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ORIGINAL ARTICLE
Occupational Years of Service and Leukocyte Epigenetic Aging
Relationships in United States Firefighters
Jamaji C. Nwanaji-Enwerem, MD, PhD, MPP, Andres Cardenas, PhD, MPH, Jaclyn M. Goodrich, PhD,
Melissa A. Furlong, PhD, Alesia M. Jung, PhD, Philip A. Collender, MPH, Alberto J. Caban-Martinez, PhD, DO, MPH,
Casey Grant, MS, ShawnC. Beitel, MS, Sally Littau, BS,MT, Derek J. Urwin, PhD, Jamie J. Gabriel, BS, Jeff Hughes, AS,

John Gulotta, BS, Darin Wallentine, MA, and Jefferey L. Burgess, MD, MS, MPH
LEARNING OUTCOMES

• Describe the concept of epigenetic age acceleration and recall
key differences between the eight epigenetic age markers
used in the present study.

• Summarize the observed relationships between years of oc-
cupational firefighter exposure and epigenetic age accelera-
tion in incumbent firefighters while identifying differences
in these observed relationships in incumbent versus recruit
firefighters.
Objective: The aim of the study is to examine associations between years of
firefighting service and eight chronological age-adjusted measures of blood
leukocyte epigenetic age acceleration: Horvath, Hannum, SkinBloodClock, In-
trinsic, Extrinsic, PhenoAge, GrimAge, and DNAm telomere length.Methods:
The study used a repeated measures analysis of data from 379 incumbent fire-
fighters from eight career departments and 100 recruit firefighters from two of
the departments, across the United States. Results: Incumbent firefighters had
on average greater epigenetic age acceleration compared with recruit fire-
fighters, potentially due to the cumulative effect of occupational exposures.
However, among incumbent firefighters, additional years of service were as-
sociated with epigenetic age deceleration, particularly for GrimAge, a strong
predictor of mortality. Conclusions: Long-term studies with more specific
occupational exposure classification are needed to better understand the rela-
tionship between years of service and aging biomarkers.

Keywords: epigenetic age, DNA methylation, healthy worker effect, EMT,
EMS

F irefighting is characterized by work in a variety of environments
and is associated with multiple hazardous exposures including

chemical toxicants, heat, shift work, and noise.1 The International
Agency for Research on Cancer has classified firefighting as “carcino-
genic to humans” (group 1),2 and there is further evidence linking
firefighting to respiratory, cardiovascular, and mental illness.3–5

DNA methylation, an epigenetic mechanism that influences gene ex-
pression and is influenced by lifestyle and environmental factors,6 is
one biological marker that has been used to better understand these
health relationships. Existing studies have identified genes that are dif-
ferentially methylated when comparing firefighters to nonfirefighting
controls and incumbent firefighters to recruits.Many of these differen-
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tially methylated genes, including FOXK2 and DUSP22, have known
relationships with carcinogenesis.7–9 To the best of our knowledge,
only one study has examined relationships of firefighting with epige-
netic age,10 a DNA methylation-based biomarker of biological aging
that surpasses single methylation loci in its prediction of healthspan
and lifespan.11–13 This study reported significant, positive associations
of perfluorooctanoate, the sum of branched isomers of perfluorooctane
sulfonate, and perfluorohexane sulfonate with several epigenetic aging
biomarkers in municipal firefighters, suggesting important health
risks from this group of chemical compounds.10

In the present study, we add to the knowledge of firefighting and
epigenetic age by examining the relationships of occupational years of
service with epigenetic aging using data from career firefighters across
the United States. Furthermore, we explore whether epigenetic aging
may differ between recruit and incumbent firefighters. We tested rela-
tionships with eight robust epigenetic age measures that provide different
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information onDNAmethylation-based biological aging. TheHannum,14

Horvath,11 and the SkinBloodClock15 epigenetic biomarkers are predictors
of chronological age but also have reported relationships with environ-
mental exposures and disease. For instance, the Horvath epigenetic
clock is associated with increased exposure to fine particle air pollu-
tion16 and chronic obstructive pulmonary disease.17 The PhenoAge
clock12 is a more sensitive biomarker of morbidity, while the GrimAge
clock13 is an epigenetic predictor of mortality risk. Extrinsic (EEAA)
and intrinsic (IEAA) epigenetic age acceleration are derived from the
Hannum and Horvath measures, respectively.18 Extrinsic epigenetic
age acceleration measures immune system aging by upweighting
age-dependent changes in leukocytes (naïve cytotoxic T cells, exhausted
cytotoxic T cells, and plasmablasts). The IEAA measure reports age
acceleration independent of leukocyte proportions and can be viewed
as a metric of the intrinsic aging of cells. The DNAm telomere length
(DNAmTL) biomarker is correlated with directly measured leukocyte
TL and may reflect cell replication.19

