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Spatial and spectral evolution of turbulencea…
Ö. D. Gürcanb! and P. H. Diamond
Center for Astrophysics and Space Sciences and Department of Physics, University of California
at San Diego, La Jolla, California 92093-0424

T. S. Hahm
Princeton Plasma Physics Laboratory, Princeton, New Jersey 08543-0451

!Received 3 November 2006; accepted 22 December 2006; published online 21 March 2007"

Spreading of turbulence as a result of nonlinear mode couplings and the associated spectral energy
transfer is studied. A derivation of a simple two-field model is presented using the weak turbulence
limit of the two-scale direct interaction approximation. This approach enables the approximate
overall effect of nonlinear interactions to be written in the form of Fick’s law and leads to a coupled
reaction-diffusion system for turbulence intensity. For this purpose, various classes of triad
interactions are examined, and the effects that do not lead to spreading are neglected. It is seen that,
within this framework, large scale, radially extended eddies are the most effective structures in
promoting spreading of turbulence. Thus, spectral evolution that tends toward such eddies facilitates
spatial spreading. Self-consistent evolution of the background profile is also considered, and it is
concluded that the profile is essentially slaved to the turbulence in this phase of rapid evolution, as
opposed to the case of avalanches, where it is the turbulence intensity that would be slaved to the
evolving profile. The characteristic quantity describing the evolving background profile is found to
be the mean “potential vorticity” !PV". It is shown that the two-field model with self-consistent
mean PV evolution can be reduced to a single Fisher-like turbulence intensity transport equation. In
addition to the usual nonlinear diffusion term, this equation also contains a “pinch” of turbulence
intensity. It is also noted that internal energy spreads faster than kinetic energy because of the
respective spectral tendencies of these two quantities. © 2007 American Institute of Physics.
#DOI: 10.1063/1.2436848$

I. INTRODUCTION

Motivation

It is a common observation that a localized patch of
sufficiently developed turbulence tends to spread and entrain
laminar or less turbulent regions when left to its own devices
!see Fig. 1". This is a result of the “turbulent action” itself. In
simple terms, the “whirling motion” !i.e., mixing" due to
turbulence causes the turbulence intensity to be spatially re-
distributed and homogenized. Simple as it may sound, a
complete description of this observation requires a full un-
derstanding of the turbulent phenomena. Hence, simplified
“thermodynamic” models1 in the form of familiar K−! or
K−" models that describe the evolution of macroscopic ob-
servables in turbulent evolution are frequently used in engi-
neering applications. Moreover, since most of the analytical
works on turbulence theory deal with spectral instead of spa-
tial evolution—and boldly assume homogeneous and isotro-
pic turbulence—they are not of much help in this problem.
Nevertheless, self-similarity, which is at the heart of these
analytical works and of spectral evolution, is still a solid
foundation upon which one can build.

The spreading phenomenon of “mixing of turbulence by
turbulence itself” consists of various identifiable ingredients.
First of all, assuming the turbulence is driven in a localized

region in space, it is possible to distinguish “leaking” of
turbulence intensity from the unstable region !where the tur-
bulence is driven" into the stable region !where the free-
energy source is absent". This is in a sense “the first step”
and is what we usually mean by turbulence spreading. Then
this “leaking” turbulence in the stable region causes the sta-
bility boundary itself to be modified !sometimes called “pen-
etrative convection”". Here we consider the case in which the
stability boundary moves as a result of turbulence spreading
and the resulting Reynolds stresses. The opposite case in
which the turbulence evolves as a result of the evolution of
the profile is usually associated with avalanches. Note also
that for Kelvin-Helmholtz type instabilities such as the one
shown in Fig. 1, the free-energy source is the sheared flow
itself. This makes it slightly more difficult to separate these
two ingredients.

