
Lawrence Berkeley National Laboratory
Recent Work

Title
Analytic Rendering of Curvilinear Volume Data

Permalink
https://escholarship.org/uc/item/73f0r6mh

Author
Bethel, Wes

Publication Date
1993-03-09

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/73f0r6mh
https://escholarship.org
http://www.cdlib.org/


I, 

. 

LBL-33808 
UC-405 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA 

Information and Computing 
Sciences Division 

Analytic Rendering of Curvilinear Volume Data 

W. Bethel 

March 1993 

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098 

---;,(") 
0 .... I 
"1 "1 0 

0 ::r> 
~s:: z _, 
~ ll.l (") 
I'D rl-0 
I'D I'D"' "'Ill -< 
Ill ---
OJ _, 
0. 
(Q . 
U1 
(g 

I 
I OJ .... I 
trC'> I 
"1 0 w 
ll.I'O w 
"1'< 0) 
'< & . N 0) 



DISCLAIMER 

This document was prepared as an account of work sponsored by the 
United States Government. Neither the United States Government 
nor any agency thereof, nor The Regents of the University of Califor­
nia, nor any of their employees, makes any warranty, express or im­
plied, or assumes any legal liability or responsibility for the accuracy, 
completeness, or usefulness of any information, apparatus, product, 
or process disclosed, or represents that its use would not infringe pri­
vately owned rights. Reference herein to any specific commercial 
product, process, or service by its trade name, trademark, manufac­
turer, or otherwise, does not necessarily constitute or imply its en­
dorsement, recommendation, or favoring by the United States Gov­
ernment or any agency thereof, or The Regents of the University of 
California. The views and opinions of authors expressed herein do 
not necessarily state or reflect those of the United States Government 
or any agency thereof or The Regents of the University of California 
and shall not be used for advertising or product endorsement pur­
poses. 

Available 10 DOE and DOE Contractors 
from the Office of Scientific and Teclurical Information 

P.O. Box 62, Oak Ridge, TN 37831 

Prices available from (615) 576-8401 

Available to the public from the 

National Teclurical Information Service 

U.S. Department of Commerce 

5285 Port Royal Road, Springfield, VA 22161 

Lawrence Berkeley Laboratory is an equal opportunity employer. 

.. 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain correct information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



ANALYTIC RENDERING OF 
CURVILINEAR VOLUME DATA 

WESBETHEL 

INFORMATION & COMPUTING SCIENCES DIVISION 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, California 94720 

MARCH1993 

LBL-33808 
UC-405 

This work was supported by the Director of the Scientific Computing Staff, Office of Energy Research, of 
the U.S. Department of Energy under Contract No. DE-AC03-76SF00098. 



·,i 

Analytic Rendering of Curvilinear Volume Data 

Wes Bethel 
Graphics Group 

Computing Resources Department 
Lawrence Berkeley Laboratory 

Berkeley, California 

_ _f\B£IRACT 

A technique is presented for analytically rendering volume data from curvilinear grids. The 
method employs analytic techniques for manipulating and rendering curvilinear voxels. A 
curvilinear voxel is represented using a cubic triparametric solid formulation. The control 

points defining the cubic triparametric voxel are computed from the original curvilinear grid 
using the Cattnull-Rom formulation, and subsequently rendered using a three-dimensional 

forward difference operator. The primary benefit from using such a representation is the fact 
the voxel shape and data values are Cl-continuous across voxel boundaries. The issue of vox­
el opacity, both at the sub-voxel and super-voxellevels, is investigated. The use of both tri­
cubic representation and rendering, along with our new approach to managing voxel opacity, 

results in images which are markedly different from those presented in previous work. 

1. Introduction 

A variety of scientific applications, such as computa­
tional fluid dynamics, are capable of producing volu­
metric data which lies on "warped" or curvilinear grids. 
A number of techniques have been recently developed 
to display data which comes from curvilinear grids. 
However, in each of these approaches, the curvilinear 
grid is approximated with a rectilinear grid. 

