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ABSTRACT OF THE THESIS

Continuous MapReduce: An Architecture for Large-scale In-situ Data Processing

by

Christopher J. Trezzo

Master of Science in Computer Science

University of California, San Diego, 2010

Alex C. Snoeren, Chair

This thesis addresses a fundamental data management challenge faced by

cloud service providers: analysis of semi-structured log data generated by large-scale

compute infrastructure. This analysis is a crucial aspect of a cloud provider’s business,

creating competitive advantage by mining user behavioral patterns and ensuring effi-

cient use of resources. However, the amount of data produced in this environment is

rapidly growing. The current approach brings data to a central location before analysis,

incurring a significant cost and delaying results. As scale increases, the time and cost of

data migration alone will render this approach infeasible.

x



We present Continuous MapReduce (CMR), an architecture for large-scale in-

situ data processing. CMR is designed to be scalable, responsive, and available while

processing logs across thousands of data center servers. CMR extends the MapReduce

programming model to allow continuous queries over these data streams, building on

concepts found in distributed stream processing. The salient architectural features in-

clude an in-situ approach, incremental processing with sliding windows, and a relaxed

consistency model.

We have built a prototype CMR framework using Mortar, a distributed stream

processor, and evaluated it against current batch processing systems. Our results in-

dicate that this approach can improve result latency by 30% for batch and continuous

queries. In addition, CMR’s consistency model enables it to return results quickly in

the face of failure, and still maintain high result fidelity. These results indicate CMR is

a valuable tool for addressing the scalability issues of next generation data processing

environments.
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Chapter 1

Introduction

This thesis investigates an architecture for processing data distributed across

large data centers. Such a facility is a key component to running large cloud services.

The “cloud” is a current paradigm in the information technology industry allowing IT

solutions that were previously custom built by in-house experts to be offered by 3rd

party “cloud providers” as dynamically scalable services over the Internet. These cloud

providers offer services covering the entire technology stack including scalable hard-

ware infrastructure, development environments, deployment platforms, and finished

products. Businesses without IT infrastructure can use these cloud services to develop

and deploy their applications at a rapid pace.

This “Everything-as-a-Service” model has created a complex ecosystem of

Internet-scale web services. It is common for a single customer request to communicate

with over 50 different services, touching thousands of machines [14]. Service providers

deal with hundreds of thousands of customer requests per second [32], and loads will

only increase as the popularity of these services grow.

To handle this load in a cost effective way, cloud providers use commodity

hardware to build infrastructure at an enormous scale. One organization could have

hundreds of thousands of servers in tens of data centers spread across the world. Mi-

crosoft has recently opened data centers in Dublin and Chicago, each with a capacity

for 300,000 servers [1]. Amazon, Yahoo! and Facebook are all estimated to have over

1
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50,000 servers across their entire infrastructure [2]. Google has stated that they are

currently designing core services with a scale of 1 to 10 million servers in mind [14].

Scalable log processing is a crucial facility to ensure efficient use of infras-

tructure and to gain a competitive advantage. Service providers continuously monitor

many aspects of their system using semi-structured log data. Increased revenue can be

generated by analyzing logs of user click streams for behavioral patterns to provide tar-

geted ads. E-commerce and credit card companies analyze point-of-sales transactions

for fraud detection. Infrastructure providers use log data to detect hardware misconfig-

urations, improve load-balancing across large data centers, and gather statistics about

infrastructure usage patterns [7, 34, 38].

This semi-structured log data accumulates at a rapid rate throughout the dis-

tributed infrastructure, representing a huge data management challenge. Facebook pro-

duces over 25 terabytes of log data per day for analyzing user behavior and generating

targeted ads [34]. Personal communications with a developer at a large cloud provider

indicate that log rates can exceed 10 MB/sec per server. The current explosion of data

collection is increasing at a faster rate than Moore’s law, indicating that data manage-

ment and analysis will only become more difficult in the future [37].

1.1 Current approach to log processing

Companies such as Google, Microsoft, Yahoo! and Facebook use bulk-

processing frameworks, such as MapReduce [3, 15] and Dryad [24], to perform ad-hoc

analysis of their distributed log data. These frameworks abstract away the complexities

of writing distributed applications, such as parallelization, fault-tolerance, data distri-

bution, and load balancing. This abstraction allows businesses to capitalize on cheap

hardware, harnessing thousands of commodity machines to perform large data process-

ing tasks. They are geared towards local-area network (LAN) clusters, batch-oriented

workloads and optimized for throughput.

Currently, the dominant log processing architecture uses these bulk-processing
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Figure 1.1: Log processing with the store-first-query-later model. Apache Hadoop [3]
is used as an example.

frameworks in a traditional store-first-query-later model [17]. Companies migrate log

data from the source nodes to an append-only distributed file system such as GFS [18] or

HDFS [3]. The distributed file system replicates the log data for availability and fault-

tolerance. Once the data is placed in the file system, users can execute queries using

bulk-processing frameworks and retrieve results from the distributed file system. Figure

1.1 illustrates this model.

The current approach exhibits a number of key limitations in this environment.

Migrating log data into the distributed file system will take a prohibitive amount of

time for even batch-oriented analysis with loose time constraints. A simple back-of-

the-envelope analysis reveals this issue. Consider 10,000 servers (Facebook currently

harvests 30,000) producing log data at a rate of 10 MB/sec. This cluster generates 8

petabytes of log data per day. In our measurements, server-class machines can sink

data at a rate of 30 MB/sec. It would take 3,314 dedicated HDFS [3] nodes to sink

that amount of log data in one day. These machines are completely I/O bound, and are

unable to perform a significant amount of data processing at the same time. Thus, all of

their CPUs are left virtually idle. Servers are one of the largest fixed, depreciating costs

in a data center, putting a substantial price tag on data migration alone.

This fundamental limitation has broad ramifications on the fidelity and avail-
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ability of log processing queries. Companies will either scale back data analysis or use

more resources to keep up with the rate of production. Both of these options are expen-

sive. In the first case, scaling back analysis can sacrifice competitive advantage leading

directly to revenue loss. In the second case, increasing resource requirements can be-

come expensive, especially when added resources are ineffectively used. If we extend

our calculation to 100,000 machines generating 80 petabytes of log data per day, it will

take 33,140 dedicated servers to keep up with the rate of production. Eventually, the

cost of scaling resources using this method will become prohibitive.

In addition, transferring the log data represents wasted effort and inefficient

use of resources. A recent study [20] showed that these bulk-processing systems handle

a workload consisting of recurring data-driven queries that are highly selective. Most

queries recur daily, some weekly, and a few on a monthly basis. The queries are update-

driven, running soon after new log data is available and only touching the most recent

information. The queries use highly-selective filters, reducing output to 17% of the total

input data in some cases. Similarly, Facebook indicates that their queries filter out 80%

of accumulated log data [34]. The queries also show similarity to each other, leveraging

many of the same filters and subroutines supplied by libraries.

Finally, the delay of analysis caused by data migration handicaps applications

that require timely results. All of the previously mentioned applications can benefit

from lower result latencies. Server logs, user click streams and point-of-sales transac-

tions are all highly dynamic content. Online analysis of this data will create a more

agile system, allowing companies to react more quickly to important events, including

detecting fraudulent credit card activity, detecting when a group of servers is thrashing,

identifying security breaches, or detecting popularity trends of served content.

1.2 The case for Continuous MapReduce

These fundamental limitations of the store-first-query-later model highlight

the need for a different approach to large-scale bulk-processing. We propose Continuous
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Figure 1.2: Log processing with the query-then-store in-situ model.

MapReduce (CMR), a data processing framework to address large-scale batch-oriented

workloads where timeliness is still important.

CMR’s architecture has several properties that specifically address the limita-

tions of current approaches. It is scalable across large networks, enabling companies to

handle the next generation of data management challenges. It is responsive, allowing

more agile analysis of valuable log data. It is highly available, providing users with

results in the presence of failure. Finally, it is easily adoptable, creating a solution that

can be integrated into existing infrastructures.

