
UC Irvine
UC Irvine Previously Published Works

Title
Spherical Hamiltonian Monte Carlo for Constrained Target Distributions.

Permalink
https://escholarship.org/uc/item/73g6w8mx

Authors
Lan, Shiwei
Zhou, Bo
Shahbaba, Babak

Publication Date
2014-06-18
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/73g6w8mx
https://escholarship.org
http://www.cdlib.org/


Spherical Hamiltonian Monte Carlo for Constrained Target 
Distributions

Shiwei Lan,
Department of Statistics, University of California, Irvine, CA 92697, USA.

Bo Zhou, and
Department of Statistics, University of California, Irvine, CA 92697, USA.

Babak Shahbaba
Department of Statistics, University of California, Irvine, CA 92697, USA.

Shiwei Lan: SLAN@UCI.EDU; Bo Zhou: BZHOU1@UCI.EDU; Babak Shahbaba: BABAKS@UCI.EDU

Abstract

Statistical models with constrained probability distributions are abundant in machine learning. 

Some examples include regression models with norm constraints (e.g., Lasso), probit models, 

many copula models, and Latent Dirichlet Allocation (LDA) models. Bayesian inference 

involving probability distributions confined to constrained domains could be quite challenging for 

commonly used sampling algorithms. For such problems, we propose a novel Markov Chain 

Monte Carlo (MCMC) method that provides a general and computationally efficient framework 

for handling boundary conditions. Our method first maps the D-dimensional constrained domain 

of parameters to the unit ball , then augments it to a D-dimensional sphere SD such that the 

original boundary corresponds to the equator of SD. This way, our method handles the constraints 

implicitly by moving freely on the sphere generating proposals that remain within boundaries 

when mapped back to the original space. To improve the computational efficiency of our 

algorithm, we divide the dynamics into several parts such that the resulting split dynamics has a 

partial analytical solution as a geodesic flow on the sphere. We apply our method to several 

examples including truncated Gaussian, Bayesian Lasso, Bayesian bridge regression, and a copula 

model for identifying synchrony among multiple neurons. Our results show that the proposed 

method can provide a natural and efficient framework for handling several types of constraints on 

target distributions.

1. Introduction

Many commonly used statistical models in Bayesian analysis involve high-dimensional 

probability distributions confined to constrained domains. Some examples include 

regression models with norm constraints (e.g., Lasso), probit models, many copula models, 

and Latent Dirichlet Allocation (LDA) models. Very often, the resulting models are 

intractable, simulating samples for Monte Carlo estimations is quite challenging (Neal & 
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Roberts, 2008; Sherlock & Roberts, 2009; Neal et al., 2012; Brubaker et al., 2012; Pakman 

& Paninski, 2012), and mapping the domain to the entire Euclidean space for convenience 

would be computationally inefficient. In this paper, we propose a novel Markov Chain 

Monte Carlo (MCMC) method, which provides a natural and computationally efficient 

framework for sampling from constrained target distributions. Our method is based on 

Hamiltonian Monte Carlo (HMC) (Duane et al., 1987; Neal, 2010), which is a Metropolis 

algorithm with proposals guided by Hamiltonian dynamics.

In recent years, several methods have been proposed to improve the computational 

efficiency of HMC (Beskos et al., 2011; Girolami & Calderhead, 2011; Hoffman & Gelman, 

2011; Shahbaba et al., 2013b; Lan et al., 2012; Byrne & Girolami, 2013). In general, these 

methods do not directly address problems with constrained target distributions. In this 

current paper, we focus on improving HMC-based algorithms when the target distribution is 

constrained by inequalities. When dealing with such constrained target distributions, the 

standard HMC algorithm needs to evaluate each proposal to ensure it is within the 

boundaries imposed by the constraints. Computationally, this is quite inefficient. 