[Wil90) describes two techniques for rendering curvili­
near volume data. One method is to raytrace the curvili­
near volume data "directly." However, the underlying 
structure used to approximate the curvilinear voxel is a 
set of twelve triangles. Each face of the curvilinear vox­
el is approximated by a triangle pair. The second tech­
nique is to resample the curvilinear volume into a recti­
linear grid, then raytrace the rectilinear voxels. 

[Shi90) presents a similar method for rendering curvili­
near volume data by approximating each curvilinear 
voxel with a set of tetrahedra. The faces which bound 
the tetrahedra are subsequently rendered using bard­
ware capable of displaying transparent triangles. 

More recently, [Wil91) presents an algorithm for for­
ward mapping from voxel space to image space, capital­
izing on the notion of voxel footprints outlined in 
[Wes90), with particular attention to the interpolation of 
voxel opacity. Again, the underlying assumption is that 
the curvilinear grid has been approximated with a recti­
linear grid. 

With regard to volume rendering in general, a popular 
recent theme is to take advantage of local workstation 
rendering hardware. These techniques ([Wil91), 
[Shi90)) assume that a display list can be constructed 

1 

which contains transparent polygons (usually triangles) 
which can then be rotated and Gouroud-sbaded in bard­
ware. The benefits of this architecture are the speed at 
which the volumes may be rendered, along with the fact 
tl1at the same renderer is used for both geometric and 
volumetric primitives. A major drawback is that the dis­
play list can occupy a significant fraction of local 
memory, or more than is available on typical worksta­
tions for datasets which are modest in size. Additional­
ly, results are inconsistent from hardware platform to 
hardware platform. 

Another popular volume rendering technique involves 
the use of a voxel "footprint." The footprint is a tem­
plate which is used in the compositing operation. For 
each voxel, the template is "filled in" (by the use of an 
appropriate interpolant) with pixel color and opacity 
values, and then composited into an accumulated 
image. This type of operation is of most benefit when 
the voxels are all the same size and shape, is is the case 
in rectilinear grids (with constant spacing along each of 
tile component axes) using a parallel projection for 
viewing. If the size and shape constraints don't bold, 
tllen additional work is required to recompute the voxel 
footprints. In the worst case, the footprint must be re­
evaluated for each and every voxel. The footprint archi­
tecture lends itself to efficient implementation tllrougb 
vectorization and parallelization. 

In .the methods we describe, it is assumed that the proj­
ected shape of each voxel is different. So, rather tllan 
construct a footprint for each voxel, each voxel is ana­
lytically rendered directly into an accumulating image. 
The underlying voxel renderer uses a three-dimensional 
forward difference operator, similar to that described in 
[Kau87). Each tricubic voxel requires additional con­
trol points which are not present in the curvilinear grid. 



To produce voxel shapes which "match" the curvilinear 
grid, a Cannull-Rom formulation is used to compute 
suitable internal voxel control points. The underlying 
data is interpolated using a tricubic formulation. There­
sults are better than those resulting from a trilinear inter­
polation of the same data. We present examples which 
substantiate this claim. ----

2. Cubic Triparametric Solids 

·The cubic triparametric solid is a natural generalization 
of the cubic parametric curve and the cubic biparametric 
surface. The same properties which are attractive in 
parametric curves and surfaces are likewise attractive in 
solids. The cubic tripararnetric solid bas the convex- . 
hull property, which may used in clipping. The local 
control of shape property allows the specification of cu­
bic triparametric voxels which are Cl continuous in 
both the geometric and data domains. 

The choice of a cubic function is based on the observa­
tion that the cubic is the " .. .lowest order parametric 
which can describe a nonplanar curve ... " [Fol83]. Intu­
itively, this translates into "enough" degrees of freedom 
to allow the tricubic voxels to represent a large variety 
of deformed cubes. It is not the intent to approximate 
all such deformations, but enough to accorrunodate a 
majority of shapes resulting from typical curvilinear 
computational grids. 

2.1 Deriving Triparametric Solids from 
Curvilinear Grids 

In this section, we present the formulation used to com­
pute the interior control points necessary to describe a 
cubic, triparametric Bezier solid. _ 

Recall that a cubic parametric Bezier curve is described 
with four control points. Two of the points are at either 
end of the curve segment, while the other two do not lie 
on the curve, but define the direction and length of avec­
tor tangent to the curve at each curve endpoint. The 
direction and magnitude of these vectors controls the 
shape of the curve. Those points which lie at the ends 
of the curve are here called end points while those con­
trol points which do not lie on the curve are called interi­
or points. The set of both end points and interior points 
are referred to as control points. 