Given the well-documented occupational hazards that fire-
fighters experience, we hypothesized that occupational years of ser-
vice would be positively associated with an increased cumulative bur-
den of adverse health exposures and subsequently with accelerated
epigenetic aging. Likewise, given that recruits are typically younger
in chronological age and have experienced a lower burden of occupa-
tional exposures, we performed a sensitivity analysis comparing re-
cruits to incumbent firefighters. Here, we hypothesized that recruits
would be epigenetically younger, independent of their chronological
age, compared with incumbent firefighters.

METHODS

Study Sample
Participants were drawn from two studies assessing disease and

cancer risk factors among career firefighters in the United States (US).
Study recruitment methods have been reported previously.10,20 All
study protocols and materials were reviewed and approved by institu-
tional review boards (IRBs), and all participants provided written in-
formed consent. The first study was conducted in partnership with
the Tucson Fire Department. The second study, the Fire Fighter Can-
cer Cohort Study (FFCCS) (https://www.ffccs.org/), is an ongoing
study involving academic and governmental institutions as well as fire
departments across the US. At time of study enrollment (2015–2018
for Tucson Fire Department study and 2018–2021 for FFCCS), partici-
pants completed an online survey that collected demographic informa-
tion including age, race, Hispanic ethnicity, height and weight measure-
ments that were used to calculate body mass index (BMI, in kilograms
per meter squared), years working as a firefighter, and fire department.
Blood samples were also collected from participants at time of enroll-
ment. For participants in the Tucson Fire Department study, an addi-
tional blood sample was collected at follow-up 20 to 37 months after
enrollment. For a subset of participants in the FFCCS, a second blood
sample was collected approximately 9 months after initial enrollment.
The final sample set is composed of 479 firefighters (379 incumbents
and 100 recruits) from eight fire departments across the US. New re-
cruits were from two fire departments. Of the study participants, 144
had a follow-up collection resulting in 623 total observations.

DNA Methylation Processing
Blood samples were primarily collected in one 6-mL dipotassium

ethylenediaminetetraacetic acid tube (Becton, Dickinson and Company,
Franklin Lakes, NJ) for DNA methylation analyses, with eight samples
collected in cell preparation tubes (Becton, Dickinson and Company).
The ethylenediaminetetraacetic acid tubes were processed in one of two
ways: 2.5 mL of whole blood was aliquoted, and the remaining blood
centrifugated at 1300g for 15 minutes and plasma separated from the
packed cell pellet, or the whole 6.0-mL blood sample was centrifuged
© 2023 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the A
at 1300g for 15minutes and plasma separated from the packed cell pellet.
Samples processed off sitewere temporarily stored at−20°C until transfer
to the University of Arizona for long-term storage at −80°C. Cell prepa-
ration tubes were processed according to the product guidelines and
packed cell pellets stored at −80°C.

DNA was isolated from blood leukocytes or packed cell pellets
and quantified using a QuantiFluor dsDNA System (Promega, WI) or a
Qubit Fluorometer (Thermo Fisher Scientific, MA). Approximately
500 ng per sample underwent bisulfite conversion using Zymo EZ
DNA Methylation Kits (Zymo Research Corp, Irvine, CA) according to
manufacturer recommendations for downstream Infinium array analysis.
DNA methylation was quantified at greater than 850,000 CpG sites
throughout the genome using the Infinium MethylationEPIC array
(Illumina, CA).21 Laboratory and data processing methods have been
previously described.10 Briefly, after completion of bisulfite conver-
sion, samples were randomized across chips, hybridized, and scanned
in batches at the University of Utah DNA Sequencing and Genomics
Core Facility (Salt Lake City, UT) and/or the University of Michigan
Advanced Genomics Core. Raw image files were read through the R
package minfi, and quality control was performed in minfi and
Enmix.22 Samples failing at least one quality control measure (includ-
ing sex match, low average intensities, poor bisulfite conversion effi-
ciency, and/or mismatching SNP data for repeat samples from the
same participant) were excluded.