Here we will discuss both of these ingredients and intro-
duce a self-consistent model of intensity/profile evolution
that takes into account both the turbulence intensity and the
mean density or temperature profile. In particular, we will
use a two-field physical model, the Hasegawa-Wakatani
model, and recognize that the characteristic degrees of free-
dom for the self-consistent model are the kinetic energy
spectrum, the internal energy spectrum, and the mean poten-
tial vorticity profile. Notice that for a mean-field Hasegawa-
Wakatani system, the radial gradient of mean vorticity #i.e.,
"2#̄!x"$ may also act as a free-energy source for the fluctua-
tions as well as the radial gradient of mean density #i.e.,

a"
Paper KI1 2, Bull. Am. Phys. Soc. 51, 174 !2006".

b"Invited speaker.
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n̄!x"$, and thus combining the two in the form of potential
vorticity is both highly desirable and natural.

In the context of magnetically confined plasmas, turbu-
lence spreading was initially pointed out by Garbet et al.2 in
a detailed study, which compared the efficacy of spreading
via nonlinear coupling with that via linear coupling of poloi-
dal harmonics due to toroidicity effects. They concluded that
while nonlinear effects tend to result in diffusive spreading,
toroidicity effects lead to convective spreading. It should be
noted that in this work, the nonlinear case examined was one
of strong turbulence without linear growth and nonlinear
damping.

Meanwhile, following a surge of interest in avalanches
and self-organized criticality, a nonperturbative bivariate
Burger’s equation model of transport of turbulence intensity
and profile evolution was proposed.3–5 This constitutes a
simple model of the spatial and spectral evolution of turbu-
lence intensity, applicable both to the internal transport bar-
rier !ITB" formation problem as well as to spreading. Note
that the spatial evolution in this model involves the radial
direction while the spectral evolution focuses on the poloidal
wave number k$.

The current interest in the subject was sparked by obser-
vations of turbulent fluctuations in locally stable or damped
regions of both simulations6,7 and physical experiment.8 Re-
cently, a Fokker-Planck-type model of intensity transport
was applied to the spreading problem.9–11 This model, which
was very much in the vein of K−! models of fluid
turbulence,12 described the evolution of %!x , t", the turbu-
lence intensity field, using a reaction diffusion equation simi-
lar to the well-known Fisher equation.13,14 It was shown that
an exact solution of this model exists,10,15 which is a propa-
gating ballistic front at a speed given by the geometric mean
of diffusion and linear growth #i.e., v= #&D!%" /2$1/2, where &
is the growth rate and D!%" is the turbulent diffusion coeffi-
cient of turbulence intensity$. Recently, self-consistent pro-

file evolution within this simple model has been studied in
one and two dimensions,16 confirming these basic tenden-
cies. Also, a two-field version was derived, where various
classes of triad interactions were systematically studied15,17

and it was concluded that large-scale streamers !i.e., kx%kz
%0, ky's(1 modes" are the most efficient in causing the
turbulence to spread !see Fig. 2". This also suggests that in
an inhomogeneous three-wave interaction picture, zonal
flows, which shear apart these structures, do not enhance but
rather diminish spreading in accord with the familiar intu-
ition about zonal flows. When zonal flow damping is in-
cluded, however, spreading results due to the damping of the
zonal flows. Recent numerical simulations18 suggest that this
is the case also when the damping on the zonal flows is
collisionless or externally imposed. Note that the model that
we suggest here takes into account the evolution of the po-
tential vorticity !PV" profile and a mean PV gradient may
generate local “linear” instability either via the usual drift
instability or via a Kelvin-Helmholtz instability. This type of
instability of the mean PV profile includes elements from
collisionless !turbulent" damping of the mean flows. We ar-
gue that it is important to distinguish these and the “zonal”
flows.

It has also been suggested that turbulence spreading is
linked to the breaking of the gyro-Bohm scaling observed in
computer simulations.19–21 In this context, it is also useful to
identify a range of length scales associated with the nonlocal
dynamics of turbulence spreading. Despite recent progress in
the area, the current understanding of the fundamental dy-
namics of turbulence spreading as a result of nonlocal, non-
linear mode couplings is still not satisfactory. In particular,
the relation between the mechanism of spreading and those
of nonlinear wave interaction processes in drift wave turbu-
lence is not well understood.