In a cubic biparametric Bezier surface (two parametric 
dimensions), sixteen control points are required. Three 
parametric dimensions requires the use of sixty-four 
control points. The discussion below describes the com­
putation of the interior points required, in addition to the 
eight vertices in the curvilinear grid (the end points), to 
describe a cubic triparametric Bezier solid (of sixty­
four control points). 

2 

For the single parameter cubic Bezier·curve, we are giv­
en points on the curve, which we use as curve endpoints 
for each curve segment, and we compute interior control 
points, two for each curve, which will result in a series 
of Cl continuous curve segments. Each interior point 
adjacent to a given end point is a function of the direc­
tion and length of the chord joining the previous and 
next end points. From [Cat74] (see also [BBB87]), this 
is expressed analytically as: 

or, equivalently, 

D; = !.B<Pi+l - P;-•) 

and is known as the Catmull-Rom formulation. From 
(1), a class of spline curves may be generated, where 
~ controls the "tension" of the curve. 

Hermite curves are generated from (1), but we are inter­
ested in Bezier curves. The appropriate transformation, 
from [Fol83], among others, is: 

(2) 

Figure 1 shows the relationship between the various 
components of (1) and (2). Boundary conditions with 
respect to the derivatives computed, for example, at 
P;+• (and B2), are not addressed here. 

, ... ... , 
B1 = B0 + ~D1 

-~----t..----=~"""" 

P; 

~I 
D; 
3 

Figure 1 

Extending this formula into two parametric dimensions 
is s traigbtforward. If we consider the two parametric di­
mensions u and v, we can compute the interior points 
along a patch boundary directly from (1). Patches re­
quire the computation of additional interior points 
which do not lie on the patch boundary (Figure 2). 

Since patches require the use of two parametric vari­
ables, we will compute the interior points which lie on 
the boundary using: 

:~ = ~,B(P;+lJ - P;-•J) 



.j 

.) 

along the u-ax.is and using: 

~{ = ~f3(Pij+! - P;j- 1) 

along the v-axis. 

The interior patch points may be computed using a ten­
sor product of (1): 

a2t 1 
auav = 36f32

(Pt+lj+l - Pi-!j+! -
pi+!j-! - pi-!j-1 

The formulation for a Bezier representation of a "non­
boundary" control point (Figure 2) is: 

at at a2t 
B 1•1 = P;j + au + av + auav 

The tricubic non-boundary control points, the eight in­
terior points which do not lie on any of the surface 

a3t 
patches, are analogously computed using auavaw as a 

linear combination of the eight values Pi+tj+m.k+n for 
l,m,n = ± 1. 

0 Non-Boundary Interior Points 

Figure 2 

2.2 Rendering Triparametric Solids 

It is assumed that the reader is familiar with the render­
ing (i.e., evaluation) of both cubic parametric curves 
and cubic biparametric surfaces. It is also assumed that 
the reader is familiar with the notion of forward differ­
encing. The discussion below continues from [K~m87]. 

[Kau87] gives the following formulation for the initial 
forward difference matrix used to evaluate a cubic bipa­
rametric surface: 

(3) 

In this equation, theM matrix represents the Bezier basis 
matrix. G represents the control point array (sixteen 
points) used to specify the location and shape of cubic 
biparametric surface. The E matrix is a function of the 
number of steps to take in a given parametric dimen­
sions when evaluating the parametric function, and is 
described in [Kau87], among others. The subscripts on 
the E matrices denote the step size for that particular 
parametric dimension. 

3 

[Kau87] did not provide the formulation to compute the 

corresponding .t1to.o.o which would then be used in the 
forward difference evaluation of the cubic triparametric 
Bezier solid. From [Mor85], we can conclude that: 

3 3 3 3 

I I I ILJtijJ = BkJBipij~~ (4) 
1=0 k=O j=O i=O 

It is important to observe that the G array consists of the 
sixty-four control points used.to describe a tricubic sol­

id, and that the .t1j "matrix" in (4) is a three dimensional 
array (for each ordinate as well as the data). The B ma­
trix in (4) is the matrix product of E and Min (3). 