Epigenetic Age Biomarker Calculation
We generated estimates of both cell type proportions and epige-

netic age (“epigenetic clocks”) using widely used algorithms as previ-
ously described.10 Briefly, we uploaded EPIC data for all samples
passing quality control to the New Methylation Age Calculator Web
site (https://dnamage.genetics.ucla.edu/new).11 Epigenetic age accel-
eration (EAA) measures are provided directly by the online calculator
and represent the difference between the ages predicted by various epi-
genetic clocks and an individual’s chronological age. Epigenetic age
acceleration measures are derived from residuals of models that re-
gress each epigenetic clock on chronological age. Cell type propor-
tions of CD4+ T cells, natural killer cells, B cells, monocytes, and
granulocytes were estimated using an established algorithm23 along
with relative abundance of three additional blood cell types—plasma
blasts, CD8 + CD28-CD45RA-T cells, and naive CD8+ T cells.11

Among epigenetic aging biomarkers generated by this calculator, we
selected the Horvath, Hannum, and SkinBlood clocks along with com-
posite clocks PhenoAge and GrimAge and a DNA methylation-based
estimator of telomere length (DNAmTL) for downstream analysis.
These six markers were regressed on chronological age and the resid-
uals used in downstream statistical analysis. We also estimated intrin-
sic epigenetic age acceleration (IEAA) and EEAA in our analyses.24

Statistical Analysis
We used Pearson correlations between chronological age and

epigenetic aging biomarkers to test the performance of the epigenetic
clocks. For all measures except DNAmTL, we computed the median
absolute error (MAE) in years (defined as the median absolute devia-
tion between age predicted by each epigenetic clock and chronological
age) to further evaluate accuracy.

We ran a 3-phase analysis. The first phase of our analysis fo-
cused on incumbent firefighters from all eight fire departments. In lin-
ear unadjusted models, we modeled the first visit relationships of oc-
cupational years of service with each of the eight epigenetic clocks.
Next, we used linear mixed effects models to model first and second
visit (longitudinal) relationships of occupational years of service with
each of the eight epigenetic clocks in the firefighters. The longitudinal
models included a random intercept for participants to account for re-
peated measures. We then reran the longitudinal models adjusted for
race, sex, body mass index (BMI), and fire department. The second
merican College of Occupational and Environmental Medicine. e313
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TABLE 1. Participant Characteristics for Incumbent and New Recruit Firefighters (N = 479)

Incumbent (n = 379, 79%), Mean (SD) Recruit (n = 100, 21%), Mean (SD)

Age variables
Baseline chronological age, y 41.7 (9.4) 29.1 (5.7)
Hannum DNAmAge, y 33.5 (9.2) 22.5 (6.2)
Horvath DNAmAge, y 43.7 (9.5) 31.1 (7.8)
SkinBloodClock, y 38.5 (10.4) 25.0 (7.4)
DNAm PhenoAge, y 31.3 (10.4) 21.1 (8.1)
DNAm GrimAge, y 41.5 (8.6) 30.7 (6.6)
DNAmTL, kb 7.1 (0.3) 7.4 (0.2)

Demographic and occupational variables n (%) n (%)
BMI category
Normal 80 (21) 41 (41)
Overweight 221 (58) 49 (49)
Obese 78 (21) 10 (10)

Race
Black or African American 14 (4) 10 (10)
White 307 (81) 76 (76)
Other 58 (15) 14 (14)

Sex
Female 42 (11) 14 (14)
Male 337 (89) 86 (86)

No. visits
1 285 (75) 50 (50)
2 94 (25) 50 (50)

Years as firefighter, mean (SD) 14.5 (8.8) 0.3 (0.6)

Nwanaji-Enwerem et al JOEM • Volume 65, Number 5, May 2023
phase of our analysis evaluated years of service and epigenetic aging
relationships using first visit unadjusted, longitudinal unadjusted,
and longitudinal adjusted models for recruits alone. Again, recruits
came from two of the eight fire departments. In the third phase of
our analysis, we focused on the two fire departments with recruits
and examined if being an incumbent versus recruit firefighter was
significantly associated with the epigenetic clocks using first visit
FIGURE 1. Epigenetic age and chronological age correlations. Pear
epigenetic aging biomarkers estimated in the study sample and chr

e314 © 2023 The Author(s). Published by Wolters Kluwer Health, Inc. on
unadjusted, longitudinal unadjusted, and longitudinal adjusted
models. These adjusted models contain covariates for occupational
years of service, race, sex, BMI, and fire department. Given evi-
dence that weight/adiposity/BMI could also be a potential mediator
of the adverse health effects of environmental and occupational ex-
posures including air pollutants,25,26 we performed a sensitivity
analysis of adjusted models excluding BMI as a covariate. All
son correlation coefficients (r) and MAEs for baseline (first visit)
onological age.

behalf of the American College of Occupational and Environmental Medicine.