Here we present a simple model of nonlinear turbulence
spreading derived using the paradigm of weak wave turbu-
lence. This is in contrast to the classical problem of the spec-
tral evolution of fully developed turbulence or the formation
of the linear eigenmode structure. The model is based on a
gradient diffusion hypothesis derived rigorously from a sta-
tistical closure based on resonant three-wave interactions in
an inhomogeneous background. We also consider the case in
which the background profile self-consistently evolves with
the turbulence, and we show that during the rapid evolution
corresponding to turbulence spreading, the tendency to bal-
listic spreading also extends to the profile. Here the mean PV
is used in order to describe the evolution of the background

FIG. 1. Turbulence spreading observed in a smoke over a chimney. It is
curious that a straight line is almost a perfect fit for the expansion of the
boundary.

FIG. 2. The comparison of Richardson cascade and turbulence spreading via
mode couplings in two dimensions related to dual cascade.
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profile22 instead of density or mean electric field, since total
PV !i.e., q=ln n−"2#" is exactly conserved by the
Hasegawa-Wakatani dynamics. This allows the local “linear”
instabilities of the mean flow to be incorporated into the
self-consistent profile evolution conveniently. Note that one
can write for the Hasegawa-Wakatani system by subtracting
the mean vorticity equation from the mean density equation,

Dtq̄ + )"2q̄ = " · &!ẑ * "#̃"q̃' . !1"

In view of the weak turbulence approximation, we con-
sider only resonant interactions. We show that it is possible,
within this framework, to systematically study the mecha-
nism of spreading in weak, wave turbulence and to assess the
relative importance of different classes of wave-wave inter-
actions. This is accomplished by first examining the general
structure of the intensity flux and then constructing a trans-
port model for the multicomponent fluctuation energy
density.

Note that a similar formulation could be extended to the
strong turbulence case. Our experience with strong turbu-
lence suggest that the resulting “renormalized” model would
have the same form as the weak turbulence case, with non-
linear damping and nonlinear diffusion terms being propor-
tional to the turbulence amplitude instead of intensity.

II. METHOD AND FORMULATION

A. Turbulence dynamics

Tokamak plasmas usually have weak wave turbulence.
This is manifested by the scaling of the saturation level and
the diffusion coefficients with intensity rather than amplitude
!i.e., D%(e# /Te(2 instead of D%(e# /Te(". Since the waves
in magnetically confined systems are necessarily anisotropic,
wave turbulence also tends to be anisotropic. Moreover, the
turbulence spreading problem inevitably deals with inhomo-
geneous turbulence. As a result, the successful paradigm of
fully developed turbulence, where the coupling of small
scales to the large scales is modeled as an effective eddy
diffusivity, can no longer be employed. Instead, we use a
simple paradigm based on scale-separation and two-scale
resonant interactions.

The first step in the formulation of this problem is to
compute the fluxes of turbulence kinetic and internal energy
induced by three-wave interactions. In order to do this, we
use a Markovian two-scale direct interaction approximation
!TSDIA",23 assuming weak turbulence and weak mean flows.
Here the fact that the turbulence is weak allows us to com-
pute the turbulent energy fluxes using only the resonant
three-wave interactions. The formulation of the model is
based on scale separation #i.e., #=)k#k!X"eik·x$ and re-
quires computing the fluxes of nonlinear kinetic !i.e., K
= &("#(2'" and internal energy !i.e., N= &n2'" in the radial
direction. These are roughly similar in various drift wave
turbulence models. The fluxes are

+K =
1
2

&#2ẑ * "!"2#"'X

= Re* i

6 )
p+q+k=0

!qyq
2 + pyp

2 + kyk
2"

* &#−k#−q#−p'+ , !2"

+N = − , n2

2
$Y#-

= − Re* i

6 )
p+q+k=0

!ky&#knpnq' + py&#pnqnk'

+ qy&#qnknp'"+ . !3"

These are derived by substituting the Fourier expansions into
the expressions for flux and averaging. Notice that the factor
1 /6 is the result of writing the permutations of wave num-
bers explicitly.