Alternatively, as discussed by Neal (Neal, 2010), one could modify standard HMC such that 

the sampler bounces off the boundaries by letting the potential energy go to infinity for 

parameter values that violate the constraints. This approach, however, is not very efficient 

either. Byrne and Girolami (Byrne & Girolami, 2013) discuss this method for situations 

where constrained domains can be identified as submanifolds. Pakman and Paninski 

(Pakman & Paninski, 2012) also follow this idea and propose an exact HMC algorithm 

specifically for truncated Gaussian distributions with non-holonomic constraints. Brubaker 

et al. (Brubaker et al., 2012) on the other hand propose a modified version of HMC for 

handling holonomic constraint c(θ) = 0. All these methods provide interesting solutions for 

specific types of constraints. In contrast, our proposed method in this paper provides a 

general and computationally efficient framework for handling constraints given by 

inequalities involving general vector norms.

In what follows, before we present our method, we provide a brief overview of HMC 

(Section 2). We then present our method for distributions confined to the unit ball in Section 

3. The unit ball is a special case of q-norm constraints. In Section 4, we discuss the 

application of our method for q-norm constraints in general. In Section 5, we evaluate our 

proposed method using simulated and real data. Finally, we discuss future directions in 

Section 6.

2. HMC

HMC improves upon random walk Metropolis by proposing states that are distant from the 

current state, but nevertheless accepted with high probability. These distant proposals are 

found by numerically simulating Hamilton dynamics, whose state space consists of its 

position, denoted by the vector θ, and its momentum, denoted by the vector p. Our objective 

is to sample from the continuous probability distribution of θ with the density function f (θ). 

It is common to assume that the fictitious momentum variable p ~  (0, M), where M is a 

symmetric, positive-definite matrix known as the mass matrix, often set to the identity 

matrix I for convenience.
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In this Hamilton dynamics, the potential energy, U (θ), is defined as minus the log density of 

θ (plus any constant); the kinetic energy, K (p) for the auxiliary momentum variable p is set 

to be minus the log density of p (plus any constant). Then the total energy of the system, 

Hamiltonian function is defined as their sum:

Given the Hamiltonian H (θ, p), the system of (θ, p) evolves according to following 

Hamilton’s equations,

Note that since momentum is mass times velocity, υ = M−1 p is regarded as velocity. 

Throughout this paper, we express the kinetic energy K in terms of velocity, υ, instead of 

momentum, p (Beskos et al., 2011; Lan et al., 2012).

In practice when the analytical solution to Hamilton’s equations is not available, we need to 

numerically solve these equations by discretizing them, using some small time step ε. For 

the sake of accuracy and stability, a numerical method called leapfrog is commonly used to 

approximate the Hamilton’s equations (Neal, 2010). We numerically solve the system for L 

steps, with some step size, ε, to propose a new state in the Metropolis algorithm, and accept 

or reject it according to the Metropolis acceptance probability. (See Neal, 2010, for more 

discussions).

Although HMC explores the target distribution more efficiently than random walk 

Metropolis, it does not fully exploit its geometric properties. To address this issue, Girolami 

and Calderhead (Girolami & Calderhead, 2011) propose Riemannian Manifold HMC 

(RMHMC), which adapts to the local Riemannian geometry of the target distribution by 

using a position-specific mass matrix M = G (θ). More specifically, they set G (θ) to the 

Fisher information matrix. Our proposed sampling method can be viewed as an extension of 

this approach since in that it explores the geometry of sphere.

3. Sampling from distributions defined on the unit ball

In many cases, bounded connected constrained regions can be bijectively mapped to the D-

dimensional unit ball  Therefore, in this section, 

we first focus on distributions confined to the unit ball with the constraint ‖θ‖2 ≤ 1.

We start by augmenting the original D-dimensional parameter θ with an extra auxiliary 

variable θD+1 to form an extended (D + 1)-dimensional parameter θ = (θ, θD+1) such that 

‖θ̃‖2 = 1 so . This way, the domain of the target distribution is changed 
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from the unit ball  to the D-dimensional sphere, SD ≔ {θ̃ ∈ ℝD+1: ‖θ̃‖2 = 1}, through 

the following transformation:

(1)

Note that although θD+1 can be either positive or negative, its sign does not affect our Monte 

Carlo estimates since after applying the above transformation, we need adjust our estimates 

according to the change of variable theorem as follows:

(2)

where  as shown in Appendix A.1. Here, dθB and dθ̃
S are under Euclidean 

measure and spherical measure respectively.