TABLE 2. Relationship between Years of Service and EAA in Incumbent Firefighters

Aging Biomarker Models
Baseline Unadjusted

(Obs = 379)
Longitudinal Unadjusted

(Obs = 473)
Longitudinal Adjusted

(Obs = 473)

Sensitivity Longitudinal
Adjusted w/o BMI

(Obs = 473)

Difference in DNA
Methylation Biomarker

(95% CI) P

Difference in DNA
Methylation Biomarker

(95% CI) P

Difference in DNA
Methylation Biomarker

(95% CI) P

Difference in DNA
Methylation Biomarker

(95% CI) P

EAA Hannum
units: years

−0.01 (−0.05 to 0.04) 0.80 −0.003 (−0.05 to 0.04) 0.88 −0.02 (−0.06 to 0.03) 0.50 −0.01 (−0.05 to 0.04) 0.78

EAA Horvath
units: years

−0.03 (−0.09 to 0.03) 0.27 −0.04 (−0.10 to 0.02) 0.16 −0.08 (−0.13 to −0.02) 0.01 −0.06 (−0.12 to −0.01) 0.02

EAA SkinBloodClock
units: years

−0.02 (−0.07 to 0.02) 0.29 −0.02 (−0.06 to 0.03) 0.41 −0.04 (−0.08 to 0.01) 0.14 −0.02 (−0.07 to 0.02) 0.30

Intrinsic EAA (IEAA)
units: years

−0.02 (−0.07 to 0.03) 0.46 −0.03 (−0.08 to 0.02) 0.30 −0.04 (−0.10 to 0.01) 0.15 −0.02 (−0.08 to 0.02) 0.31

Extrinsic EAA (EEAA)
units: years

0.005 (−0.05 to 0.06) 0.87 0.01 (−0.05 to 0.06) 0.80 −0.01 (−0.07 to 0.05) 0.80 0.004 (−0.05 to 0.06) 0.89

EAA PhenoAge
units: years

0.02 (−0.04 to 0.08) 0.51 0.02 (−0.04 to 0.08) 0.48 0.01 (−0.05 to 0.08) 0.66 0.04 (−0.02 to 0.10) 0.22

EAA GrimAge
units: years

−0.02 (−0.06 to 0.02) 0.34 −0.02 (−0.07 to 0.02) 0.23 −0.05 (−0.09 to −0.01) 0.01 −0.05 (−0.08 to −0.01) 0.01

DNAm TL age adjusted
units: kb

−0.001 (−0.003 to 0.002) 0.60 −0.001 (−0.003 to 0.001) 0.54 0.001 (−0.002 to 0.003) 0.58 0.0003 (−0.002 to 0.003) 0.76

Adjusted models contain covariates for race, sex, BMI, and fire department. The baseline model consists of first visits only. The longitudinal models include first and second study visits.
These models include data from eight fire departments. The table depicts β values for each year of occupational service. For instance, for EAAHorvath in longitudinal adjustedmodels, each
year of service is associated with a 0.08-year younger epigenetic age.

BMI, body mass index; CI, confidence interval.
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statistical analyses were performed using RVersion 4.1.0 (R Core
Team, Vienna, Austria).

RESULTS

Study Sample Characteristics
Our study sample characteristics are presented in Table 1. The

sample includes 479 firefighters (379 incumbent firefighters [79%]
and 100 recruits [21%]). Four of the departments were municipal fire
departments and four were airport fire departments; the four municipal
fire departments accounted for 80% of the total participants and all the
recruits. Baseline mean (SD) chronological ages for incumbent fire-
fighters and recruits were 41.7 (9.4) and 29.1 (5.7) years, respectively.
The study sample was majority male (88%) and White (80%). Most
participants were overweight or obese according to BMI (75%). Most
incumbents (75%) had one study visit; however, half of the recruits
(50%) had two study visits. The mean (SD) years working as a fire-
fighter in incumbents was 14.5 (8.8) years. The baseline mean (SD)
years working as a firefighter in recruits was 0.3 (0.6) years.

