
UC Berkeley
UC Berkeley Previously Published Works

Title

CSQ: Growing Mixed-Precision Quantization Scheme with Bi-level Continuous Sparsification

Permalink

https://escholarship.org/uc/item/73h9v5mn

Authors

Xiao, Lirui
Yang, Huanrui
Dong, Zhen
et al.

Publication Date

2023-07-13

DOI

10.1109/dac56929.2023.10247982

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, 
available at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/73h9v5mn
https://escholarship.org/uc/item/73h9v5mn#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


CSQ: Growing Mixed-Precision Quantization
Scheme with Bi-level Continuous Sparsification

Lirui Xiao∗,1, Huanrui Yang∗,2, Zhen Dong2, Kurt Keutzer2, Li Du�,1, Shanghang Zhang�,3

1Nanjing University, 2University of California, Berkeley, 3Peking University
{lirxiao,ldu}@nju.edu.cn {huanrui,zhendong,keutzer}@berkeley.edu

shanghang@pku.edu.cn

Abstract—Mixed-precision quantization has been widely ap-
plied on deep neural networks (DNNs) as it leads to signifi-
cantly better efficiency-accuracy tradeoffs compared to uniform
quantization. Meanwhile, determining the exact precision of
each layer remains challenging. Previous attempts on bit-level
regularization and pruning-based dynamic precision adjustment
during training suffer from noisy gradients and unstable con-
vergence. In this work, we propose Continuous Sparsification
Quantization (CSQ), a bit-level training method to search for
mixed-precision quantization schemes with improved stability.
CSQ stabilizes the bit-level mixed-precision training process with
a bi-level gradual continuous sparsification on both the bit values
of the quantized weights and the bit selection in determining
the quantization precision of each layer. The continuous spar-
sification scheme enables fully-differentiable training without
gradient approximation while achieving an exact quantized model
in the end. A budget-aware regularization of total model size
enables the dynamic growth and pruning of each layer’s precision
towards a mixed-precision quantization scheme of the desired
size. Extensive experiments show CSQ achieves better efficiency-
accuracy tradeoff than previous methods on multiple models and
datasets.

Index Terms—Quantization, continuous sparsification, efficient
neural network

I. INTRODUCTION

With the wide application of deep neural networks (DNNs)
in mobile and edge applications [1], [2], improving the ef-
ficiency of DNNs has been extensively researched. Quan-
tization, which converts the weight and activation of the
DNN model from high-precision floating point values to low-
precision fixed-point representations, has been widely used to
improve DNN efficiency [3]–[5]. Besides largely reducing the
number of bits to store the model, the fixed-point represen-
tation achieved by linear quantization also enables the use of
fixed-point arithmetic units, which largely reduces the area and
energy cost, and leads to significant speedup compared to the
floating-point counterparts [6].

Nevertheless, the quantization process introduces pertur-
bation to the optimal weight value, which hinders the per-
formance of quantized DNNs. To improve quantized model
performance, previous research identifies that not all layers in
a DNN are equally sensitive to quantization [7], [8], which
leads to the idea of mixed-precision quantization: Sensitive

* Equal contribution.
� Corresponding Author.

layers are allowed to keep higher precision, while less sensitive
layers are quantized to lower precision, therefore reaching a
better model size-performance tradeoff.

Due to the large and discrete design space, the difficulty
of mixed-precision quantization lies in determining the exact
precision of each layer. Previous work tackles the precision as-
signment problem via reinforcement learning-based search [9]
or utilizes higher-order sensitivity statistics computed on the
pretrained model [7], [10]. However, the search-based method
is costly to run, and the statistics in the pretrained model do
not capture the potential sensitivity changes during the model
training process. Dynamically achieving a mixed-precision
quantization scheme during training is also attempted through
the lens of bit-level structural sparsity [8], yet the bit-level
training process and the periodic precision adjustment in
training both lead to an unstable convergence [8].