These architectural properties are supported with several unique design

choices. CMR’s architecture uses a query-then-store model (Figure 1.2), taking dis-

tributed storage systems off the critical path for delivering results to a user. It processes

data in-situ, or on location, eliminating wasteful migration of unused data. It uses in-

network aggregation to save valuable bandwidth resources by reducing the amount of

data sent across the network. It uses a push-based model and continuous queries with

incremental processing windows to handle data as it arrives, accommodating the latency

requirements of update-driven recurring queries. The architecture also explores a re-

laxed consistency model that prevents an entire query from being blocked by a small

percentage of unavailable data. Lastly, CMR extends the original MapReduce program-
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ming model [15], providing a familiar environment for current MapReduce developers.

This allows developers to leverage their existing MapReduce code libraries for CMR

applications.

1.3 Contributions

This thesis makes the following contributions:

• An architecture for continuous in-situ data processing that is scalable, responsive,

and available in a distributed environment with tens of thousands of nodes.

• The extension of the MapReduce programming model to work efficiently in a

continuous environment using sliding windows and incremental processing.

• The exploration of a relaxed consistency model for large-scale data processing that

provides best-effort guarantees, allowing users to trade off between timeliness and

result fidelity.

• A prototype and evaluation of CMR’s architectural design points including the

in-situ approach, continuous processing with sliding windows, and a relaxed con-

sistency model. We use Hadoop, a popular bulk processing framework, and HOP,

a recent research project that adds pipelining to Hadoop, as points of comparison.

The remainder of this document is structured as follows. Chapter two pro-

vides background for the work presented in the following chapters. We discuss the

MapReduce programming model, current data processing frameworks, and the concept

of continuous processing. Chapter three presents the Continuous MapReduce architec-

ture and its important design points. Chapter four describes the mechanisms used in the

implementation of the CMR framework. Chapter five evaluates the framework’s perfor-

mance with respect to batch queries, incremental processing, and resilience to failure.

Finally, chapter six concludes the thesis.



Chapter 2

Background

This chapter gives an overview of related work as well as concepts that are

relevant to the presentation of Continuous MapReduce. Section 2.1 gives a description

of the original MapReduce programming model, which CMR’s model extends. Sec-

tion 2.2 describes Hadoop, the current state-of-the-art open-source MapReduce frame-

work. Many companies currently use Hadoop for large-scale log processing, making it

a good point of comparison for alternative approaches. Section 2.3 gives an overview

of alternative MapReduce frameworks and the strategies used in their design. Finally,

Section 2.4 briefly describes distributed stream-processing systems and how they relate

to CMR.

2.1 MapReduce programming model

MapReduce is a programming model for large-scale bulk data processing. It is

designed to simplify the parallelization of application logic enabling developers to eas-

ily leverage clustered resources. MapReduce consists of a few simple functions, making

the model easily adoptable for the average programmer. MapReduce is an imperative

programming model, and is based on the common map and fold functions found in lan-

guages like LISP. Finally, the model makes it easy for a programer to implement their

desired functionality without having to worry about failures in a distributed environ-

ment.

7
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map(String key, String value) {
// key: document name
// value: document contents
for each word w in value:

EmitIntermediate(w, 1);
}

reduce(String key, Iterator values) {
// key: a word
// value: a list of counts
int result = 0;
for each v in values:

result += v;
EmitOutput(key, result);

}

Figure 2.1: Word Count example using the map and reduce interfaces.

The MapReduce programming model in its simplest form consists of two

functions: map and reduce. Input data is thought of as a set of semi-structured input

records. First, a user-defined map function takes each input record and produces a set of

intermediate key-value pairs. These intermediate pairs are grouped together according

to their key and passed to a user-defined reduce function. Finally, the reduce function

takes each key and the set of associated values, and produces the final output.

For example, consider counting word occurrences in a set of text documents.

Figure 2.1 gives the pseudo code for both map and reduce functions. The map function

takes the document name as a key and the contents of the document as a value. It then

parses the contents and emits an intermediate key-value pair for each word in the docu-

ment. The intermediate pair contains the word as the key and a count of the occurrence

as the value. The intermediate pairs are grouped by word, and passed to the reduce

function. The reduce function sums the occurrences, and emits the word and associated

count.

In addition, MapReduce supports an optional combine function. The com-

bine is a user-defined function that aggregates intermediate records (with the same key)

to reduce data sent over the network. In the word count example, a combiner would

group all intermediate pairs with “the” as a key, and sum their values. The combine

function would emit one intermediate pair per intermediate key, <the,N>, where N

is the number of occurrences of “the” encountered in the input stream from that node.

If a programmer does not specify a combine function, all the intermediate values are

transfered over the network.
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MapReduce is an expressive programming model, and it is currently used for

a wide range of applications [4]. The model can express all relational algebra operations

as well as complex data mining and machine learning algorithms [5, 39]. In addition,

high level frameworks have been built for data warehousing and scientific computing

applications using MapReduce [10, 26, 30, 36].

2.2 Apache Hadoop

Hadoop [3] is an open-source implementation of the original MapReduce pro-

gramming model and system designed by Google [15]. Hadoop has grown in popularity,

and is used in industry by several companies including Yahoo!, Amazon, Facebook, and

IBM. As a mature, robust platform, Hadoop makes a valuable point of comparison for

alternative MapReduce frameworks such as Continuous MapReduce. This section gives

an overview of the relevant design points in Hadoop.

Hadoop’s framework automatically parallelizes computation in a distributed

and fault-tolerant way. This allows programers to avoid the complexities of writing

distributed applications enabling them to focus on program logic and leverage large

cluster resources at the same time. Hadoop is designed for a batch-oriented work load

and is optimized for throughput. It is geared toward large local-area clusters built with

commodity hardware. Fault tolerance is built into the software framework, handling

both machine and disk failure.

The Hadoop MapReduce framework leverages a distributed file system called

the Hadoop Distributed File System (HDFS). HDFS is an open-source implementation

of Google’s Distributed File System (GFS) [18]. This file system is meant to make

input data available to every node in the cluster, as well as a central place for writing

output from MapReduce jobs. The design of the file system is heavily optimized for

manipulating large append-only files and maximizing throughput.

A MapReduce job is a pair of map and reduce tasks executed over a distributed

cluster of nodes. Hadoop implements a MapReduce job as a pull-based three-phase ex-



10

ecution flow consisting of map, shuffle, and reduce phases. Data flows from the map

tasks to the reduce tasks. Figure 2.2 illustrates one complete MapReduce job in Hadoop.

Applications may link multiple MapReduce jobs together to implement complex func-

tionality.

At the beginning of a MapReduce job, Hadoop splits input data into a set

of chunks called input splits. In the first phase, called the map phase, each map task

processes a single input split. Each map task is executed in parallel on potentially many

physical machines. The map tasks apply the map function to their assigned input split,

and each task emits a set of intermediate key-value pairs. The map tasks group and

sort their local intermediate pairs based on the intermediate key, generating key-value

list pairs. If the user has implemented an optional combine function, then at this point

the map tasks apply the combine function to each key-value list pair. They partition

the pairs into R groups, where R is the number of reduce tasks in the reduce phase (a

statically assigned number). Finally, they spool the groups to a set of intermediate files

on local disk (one file per group).

The shuffle phase begins once all map tasks successfully complete. Each of

the R reduce tasks request one intermediate file from each map task. As the reduce tasks

receive intermediate files from the maps, they merge the contained intermediate pairs

based on the intermediate key.

The reduce phase begins once all reduce tasks receive, merge and sort every

intermediate file. Each reduce task processes the key-value list contained in the interme-

diate files in parallel. The reduce tasks apply the reduce function to each key-value list

pair and emit the final output for each pair. Finally, the reduce tasks write their output

to a file in HDFS.