Performance of Epigenetic Clocks
Epigenetic ages were higher in incumbents compared with re-

cruits (Table 1). For instance, mean (SD) Horvath DNAmAge was
43.7 (9.5) years and 31.1 (7.8) years for incumbents and recruits respec-
tively. DNAmTL estimates were comparable between the two groups.
Mean (SD) DNAmTL was 7.1 (0.3) kilobases (kb) for incumbents
and 7.4 (0.2) kb for recruits. All epigenetic clocks performed well
and were significantly correlated with chronological age (Fig. 1). Pos-
itive correlations with chronological age were strongest for the
SkinBloodClock (r = 0.94, P < 0.001; MAE = 3.4 years), Hannum
DNAmAge (r = 0.91, P < 0.001; MAE = 7.6 years), and DNAm
GrimAge (r = 0.91, P < 0.001; MAE = 2.6 years). As expected,
DNAmTLwas the onlymetric that was negatively correlatedwith chro-
nological age (r = −0.74, P < 0.001). Notably, Hannum and PhenoAge
© 2023 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the A
estimates were generally younger than subjects’ chronological ages and
had the largest MAEs.
Associations of Years of Service and EAA
Table 2 presents relationships of years of service and EAA

solely in incumbent firefighters from the eight fire departments. In
longitudinal adjusted models, years of servicewas inversely associated
with EAA Horvath and EAA GrimAge. Specifically, both EAA
Horvath (β = −0.08 years; 95% CI, −0.13 to −0.02, P = 0.01) and
EAA GrimAge (β = −0.05 years; 95% CI, −0.09 to −0.01, P = 0.01)
were inversely associated with years of service in longitudinal models
adjusting for race, sex, BMI, and fire department. Unadjusted baseline
and longitudinal estimates were not statistically significant.

Table 3 presents relationships of years of service and EAA
solely in recruit firefighters from two fire departments. In adjusted lon-
gitudinal models, years of service was inversely associated with EAA
Hannum (β = −0.58 years; 95% CI, −1.15 to −0.02, P = 0.04),
SkinBloodClock (β = −0.65 years; 95% CI, −1.09 to −0.21,
P = 0.005), PhenoAge (β = −1.14 years; 95% CI, −1.87 to −0.41,
P = 0.003), and EEAA (β = −0.98 years; 95% CI, −1.84 to −0.11,
P = 0.03). Years of servicewas positively associated with EAAHorvath
(β = 0.61 years; 95%CI, 0.02 to 1.20,P = 0.04). The observed relation-
ships were of similar magnitude and statistical significance in the sen-
sitivity analysis where BMI was removed as a covariate (Tables 2, 3).
Epigenetic Age Relationships Comparing Recruits
With Incumbent Firefighters

Table 4 presents the results of models comparing EAA between
recruits and incumbents. A significant association was only observed
for EAA SkinBloodClock. In longitudinal age-adjusted models, re-
cruits had a 1.16-year younger EAA SkinBloodClock when compared
with incumbents (95%CI, −2.28 to −0.03, P = 0.04). This relationship
was of similar magnitude but not statistically significant in the
merican College of Occupational and Environmental Medicine. e315



TABLE 3. Relationship between Years of Service and EAA in Recruit Firefighters

Aging Biomarker
Models

Baseline Unadjusted
(Obs = 100)

Longitudinal
Unadjusted
(Obs = 150)

Longitudinal Adjusted
(Obs = 150)

Sensitivity Longitudinal
Adjusted w/o BMI

(Obs = 150)

Difference in DNA
MethylationBiomarker

(95% CI) P

Difference in DNA
Methylation Biomarker

(95% CI) P

Difference in DNA
Methylation Biomarker

(95% CI) P

Difference in DNA
MethylationBiomarker

(95% CI) P

EAA Hannum
units: years

−1.15 (−2.45, 0.14) 0.08 −0.76 (−1.26 to −0.27) 0.003 −0.58 (−1.15 to −0.02) 0.04 −0.58 (−1.14 to −0.03) 0.04

EAA Horvath
units: years

−1.68 (−3.38 to 0.02) 0.05 −0.13 (−0.72 to 0.46) 0.66 0.61 (0.02 to 1.20) 0.04 0.62 (0.04 to 1.21) 0.04

EAA SkinBloodClock
units: years

0.04 (−0.99 to 1.07) 0.94 −0.60 (−1.00 to −0.21) 0.003 −0.65 (−1.09 to −0.21) 0.005 −0.67 (−1.11 to −0.23) 0.004