Various observations can be made from this general form
of the flux. First, close to the adiabatic limit !i.e.,
k.

2vthe
2 Ln /cs,1", where the dispersion relation for drift waves

is "k/ky / !1+k2", the kinetic energy flux coefficient -kpq
0!qyq2+ pyp2+kyk2" vanishes for longer wavelengths k(1
!i.e., for the most interesting limit for drift waves" whenever
the three-wave resonance condition is satisfied !i.e., ."kpq
="k+"p+"q=0 and p+q+k=0". Thus, somewhat surpris-
ingly, the kinetic energy cannot “spread” itself in the adia-
batic !i.e., Hasegawa-Mima" limit. This suggests that three-
wave interactions in drift wave turbulence possess an
element of resiliency or self-binding. Second, if we pick one
of the modes as a zonal flow !i.e., qy =0", the kinetic energy
coefficient vanishes regardless of the collisionality limit
whenever there is resonance #i.e., -kpq%ky!k2− p2"%."!1
+k2"!1+ p2"$. However, this is not true for “streamers,”
which are radially elongated structures !i.e., qx=0" that are
effective in mixing the turbulence in the radial direction
since their flow is in the radial direction. We can derive the
fluxes by the statistical closure technique, and the result has
the form of Fick’s law,

*+p
!K"

+p
!N" + 0 *Dp

KK Dp
KN

Dp
NK Dp

NN+$X*Kp

Np
+ !4"

resembling the flux-force relation form from the collisional
transport theory of gases. However, we note that here D/0

has off-diagonal components that are not positive definite
and that DKK%DNN, in general. Clearly, DNN is “closer” to
the turbulent diffusion of a passive scalar than DKK, which is
related to the advection of "2# and therefore very nonpas-
sive. In !4", the elements of the transport matrix are
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Dp
!KK" 0

1
2 1 d2k1 d2q

!kyk
2 + pyp

2 + qyq
2"

k2p2q2

* 1!k + p + q"#1!."+" + 1!."−"$

* 2#qy!q2 − p2" + 2pxẑ * q · p$Kq

+ #ky!k2 − p2" − 2pxẑ * q · p$Kk3 , !5"

Dp
!NN" 0

1
2 1 d2k1 d2q4qy

2

q2Kq +
ky

2

k2Kk5 * 1!k + p + q"

*#1!."+" + 1!."−"$ , !6"

Dp
!NK" 0 −

1
2 1 d2k1 d2q4qypy

p2 Nq +
kypy

p2 Nk5
* 1!k + p + q"#1!."+" + 1!."−"$ , !7"

and Dp
!KN"=0. Here ."+ is the mismatch between frequen-

cies of three growing modes and ."− is the mismatch when
one of the modes is damped. The detailed derivation of Eqs.
!5"–!7" can be found elsewhere.15 The key steps in the deri-
vation are the assumptions of two-scale evolution for the
“beat mode” in the DIA, which leads to the Fick’s law form,
and weak turbulence !also RPA", which results in the 1 func-
tions that impose the resonance conditions ."±=0. Notice
that in the case of the near-adiabatic limit, the damped mode
is strongly damped #i.e., &−%−c!1+k2" /k2$, so in this limit
."− can be neglected. It is also useful to note here that we
have neglected resonance broadening in the transport matrix,
consistent with weak turbulence, and higher-order nonlinear
effects corresponding to nonlinear corrections to radial group
velocity. Thus, the “convective term” !+%V/0N0" consisting
of these two higher-order corrections is neglected. Here
D!KK"2K is the nonlinear self-diffusion of kinetic energy,
D!NN"2K is the nonlinear diffusion of internal energy by the
drift motions, and D!NK"2N is a radial stress acting on the
local internal energy !and so is an off-diagonal term".