The synchronous three-phase execution model and the use of files residing

on disk creates a simple fault-tolerance mechanism. Each phase requires data from

the previous one, and the phases do not overlap with each other (i.e. there is an implicit

barrier between each phase). The framework monitors the execution time of each task. If

there is a map task that fails or that is taking an abnormal amount of time, the framework
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Figure 2.2: Hadoop implements a MapReduce job as a three-phase execution flow made
up of the map, shuffle and reduce phases.

simply restarts that task. The exact same method is used for reduce tasks as well. This

can be done because a reduce task can not start until all map tasks have finished. In

other words, the reduce tasks must wait until all intermediate pairs are grouped, sorted

and spooled to disk before applying reduce functions.

Hadoop uses a precise, or fully-consistent, fault tolerance model. The system

will either return results corresponding to the entire input data set or will not return

results at all. A consequence is that one straggling map task can block the progress of

an entire MapReduce job [41]. As scale increases, a fully-consistent model might not

be suitable for batch-oriented jobs that still need to complete in a reasonable amount

of time. When dealing with hundreds of thousands of nodes, there is always a set of

nodes that is not available due to failure. This may hamstring MapReduce jobs if the

framework has to wait for all map and reduce tasks to complete successfully before

returning results. Thus, knowing when (and where) to restart tasks is a complicated

question that can have a large impact of job completion time [41].
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Table 2.1: Current MapReduce frameworks compared to CMR.

Continuous 
MapReduce

Batch Oriented 
or ContinuousIn-situ Best EffortLAN or WAN Stream-Based

Distributed File 
SystemLAN Cluster Best EffortCGL-MapReduce

Pub/Sub 
Messaging 

System
Batch Oriented

Shared-Memory 
System Shared buffersPhoenix Shared Memory PreciseBatch Oriented

HOP
Message passing 

using files 
spooled to disk

Batch Oriented or 
ContinuousLAN Cluster Distributed File 

System Precise

Execution 
ModelFramework Communication

Hadoop

Environment Fault Tolerance 
Model

Message passing 
using files 

spooled to disk
Batch OrientedLAN Cluster

Input Data 
Distribution

Distributed File 
System Precise

2.3 Alternative MapReduce frameworks

There have been several efforts to develop new MapReduce frameworks, each

one addressing different environments and applications. This section surveys alterna-

tives to the Hadoop framework; Table 2.1 compares these systems.

Closely related work includes the Hadoop Online Prototype (HOP) [13]. HOP

is an effort to improve Hadoop by avoiding the materialization of task and job output

at each phase through the use of pipelining. Pipelining is a technique where map tasks

partition and send intermediate key-value pairs individually to the reduce tasks as soon

as they are produced. This allows reduce tasks to group and sort intermediate data as

map tasks finish, improving utilization and job completion times. HOP also provides

online aggregation [21], which allows the framework to return tentative results to a user

before all tasks have completed. HOP provides a fully-consistent fault-tolerance model,

leaving a user the choice of using tentative results or waiting for the fully consistent ones.

Finally, HOP provides basic support for continuous processing. It uses a flush API to

force maps to transfer their current output to reduces. This can be done periodically to

simulate a bare-bones window specification.

However, HOP still uses a store-first-query-later model and does not address

the problem of data migration. Even though they support continuous processing, the
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data still has to be transfered into HDFS before any analysis can be done. Furthermore,

their continuous processing buffer does not function incrementally, introducing a large

amount of duplicate work when the buffer size is large and the reduce function is ex-

ecuted at a high frequency. Lastly, as scale increases, maintaining a fully-consistent

fault-tolerant model will increasingly delay results and reduce the availability of the

system.

Phoenix explores the effectiveness of MapReduce for parallelizing a variety of

applications on shared-memory systems [33]. Their runtime framework is designed for

multi-core and multiprocessor systems. They show that given a careful implementation,

for a large number of applications the MapReduce programming model can achieve

similar performance to the equivalent code written with P-Threads. Similarly to HOP,

Phoenix uses pipelining between phases to increase utilization and decrease job com-

pletion time. They provide fault tolerance across processor nodes, allowing the system

to deal with corrupt memory as well as power and temperature related issues.

Finally, CGL-MapReduce is a system designed specifically for scientific data

analysis [16]. These applications, such as clustering algorithms, require multiple

MapReduce jobs to iterate over a set of input data. CGL-MapReduce is built using a

publish/subscribe messaging system called NaradaBrokering [31]. NaradaBrokering is

a local-area peer-to-peer publish-subscribe system that avoids file materialization by re-

liably streaming intermediate data from the map tasks directly to the reduce tasks. They

use a distributed filesystem and check-pointing to provide fault-tolerance for map tasks,

and do not address fault-tolerance for reduce tasks. CGL-MapReduce is batch-oriented

and does not execute jobs over continuous streams of data.

In contrast to these systems, CMR avoids data migration through an in-situ

approach. CMR does not depend on a distributed file system for data availability. In-

stead, it uses a best-effort consistency model and provides accountable result fidelity that

can be controlled through result eviction polices. Finally, CMR adapts the MapReduce

programming model to support incremental processing of continuous queries. These

techniques make CMR a good system for bulk data processing in large-scale LAN and
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wide-area network (WAN) environments.

2.4 Distributed stream-processing systems

CMR’s architecture builds on a large base of research devoted to distributed

stream-processing systems (DSPSs) [6, 8, 9, 11, 12, 22, 23, 25, 28, 35, 40]. These

systems perform in-network aggregation over distributed data streams with real-time

or close to real-time processing requirements. There is a large diversity in the type of

DSPSs, ranging from LAN-oriented systems operating with a few complex nodes [11],

to WAN-oriented systems with potentially thousands of commodity nodes [28]. DSPSs

also provide the full spectrum of consistency models, using precise (fully consistent)

models for applications requiring 100% result fidelity and best-effort models for real-

time applications.

CMR adapts key DSPS concepts for large-scale bulk data processing. These

concepts include incremental processing of data streams using windows to bound com-

putation, per-tuple processing providing latency critical performance benefits, and a

selection of various consistency models to address different application requirements.

These techniques contrast sharply compared to the approaches used by current bulk

data processing systems. Finally, in CMR’s data center environment, the large volume

and highly distributed nature of data presents unique challenges that DSPSs have not

traditionally focused on.



Chapter 3

The Continuous MapReduce

Architecture

This chapter presents Continuous MapReduce (CMR), a new framework for

large-scale distributed data processing. First we describe the design goals of the sys-

tem, and then we present the CMR programming model. We discuss CMR’s ability

to process continuous streams of data, its use of in-network aggregation, and its best-

effort approach to fault-tolerance that ensures timely results in large-scale distributed

environments.

3.1 Design overview

The Continuous MapReduce framework is designed to execute ad-hoc queries

over large amounts of semi-structured log data. This section gives a brief overview of

the design goals and the techniques we propose to achieve them.

Scalable: The target environment may consist of tens of thousands of nodes.

A log processing architecture should execute queries spanning large portions of the data

center infrastructure without using unnecessary bandwidth or overly impacting the end

hosts. Our design leverages in-situ processing and in-network aggregation to minimize

the amount of log data sent across the network.

15
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Responsive: Unlike traditional batch-oriented MapReduce frameworks, a dis-

tributed log processor needs to accommodate continuous queries and streaming data

sources. For example, many queries are update-driven, recurring on a daily basis over

the most recent data. To support online analysis, these queries require results as soon as

possible. Like distributed stream processors [11, 6, 28], CMR uses continuous queries

and incremental processing windows to operate over streams of data. It avoids mate-

rialization of intermediate files to disk and the use of synchronous barriers by using a

pipelined and push-oriented design.

Highly available: Large-scale data processing over large networks connecting

commodity hardware, means operating in an environment where a certain percentage of

nodes will always be unavailable due to failures, misconfigurations or scheduled mainte-

nance. CMR employs a relaxed consistency model to prevent an entire query from being

blocked by a small percentage of unavailable data. It also uses an eventually consistent

algorithm to adjust for failed nodes and re-join restarted nodes.