Intrinsic EAA (IEAA)
units: years

−0.75 (−2.18 to 0.69) 0.30 −0.13 (−0.58 to 0.33) 0.57 0.11 (−0.38 to 0.60) 0.66 0.12 (−0.37 to 0.60) 0.63

Extrinsic EAA (EEAA)
units: years

−2.40 (−4.37 to −0.43) 0.02 −1.06 (−1.79 to −0.32) 0.006 −0.98 (−1.84 to −0.11) 0.03 −0.99 (−1.84 to −0.14) 0.02

EAA PhenoAge
units: years

−1.47 (−3.24 to 0.29) 0.10 −0.70 (−1.34 to −0.06) 0.03 −1.14 (−1.87 to −0.41) 0.003 −1.14 (−1.86 to −0.42) 0.003

EAA GrimAge
units: years

−3.03 (−4.33 to −1.73) <0.001 −0.78 (−1.23 to −0.33) 0.001 −0.44 (−0.90 to 0.02) 0.06 −0.42 (−0.88 to 0.04) 0.07

DNAm TL age adjusted
units: kb

−0.02 (−0.08 to 0.05) 0.61 0.001 (−0.02 to 0.02) 0.90 0.02 (−0.01 to 0.04) 0.18 0.01 (−0.01 to 0.04) 0.20

Adjusted models contain covariates for race, sex, BMI, and fire department. The baseline model consists of first visits only. The longitudinal models include first and second study visits.
These models include data from two fire departments. The table depicts beta values for each year of occupational service. For instance, for EAA Hannum in longitudinal adjusted models,
each year of service is associated with a 0.58-year younger epigenetic age.

BMI, body mass index; CI, confidence interval.
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sensitivity analysis where BMI was removed as a covariate (β = −0.92
years; 95% CI, −2.05 to 0.20, P = 0.11).
DISCUSSION
In this study of US firefighters, we explored the relationships of

occupational years of servicewith epigenetic age. Our results demonstrate
that for the SkinBloodClock, incumbents were epigenetically older
than new firefighters (recruits), even after accounting for chronological
TABLE 4. Epigenetic Age Acceleration Relationships of Recruits Com

Aging Biomarker Models
Baseline Unadjusted

(Obs = 300)
Longitudinal Un

(Obs = 435

Difference in DNA
Methylation Biomarker

(95% CI) P

Difference in DN
Methylation Bioma

(95% CI)

EAA Hannum
units: years

0.07 (−0.92 to 1.06) 0.89 −0.65 (−1.53 to 0.2

EAA Horvath
units: years

−0.70 (−2.01 to 0.62) 0.30 −0.75 (−1.97 to 0.4

EAA SkinBloodClock
units: years

−0.49 (−1.31 to 0.34) 0.25 −1.06 (−1.86 to −0

Intrinsic EAA (IEAA)
units: years

−0.40 (−1.51 to 0.71) 0.48 −0.49 (−1.53 to 0.5

Extrinsic EAA (EEAA)
units: years

0.07 (−1.26 to 1.41) 0.92 −0.72 (−1.87 to 0.4

EAA PhenoAge
units: years

0.44 (−0.88 to 1.76) 0.51 0.23 (−0.99 to 1.4

EAA GrimAge
units: years

0.48 (−0.59 to 1.55) 0.38 −0.03 (−1.02 to 0.9

DNAm TL age adjusted
units: kb

0.01 (−0.03 to 0.05) 0.65 0.01 (−0.03 to 0.0

Adjustedmodels contain covariates for occupational years of service, race, sex, BMI, and fire
first and second study visits. These models include data from two fire departments. The ta
SkinBloodClock in longitudinal adjusted models, recruits are on average 1.16-years younger in

BMI, body mass index; CI, confidence interval.
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age. However, for incumbent firefighters, we observed that each occu-
pational year of service was associated with lower EAA by the Horvath
and GrimAge biomarkers, although the magnitude of this relationship
was relatively small. Despite short follow-up time, in recruit fire-
fighters, overall, each occupational year of service was also associated
with lower epigenetic age and these effect sizes were larger than those
observed in incumbents.