The reader is referred to [Kau87] for detailed informa­
tion on how to proceed with the rendering, or evalua­
tion, of the tricubic solid using this forward difference 
operator. 

2.3 The Opacity Problem 
As others have pointed out ([Lau91],[Wil91]), inter­
polation of the opacity in volumetric renderers merits 
scrutiny. Here we consider opacity at the sub-voxellev­
el. 

When rendering tricubic solids, "sheets" or "layers," 
each of which is a cubic biparametric surface, are 
successively composited, the total of which is the com­
posited projection of the tricubic solid into image space. 
There arises a problem in dealing with the opacity at the 
layer level. If the original voxel bas some opacity avtnti, 
and each of the n layers of the voxel are composited us­
ing this a voxet, the resulting opacity in the image is com­
puted by: 

(5) 

which is a solution to the differential equation for per­
forming front-to-back compositing [Por84]. This 
equation is: 

On = (1 - On-1> *a +On-! (6) 

The l/J(a) function from (5) is computed so as to satisfy 
the boundary conditions of n=O in (6) or n=l in (5). This 
relationship is given by 

cp(a) = - 1 * ln(l - a) (7) 

We must recompute, in the spirit of [Lau91], the ataytr 

for the uniform-thickness layers as a function of the 
avo:rel along with the number of layers which are to be 
com posited. After compositing each of the n layers, the 
resulting opacity in the image from the voxel will be 
avo:ret rather than the value obtained from (5) (which is 
the same as the result obtained after n iterations of (6)). 

Given an initial avont which will be composited using n 
layers, or sheets, the ataytr is computed: 

a = 1 - e (- l/J(avonl>) taytr xp n (8) 



These values may be computed prior to any rendering 
and stored in a table. The graph for this opacity com..: 
position function is shown in Figure 3. Note the similar­
ity between this graph and that presented in [Lau91]. 

Opacity Ccmpc•ltlcn ~unction 

Figure 3 

2.4 The Data to Opacity 1ransfer Func­
tion 

The preceding discussion was focused on the issue of 
opacity at the sub-voxel level, and outlined the steps 
necessary to compute an appropriate opacity for a sub­
voxel sheet or layer, given an initial voxel opacity and 
a number of constant-thickness sub-voxel sheets or lay­
ers. The discussion that follows focuses on how opacity 
is computed for each of the voxels, prior to rendering. 

A convenient method for mapping data values to color 
and opacity is through a linear transfer function, the pa­
rameters of which are under user control. In this map­
ping, the user defmes a lookup table of opacity and color 
values by some means. Then, a range of data values is 
linearly mapped into this table. The user specifies a 
minimum data value, which corresponds to the first 
entry in the table, and a maximum data value, which cor­
responds to the last entry in the table. We refer to this 
as a linear transfer function, and denote this transfer 
function as L( d) where d represents the input data val­
ue. 

4 

if(data > datamu) 
index = table_size - 1; 

else if(data < datamiJ 
index= 0; 

else . . * (data - datamin) . 
tndex = table_stze (datllmax _ datarmJ., 

Linear Transfer Function 

By not treating the entire set of volumetric data as a 
"unit-thickness" of some material, the linear transfer 
function can lead to unexpected or undesirable results. 
The behavior of (6) will tend to accumulate "too quick­
ly" in the image, so that the overall volume appears too 
"opaque." 

What we propose is a tool, under user control, which 
will take as input the results from L(d), and apply a 
non-linear transformation which is a function of the 
"thickness" of the entire set of curvilinear voxels (such 
that "thickness" is viewpoint independent). It is impor­
tant to realize that we are not trying to model "reality" 
using the alternate transfer function. Instead, we are 
providing a tool which overcomes some of the limits en­
countered when trying to model "reality." 