Easily adoptable: CMR extends the original MapReduce programming

model, giving developers a familiar environment and allowing them to leverage their

existing data processing libraries. This model gives developers a simple programming

API that abstracts away the complexities of writing parallel applications in a distributed

environment. During design, we strived to adapt MapReduce to a continuous environ-

ment using the minimal number of changes possible.

3.2 Programming model

We have chosen to base the Continuous MapReduce programming model on

the original MapReduce model (Section 2.1). We support the original map and reduce

functions, an extended version of combine and reduce, as well as an additional function

called uncombine. These extensions to the model support incremental processing and

in-network aggregation. Users can submit standard MapReduce applications they have

written for other MapReduce frameworks, or write new applications that take advantage
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Table 3.1: A table comparing the MapReduce and Continuous MapReduce program-
ming models.

Raw Input → 
Record

Production of Final 
Result Reduce( )

N/A

Reduce( ) or 
Reduce( )[range, slide]

Input Data 
Processing Reader( )

Functionality

Production of 
Intermediate Keys

Combine( )

Map( )

<k, [Aggvn
, v1]> 

→ <k, Aggvn- v1
>

Combine( )

<k, [v1, v2]> → 
<k, v>

Record → <k, v>

<k, [v1, v2]> → 
<k, aggv1+v2

>

Continuous 
MapReduce Input/Output

Remove data from 
intermediate value

Reader( )

UnCombine( )

Aggregation

Map( )

MapReduce

of CMR-specific functions.

A quick glance at Table 3.1 reveals how similar the CMR model is to the orig-

inal MapReduce model. The reader, map and combine functions are exactly the same.

The reduce function can optionally specify a processing window, and an additional un-

combine function can be used for incremental processing. Otherwise, the models are

identical. These small modifications enable CMR applications to run in a continuous

fashion, without preventing users from running their existing unmodified MapReduce

code in CMR as well.

CMR uses processing windows to bound computation over continuous streams

of data. A CMR query returns results pertaining to each processing window. The reduce

function specifies the type of window, which can either be time windows or logical

windows. A time window defines its dimensions based on wall-clock, or real time. A

logical window specifies its proportions based on intervals of data. For example, if a

user wants to execute a query over data that was collected during a certain time period

(i.e. log data collected over the last 24 hours), then they would use a time window. If a

user wants to execute a query over a specific amount of data irrespective of the time it

was collected (i.e. the last 200 entries in a log, or the first 500 MB of a file), then they
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Figure 3.1: Three examples of a time processing window (PW): (A) overlapping win-
dows, (B) hopping windows, and (C) landmark windows.

would use a logical window.

Each processing window has a window range and slide. A window range

defines the size of a window, and a slide defines how often the window updates (i.e.

how often results are produced). For example, if a user wants to maintain a running

average for the last 24 hours of log data, which updates every hour, then they would

specify a time window with a range of 24 hours and slide of 1 hour. Alternatively, if a

user wants to process a file in 10 MB chunks, then they would specify a logical window

with a range and slide of 10 MB.

As Figure 3.1 illustrates, windows may provide overlapping, hopping, or land-

mark computation. An overlapping window has a slide that is less than it’s range, cre-

ating windows that overlap with each other and contain common data. This type of

window lends itself to incremental processing. A hopping window has a slide equal to

or greater than it’s range and do not overlap. A landmark window has a fixed slide and

does not specify a range. Each window cumulatively processes data added by the next

slide.

CMR uses the user-defined combine function to aggregate intermediate data

at several places throughout the data flow, reducing the amount of data sent across the

network. Similar to Dryad [24], CMR can specify multi-level aggregation trees (Figure

3.2 Part A) to aggressively aggregate data when possible. Each MapReduce partition

uses a separate aggregation tree with a reduce function placed at the root. Multiple

trees are used for multiple partitions. In comparison, Hadoop is restricted to a one-level
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Figure 3.2: Part A shows a multi-level aggregation tree corresponding to one MapRe-
duce partition. Part B illustrates the incremental processing of time windows using the
combine and uncombine functions.

aggregation tree (Figure 2.2).

Figure 3.2 Part B shows the combine function working with the uncombine

function to incrementally process a sliding time window. This ensures that overlapping

work completed during a previous window is leveraged to prevent duplicate effort. As

the window slides, the combine function adds new data and the uncombine function re-

moves expired data from the window. Currently, both Dryad and Hadoop do not support

incremental processing and recompute the entire window for each slide. For windows

with a large range and a small slide, incremental processing can greatly increase effi-

ciency of the system.

The effectiveness of incremental processing depends upon the characteristics

of the aggregate function implemented by the user in combine and uncombine. Ag-

gregate functions have traditionally been classified by the amount of state required to

represent intermediate data; these categories include distributive, algebraic, and holistic

functions [19]. Distributive functions are aggregated into intermediate values that are of

a constant size. The contents of these intermediate values is the final result for that sub-



20

set of the total data. Some examples of distributive functions include sum, minimum, or

maximum. Algebraic functions are aggregated into intermediate values that are of a con-

stant size. These intermediate values represents a subset of the total data, but are not the

data itself. Processing the intermediate data from each subset generates the final output.

Some examples of algebraic functions include finding the average, standard deviation,

or TopK of a set of integers. Finally, holistic functions require intermediate values that

are the same size as the input or larger. The intermediate data is not reduced in size

during aggregation. Some examples of holistic functions include finding the median or

sorting a set of data.

Finally, in-network aggregation and incremental processing are both optimiza-

tions. As such, if the users data processing functions are holistic or can not incorporate

data in a piece-meal fashion, then CMR will execute the query and process the data

without these features.

3.3 Relaxed consistency model

CMR’s best-effort consistency model enables the user to trade off between

timeliness and result fidelity. A user may specify a maximum amount of processing

time, or a minimum result fidelity, allowed for each CMR job. This allows CMR to

flexibly address use cases that have time requirements (e.g. a report must be delivered

no more than one hour after the data is generated), and use cases where a fully consistent

model is not required (e.g. an accurate estimation of the results can be made from

processing a small percentage of the total data). The policies that support this model are

described in Section 4.5.

We chose to use a best-effort approach because it has been shown to provide

higher availability and lower result latency when executing global one-shot queries in

a data center environment with 103 to 109 end hosts [29]. When operating at this scale

there is always a significant percentage of nodes that are not available at any given time.

In an enterprise network, this percentage varies periodically and can range from 15%
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to 25% depending on things like time of day and scheduled maintenance [29]. A more

relaxed consistency model allows results to be returned to the user even if the entire data

set is not available.

The CMR framework provides best-effort consistency guarantees using a gap

recovery model [22]. In a gap recovery model, the framework reports on the results that

it receives. Data missing because of a failed node or network loss is simply not included

in the final result. When deciding on the fault tolerance guarantees that CMR would

make, we considered several techniques used in research done on distributed stream

processors [22, 23, 35]. These mechanisms provide stronger guarantees, but impose

significant overheads.

There are several advantages to gap recovery at a large scale. First, it allows

CMR to continue processing local data asynchronously. A node can continue processing

data regardless of the progress made by other nodes. In a scenario where a percentage

of nodes is always unavailable, this model can improve result latency and prevent a

small amount of unavailable data from delaying the entire application. Second, best

effort consistency is highly scalable, requiring virtually no overhead. There is no extra

communication between nodes or replicas to maintain. This is attractive for queries that

only care about the most recent data, where late data that has been replaced by new

data is of no use. In addition, nodes do not have to store any extra state, making it

low impact on the servers. Finally, best effort consistency provides low latency failure

recovery. As soon as a node is rejoined into the query tree it can begin processing new

data immediately.