Existing studies demonstrate that firefighters have increased
risks for certain cancers,27 heart disease,28,29 adverse reproductive
pared With Incumbent Firefighters

adjusted
)

Longitudinal Adjusted
(Obs = 435)

Sensitivity Longitudinal
Adjusted w/o BMI

(Obs = 435)

A
rker

P

Difference in DNA
Methylation Biomarker

(95% CI) P

Difference in DNA
Methylation Biomarker

(95% CI) P

3) 0.15 −0.08 (−1.30 to 1.14) 0.90 −0.03 (−1.24 to 1.17) 0.53

7) 0.23 0.35 (−1.09 to 1.80) 0.63 0.39 (−1.03 to 1.81) 0.59

.27) 0.01 −1.16 (−2.28 to −0.03) 0.04 −0.92 (−2.05 to 0.20) 0.11

4) 0.35 0.16 (−1.22 to 1.55) 0.82 0.18 (−1.19 to 1.54) 0.80

4) 0.22 −0.16 (−1.79 to 1.46) 0.85 −0.07 (−1.68 to 1.53) 0.93

5) 0.71 −0.24 (−1.93 to 1.44) 0.78 −0.29 (−1.97 to 1.37) 0.73

6) 0.95 0.29 (−0.86 to 1.44) 0.62 0.24 (−0.90 to 1.38) 0.68

6) 0.59 0.01 (−0.05 to 0.07) 0.83 0.01 (−0.05 to 0.07) 0.82

department. The baseline model consists of first visits only. The longitudinalmodels include
ble depicts beta values for recruits compared with incumbents. For instance, for EAA
epigenetic age than incumbent firefighters.

behalf of the American College of Occupational and Environmental Medicine.
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effects,30–32 and respiratory disease.33 DNA methylation studies sug-
gest that firefighting may also impact the epigenome and may have
some role in some of these disease processes. For example, in a subset
of the participants from the present study, we identified 680 loci
throughout the genome with altered DNA methylation approximately
2 years after starting work in the fire service when compared with the
recruits’ own baseline samples.34 Methylation levels of 140 of these
loci also associated with cumulative time spent at fires in between
baseline and follow-up. In another example, an Ohio-based study of
18 firefighters reported that the promoter of DUSP22, a gene that en-
codes a phosphatase and is associated with lymphoma, was signifi-
cantly hypomethylated in firefighters compared with nonfirefighting
controls.7 To further demonstrate relationships of the epigenome with
firefighting, we have previously used machine learning to identify
DNA methylation sites highly correlated with years of firefighting.9

In addition, the one existing study of firefighting and epigenetic age
relationships in 197 US firefighters (a subset of the present study) re-
ported that toxic, persistent per- and polyfluoroalkyl substances
(PFAS) were associated with several epigenetic clocks.10 Although
the study reported inverse associations of perfluorodecanoate and
perfluoroundecanoate with GrimAge, multiple other PFAS were posi-
tively associated with epigenetic aging. Perfluorohexane sulfonate was
positively associated with three clocks (EEAA, Hannum and
SkinBlood). Linear perfluorooctanoate was associated with 6 clocks
(Hannum, Horvath, IEAA, EEAA, SkinBlood, and PhenoAge). In ad-
dition, the sum of perfluoromethylheptane sulfonate isomer was asso-
ciated with acceleration of two other clocks, IEAA and Horvath.10

Given these findings and previously reported occupational health
risks, we hypothesized that years of firefighting would be associated
with accelerated epigenetic age—a surrogate of worsened morbidity
and mortality risk.

The results of our analyses examining relationships between in-
cumbents (mean chronological age of 41.7 years, mean 14.5 years as a
firefighter) compared with recruits (mean chronological age of
29.1 years, mean 0.3 years as a firefighter) agreed with our hypothesis
for the SkinBloodClock biomarker. Incumbents, who have greater cu-
mulative occupational hazard exposures, had an EAA compared with
recruits by an average of 1.16 years. Still, it is important to consider
why we do not observe significant relationships with the other epige-
netic age markers. Different epigenetic aging markers represent differ-
ent aspects of biological aging, but also in the settings of different en-
vironmental exposures or disease processes, existing research has
demonstrated that epigenetic aging markers have different sensitivi-
ties.16,35 For example, the SkinBloodClock is primarily viewed as a
predictor of chronological age.15 Comparably, of all epigenetic age
measures in our study sample, it has the strongest correlation with
chronological age and second lowest margin of error, behind
GrimAge, which incorporates chronological age in its predictions.
Thus, although EAA accounts for chronological age, there could still
be residual confounding by chronological age impacting our results.
Even so, because the SkinBloodClock has been associated with
all-cause mortality,15 this finding merits further investigation.