B. Profile dynamics

Strictly speaking, “spreading” !or turbulence overshoot"
means leaking of turbulence into stable regions. However, as
a result of this, the profile itself—whose gradient is the free-
energy source—may also be modified !i.e., “penetrative con-
vection”". The instability for the case of the Hasegawa-
Wakatani system is due to the background density gradient
and electron nonadiabaticity. This suggests that an evolving
mean density should also be considered. However, when the
mean fields are introduced, the evolution of the fluctuations
is also modified, and the “local” dispersion relation can be
written as

"k!
2 + i"k!*2i)k2 + ic4 1

k2 + 15+ − )2k4 − )c!1 + k2"

+ i
c

k2 ẑ * "q̄ · k = 0.

This is the usual Hasegawa-Wakatani dispersion relation
with "k!="k−V ·k and ŷdn0 /dx replaced by ẑ*"q̄, where

q̄0n0!x"+ n̄−"2#̄ is the potential vorticity. Here ) is the
model kinematic viscosity, 3=) is the particle diffusivity,
and c is the collisionality parameter. The growth rate

&k!q̄" %
1
c

"k!
!r"!"k!

!r" − ẑ * "q̄ · k"k2

!1 + k2"3 − )k2

suggests that when both mean density and mean flow are
allowed to evolve dynamically, local drift instabilities ap-
pear, for which the mean PV gradient acts as the local source
of free energy. #Note that "k!

!r"% ẑ*"q̄ ·k / !1+k2" also de-
pends on PV.$ This can be modeled by a “local” mean
growth rate

&̄!X" / − /$Xq̄!X" , !8"

where mean PV evolution given by !1" can be written using
a simple quasilinear closure as

$tq̄ % $X!0Dq0$Xq̄" − $X!Vqq̄%" . !9"

Here %=N+K, and Vq, 0, and Dq0 are parameters of the
model. Note that we shall further take Dq0=0 in order to
isolate rapid profile evolution due to spreading as opposed to
usual collisional or quasilinear diffusion !e.g., Dq0%%" re-
lated to the particle and momentum transport. In this limit,
the PV profile would be absolutely stationary in the absence
of spreading. Since spreading is usually faster than particle
transport, this is a reasonable approximation for the spread-
ing phase. Also, note that Vq has the dimensions of velocity
and corresponds to a PV “pinch” velocity.

III. THE MODEL

The general two-field model using the computed fluxes
consists of the evolution of kinetic energy,

$

$t
K + vgx

$

$x
K −

$

$x
4D1K

$

$x
K5

= &̄!x"#0N + !1 − 0"K$ − &NLK2 !10"

and the internal energy,

$

$t
N + vgx

$

$x
N −

$

$x
4D2N

$

$x
K5 −

$

$x
4D3K

$

$x
N5

= &̄!x"#0K + !1 − 0"N$ − &NLN2. !11"

Here the diffusion coefficients are ordered as D3,D2,D1
since this is the case for the overwhelming majority of the
wave numbers. In !10" and !11", &̄!x" is the self-consistent
“local” mean growth rate calculated using !8" and !9".

One important point to note here is the fact that this
effectively three-field model can in fact be reduced to the
previous one-field model9,10 in the proper limit. The limit
corresponds to V4=0, Dn0=0, and K%N%% /2, where we
define D00!D1+D2+D3" /4. However, for finite V4 a differ-
ent single-field equation can be derived, incorporating both
overshoot and penetrative convection. This can be done by
separating q̄=q0+1q̄ and “solving” !9" for 1q̄ and then sub-
stituting the result into !8" assuming slow spatial evolution.
This gives
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&̄ % &0!x"41 − 25V4
$%

$x
5 .