We will use (8) from the previous section and L( d) as 
the basis for a non-linear transfer function. In terms of 
providing the parametric values to (8), L( d) will give an 
opacity, while some other function, say, N(v), where v 
is the entire volumetric dataset, will give the "thick­
ness" or "number of layers.~· 

We could computeN(v) as a function of the minimum 
and maximum extents along, say, the z-axis. This is not 
desirable since such a computation is sensitive to the 
orientation of the volume, and would have disastrous ef­
fects if a movie-loop is made of a rotating volume. We 
have had promising results using a function of the num­
ber of voxels to be rendered. In our examples, we use 
a value of Y log(m) where m is the minimum voxel count 
from each of the logical ij,k dimensions, in computa­
tional (not physical) space, of the volume, andy is under 
user control. Increasing y bas the effect of increasing the 
"overall" transparency of the volume. As y goes to zero, 
the volume becomes more opaque. A good default val­
ue is 1.0, and is what was used in creating the example 
color images. 

3. Implementation Issues 

One major difficulty in implementing a forward differ­
ence operator is the choice of an appropriate step size, 
so that there are no voids in the image, and a minimal 
number of redundancies (a redundancy is the case where 
successive forward difference evaluations produce the 
same pixel-coordinate values, such as 32.17 on one it-

' 1,, 



eration then 32.34 on the next- in this case, there is a 
redundancy at this pixel). There are a number of sources 
of information describing the computation of an ap­
propriate step size ([Kau87],[Rap91]) to achieve this 
goal. We use a variation of the method presented in 
[Kau87] in computing parametric step sizes. We 
employ a f1rst-<>rder approximating technique that 
computes the extents in a two-dimensional projection 
for each of the parametric dimensions, resulting in dif­
ferent step sizes for each of the u, v and w axes. Such a 
technique favors faster execution time over what may be 
a more optimal step size. 

U-direction 

V-dir~ 
Po.o 

Figure 4 

Another complication with using forward-differencing 
and non-adaptive step sizes (no matter how they are 
computed) arises when the sides of the voxels differ 
greatly in size. A two-dimensional example of this is 
shown in Figure 4. In this example, the same number of 
parametric steps is used along both the top and bottom 
edges. The result is that the bottom edge will be "over~ 
composited," resulting in a voxel which appears to 
"glow" along the bottom. 

A useful analogy is to think of a unit cube of jello. Some 
dye has been diffused throughout the jello (which corre­
sponds to a homogeneous voxel). The result that we 
would like to have, if we consider Figure 4 above, is that 
there is the same concentration of dye throughout, no 
matter bow thick or thin the jello along any particular 
line of sight. The jello will appear to be more transpar­
ent where thin, and more opaque where thick. 

Using non-adaptive sampling will result in the dye be­
ing spread evenly through the jello, but in parametric 
space rather than physical space. The result is that the 
jello will appear more opaque where thin (since more 
parametric steps are being made per unit of physical 
space) than where the jello is thick. 

There are at least three different ways around this prob­
lem. First is to use voxel subdivision rather than forward 

5 

differencing. Another alternative is to employ adaptive 
sampling. These two approaches are discussed in more 
detail in a later section. Another alternative is to render 
the solids using a scan-ronverter, after "vertices" have 
been computed using the forward difference operator. 
In our implementation, we do not address this problem. 

We provide in our implementation a "rendering 
throttle" whereby the user may adjust the step size once 
computed by some means. Increasing the step size de­
creases the amount of time required for rendering, but 
at the expense of "voids" in the resulting volume (i.e.,. 
there will not be 26-<:onnectedness as described in 
[Kau87]). Going the other direction, the user may de­
crease the step size. This will increase the amount of 
rendering time required, but will also produce a lot of re­
dundancies. 

In our implementation, the curvilinear voxels are sorted 
front-to-back prior to processing. The cost of this sort 
is not included in the timings below for the various data­
sets, but is negligible (a second or two for each dataset 
using a Sbellsort algorithm). The criterion used for the 
sort is the "minimum z" value in the voxel. There are 
cases where this type of sort will fail, but such pathologi­
cal cases are not often encountered. 