Chapter 4

Implementation

In this chapter we discuss the implementation of Continuous MapReduce in

detail. We give an overview of Mortar, the underlying system used to implement CMR,

and the modifications to its core functionality to support the semantics of CMR and

the MapReduce programming model. Finally we give a detailed explanation of the

components and policies specific to the CMR framework, including the mechanisms for

dealing with failure and the policies that determine when to deliver results to the user.

The major components of our prototype include:

• Implementation of the Continuous MapReduce API using generic map and reduce

Mortar operators.

• Addition of support for CMR framework internals that provide grouping, sorting,

and partitioning of key-value pairs.

• Modification of Mortar’s fault tolerant mechanisms including boundary tuples,

sliding windows, and tuple timestamps.

• Addition of new window eviction policies to accommodate CMR’s new result

delivery semantics.

22
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4.1 Leveraging Mortar

Instead of building Continuous MapReduce from the ground up, we decided

to leverage a pre-existing system called Mortar [28]. Mortar is a distributed stream

processing platform for building in-network aggregates across federated systems. Con-

sidering the functions that make up the MapReduce programing model, Mortar was a

natural choice to use as a substrate for building CMR; both combine and reduce are

typically aggregate functions and map is an in-network filter.

Mortar’s implementation is also in line with CMR’s design philosophy. It is

scalable, targeting an environment with up to tens of thousands of nodes and processing

data using an in-situ approach. It is responsive, designed for real-time applications and

placing a large importance on result latency. And it is highly available, using a relaxed

consistency model, a best-effort and gap recovery policy, to return results to the user

even when there are many failures.

Mortar is a data-driven system that processes data as it arrives. Each query

consists of a single operator, or aggregate function, which Mortar replicates across a set

of nodes to ensure that there is an operator at every data source. In Mortar, because it

processes data at the source, all operators are “pinned” [8]. This placement enables in

situ, or on location, processing of data. Any Mortar node can accept, compile, or inject

new queries into the system. Each query is defined by its operator type and produces

a single, continuous output data stream. Operators push, as opposed to the pull-based

method used in Hadoop, tuples across the network to other operators of the same type.

There are two types of queries in Mortar, local and in-network queries. A local

query is one that subscribes to and processes a local data stream at a single node. This

data stream is generated by a data source residing on the same Mortar node. An in-

network query is one that performs an aggregation of data across multiple nodes. Like

a local query it may also subscribe to a local, raw data source, or to the output of an

existing query. In-network queries aggregate the partial results of upstream operators in

the same query.
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These query types can be composed together to accomplish data processing

tasks. For example, one may write a local operator that filters CPU load statistics from

server log data. Mortar replicates and installs the operator across all nodes in the sys-

tem. Then, one may write an in-network operator that aggregates the filtered CPU load

statistics and calculates the average across the system. Mortar processes this log data

continuously as it is generated.

Like other stream processors that operate continuously, Mortar uses process-

ing windows to bound computation. Each query can create their own window specifi-

cation. A window specification includes a range, how much time or data to compute

across, and a slide, how often the window should be updated.

Mortar provides a simple API to facilitate programming aggregate operators

and enable incremental processing. An operator only needs to provide a merge function,

that the runtime calls to inject a new tuple into a window, and a remove function that the

runtime calls to remove tuples from a window. An operator adds data to the window as

it arrives, and removes data that is no longer within the window range. For example, an

operator calculating a sum would add new values and subtract expired values from the

aggregate sum.

Even though Mortar has many features that align with CMR’s design, it is

still necessary to modify Mortar’s core functionality to accommodate the MapReduce

programming model and CMR’s primary application of log processing. We modify

Mortar’s timestamp mechanism, eviction policy, fault-tolerant mechanism and the Mor-

tar Stream Language (MSL). We explain these modifications in detail throughout the

rest of this chapter.

4.2 The anatomy of Continuous MapReduce

A basic CMR job (a single MapReduce job) consists of two Mortar queries,

one that defines a map operator and one that defines a reduce operator. The Map operator

is a local query; it processes all the records a data source (log file) produces at a single
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maps = {"A", "B", "C"}
reduceRoot = {"C"}
mymap@local = Map(maps.source)
myreduce@reduceRoot = Reduce(mymap)[time=5000, slide=5000]

Final 
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Map
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Map

Reduce
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Figure 4.1: A basic CMR job consists of two Mortar queries. The MSL code that
generates this job specifies the type of operators, the set of nodes participating in each
query, and the window specification. A time window is specified with a range and slide
equal to 5 seconds (5000 ms).

node. The Reduce operator is an in-network query; it aggregates data across all the Map

nodes, grouping key-value pairs with a common key. We implement Map and Reduce by

implementing the merge and remove API for each operator type; these functions up-call

the user-defined map, partition, combine, uncombine and reduce functions (Section 3.2).

To define a query in Mortar, a user needs to explicitly specify where they run.

Map queries simply run on all the nodes that produce data (i.e. where the logs are). For

the reduce query, a user specifies where the query draws its data and where the system

should deliver the final aggregate result (i.e. the root of the query). Mortar will then

arrange the reduce operators into a tree based on the source and root nodes specified in

the query.

Figure 4.1 illustrates a basic CMR job constructed using Mortar with a map

and reduce query. Notice that because operators are pinned, an instance of a reduce is

placed at each mapper. This benefits in-situ processing as it gives CMR the opportunity

to actively filter and reduce intermediate data (using the optional MapReduce combine

function) before it is sent across the network.
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Figure 4.1 also displays the Mortar Stream Language (MSL) code used to

generate the query tree. MSL enables users to specify queries in a boxes-and-arrows

fashion, allowing queries to subscribe to one another. MSL has two types of statements;

a node set (i.e. maps and reduceRoot) and query definitions. In Figure 4.1 mymap is

a local map query placed on nodes in the maps node set. Myreduce is an in-network

reduce query with a root on the reduceRoot node that subscribes to the mymap query.

If an in-network query requires multiple reducers, additional nodes can be added to the

reduceRoot node set.

4.2.1 A Mortar operator

To understand how we implement Map and Reduce using the merge and re-

move API, we must first give a quick overview of a Mortar operator. An operator con-

sists of two major components, the pv-list and the time-space list. These components

preform two primary tasks; the aggregation of input data records (raw values) into win-

dow slides (partial values), and the merging of window slides across multiple nodes

(in-network aggregation). The pv-list and time-space list use the user-defined merge

function to perform both of these tasks. Figure 4.2 illustrates a Mortar operator in de-

tail.

The pv-list aggregates raw values incrementally based on the operator’s win-

dow specification. As the pv-list receives data tuples, it calls the merge function on each

tuple, aggregating the raw values into one partial value. This partial value represents

aggregated data for one processing window. As soon as the pv-list receives a raw value

belonging to the next processing window, it sends a tuple containing the partial value

to the local time-space list. The pv-list then advances its processing window and calls

the remove function to incrementally remove raw values that, according to the operator

window specification, are no longer in the processing window. The pv-list generates one

partial value per slide of a window.

Mortar operators use the time-space list to merge partial values originating

from themselves and upstream nodes. The partial values have an immutable timestamp,
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Figure 4.2: A Mortar node with two operators showing the pv-list and time-space list
components.

allowing the time-space list to aggregate values based on the processing window they

belong to. The time-space list does this by calling the merge function as partial values

arrive.

To account for differences in processing time and network congestion, the

time-space list maintains a collection of buckets, implemented as a sorted linked list,

where each bucket contains values for one open processing window. A processing win-

dow is open when a time-space list has received data belonging to that window, and the

time-space list has not evicted it yet. The time-space list continues to keep a process-

ing window open and aggregates partial values in its bucket until all partial values are

received from upstream operators or until the window violates Mortar’s eviction policy.

On eviction, the time-space list closes the window and pushes a tuple containing the

aggregated values to downstream operators.