Using the above transformation, we define the dynamics on the sphere. This way, the 

resulting HMC sampler can move freely on SD while implicitly handling the constraints 

imposed on the original parameters. As illustrated in Figure 1, the boundary of the 

constraint, i.e., ‖θ‖2 = 1, corresponds to the equator on the sphere SD. Therefore, as the 

sampler moves on the sphere, passing across the equator from one hemisphere to the other 

translates to “bouncing back” off the the boundary in the original parameter space.

By defining HMC on the sphere, besides handling the constraints implicitly, the 

computational efficiency of the sampling algorithm could be improved by using splitting 

techniques discussed in (Beskos et al., 2011; Shahbaba et al., 2013b; Byrne & Girolami, 

2013). Consider a family of target distributions, {f(· ; θ)}, defined on the unit ball 

(i.e., the original parameter space) endowed with the Euclidean metric I. The potential 

energy is defined as U (θ) ≔ − log f (· ; θ). Associated with the auxiliary variable υ (i.e., 

velocity), we define the kinetic energy  for , which is a D-

dimensional vector sampled from the tangent space of . Therefore, the Hamiltonian is 

defined on  as

(3)

Next, we derive the corresponding Hamiltonian function on SD. The potential energy U (θ̃) 

= U (θ) remains the same since the distribution is fully defined in terms of the original 

parameter θ, i.e., the first D elements of θ̃. However, the kinetic energy, , 

changes since the velocity υ̃ = (υ, υD+1) is now sampled from the tangent space of the 

sphere, Tθ̃SD ≔ {υ̃ ∈ ℝD+1|θ̃T υ̃ = 0}, with υD+1 = −θT υ/θD+1. As a result, the Hamiltonian 

H* (θ̃, υ̃) is defined on the sphere SD as follows:
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(4)

Viewing {θ, } as a coordinate chart of SD, this is equivalent to replacing the Euclidean 

metric I with the canonical spherical metric . Therefore, we can 

write the Hamiltonian function (4) as

(5)

More details are provided in Appendix A.

Now we can sample the velocity  and set . Alternatively, 

we can sample υ̃ directly from the standard (D + 1)-dimensional Gaussian,

(6)

which simplifies to

(7)

The Hamiltonian function (5) can be used to define the Hamilton dynamics on the 

Riemannian manifold ( , GS) in terms of (θ, p), or equivalently as the following 

Lagrangian dynamics in terms of (θ, υ) (Lan et al., 2012):

(8)

where Γ are the Christoffel symbols of second kind derived from GS. The Hamiltonian (5) is 

preserved under Lagrangian dynamics (8). (See Lan et al., 2012, for more discussion).

(Byrne & Girolami, 2013) split the Hamiltonian (5) as follows:

(9)

However, their approach requires the manifold to be embedded in the Euclidean space. To 

avoid this assumption, instead of splitting the Hamilton dynamics, we split the 

corresponding Lagrangian dynamics (8) as follows:
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(10)

(See Appendix C for more details.) Note that the first dynamics (on the left) only involves 

updating velocity υ̃ in the tangent space Tθ̃SD and has the following solution (see Appendix 

C for more details):

(11)

where t denotes time.

The second dynamics (on the right) only involves the kinetic energy; hence, it is equivalent 

to the geodesic flow on the sphere SD with a great circle (orthodrome or Riemannian circle) 

as its analytical solution (see Appendix A.2 for more details),

(12)

Note that (11) and (12) are both symplectic. Due to the explicit formula for the geodesic 

flow on sphere, the second dynamics in (10) is simulated exactly. Therefore, updating θ̃ does 

not involve discretization error so we can use large step sizes. This could lead to improved 

computational efficiency. Since this step is in fact a rotation on sphere, we set the trajectory 

length to be 2π / D and randomize the number of leapfrog steps to avoid periodicity. 

Algorithm 1 shows the steps for implementing this approach, henceforth called Spherical 

HMC.

