
Mg = (pp)ka = (V'EEL) PO | - (36)
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.where the subécript k refers to the kth particle stream and Pk is the
number of part1c1es in the cell due to the kth particle traJectory, as
in (34). The total mass of particles str1k1ng per unit time and unit

area 1s then approx1mate1y given by -

m ' '
. =
M = T E;;'quk | (37)

assuming theré'are i_partié}e streams intersecting the cell. ‘Simi]arly,
one can compute the re1ative eroSion rate due to each particle stream
that enters the particular cell by means of Eq. (23). Making use of (37)

we obtain

B~ (VCELL) an+] Flog ) o (38)

The total relative erosion rate is then approximately

VCELL qu+] Flog) (39)

It is important to use the‘ﬁorrect form of'F(ak) according to Eq. (23).

We shall use n=2 for computational purposes.
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Equation (39) is then used in conjunction with the numerical solution
of Eq. (11) (or the corresponding non-dimensional Eqs. (14) to (19)).
By varying the input data and the type of particles, one can easily
determine the behavior of the relative erosion rate against a certain
parameter, such as the entrance flow ve]ocity(w, and the loading ratio Z.
Since the most severe erosion prone area in pipe bends appears on the
central plane of the pipe,7 it is instructive .and practical tb confine
our attention to the central plane as far as erosion is concerned. Also
our analysis is restricted to the effect of the first impact of each
particle stream at the wall. Thisvregion constitutes%the primary wear

point and is important in the design process.

RESULTS AND DISCUSSION

Mason8 has measured the mean wear rate* for an an air-particle

mixture flowing through é 90° elbow of 2" square section, having a d/D**
ratio of 12. Hence, for comparison purpose, we choose a cﬁrved}pipe of -
diameter 2" and a curvatufe ratio 6 of 11. The physical properties of
the mixture are also obtained from Mason.8 S{nce We 5ha11 only present
the results on the centrél plane of the curved pipe, the results are

- also applicable to a squére sectioned pipe, pfovided the latter is
assumed to be a two-dimensional system. This is because we have assumed
that there is no secondary circulation of the flow field and a uniform

entry condition. Particles will thus stay in ‘the same plane throughout

* Defined as that quantity of powder which, when conveyed around a 90°
bend, results in unit depth of wear at the primary wear point.

** See Fig. 6 for D and d.
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the entire tréjectory. as shown ih Fig. 6.. Thus by choosing a pipe
diameter the same-as the side of the square section, the solution for
the particle equations of motion wi]T be»the same.fdr both cases.
vConseqqent]y, similarjconclusiqns can be_d?awnvfrom the central plane
$o1ution:ofithe‘curvea pipe and applied tovthé square éection. It
should be mentioned that the'definffipn of erosion rate is different in
the present case and in Mason)sl Here we shall cqnsider the maximum
relative erosion rate, denoted by Emax’ since this is the quantity which
interests us most. However, We can still'make a quantitative'comparison

" with Mason.8'

_T— Z//////éf—f -\\\\\\\<;////,Circular section
. ' W‘.L/Squcwe section

N - W v
- ) \ : f\\‘Centrdl plane

< — bs2 — N %\
| ' = P '
‘ B _ \ / pacrjt?g;se %r:)mz'(l:ihe

XBL782 - 206

Figure 6. Similarity of the central plane of the
circular section and the square section.
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Figures 7 and 9 all give the erosion patterns of the central plane
at a wide range of entry flow velocities. For velocities above 50 fps,
the‘erosion patterns are similar and all confined to the range between
¢ = 0 and ¢ = 36° approximately.. A simple calculation based on the
geometry of the particular curved pipe shows that ¢ = 33.6° is as far as
particles can travel before their first impact with the wall, assuming
the trajectories are straight lines. This sugéests that under the
prescribed conditions, particles with an initial velocity of above 50 fps
wi]]ltrave1 almost in a stfaight Tine and that there is negiigib1e bending
of paths due to the aerodynamic drag of the gas. If‘we calculate the
parameter Eﬁ from (22), we find that for W > 50 fps, Eﬁ = 12, which, as
explained previously, indicates that pérticleipaths will be re]ativeiy :
straight. The erosion pattern begins to stretch out to larger bend
angle (Fig. 8) as W decreases. The stretching effect magnifjes when
the velocity drops to 5 fps, and, below 5 fps; some particles migrate
out of thé bend without any impact with the wa]]O(Fig. 9). Figure 4
shows the variation of the maximum bend angle particles can travel with
respect to entry velocity W. For practical purposes, we can calculate
Eﬁ from the information in Fig. 10 and plot ¢max against‘tﬁ,rasAshown in
Fig. 11. Since it has been shown that there are only twd nondimensional
paraméters, tﬁ and &, in the governing gquations, Fig. 11 is therefore
applicable to all pipes with the same.d.

Figure 12 shows the variation of‘1og]0(E ) versus 1og]o(w).

max
It is found that at a velocity above approximately 8 fps, the slope

of the plots are uniformly constant at a value of 3. Below 8 fps,
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Figure 7 Variation of relative erosion rate per unit area
' along the central plane of the pipe wall.
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Figure 8 Variation of relative erosion rate per unit
area along the central plane of the pipe wall.
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the slope increases to about 3.93. This may be éxp1ained as follows.

In Eq. (39), we can express P, as

P = fH A (nm) T, (40)
The residence time can be approximated by
L (+1)

where Dk is the distance traveled by the kth trajectory acrbss the cell.