--. 
1 

+Z 

Figure 5 

In Figure 5, the curvilinear voxel labelled "1" has a 
smaller Z value than voxel "2", so will be rendered ftrst. 
The front-to-hack compositing will fail (i.e., be incor­
rect) since voxel "2" is "mostly" "in front of' voxel "1 ". 
In this case, there is no good front-to-hack ordering. 
The only plausible solution is to subdivide the voxels 
until there is a "good" front-to-back ordering. We dis­
cuss voxel subdivision in a later section. 

After sorting, the voxels are then oriented (defming of 
the u and v parametric dimensions) so that "most" of the 
forward differencing occurs "parallel" to the image 
plane. The same pitfalls that apply to sorting voxels ap­
ply here, as well. The intent is to maximize the likeli­
hood of detecting pixel collisions and to minimize for­
ward difference calculations in depth. 



1. construct voxellist. 
2. sort voxels on minimum Z, orient voxels 
for ''best" scan converting. 
3. for each voxel 

convert from eight point form to 
bezier solid form. 

render the voxel using either 
trillinear or tricubic forward 

differencing. 

Rendering Algorithm Pseudocode 

The memory consumption of this algorithm is linear 
with respect to the size of the input dataset. In addition · 
to the constant-sized tables used (e.g., opacity composi­
tion), memory usage is as follows. For each input voxel 
(the area bounded by adjacent grid nodes), three inte­
gers and a float are required. The integers define the 
(i,j,k) indices into the grid for a particular voxel (one 
corner), while the float value holds the minimum z for 
that voxel. This scheme is required for representing the 
three dimensional grid of data as a one-dimensional list 
of voxels which may then be sorted. As each voxel is 
rendered one-at-a-time from the one-dimensional list, 
the memory required at the rendering stage is negligible 
(consists of four 64 element double precision arrays 
along with a few matrices). 

4. Examples 

The follow!ng examples illustrate, using th~ee different 
datasets, a comparison between using trilinear and tri­
cubic interpolation of both voxel shape and the underly­
ing data as well as a comparison of the effects of using 
a linear or non-linear opacity transfer function. The cu­
bic triparametric voxels have been computed using the 
Catmull-Rom formulation, so that the underlying data, 
as well as shape, is CJ continuous across voxel bound­
aries. 

The table below indicates the run times in CPU seconds 
on a Sun Microsystems 4/690MP (run on a single pro­
cessor). All images were rendered into a 512 square pix­
el window. 

The times for the trilinear images are in actuality much 
too high due to the fact that prior to rendering, internal 
voxel control points are computed using the Catmull­
Rom method, even though these points are not used in 
the trilinear interpolation. This implementation choice 
was made for a valid cost comparison between the two 
types forward differencing schemes: trilinear and tri­
cubic. The run times also point out there is a significant 
cost for computing the internal control points required 
by the tricubic representation. 

6 

Run Times in CPU Seconds 

Half-Torus 
Blunt-Fin 
Delta-Wing 

112 
1515 

22475 

158 
1890 

24624 

The first example is a synthetic dataset. This dataset 
approximates a three-quarter torus in shape. This ex­
ample shows the large-scale differences between using 
trilinear and tricubic interpolation of both shape and 
data, and shows the results of using the Catmull-Rom 
method of generating spline curves. The images which 
use the non-linear transfer function are quite dim. This 
is expected because this data set consists of only three 
voxels. 

The second example sequence is computed using the 
"Blunt Fin" dataset [Hun84], provided courtesy of 
NASA Ames. The visualization uses the scalar density 
field from the dataset, and is composed of 40 by 32 by 
32 curvilinear voxels, but cropped down to roughly 30 
by 20by 20. 

The third sequence is computed using a CFD dataset de­
picting the vortical air flows over a Delta Wing at an ex­
treme angle of attack [Eka90], again, courtesy of NASA 
Ames. The density scalar field is being visualized. The 
size of this dataset is 40 by 80 by 40 voxels. 

For each of the example images, the following color and 
opacity scale is used. Ahue ramp is used, with blue cor­
responding to low data values and red corresponding to 
high data values. Opacity is a linear ramp ranging from 
zero to one between low and high,data values. 