Our results from analyses exploring relationships of years of
service and epigenetic age were largely contrary to our original hy-
pothesis. The strength of this association in incumbents was relatively
small (0.05–0.08 years) and stronger in recruits, who have less cumu-
lative occupational hazard exposures than incumbents. These findings
may be influenced by the healthy worker effect (HWE), a phenomenon
observed in studies of occupational exposure and disease where peo-
ple who remain actively employed for longer periods have a consistent
tendency to exhibit better health than the population at large.36 This ef-
fect is difficult to characterize statistically due to the inherent absence
of information for individuals who do not enter the workforce or
whose employment status changes; however, the presence of the
HWE in firefighting has been characterized in a cohort of German
firefighters37 and in studies of firefighters in the US.38 It may occur
© 2023 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the A
when susceptible subpopulations or individuals experiencing adverse
health effects leave the workforce (often these are individuals who
may be highly exposed) or if a firefighter’s job and task or years of ser-
vice are associated with exposure levels over time.39

Other factors may contribute to the unexpected finding. Addi-
tional years of service as a firefighter is frequently associated with ad-
vancement in rank, which in turn is associated with different job func-
tions on the fire ground that often result in a lower burden of occupa-
tional exposures. For example, a typical career track in large municipal
and county fire departments is for a firefighter-EMTassigned to an en-
gine or truck company to become a firefighter-paramedic assigned to a
paramedic rescue unit, and/or an apparatus engineer or company offi-
cer on an engine or truck company. Both promoted positions are likely
to have a lower burden of hazardous occupational exposures on fire in-
cidents than the firefighter EMT, given that exterior responses to a fire
have lower exposure than interior responses.40 The reduction in epige-
netic age with reduction in exposures has been reported elsewhere. A
pilot investigation of the impact of smoking cessation on biological
age found that smoking cessation was associated with a “significant
improvement” in Hannum’s and Horvath’s aging clocks.41 Further-
more, a recent review noted that preliminary evidence suggests that
specific interventions such as changes in diet and exercise can slow
or reverse aging clocks and that noninterventional studies have linked
age deceleration to sleep quality, diet, and physical activity.42 This in-
formation highlights the importance of conducting future longitudinal
epigenetic age studies with more specific firefighter occupational ex-
posure classification to determine whether additional years of service
and a lower burden of hazardous exposures, along with the high level
of physical exertion associated with firefighting, is associated with a
slowing or reversing of aging clocks. In our study, we were unable
to account for rank or lifestyle factors mentioned previously because
of limitations of the data. Future research is needed to further refine
analyses of epigenetic aging in firefighters that includes details on cur-
rent and former rank and lifestyle factors associated with health status.
This is particularly important in our sensitivity analyses that excluded
BMI as a covariate. The results of our years of service analyses in in-
cumbents and recruits respectively were largely unchanged. However,
the results comparing EAA in recruits versus incumbents was no lon-
ger statistically significant in the sensitivity analysis. It is reassuring
that the effect estimates were in the same direction and were of similar
magnitude (with recruits being on average epigenetically younger),
but the finding merits further investigation. Existing work suggests
that higher BMIs may be misleading if muscle mass is not taken into
context.43 Hence in our cohort, higher BMI may not necessarily trans-
late to adiposity. Still, future work with more health-related data in-
cluding central adiposity measures will be necessary to fully under-
stand this finding.

Our study has several strengths including the utilization of a
broad panel of epigenetic aging markers to better understand the occu-
pational risks of firefighters. Still, we have some limitations. First,
there may be limits to the generalizability of our results given that most
of the study subjects were White and male. Moreover, there may be
some residual confounding in our study because participants came
from two different studies, and we do not have consistent information
on physical activity or lifestyle factors to include in our models. Tech-
nical and day-to-day variation may reduce precision and add noise to
epigenetic clock data, yet this is not expected to bias results in a partic-
ular direction. Future studies should explore these occupational epige-
netic age relationships in more diverse populations and longitudinally
with data that better characterizes occupational health exposures and
risks, which can vary by job type/rank.

In conclusion, our findings support the use of epigenetic age
markers to measure the cumulative effects of exposures in firefighters.
Additional studies, including longitudinal studies, will be important
for better characterizing occupational exposure and epigenetic aging
relationships in US firefighters.
merican College of Occupational and Environmental Medicine. e317
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