Algorithm 1

Spherical HMC

Initialize θ(̃1) at current θ̃ after transformation

Sample a new momentum value υ(̃1) ~ (0, ID+1)

Set υ(̃1) ← υ̃(1) − θ̃(1)(θ̃(1))T υ̃(1)

Calculate H(θ(̃1), υ̃(1)) = U(θ(1)) + K(υ̃(1))

for ℓ = 1 to L do
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end for

Calculate H(θ(̃L+1), υ̃(L+1)) = U(θ(L+1)) + K(υ̃(L+1))

Calculate the acceptance probability

  α = exp{−H(θ̃(L+1)), υ̃(L+1)) + H(θ̃(1), υ̃(1))}

Accept or reject the proposal according to α

Calculate the corresponding weight | θD+1
(n) |

4. Norm constraints

The unit ball region discussed in the previous section is in fact a special case of q-norm 

constraints. In this section we discuss q-norm constraints in general and show how they can 

be transformed to the unit ball so that the Spherical HMC method can be used. In general, 

these constraints are expressed in terms of q-norm of parameters,

(13)

For example, when β are regression parameters, q = 2 corresponds to ridge regression and q 

= 1 corresponds to Lasso (Tibshirani, 1996). In what follows, we show how this type of 

constraints can be transformed to SD.

4.1. Norm constraints with q = +∞

When q = +∞, the distribution is confined to a hypercube. Note that hypercubes, and in 

general hyper-rectangles, can be transformed to the unit hypercube, CD ≔ [−1, 1]D = {β ∈ 

ℝD : ‖β‖∞ ≤ 1}, by proper shifting and scaling of the original parameters. (Neal, 2010) 

discusses this kind of constraints, which could be handled by adding a term to the energy 

function such that the energy goes to infinity for values that violate the constraints. This 

creates “energy walls” at boundaries. As a result, the sampler bounces off the energy wall 

whenever it reaches the boundaries. This approach, henceforth called Wall HMC, has limited 

applications and tends to be computationally inefficient.

To use Spherical HMC, the unit hypercube can be transformed to its inscribed unit ball 

throughout the following map:
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(14)

Further, as discussed in the previous section, the resulting unit ball can be mapped to sphere 

SD through TB→S for which the Spherical HMC can be used. See Appendix B for the 

derivation of the corresponding weights needed for the change of variable.

4.2. Norm constraints with q ∈ (0, +∞)

A domain constrained by q-norm QD ≔ {x ∈ ℝD : ‖β‖q ≤ 1} for q ∈ (0, +∞) can be 

transformed to the unit ball  via the following map:

(15)

As before, the unit ball can be transformed to the sphere for which we can use the Spherical 

HMC method. See Appendix B for the derivation of the corresponding weights required for 

the change of variable.

5. Experimental results

In this section, we evaluate our proposed methods, Spherical HMC, by comparing its 

efficiency to that of Random Walk Metropolis (RWM) and Wall HMC using simulated and 

real data. To this end, we define efficiency in terms of time-normalized effective sample size 

(ESS). Given B MCMC samples for each parameter, , where 

 is the sum of K monotone sample autocorrelations (Geyer, 1992). We use the 

minimum ESS normalized by the CPU time, s (in seconds), as the overall measure of 

efficiency: min (ESS)/s.

5.1. Truncated Multivariate Gaussian

For illustration purposes, we first start with a truncated bivariate Gaussian distribution,

The lower and upper limits are l = (0, 0) and u = (5, 1) respectively. The original rectangle 

domain can be mapped to the 2-dimensional unit sphere through the following 

transformation:
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The left panel of Figure 2 shows the heatmap based on the exact density function, and the 

right panel shows the corresponding heatmap based on MCMC samples from Spherical 

HMC.

To evaluate the efficiency of the above-mentioned methods (RWM, Wall HMC, and 

Spherical HMC), we repeat this experiment for higher dimensions, D = 10, and D = 100. As 

before, we set the mean to zero and set the (i, j)-th element of the covariance matrix to Σij = 

1/(1 + |i − j|). Further, we impose the following constraints on the parameters,

where ui (i.e., the upper bound) is set to 5 when i = 1; otherwise, it is set to 0.5.