Because Mortar is a real-time system, it uses dynamic timeouts for its window

eviction policy. The time-space list expires entries after a timeout based on the longest

delay a tuple experiences on a path to the current operator. Since CMR is geared toward

large-scale data processing, a significant amount of delay might be introduced due to

processing. This delay depends on the amount of data in each window, and might vary
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significantly between windows. As a result, CMR does not use the dynamic timeout

mechanism, and instead we implemented a set of different eviction policies described in

section 4.5.

4.3 Operator modifications

We provide the Continuous MapReduce API by implementing generic map

and reduce operator types with custom merge and remove functions. These custom

merge and remove functions call the user-defined MapReduce functions at the appropri-

ate time, and properly group the key-value pairs. We also modified operator internals

to provide features such as sorting and partitioning of key-value pairs and eviction of

processing windows.

4.3.1 The map operator

The map operator’s merge calls the user’s map function each time an upstream

data source pushes a tuple to the operator. The merge expects these tuples to contain a

single log entry, applies the map to the log entry, which either emits one or more key-

value pairs or nothing at all. We optimized the map operator by permanently assigning it

a tuple window specification with a range and slide equal to one. Furthermore, since the

map operator is always a local operator, we modified internal methods to push partial

values directly to downstream operators, allowing partial values to skip the time-space

list.

Mortar allows operators to push values to other co-located operators. To sup-

port multiple MapReduce partitions, we modified the map operator to partition key-

value pairs across subscribed reduce operators (one operator per partition). Figure 4.3

illustrates the new partitioning semantics. Previously, a Mortar operator would copy the

entire partial value to each subscribed operator.
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maps = {"A", "B"}
reduceRoot = {"C", "D"}
mymap@local = Map(maps.source)
myreduce@reduceRoot = Reduce(mymap)[time=5000, slide=5000]
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Figure 4.3: A CMR job containing two MapReduce partitions. A word count example
shows the partitioning of key-value pairs across multiple reduce operators. The MSL
code that generates this job is also displayed.

4.3.2 The reduce operator

The reduce operator handles all the in-network functionality of CMR includ-

ing the grouping, combining, sorting and reducing of key-value pairs. The operator’s

merge either calls the combine or reduce based on where the calling operator is located

in the query tree. The operator calls the reduce function if it is the root of the tree,

otherwise it calls the combine function instead. This prevents the reduce operator from

calling the reduce function before merging partial values from all available map oper-

ators. Grouping of key-value pairs is handled efficiently using a hash map. If the user

requires sorted final results, the reduce operator uses a sorted hash-map instead. This

maintains the grouped key-value pairs in sorted order (by key) throughout the system.

The combine and uncombine functions allow the pv-list to process data in-

crementally. The merge applies the combine function on each group of key-value pairs

just before the pv-list pushes the partial value to the time-space list. After the pv-list

advances the window, the merge will call the uncombine function to remove key-value

pairs that are no longer in the window.

When the time-space list receives a tuple, it inserts the tuple into the list ac-
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cording to the tuple’s timestamp. If a bucket for the window already exists, the time-

space list inserts the new key-value pairs into the bucket’s hash-map, merging them with

the pre-existing key-value pairs by calling combine. If a bucket does not exist, the time-

space list creates one and inserts the new key-value pairs. Once a bucket is ready for

eviction (based on the modified CMR eviction policies described in Section 4.5), the

contained partial value is sent to subscribed operators and the bucket is removed from

the time-space list. If the operator is at the root, then the operator’s merge calls reduce

on the window’s key-value pairs and the final results are delivered to the user.

4.3.3 Timestamp propagation

To adapt Mortar for a large-scale log processing application, we need to

change the way timestamps travel through the system. Mortar is a real-time data pro-

cessing system, and it processes tuples as they arrive at an operator. As new tuples are

produced, the operator treats them as an entirely new data stream and assigns a new

timestamp to the output tuples. As a result, the same data may be given multiple times-

tamps due to network congestion or processing time. This is perfectly fine in Mortar

as each query is logically separate. However, in CMR queries are logically grouped

together to form MapReduce jobs, and data must retain the same timestamp across mul-

tiple queries.

To accomplish this, CMR assigns a timestamp to data as it enters the system

(either a timestamp from the log entry, or the current real time). This timestamp is

immutable, and remains with the data as it travels through the system. If data is delayed

due to network congestion or processing time, the data must still be placed in the window

corresponding to its timestamp regardless of the amount of delay introduced by the

system. Therefore, the passing of real time no longer corresponds to forward progress.
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4.4 Dealing with delay and failure

CMR’s relaxed best-effort consistency model allows for a highly available

system, as well as accommodating for inconsistent data rates due to computational load

at the nodes or network congestion. CMR’s consistency model has two main facilities:

the boundary tuple mechanism and the reconciliation algorithm. Both of these facilities

assume a fail-restart failure model; a CMR node is either functioning correctly or not

functioning at all. Byzantine, or malicious, behavior is not addressed in this work.

4.4.1 The boundary tuple mechanism

Because CMR requires immutable timestamps and new eviction polices, we

modified and extend Mortar’s pre-existing boundary tuple mechanism. A boundary tu-

ple is a control message sent between operators that contains progress information. This

allows the receiving operator to distinguish between a pause in the data stream and a

failed node. Boundary tuples in CMR, as compared to Mortar, are now sent at different

times, contain additional progress information, and trigger new actions on reception.

Mortar’s original boundary tuple mechanism is similar in spirit to the bound-

ary tuples used in the Borealis system [9]. Mortar creates boundary tuples from the

pv-list, and the time-space list propagates them. For time windows, a boundary tuple’s

only purpose is to update a window’s completeness metric (a count of the number of

participants that contributed to the data contained in the window). They are always

piggy-backed with a regular data tuple. For tuple windows, boundary tuples indicate

that a stream has stalled and that the window must remain open in case new data arrives.

They also contain a copy of the window’s current partial value.

In CMR, boundary tuples are logically distinct from data tuples, and are sent

once every boundary tuple period for both time and tuple windows. The boundary tu-

ples contain progress information that allows users to specify a minimum result fidelity.

The boundary tuple period, the contents of progress information, and the way these

mechanisms are used in CMR are described in Section 4.5.
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Because boundary tuples in CMR are now logically distinct from data tuples,

when a time-space list receives a boundary tuple it does one of three things. If the

tuple corresponds to an existing open processing window, the time-space list updates

the boundary tuple statistics for that window (the time-space list maintains the most

recent boundary tuple timestamp received for each open bucket in the list). If the tuple

corresponds to a processing window that has not been open yet, it inserts a new bucket

in the list for that window. Finally, if the tuple corresponds to a window that has already

been evicted, the time-space list ignores the tuple.

4.4.2 The reconciliation algorithm

One of CMR’s design goals is to minimize result latency at the cost of lower

fidelity results. CMR is a best-effort system, and data that is lost due to failure is not

recovered. However, CMR does guarantee that queries will be installed and removed on

nodes in an eventually consistent manner.

CMR leverages Mortar’s query persistence and pair-wise reconciliation algo-

rithm. Mortar manages queries in a top-down fashion, allowing nodes who miss install

or remove commands to reconcile with upstream or downstream nodes. Periodically,

parent-child node pairs exchange summaries describing shared queries. They exchange

their current set of installed queries and their current set of cached query removals. A

centralized object store issues sequence numbers for each management command in a

query. These sequence numbers determine which query view is most up to date.

4.5 Eviction policies

This section describes CMR’s three eviction policies used to support the best-

effort consistency model described in Section 3.3. These policies were chosen to balance

between result fidelity and system responsiveness. They define how the time-space list

closes and evicts windows when delivering results to the user. The three eviction policies

include the timeout, fidelity, and failure eviction policies.
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It should be noted that CMR ensures processing windows are delivered to the

user in order by enforcing the in-order eviction of windows. The time-space list will

only evict its oldest open window; it will also ignore any data it receives pertaining to a

window that it has previously evicted.