5. Conclusion 

The images in th.e examples illustrate the the use of cu­
bic triparametric interpolation of the data which pro­
duces images that appear to be more insightful since the 
tricubic renderings do a better job of representing the 
underlying data than when more crude approximatory 
techniques are used. There are small vortical structures 
present in these images of CFD datasets (aft of the turbu­
lence boundary in the Blunt Fin data, in particular) when 
the cubic triparametric rendering is used which are not 

. present, or are ill-defmed, in the trilinear approximated 
renderings. 

The tricubic renderings are more expensive than the tri­
linear renderings, as expected, but produce significantly 
better images than those presented in previous work in 
terms of the level of detail in the resulting images. It 



(' t 

J 

should be noted that the run times required by our imple­
mentation are quite expensive, especially when 
compared to those achieved by others when using 
"splat" technology or hardware renderers. The tradeoff 
is one of image quality.· As workstation performance 
continues to increase and prices drop, the significance 
of this drawback will decline. 

The use of a non-linear opacity transfer function results 
in images which allow the regions of high opacity to 
show through the regions of low opacity much better 
than when a linear opacity (or no) transfer function is 
used. From a qualitative standpoint, these images are 
better than those presented in previous work in which no 
global opacity modification is pelformed. 

The source code for this renderer is available in the form 
of an AVS module by anonymous ftp from the Interna­
tional AVS Center (avs.ncsc.org). It has been compiled 
and tested on the Sun Sparcstation platform. 

6. Future Work 

A significant amount of effort is required in terms of. 
computing the internal control points which specify a 
cubic tripararnetric solid, along with the work required 
to set up the initial forward difference matrices. It 
would be worthwhile to implement a hierarchical ver­
sion of this renderer. In the hierarchical version, "adja­
cent" cubic triparametric voxels would be represented 
with a single cubic triparametric voxel (the opposite of 
voxel subdiVision). Such an implementation would be 
quite similar to the work presented in [Lau91], with the 
added complication that it is more effort to produce and 
traverse a space-subdividing tree for a curvilinear grid 
than to produce and traverse a similar tree for a rectilin­
ear grid. 

[Rap91] presents work which describes a method for 
adaptive forward differencing (a dynamic change in the 
parametric step size based upon some criteria) along 
with a hybrid algorithm which combines curve subdivi­
sion with forward differencing. Exploring the use of 
these techniques will be beneficial, particularly when 
the area of the projected voxel is large. However, as 
[Rap91] points out, doing either hybrid subdivision with 
forward differenCing or adaptive forward differencing 
produces diminishing returns in efficiency when the 
size of the curves are small. When viewing large curvi­
linear volumetric datasets, this is typically the case. 

It may be impossible to sort curvilinear voxels front-to­
hack so that there is a single rendering order (for the 
front-to-hack compositing process). If this is the case, 
it must first be detected, then remedied via voxel subdi­
vision. Note that the sorting problem exists regardless 

/ 

7 

of the type of renderer being used; splat versus analytic 
versus polygonal/polyhedral approximation. 

The notion of non-linear opacity transfer functions, 
based upon variables in addition to the volumetric scalar 
field, merit further investigation. We have presented a 
first approximation to a solution of this problem. 

7. Acknowledgement 

This work was supported by the U.S. Department of En­
ergy, Energy Research Division under Contract No. 
DE-AC03-76SF00098. 

8. References 

[BBB87] Richard H. Bartels, John C. Beatty and Brian 
A. Barsky, An Introduction to Splines for Use In Com­
puter Graphics and Geometric Modeling, Morgan­
Kaufman, 1987. 

[Cat74] E. E. Catrnull and R. Rom, A Class of Local In­
terpolating Splines, Computer-Aided Geometric De­
sign, R. E. Barnhill and R. F. Riesenfeld, eds., Academic 
Press, 1974. 

[Eka90] J. A. Ekaterinaris and L. B. Schiff, Vortical 
Flows over Delta Wings and Numerical Prediction of 
Vortex Breakdown, AIAA Paper 90--0102, AIAA Aero­
space Sciences Conference, Reno NV, January 1990. 

[Fol83] J.D. Foley and A. Van Dam, Fundamentals of 
Interactive Computer Graphics, Addision-Wesley 
1983. 