For each method, we obtain 10000 MCMC samples after discarding the initial 1000 

samples. We set the tuning parameters of algorithms such that their overall acceptance rates 

are within a reasonable range. As shown in Table 1, Spherical HMC is substantially more 

efficient than RWM and Wall HMC. For RWM, proposed states are rejected about 95% of 

times due to violation of constraints. On average, Wall HMC bounces off the wall around 

7.68 and 31.10 times per iteration for D = 10 and D = 100 respectively. In contrast, by 

augmenting the parameter space, Spherical HMC handles the constraints in an efficient way.

5.2. Bayesian Lasso

In regression analysis, overly complex models tend to overfit the data. Regularized 

regression models control complexity by imposing a penalty on model parameters. By far, 

the most popular model in this group is Lasso (least absolute shrinkage and selection 

operator) proposed by Tibshirani (Tibshirani, 1996). In this approach, the coefficients are 

obtained by minimizing the residual sum of squares (RSS) subject to . Park 

and Casella (Park & Casella, 2008) and Hans (Hans, 2009) have proposed a Bayesian 

alternative method, called Bayesian Lasso, where the penalty term is replaced by a prior 

distribution of the form P(β) ∝ exp(−λ|βj|), which can be represented as a scale mixture of 

normal distributions (West, 1987). This leads to a hierarchical Bayesian model with full 

conditional conjugacy; Therefore, the Gibbs sampler can be used for inference.

Our proposed method in this paper can directly handle the constraints in Lasso models. That 

is, we can conveniently use Gaussian priors for model parameters, β|σ2 ~  (0, σ2I), and use 

Spherical HMC with the transformation discussed in Section 4.2.

We evaluate our method based on the diabetes data set (n=442, p=10) discussed in (Park & 

Casella, 2008). Figure 3 compares coefficient estimates given by the Gibbs sampler (Park & 

Casella, 2008), Wall HMC, and Spherical HMC algorithms as the shrinkage factor s ≔ ‖ 

β̂Lasso‖1/‖ β̂OLS‖1 changes from 0 to 1. Here, β̂OLS denotes the estimates obtained by 
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ordinary least squares (OLS) regression. For the Gibbs sampler, we choose different λ so 

that the corresponding shrinkage factor s varies from 0 to 1. For Wall HMC and Spherical 

HMC, we fix the number of leapfrog steps to 10 and set the trajectory length such that they 

both have comparable acceptance rates around 70%.

Figure 4 compares the sampling efficiency of these three methods. As we impose tighter 

constraints (i.e., lower shrinkage factors s), our method becomes substantially more efficient 

than the Gibbs sampler and Wall HMC.

5.3. Bridge regression

The Lasso model discussed in the previous section is in fact a member of a family of 

regression models called Bridge regression (Frank & Friedman, 1993), where the 

coefficients are obtained by minimizing the residual sum of squares subject to 

. For Lasso, q = 1, which allows the model to force some of the coefficients 

to become exactly zero (i.e., become excluded from the model).

As mentioned earlier, our Spherical HMC method can easily handle this type of constraints 

through the following transformation:

Figure 5 compares the parameter estimates of Bayesian Lasso to the estimates obtained from 

two Bridge regression models with q = 1.2 and q = 0.8 for the diabetes dataset (Park & 

Casella, 2008) using our Spherical HMC algorithm. As expected, tighter constraints (e.g., q 

= 0.8) would lead to faster shrinkage of regression parameters as we decrease s.