In this work, we aim to improve the stability of bit-
level training and precision adjustment to achieve a better
convergence toward a mixed-precision quantized DNN. We
locate two main factors of the instability: 1) the binary
selection of bit value, and 2) the binary selection of using
a certain bit or not in determining the precision of each
layer. Previous methods approximate the gradient of these
discrete selections via straight-through estimator (STE) [11],
which can be noisy and hinders convergence. Instead, this
work proposes Continuous Sparsification Quantization (CSQ).
CSQ utilizes the idea of continuous sparsification [12], [13] to
relax both levels of discrete selection with a series of smooth
parameterized gate functions. The smoothness enables fully
differentiable training of the bit-level model without gradient
approximation, while proper scheduling of the gate function
parameter enables the model to converge to an exact quantized
form without additional rounding. We further integrate budget-
aware regularization on the bit selection into the pipeline, in
order to induce a mixed-precision quantization scheme under
the budget constraint through an end-to-end differentiable
training process. To the best of our knowledge, CSQ is the
first to make the following contributions:

• Utilize continuous sparsification technique to improve bit-
level training of quantized DNN;

• Relax precision adjustment in the search of mixed-
precision quantization scheme into smooth gate functions;

• Combine the bi-level continuous sparsification into effec-
tively inducing high-performance mixed-precision DNNs.
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The effectiveness of CSQ is well supported by extensive
empirical results. For instance, on the CIFAR-10 dataset, CSQ
achieves 1.5× further compression over BSQ [8] for ResNet-
20 model under similar accuracy, and achieves 16× lossless
compression for the VGG19BN model. On ImageNet, CSQ
achieves a lossless 10.7× compression for the ResNet-18
model, which is 0.43% higher top-1 accuracy than the same-
sized LQ-Net [5]. For ResNet-50, CSQ leads to a 17% further
compression than BSQ at the same accuracy.

II. RELATED WORK

A. Mixed-precision quantization

The key research question of mixed-precision quantization
has been how to design a set of bit schemes that achieve
the best performance-size tradeoff. Early attempts use manual
design heuristics such as keeping the first and last layer at
a higher precision [14], [15]. Searching-based methods like
HAQ [9] utilize reinforcement learning to determine the quan-
tization scheme, yet the search cost is often high, especially
for deeper models with an exponentially large search space.
Another line of methods directly measures the sensitivity
of each layer with metrics like Hessian eigenvalue [7] or
Hessian trace [10]. However, such methods only incorporate
the sensitivity of the pretrained full-precision model, without
considering the change of sensitivity when the weights are
being quantized or being updated in the quantization-aware
training process. Bit-level sparsity quantization (BSQ) [8]
makes the first attempt to simultaneously induce mixed-
precision quantization scheme and train the quantized DNN
model within a single round of training. BSQ considers each
bit of the quantized model as independent trainable variables,
and achieves mixed-precision quantization scheme by inducing
bit-level structural sparsity. The bit-level representation of
layer weight W can be formulated as:

W =
s

2n − 1
Round

[
n−1∑
b=0

(
W (b)
p −W (b)

n

)
2b

]
, (1)

where s is the scaling factor, W (b)
p and W (b)

n are the b-th bit of
the positive and negative values in W respectively, and n is the
quantization precision of the layer. Though BSQ leads to good
empirical results, the rounding in the bit-level representation
requires straight-through gradient estimation [11] on the bit
variables, which can be inaccurate. Also, the hard precision
adjustment performed via bit pruning during training hinders
the convergence stability. In this work, we relax both bit-level
training and precision adjustment with continuous sparsifica-
tion, leading to improved stability and performance over BSQ.

B. Sparse optimization and continuous sparsification

The difficulty of optimizing discrete values isn’t only faced
by quantization research. Research on DNN pruning also needs
to accommodate the binary mask of selecting a weight ele-
ment/filter or not into the model training process. Minimizing
the `0 regularization, which is the sum of the binary weight
selection mask, has been identified as a straightforward and
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Figure 1: Illustrating the bi-level continuous sparsification used
in CSQ. (a) The change of temperature sigmoid gating function
throughout the training process. (b) Representing quantized
model with bit mask and bit representation.

unbiased method to induce sparse neural network [16], but
is difficult due to the discrete nature of the mask. Therefore
attempts have been made to relax the binary constraint on the
mask to enable gradient-based training.

Louizos et al. first propose to consider the binary mask as
stochastic gates, whose distribution can then be relaxed into
“Hard concrete distribution” [16] or “Scale mixture of Gaus-
sian” [17] with learnable parameters. However, the gradient
estimation required in stochastic optimization leads to high
variance and performs poorly on larger models. Continuation
methods, on the other hand, approximate the binary constraint
by relaxing it with a smooth gating function, while gradually
making closer approximations to the binary gate as training
progresses. For instance, continuous sparsification [12], [13]
relax the binary gate I(x ≥ 0) as a Sigmoid function with
temperature as formulated in Equation (2).