[Gar90] Michael P. Garrity, Raytracing Irregular Vol­
ume Data, Computer Graphics (ACM Siggraph Pro­
ceedings of the San Diego Workshop on Volume Visual­
ization) 24(5):35-40. 

[Hun84] C. M. Hung and P. G. Buning, Simulation of 
Blunt-Fin Induced Shock Wave and Turbulent Bound­
ary Layer Separation, AIAA Paper 84-0457, AIAA 
Aerospace Sciences Conference, Reno NV, January 
1984. 

[Kau87] Arie Kaufman, Efficient Algorithms for 3D 
Scan-Conversion of Parametric Curves, Surfaces and 
Volumes, Computer Graphics (ACM Siggraph 87 Pro­
ceedings) 21(4):171-179. 

[Lau91] David Laur and Pat Hanrahan, Hierarchical 
Splatting: A Progressive Refinement Algorithm for Vol­
ume Rendering, Computer Graphics (ACM Siggraph 91 
Proceedings) 25(4):285-288. 

[Lev90] Marc Le Voy, A Taxonomy of Volume Visualiza­
tion Algorithms, Volume Visualization Algorithms and 
Architectures, Siggraph 1990 Course Notes. 

[Mor85] Michael E. Mortenson, Geometric Modeling, 
John Wiley & Sons, 1985. 



[Por84] Thomas Porter and Tom Duff, Compositing 
Digital/mages, Computer Graphics (ACM Siggraph 84 
Proceedings) 18(3):253-260. · 

[Rap91] Ari Rappoport, Rendering Curves and Sur­
faces with Hybrid Subdivision, ACM Transactions on 
Graphics, (October 1991) 10(4):323-341. 

[Shi90] Peter Shirley and Allan Tuchman, A Polygonal 
Approximation to Direct Scalar Volume Rendering, 
Computer Graphics (ACM Siggraph Proceedings of the 
San Diego Workshop on Volume Visualization) 
24{5):63-70. 

[Wes90] Lee Westover, Footprint Evaluation for Vol­
ume Rendering, Computer Graphics (ACM Siggraph 90 
Proceedings) 24(4):367-376. 

[Wi190] Jane Wilhelms, Judy Challinger, Nairn Alper, 
Shankar Ramamoorthy, Arsi Vaziri, Direci Rendering of 
Curvilinear Volumes, Computer Graphics (ACM Sig­
graph Proceedings of the San Diego Workshop on Vol­
ume Visualization) 24(5}:41-47. 

[Wi191] Jane Wilhelms, Allen Van Gelder, A Coherent 
Projection Approach for Direct Volume Rendering, 

8 

Computer Graphics (ACM Siggraph 91 Proceedings) 
25(4):275-284. 

9. NOTE TO REVIEWERS 

Some explanations regarding the artifacts in the images 
of CFD datasets are in order. 

In the trilinear images, there are artifacts along voxel 
boundaries, particularly where a "plane" of voxel edges 
are viewed edge-on. Work is in progress to eliminate 
these by attentuating the opacity along voxel bound­
aries. 

Similar artifacts are present in the tricubic images. 
There is an added complication of selecting a "good'' 
Beta value for use in the Catmull-Rom computation of 
internal control points. The goal is to achieve a more or 
less uniform step size through physical space, as is the 
case in the trilinear renderings. The bottom line is that 
the tricubic images look worse than the trilinear images. 
It is my opinion that once the artifacts are corrected, the 
tricubic images will look better than the trilinear ones, 
even if only marginally so. This begs the question of 
wbether or not this is a worthwhile technique .for use 
with volume rendering. 

t 



9 



10 



~ • ~ 
c --. ·~ 
~ 

-~ 

~ -c:: • ~ 
Ul 

11 



....,._ ~-

LA~NCEBERKELEYLABORATORY 

UNIVERSITY OF CALIFORNIA 
TECHNICAL INFORMATION DEPARTMENT 

BERKELEY, CALIFORNIA 94720 

..... ~ _..... 

0 ~ 
C\J~-·-

<0 (U 
I ,Q 
rn=....J 

<{ ....J 
co 
....J 