5.4. Modeling synchrony among multiple neurons

Shahbaba et al. (Shahbaba et al., 2013a) have recently proposed a semiparametric Bayesian 

model to capture dependencies among multiple neurons by detecting their co-firing patterns 

over time. In this approach, after discretizing time, there is at most one spike in each 

interval. The resulting sequence of 1’s (spike) and 0’s (silence) for each neuron is called a 

spike train, which is denoted as Y and is modeled using the logistic function of a continuous 

latent variable with a Gaussian process prior. For n neurons, the joint probability distribution 

of spike trains, Y1, …, Yn, is coupled to the marginal distributions using a parametric copula 

model. Let H be n-dimensional distribution functions with marginals F1, …, Fn. In general, 

an n-dimensional copula is a function with the following form:

Here,  defines the dependence structure between the marginals. Shahbaba et al. (Shahbaba 

et al., 2013a) use a special case of the Farlie-Gumbel-Morgenstern (FGM) copula family 

(Farlie, 1960; Gumbel, 1960; Morgenstern, 1956; Nelsen, 1998), for which  has the 

following form:
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where Fi = Fi (yi). Restricting the model to second-order interactions, we have

Here, Fi = P(Yi ≤ yi) for the ith neuron (i = 1, …, n), where y1, …, yn denote the firing status 

of n neurons at time t. βj1,j2 captures the relationship between the j1 th and j2 th neurons, 

with βj1,j2 = 0 interpreted as “no relationship” between the two neurons. To ensure that 

probability distribution functions remain within [0, 1], the following constraints on all 

parameters, βj1j2, are imposed:

Considering all possible combinations of εj1 and εj2 in the above condition, there are n(n − 

1) linear inequalities, which can be expressed as ∑1≤j1<j2≤n |βj1j2| ≤ 1. For this model, we can 

use the square root mapping described in section 4.2 to transform the original domain (q = 1) 

of parameters to the unit ball before using Spherical HMC.

We apply our method to a real dataset based on an experiment investigating the role of 

prefrontal cortical area in rats with respect to reward-seeking behavior discussed in 

(Shahbaba et al., 2013a). Here, we focus on 5 simultaneously recorded neurons under two 

scenarios: I) rewarded (pressing a lever by rats delivers 0.1 ml of 15% sucrose solution), and 

II) non-rewarded (nothing happens after pressing a lever by rats). There are 51 trails for each 

scenario. The copula model detected significant associations among three neurons: the first 

and forth neurons (β1,4) under the rewarded scenario, and the third and forth neurons (β3,4) 

under the non-rewarded scenario. All other parameters were deemed non-significant (based 

on 95% posterior probability intervals). As we can see in Table 2, Spherical HMC is order(s) 

of magnitudes more efficient than RWM and Wall HMC.

6. Discussion

We have introduced a new efficient sampling algorithm for constrained distributions. Our 

method first maps the parameter space to the unit ball and then augments the resulting space 

to a sphere. A dynamical system is then defined on the sphere to propose new states that are 

guaranteed to remain within the boundaries imposed by the constraints. We have also shown 

how our method can be used for other types of constraints after mapping them to the unit 

ball. Further, by using the splitting strategy, we could improve the computational efficiency 

of our algorithm.
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In this paper, we assumed the Euclidean metric I on unit ball, . The proposed 

approach can be extended to more complex metrics, such as the Fisher information metric 

GF, in order to exploit the geometric properties of the parameter space (Girolami & 

Calderhead, 2011). This way, the metric for the augmented space could be defined as 

. Under such a metric however, we might not be able to find the geodesic 

flow analytically. Therefore, the added benefit from using the Fisher information metric 

might be undermined by the resulting computational overhead.
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Appendix

A. From unit ball to sphere

Consider the D-dimensional ball  and the D-dimensional sphere 

SD = {θ̃ = (θ, θD+1) ∈ ℝD+1 : ‖θ̃‖2 = 1}. Note that {θ, } can be viewed as a coordinate 

chart for SD. The first fundamental form ds2 (i.e., squared infinitesimal length of a curve) for 

SD is explicitly expressed in terms of the differential form dθ and the canonical metric GS as

, which can be obtained as follows (Spivak, 1979):

Therefore, the canonical metric GS of SD is

For any vector υ̃ = (υ, υD+1) ∈ Tθ̃SD = {υ̃ ∈ ℝD+1 : θ̃T υ̃ = 0}, one could view GS as a mean 

to express the length of υ̃ in υ:

The determinant of the canonical metric GS is given by the matrix determinant lemma,
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and the inverse of GS is obtained by the Sherman-Morrison-Woodbury formula (Golub & 

Van Loan, 1996)

A.1. Jacobian Determinant of TS→B

Using the volume form (Spivak, 1979), we have

The transformation  bijectively maps the unit ball 

to the upper-hemisphere . Using the change of variable theorem, we have

from which we can obtain the Jacobian determinant of TB→S as follows:

Therefore, the Jacobian determinant of TS→B is |θD+1|.