Substitute (40) and (41) into (39), we get

i .
m D . .
- p , kK antl
£ = yohr g HAdn g¢ G F) (@)

For relatively 1arge values of W, the effective momentum transfer of
partit]e-fluid interaction is 1ow2 and thus the impact velocity Q is

close to W. Hence
Q = W _ (43)

Furthermore, since the paths are relatively straight, therimpact angle
Oy should not differ much, and, if we assume in addition that the sum
% Ak(n,m)-Dk is roughly the same for those particle trajectories that

cause the maximum erosion rate, we immediately arrive at the relationship
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[ (44)

for W large and n=2. For low velocities, the particle paths are bent
more and more toward the gas streamlines, which are all parallel to the
pipe surface. This causes the impingement angle to decrease sharply
until it is less than 14°. Further lowering of velocities results in
rapid decrease of the value F(a). Also the momentum transfer between
phases is relatively effective for Tow ve]ocity,2 and the impact velocity
will then be less than the initial velocity by a considerable amount.
These two factors cause fhe Emax to drop more rapidly with W at the Tower
range of W than at the higher range. In this particular example,
Emaxm w3'93 for W< 8 fps
3 (45)

E =W

max for W > 8 fps

Next we shall consider the effect of varying the partig]e loading
parameter, Z(% by weight of particles in mixture). In Fig. 13 1og]0(Emax)
versus 10910(2) is plotted for two velocities, 50 fps and 200 fps. If
shows that for Z < 0.5, the curve (dotted ]ineS) can very well be approxi-
mated by a straight line with a mean slope of about 1.34. At Z > 0.5,
the curve takes off drastically, indicating the exponent on Z changes
with Z itself. However, if we convert Z to ZL mass ratio of particles
to gas in mixture and replot Iog]o(Emax) versus ]og]O(ZL), the result is

a straight Tine having a constant slope of 1 (Fig. 14). Thus we have

further shown that
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Emax * ZL (46)
and
- 1.34 |
Emax Y4 for Z < 0.5 (47)

At this point, the reader may wish to compare our results, given in
Egs. (45)—(47),}w1th the equation given by Mason8 for a dilute suspension

~ namely

N )
W25 T (48)
] |

‘where w is the mean wear rate used by Mason, which was defined'previous1y.

From the definitions Of'Emax and W, we know that Ema is inversely bropor—

§ : X
_Vtional to W. Thus our results predict a higher exponent for W and a
Tower exponent for ZL' However, they agree within a reasonéb]e order of

maghitude considering the simplicity of the analytical model.

CONCLUSION

" The maximum relative erosion rate per unit area (Emax) at the central
~ plane of a curved pipe of radius a = 2" and mean radius of pipe axis

R = 11" is given by:.
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for W< 8 fps

for W > 8 fps

W is the flow velocity of the gas-particle mixture on entering the pipe
and Z, is the particle lToading ratio (mass of particles/mass of gas).
The analysis and theory are valid only for a dilute suspension.

The effect of other parameters, such as &, pp, or o, can be similarly
analysed numerically. We shall not pursue these further here since a
quantitative trend can easily be deduced based on the theory already
presented. Although the model is highly idealized, it gives reasonable
results and provides a simple means of predicting the erosion pattern,
the maximum erosion rate, and the region where erosion is most severe.
It should be emphasized that the results are presented up to the first
impact with the wall. Mason8 indicated that secondary and tertiary wear
points can easily occur especially in curved pipes with large curvature
ratio and high flow rate. Any attempt to analyse beyond the primary wear
point calls for very complicated methods. However, it is indicated that
particles lose a considerab}e amount of kinetic energy upon impact] which
may reduce their potential for erosion downstream. In addition, there
is reason to believe that for loosely structured particles (such as coal
char particles), the chance of attrition upon impact is great. This
would further decrease tHe particles' abilities to erode. Consequently,
the analysis up to the'firsf wear point may in fact be adequate for

applicational purposes.
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'FUTURE_WORK

The present'method employs a slug flow model for the gas phase anhd
assumes that the presence of the particles does not affect the gas flow
field. This is perhaps the simplest hon-trivia] case for gés-paftic]e
- flow throygh a curved pipe. Furthermore, improvement of the so]utfon
calls for the removal of some of the idea1'assumptions_used in the present
paper. Tﬁeke are thrée possible improvements which are discussed in the
fo]iowing: | |

(1) Assuming the flow is fully developed in.thevcurved-pipe and
accounting for all other effects; such as the momehtum chpling between
the particle and the gas phase,Zviscosityveffect of the gas, gravity
4 effect; etc., enab]esione to eliminate one independent variable and the
resulting formulation becomes tWo-dimensional. However, it is questionable
/that a gaS-partjc]e mixture flowing in a curved pipe can ever attain a
fully developed state. Furthermore, the entry length in a curved pipe is
- not sma114'so that for a typica] 90°-pipe.bend,'the ehtry region may in
fact be the mofe important region of interest, especially when one is
interested.jn erosion estimétion.

(2) We still éssume that the presence of particies does not affect
the gas flow fié]d, but instead of using a slug flow model for the gas
flow field, we make use of the existing so]ution for the entry flow of
a viscous f]ufd’intO'a curved pipe, such as that by Yao;4 However, since
all such existing solutions are obtained numerita]]y,'it.presents a
difficﬁ]ty in the computer solution of the particle phase equations of
motion. Also those §o1utions are very approximaté and the'uncertainty 

~induced may be just comparable to using a slug flow model.
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(3) Formulate the problem in three dimensions, taking into account
the momentum coupling, viscosity effect‘and other effects which may play
an important role in the formulation.

Improvement (3) is thus the logical approach one should follow beyond
the present method. The feasibility of obtaining solutions from the
compiete formulation should be the main consideration in fo]]owing this
approach, apart from the fact that the correct formulation of a gas-
particle flow is quite difficult. Other questions which have to be
clarified before attempting such an approach are the nature of flow
(Laminar or Turbulent), the continuum approximation, and the boundary

conditions.
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