Using this as the local mean growth rate, we obtain

$

$t
%!x" + vgx

$

$x
%!x" −

$

$x
*D0%!x"

$

$x
%!x"+

− &0!x"%!x"41 − 25V4
$%!x"

$x
5 = − &NL%!x"2. !12"

This is a Fisher-Burger equation, with a nonlinear “advec-
tion” term. This is related to both the 1D Fisher equation
model !e.g., Ref. 10" and the bivariate Burger equation
model.4 The solutions of this equation are propagating fronts,
with basic spreading velocity #i.e., v%!D0&%0 /2"1/2$ modi-
fied on both sides by the advection velocity !roughly added
on one side, subtracted on the other". For V4,0, nonlinear
velocity accelerates the front moving to the right, while
slowing down the front moving to the left. Local saturation
suggests the basic spreading velocity dominates over the
Burger velocity as long as

D0 , 2V45.x&0!x" ,

which is usually true since &05(1. Note that here, 5 is the
response time for mean PV. The linear growth rate of the
mean flow can be used in place of 5. Note that, if the previ-
ous single-field equation !e.g., Ref. 10" is a quasilinear trans-
port equation for the turbulence spectrum, then !12" is a qua-
silinear transport equation, which also includes the
turbulence intensity “pinch.”

IV. RESULTS AND CONCLUSIONS

The basic results of the numerical integration of the
three-field model of the previous section can be found in Fig.
3. It is clear from this figure that turbulence spreading is
ballistic even with a self-consistently evolving profile and
can be described using a Fisher-Burgers equation within rea-
sonable approximations. Left-right asymmetry, which can be
observed in the figure, is the result of the pinch effect de-
scribed in the previous section when the Fisher-Burgers
equation model was introduced.

Even though turbulence spreading and coupled profile
evolution is a major issue relevant for avalanches and other
bursty mesoscale phenomena such as rapid profile evolution,
we believe that it is counterproductive to start from turbu-
lence spreading and try to construct a complete self-
consistent transport model. On the other hand, we believe
that it is useful to include turbulence intensity as another
degree of freedom in existing transport codes. We argue that
transport of the turbulence intensity profile can be driven by
the background density or temperature profiles, just as the
particle or heat transport can be driven by the deposition
profiles. In addition, we have shown here that the basic effect
of turbulence driven particle pinch on the profile leads self-
consistently to a “turbulence pinch” in the intensity evolu-
tion. Note that, even though “convective” transport of turbu-
lence intensity, resulting from mode coupling, is not
explicitly considered !the direct effect is higher order within
the framework of inhomogeneous three-wave interactions",

self-consistent evolution resulting in a simple Fisher-Burgers
equation model has convective as well as diffusive behavior.

We also want to point out that it has been suggested that
zonal flows may “promote” spreading24 in realistic toroidal
geometry. However, simple physical intuition and direct gy-
rokinetic particle simulations indicate that addition of exter-
nal shear flows reduces turbulence spreading.18 We argue
that the reason the zonal flow might appear to play an im-
portant role in spreading is that fluctuation-fluctuation cou-
pling is neglected in most of the models of turbulence-mean
flow interactions. As a result, the zonal flow is, by construc-
tion, the only path through which nonlinear energy transfer
may occur. This in turn creates the illusion that turbulence
spreading is due to wave–zonal-flow interactions. We argue
that for developed wave turbulence, the main cause of non-
linear spreading is the total contribution from direct interac-
tions between fluctuations.

Note that, while zonal flows are probably not important
!except to stop spreading", mean flows as represented in our
theory by the use of mean PV #i.e., q̄!x"$, as well as the mean
density fields #i.e., n̄!x"$ and local instabilities subsequently
driven by the gradients of those, are important players for the
phenomenon of penetrative convection.

In conclusion, we have constructed force-flux relations
for the transport of turbulence intensity and calculated the
transport matrix for fluctuation energy. The theory is cast in
terms of wave interaction processes. We show that the evo-

FIG. 3. Self-consistent evolution of internal energy N, kinetic energy K, and
mean potential vorticity profile q̄. It is possible to see that N leads both q̄
and K as expected. Since the snapshots are taken at equal time intervals,
spreading can be seen to be ballistic.

055902-5 Spatial and spectral evolution of turbulence Phys. Plasmas 14, 055902 #2007!



lution of the PV profile conveniently takes into account both
the mean density and the mean flow evolution and yields a
simple self-consistent model of turbulence transport involv-
ing a “pinch” of turbulence intensity.
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