A.2. Geodesic

To find the geodesic on a sphere, we need to solve the following equations:

(16)

(17)

for which we need to calculate the Christoffel symbols, Γ, first. Note that the (i, j)-th 

element of GS is , and the (i, j, k)-th element of dGS is 

. Therefore
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Using these results, we can write equation (17) as . Further, we 

have

Therefore, we can rewrite the geodesic equations (16) (17) as

(18)

(19)

Multiplying both sides of Equation (19) by υT̃ to obtain , we can solve the above 

system of differential equations as follows:

B. Transformations between different constrained domains

Denote the general hyper-rectangle type constrained domain as RD ≔ {β ∈ ℝD : l ≤ β ≤ u}. 

For transformations TS→R and TS→Q, we can find the Jacobian determinants as follows. 

First, we note
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The corresponding Jacobian matrices are

where earg max |θ| is a vector with (arg max |θ|)-th element 1 and all others 0. Therefore,

Next, we note

The Jacobian matrix for TB→Q is

Therefore the Jacobian Determinant of TS→Q is

C. Splitting Hamilton dynamics on SD

Splitting the Hamiltonian function and its usefulness in improving HMC is a well-studied 

topic of research (Leimkuhler & Reich, 2004; Shahbaba et al., 2013b; Byrne & Girolami, 

2013). Splitting the Lagrangian function (used in our approach), on the other hand, has not 

been discussed in the literature, to the best of our knowledge. Therefore, we prove the 
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validity of our splitting method by starting with the well-understood method of splitting 

Hamiltonian (Byrne & Girolami, 2013),

The corresponding systems of differential equations,

can be written in terms of Lagrangian dynamics as follows: in (θ, υ) (Lan et al., 2012):

We have solved the second dynamics (on the right) in Section A.2. To solve the first 

dynamics, we note that

Therefore, we have

where

Finally, we note that ‖θ̃ (t)‖2 = 1 if ‖θ̃ (0)‖2 = 1 and υ̃(t) ∈ Tθ̃(t)SD if υ̃(0) ∈ Tθ̃(0)SD.
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Figure 1. 

Transforming unit ball  to sphere SD.
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Figure 2. 
Density plots of a truncated bivariate Gaussian using exact density function (left) and 

MCMC samples from Spherical HMC (Right).
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Figure 3. 
Bayesian Lasso using three different sampling algorithms: Gibbs sampler (left), Wall HMC 

(middle) and Spherical HMC (right).
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Figure 4. 
Sampling efficiency of different algorithms for Bayesian Lasso based on the diabetes 

dataset.
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Figure 5. 
Bayesian Bridge Regression by Spherical HMC: Lasso (q=1, left), q=1.2 (middle), and 

q=0.8 (right).
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Table 1

Comparing RWM, Wall HMC, and Spherical HMC in terms of acceptance probability (AP), seconds (s) per 

iteration, and Min(ESS)/s.

Dim Method AP s/Iteration Min(ESS)/s

RWM 0.64 1.6E-04 8.80

D=10 Wall HMC 0.93 5.8E-04 426.79

Spherical HMC 0.81 9.7E-04 602.78

RWM 0.72 1.3E-03 0.06

D=100 Wall HMC 0.94 1.4E-02 14.23

Spherical HMC 0.88 1.5E-02 40.12
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Table 2

Comparing RWM, Wall HMC, and Spherical HMC based on the copula model.

Scenario Method AP s/Iteration Min(ESS)/s

RWM 0.69 8.2 2.8E-04

I Wall HMC 0.67 17.0 7.0E-03

Spherical HMC 0.83 17.0 2.0E-02

RWM 0.67 8.1 2.8E-04

II Wall HMC 0.75 19.4 1.8E-03

Spherical HMC 0.81 18.0 2.2E-02
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