Timeout Eviction: The timeout eviction policy delivers results based on a

maximum time limit for window completion. The time-space list maintains a timeout

period that represents the maximum time the system can spend processing the oldest

open window. If the timeout period expires, the time-space list evicts the oldest window

regardless of its completeness. The time-space list then restarts the timeout period for

the new oldest window.

Fidelity Eviction: The fidelity eviction policy delivers results based on a min-

imum window fidelity. We calculate window fidelity based on the current percentage

of the window that is processed and included in the results (i.e. the amount of total

progress). Users can specify a threshold representing the minimum fidelity required

for a window. Once a window reaches the minimum fidelity threshold, the window is

evicted.

The pv-list calculates progress information as it incrementally processes data.

In a time window, the pv-list calculates progress based on the timestamp of the most

recent data it has processed. For example, if a window ranges from 5:00 pm to 6:00 pm

and the pv-list has processed all data up until 5:30 pm, then the window is considered

to be 50% complete. Tuple windows are conceptually similar except tuples are the base

unit instead of time. The pv-list sends this progress information to subscribed nodes via

boundary tuples as described in Section 4.4.1.

The time-space list receives progress information from upstream operators and

merges it for each open processing window. The time-space list averages the progress

information across all participating upstream operators, and forwards this information

via a boundary tuple to the time-space lists residing on downstream subscribed opera-

tors. As described above, once the averaged progress of the oldest window reaches the

minimum fidelity threshold, the time-space list evicts the window.
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Figure 4.4: A time-space list snapshot as window [0, 5) is closed due to a failure evic-
tion.

Failure Eviction: The failure eviction policy enables CMR to remain respon-

sive when failure occurs. The time-space list maintains a set of contributing upstream

operators for each open window. The time-space list adds an operator to a set as soon

as it starts processing data for that window. The time-space list removes an operator

from a set if it is no longer processing data for that window (either due to completion

or failure). The time-space list monitors the cardinality of the oldest window’s set. As

soon as the oldest window’s set is empty (i.e. there are no longer any upstream operators

processing data for the oldest window), the time-space list evicts the oldest window.

These sets are maintained in a best-effort manner using boundary tuples and

are updated once every boundary tuple period. The boundary tuple period is specified in

real time (i.e. wall clock time), and determines the frequency at which boundary tuples

are sent (one per period). The boundary tuple period enables CMR to trade off between

system responsiveness and communication overhead.

Figure 4.4 is a snapshot of the time-space list at a root node subscribed to three

upstream operators. In this snapshot, the upstream operator at node C has failed 63%
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through window [0, 5) and has stopped sending boundary tuples. As a result, the time-

space list removed node C from the [0, 5) window set, reducing the set’s cardinality to

zero and qualifying the window for eviction. Once window [0, 5) is evicted, window [5,

10) will become the oldest window and the timeout will be reset to 60 seconds. At the

bottom of Figure 4.4, a chart illustrates the current progress of each upstream operator

at the time of the snapshot: C has failed, B is 85% through window [5, 10), and A is

25% through window [10, 15).



Chapter 5

System Evaluation

This chapter discusses the evaluation of our prototype implementation of the

Continuous MapReduce architecture. We focus our evaluation on the responsiveness

and the availability of CMR. We evaluate our prototype along three axis:

• Result latency relative to other batch processing systems (specifically Hadoop and

HOP).

• Scale and performance benefits of incremental processing and sliding windows

for continuous queries.

• Tradeoffs of a relaxed consistency model in the presence of failure.

We use Hadoop 0.19.1 and HOP 0.1 as points of comparison for the current

implementation of CMR. These systems represent a popular batch processing system

(Hadoop) [3] and a cutting edge modified version of Hadoop (HOP) [13]. We use default

settings for both systems unless otherwise stated. We use a local-area cluster consisting

of 16 Dell PowerEdge SC1425 workstations as a test bed for all of our experiments.

Each machine is equipped with dual Intel Xeon 2.8 GHz processors, 4 GB of RAM, and

a 1 Gbps network interface card. They all run Linux CentOS 4.5 and are connected to

the same 1 Gbps non-blocking switch.

For the primary test application, we implement a distributed grep using the

MapReduce programing model. Leveraging the MapReduce framework, distributed

36
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grep scans through an input data set in parallel and returns the total number of oc-

currences for a given regular expression. This represents a distributive application that

is commonly used in large-scale text processing.

We implement the appropriate functions identically for all three test systems

as follows. The reader function takes a specified input file and pushes the containing

text line by line to the map function. The map function takes each line and uses the

java.util.regex API to find occurrences of the user-specified regular expression. When

an occurrence is found, the map function emits a key-value pair with the matched pat-

tern as the key and an integer “1” representing the occurrence as the value. The combine

and reduce functions are identical, and group emitted key-value pairs together and sum

the occurrences. Additionally, we implement an uncombine function for CMR allow-

ing the distributed grep application to take advantage of incremental processing. The

uncombine function subtracts key-value pairs from the current partial value.

We use 48 GB of Wikipedia data as our data set throughout the evaluation.

For all experiments, our distributed grep application searches for occurrences of the

pattern “the” within this data set. We split the data into 16 files and spread it evenly

across all nodes. In the case of CMR, we place one data file on each node. In the case

of Hadoop and HOP, we load 16 data files into HDFS and allow HDFS to distribute

the data amongst the nodes via its block placement policies. We set HDFS data block

replication to one for the batch and incremental experiments, and three for the failure

experiment.

We limit MapReduce queries to a one-level tree with a single instance of the

reduce function, ensuring that all systems aggregate results to one location. We consider

results “delivered to the user” once the systems write them to permanent storage either

on local disk or HDFS. We place map operators on all 16 nodes during CMR experi-

ments. We leave map and reduce task placement in Hadoop/HOP up to the respective

system placement policies. These placement policies distribute data blocks and tasks

evenly across all 16 nodes.
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Figure 5.1: The job completion time of a batch MapReduce query with varying amounts
of data per node. Error bars indicate a 95% confidence interval.

5.1 Batch queries

To test CMR’s latency for processing large amounts of data, we compare it to

both Hadoop and HOP by submitting one-shot batch queries over varying amounts of

input data and recording the total job completion time. Job completion time includes

all the time from query submission to result delivery. For CMR, this includes query

installation time as well. These times do not include data migration time, assuming the

input data is already in HDFS.

Figure 5.1 displays the results of our batch query experiment set. We increase

the amount of input data per node by 512 MB, and average the results over five runs for

each data point. CMR consistently produces lower job completion times compared to

both Hadoop and HOP. One source of CMR’s performance gain is from its avoidance

of disk I/O as compared to Hadoop. CMR completely resides in memory, and does not
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Figure 5.2: The total result latency (i.e. the sum of job completion and data migration
time) of a batch MapReduce query. Error bars indicate a 95% confidence interval.

spool intermediate data to disk.

CMR shows comparable scalability to Hadoop and HOP scaling linearly with

respect to the data per node. With 3 GB of data per node, CMR shows a consistent per

node data processing rate of over 10 MB/sec, versus Hadoop’s 8.5 MB/sec and HOP’s

7.9 MB/sec data rate. CMR’s data rate meets or exceeds current log data accumulation

rates per node (see section 1.1). We expect CMR to continue this performance trend

until the data per window at each node exceeds the size of memory. At which point, its

performance will degrade. Approaches to relieving memory pressure are a subject of

future work (Section 5.4).

If we take data migration time into consideration, it is clear that CMR’s query-

then-store model can significantly increase the responsiveness of large scale data pro-

cessing. Figure 5.2 displays the total result latency as data per node increases. The total

result latency is the sum of job completion time and data migration time. We assume
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Table 5.1: The effectiveness of incremental processing with various amounts of window
overlap.
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that all nodes in the cluster are able to sink data to HDFS at a rate of 30 MB/sec in

parallel, and that data processing can not be pipelined with migration. We measured

this per node rate during previous experiments. At 3 GB of data per node, CMR delivers

results 35% faster than Hadoop. This performance gain will only improve as the amount

of data increases.