I(x ≥ 0) ∼ fβ(x) = σ(βx) =
1

1 + e−βx
. (2)

Temperature β controls the smoothness of the relaxed gate,
which grows exponentially with the training epochs. A smaller
β is used at early epochs to enable a smooth optimization.
A larger β is used in later epochs to better approximate the
discrete binary gate. As continuous sparsification is mainly
explored under the DNN pruning setting, this work serves as
the first attempt to apply bi-level continuous sparsification on
both bit-level training and bit selection to induce a mixed-
precision quantized DNN model.

III. METHOD

This section introduces our method of growing mixed-
precision quantized models. Section III-A formulates the bi-
level continuous sparsification of the bit-level representation
for smooth optimization. Section III-B describes the budget-
aware model size regularization that controls the growth and
prune of layer precision. The overall algorithm of CSQ is
provided in Section III-C.

A. Bi-level continuous sparsification of quantized DNN model

To represent a quantized DNN model, we need: 1) the
quantization precision of each layer, and 2) the quantized
value of each weight element. Both properties take discrete
values, which prevent direct gradient-based updates. This work



aims to relax the discrete optimization of these properties with
a continuous differentiable function, enabling a smooth and
differentiable optimization.

Specifically, inspired by previous attempts on continuous
sparsification for DNN pruning [13], we utilize the temperature
Sigmoid function fβ(·) defined in Equation (2) to relax the
binary representation, where fβ can directly replace the bit-
level weight W (b)

p and W
(b)
n defined in Equation (1). For

example, consider a layer with weight tensor W under a linear
symmetric n-bit quantization, the quantized weight can be
relaxed as

W =
s

2n − 1

n−1∑
b=0

[(
fβ

(
m(b)
p

)
− fβ

(
m(b)
n

))
2b
]
, (3)

where fβ(m
(b)
p ) and fβ(m

(b)
n ) are the relaxed bit-level repre-

sentation of the positive and negative values in W respectively,
with m(b)

p and m(b)
n taking any real values.

In training, we consider s,m
(b)
p ,m

(b)
n instead of W as

trainable variables. We exponentially increase the value of
β with the number of epochs. In this way, the trainable
variables can be optimized smoothly in the early training stage,
while gradually converging to an exact quantized model as
fβ(·) converges to a unit step function with β → +∞, as
illustrated in Figure 1(a). Since no rounding is applied, there’s
no approximation of gradient required.

With the quantized model representation in hand, the preci-
sion of each layer can be controlled as selecting the number
of bits to be used. This can be formulated as having a binary
bit mask qB ∈ {0, 1}n in each layer as

W =
s

2n − 1

n−1∑
b=0

[(
fβ

(
m(b)
p

)
− fβ

(
m(b)
n

))
2bq

(b)
B

]
, (4)

where q(b)B = 1 if the bit is selected and 0 otherwise. Thus the
precision of the layer can be computed as

∑
b q

(b)
B .

Since qB is binary, it can also be relaxed with continuous
sparsification. The resulting quantized model is formulated in
Equation (5), and demonstrated in Figure 1(b).

W =
s

2n − 1

n−1∑
b=0

[(
fβ

(
m(b)
p

)
− fβ

(
m(b)
n

))
2bfβ

(
m

(b)
B

)]
.

(5)
Here we can use the same temperature scheduling for both bit
masks and bit representations of each layer.

B. Budget-aware growing of mixed-precision quantization
scheme

Now that we have relaxed both bit representation and bit
selection of a quantized DNN in Equation (5), the next step
is to adjust the precision of each layer so that it can achieve
a mixed-precision quantization scheme within the available
budget. This can be achieved with an `1 regularization over
the bit-mask of each layer, as

R(mB) =
∑
b

fβ

(
m

(b)
B

)
. (6)

With the regularization, the final training objective is

min
s,mp,mn,mB

L(W ) + λ∆S

∑
Layer

R(mB), (7)

where L(·) is the original loss of DNN training, W is the
model weight parameterized as Equation (5), λ is the base
regularization strength, and ∆S is the budget-aware scaling
factor. ∆S is added to encourage more pruning when that
current model size is significantly large than the budget, less
pruning if the current model size is close to the budget, and
growing (have a negative regularization) when the current
model size is smaller than the budget. Therefore we define
∆S as the average quantization precision of all elements in
the current model minus the targeted average precision of
the budget. We count the precision of each layer during the
training process based on the value of mB , where the precision
is determined as

∑
b

[
m

(b)
B ≥ 0

]
. The training objective is

end-to-end differentiable with respect to the scaling factor s,
bit representation mp,mn, and bit mask mB of each layer,
without the need to apply gradient approximation via straight-
through estimation.