5.2 Continuous queries and incremental processing

Next we evaluate CMR’s ability to process continuous queries. For this set of

experiments we keep the window range equal to 512 MB of data and vary the slide. By

changing the size of the slide we see how the amount of common data between windows,

or reusable computation, changes the effectiveness of incremental processing.

As described in Section 4.3, the work required to incrementally update a par-

tial value for the next window can be divided into two distinct parts; removing expired

values that are no longer in the window, and adding new values that have just entered

the window. We instrument CMR and precisely record the amount of time an opera-

tor spends doing both of these tasks and average the measurements over the creation

of 5 processing windows. We vary the amount of overlap by steps of 25% from 0%

overlapping (hopping window) to 75% overlapping.

In these micro benchmarks incremental processing may not always be advan-

tageous. Table 5.1 displays the results from these experiments, which include the the

actual time spent on each task, the total amount of time spent on both tasks, and the
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Figure 5.3: The window completion times for a continuous MapReduce query.

expected number of operations required to update a partial value for each window spec-

ification. As the table indicates, if adding and subtracting values from the partial value

take relatively the same amount of time, it is advantageous to use incremental process-

ing for window specifications with more than a 50% overlap. Otherwise, incrementally

adding and subtracting values takes more operations than recomputing the entire win-

dow from scratch. However, using a smaller slide reduces the amount of data that must

be reprocessed by the map and transfered across the network to produce the next win-

dow.

Figure 5.3 shows the completion times for each window in a continuous query

with a range of 512 MB. We start timing as soon as we submit the query, which includes

query installation in CMR, and we assume that data is already in HDFS or on the local

hard disk. Each data point represents the total elapsed time at the moment the system

delivers results for that window. For Hadoop, we simulate the ability to handle continu-

ous queries by submitting back-to-back MapReduce jobs over different 512 MB chunks
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of data. Each CMR line corresponds to a different amount of overlap between windows

(i.e. the specifications displayed in Table 5.1).

The first thing to notice is that both the 25% and 50% overlapping windows

perform better than the 0% hopping window. This result is interesting because Table 5.1

shows that more work is actually being done in the 25% and 50% cases, indicating that

performance should be worse. Instead, the total elapsed time seems to correlate directly

to the size of the slide. This correlation is because as the size of the slide increases, the

map must reprocess and send more data across the network to the reduce operator. The

map must complete all of this reprocessing before the reduce can deliver results for the

next window. This processing time is the dominating factor compared to the time spent

adding and removing values from the window.

5.3 The impact of failure

Finally, we evaluate the effect failure has on the job completion time and result

fidelity for CMR and Hadoop. Our experiment consists of running a batch query with a

window range of 512 MB. We permanently fail an increasing number of nodes (ranging

from zero to six) for each repetition. We select these nodes at random, and fail all of

them once 50% of the map phase is complete. We record the job completion time and

the result completeness. We define result completeness as the percentage of input data

the results take into account. We assume the input data is already in HDFS or on local

disk.

Figure 5.4 displays the job completion times for both Hadoop and CMR re-

gardless of whether results are actually delivered. CMR’s relaxed consistency model

produces far lower job completion times and is unaffected by the number of nodes we

fail. Hadoop on the other hand, produces drastically higher completion times when we

fail a single node.

It is important to note that Hadoop can be tuned to classify a failed node based

on a maximum number of reconnection tries and a maximum backoff time. We use the
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Figure 5.4: The job completion time of a batch MapReduce query with varying amounts
of failure. Error bars indicate a 95% confidence interval.

default values for both parameters, but they could be tuned more aggressively. These

two parameters control the exponential back-off that a reduce task carries out when un-

successfully requesting data from a node. It is only after this back-off that the reduce

task notifies the job tracker and the node is classified as failed. However, if these param-

eters are tuned too aggressively, this will force Hadoop to falsely classify nodes as failed

and greatly increase job completion time when no failures are present. In a large-scale

homogeneous environment, we expect these parameters to be difficult to tune correctly.

CMR’s relaxed consistency model also produces more complete results in a

high failure environment. Figure 5.5 shows that as the failure rate increases, CMR

gradually returns less complete results directly corresponding to the amount of failure.

Since we distribute data evenly across all nodes during our experiments, each failed

node reduces CMR’s result completeness by 6.25%. Hadoop, on the other hand, does

not return anything if it can not return fully consistent results. In the case where we fail
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Figure 5.5: The result completeness of a batch MapReduce query with varying amounts
of failure.

five or six nodes, Hadoop’s job completion time increases by over ten times the failure

free case. In addition, for both these cases Hadoop does not return any results to the user

due to unavailable data blocks. In contrast, when we fail 6 nodes CMR returns results

that are 62% complete in the same amount of time as the failure free case.

Hadoop can not successfully complete the MapReduce job in the high failure

cases because of unavailable data blocks. Even though each data block is replicated

three times and spread across multiple data nodes, there is still a chance that all replicas

of a single data block may fail. Once a single data block is unavailable, Hadoop’s fully

consistent model prevents the system from returning any results. To maintain usability

of the system in a high failure environment, Hadoop administrators are forced to increase

data block replication. As the accumulation of log data grows, replication may not be

feasible.

5.4 Future work

Based on our evaluation of Continuous MapReduce, there are several promis-

ing areas that we would like to explore in future research. One promising direction is

the use of window panes to relieve memory pressure and to return early results to the
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user [27]. In this approach, CMR divides overlapping windows into disjoint panes, or

sub-windows, and processes them separately. As soon as an operator finishes processing

a pane, it pushes the pane to subscribed operators. The root reduce operator aggregates

all panes that belong to the same window. This technique relieves memory pressure at

in-network nodes, and would allow CMR to process windows that exceed the size of

memory without materializing intermediate data to disk. The use of panes also facil-

itates the delivery of early results to the user by enabling the root reduce operator to

cumulatively process panes as they arrive. Finally, the use of panes would also provide

higher utilization throughout the system, which would presumably reduce query latency

as well.

Some other promising areas include dynamically scaling the number of map

and reduce operators to accommodate changes in data rate for continuous queries, eval-

uation of different data processing applications, and exploration of CMR’s performance

in wide-area networks spanning multiple data centers.



Chapter 6

Conclusion

This thesis presents Continuous MapReduce (CMR), an architecture for paral-

lel data processing in a large data center environment. This architecture adopts an in-situ

approach to avoid costly data migration. This approach allows for scalability, respon-

siveness and availability in a large heterogenous setting where node failure is always

present. CMR accomplishes this by taking distributed file systems off the critical path,

handling continuous queries efficiently using incremental processing, and relaxing the

consistency model.

We implemented a new prototype MapReduce framework for data processing

that uses the CMR architecture. The prototype is implemented on top of Mortar [28],

and adapts mechanisms and techniques from distributed stream processors to enable

bulk processing over continuous streams of data. We have modified a substantial amount

of Mortar including its programing API, timestamping mechanism, and data eviction

policies to provide the expected semantics of a MapReduce framework.

We evaluated the CMR prototype and compared it to a production MapReduce

framework Hadoop [3], a popular open-source project developed in industry based on

Google’s proprietary MapReduce implementation. We showed that CMR can signifi-

cantly improve result latency not only when failure is present, but when batch process-

ing in a failure-free environment as well. We highlighted incremental processing as an

effective way of reusing computation by leveraging common data between processing

46



47

jobs. We also displayed that in a high failure environment, CMR maintains a low result

latency with accountable fidelity.

Finally, in this thesis we have created a foundation for more research inves-

tigating large-scale distributed data processing with Continuous MapReduce. We have

identified future research directions to pursue including the use of panes [27], the eval-

uation of different data processing applications, and the exploration of CMR’s perfor-

mance in wide-area networks spanning multiple data centers. Continuous MapReduce

is a promising approach to large-scale distributed data processing and will hopefully

enable cloud providers to address the next generation of data management challenges.
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