C. Overall training algorithm

Putting everything together, performing stochastic gradient
descent with the derived objective in Equation (7) leads to
the CSQ algorithm, as illustrated in detail in Algorithm 1.
Bit representations and bit masks are trained simultaneously,
leading to a joint optimization for both model weight values
and quantization precision. The sigmoid temperatures β is
scheduled to grow exponentially with the training epochs,
gradually converting the model with smooth gating functions
into an exactly quantized model, where fβ converges to a unit-
step Sign function I(m ≥ 0) at βmax.

For complicated tasks like ImageNet, we can further boost
the final model performance by applying an additional finetun-
ing of the achieved mixed-precision quantized model. During
the finetuning process, we fix the quantization scheme of each
layer, while only tuning the bit representation s,mp,mn of
the selected bits in each layer. We rewind the temperature β
for the bit representation back to 1, and redo the exponential
temperature scheduling with the number of finetuning epochs.
This process gives the bit representations adequate flexibility
to further improve the model performance under the mixed-
precision quantization scheme found by CSQ.

IV. EVALUATION

This section summarizes the empirical results of CSQ. We
evaluate CSQ using ResNet-20 [18] and VGG19BN [19] on
CIFAR-10 [20], and using ResNet-18 and ResNet-50 [18]
on ImageNet [21]. We compare the results of our method
with existing uniform [3]–[5] and mix-precision [7]–[9], [22]
quantization methods. Ablation studies are also provided.

A. Experimental Setup

We use the same set of hyperparameters for experiments
conducted on the same model. All models are trained with
SGD with an initial learning rate of 0.1 and a cosine annealing



Algorithm 1 Bi-level continuous sparsification

Input: Data X = (xi)
n
i=1, labels Y = (yi)

n
i=1

Output: mixed-precision model G
Initialize: s,mp,mn,mB in G
Initialize temperature: β0 = 1, set βmax = 200
# CSQ Training
for epoch = 0, . . . , T do

Temperature scheduling β = β0β
epoch/T
max

for i = i, . . . , n do
Sample mini-batch xi, yi from X,Y
Compute model weight W using Eq. (5)
Update trainable parameters with Eq. (7)

# Mixed-precision finetuning (optional)
Fix bit selection q(b)B = I(q

(b)
B ≥ 0)

Temperature rewind β = β0
for epoch = 0, . . . , T ′ do

Temperature scheduling β = β0β
epoch/T ′
max

for i = i, . . . , n do
Sample mini-batch xi, yi from X,Y
Compute model weight W using Eq. (4)
Update s,mp,mn with L(W )

return G

schedule. We use a linear learning rate warm-up for the first
5 epochs for ImageNet experiments. Weight decay is set to
5e− 4 for CIFAR-10 and 1e− 4 for ImageNet. Momentum is
set to 0.9. All models are trained from scratch. On CIFAR-10,
ResNet-20 model is trained with CSQ for 600 epochs, and
VGG for 300 epochs, without finetuning. ImageNet models
are trained with 200 CSQ epochs plus 100 epochs of fine-
tuning after finalizing the quantization scheme, as introduced
in Algorithm 1. These training epochs are comparable with
the total training epochs (pretraining + finetuning) used in
previous methods like BSQ [8] and HAWQ [7].

For the CSQ training process, we set the shape of the bit
representation and bit mask to uniform 8-bit in each layer, as in
most cases 8-bit is adequate for a lossless quantization. Since
CSQ does not control activation quantization, we quantize the
activation uniformly throughout the training process, whose
precision is reported in the “A-Bits” column in the tables. We
set the base regularization strength λ as 0.01 for training all
models. The maximum temperature of the soft gate fβ function
for both bit representation weight and bit mask is set as 200,
which will be reached in the last epoch. At the last epoch fβ
will turn into a steep step function, where all of its output
should be either 0 or 1. Additionally, to ensure an exactly
quantized model at the end of the training, we set all gate
functions to the unit-step function before the final validation.

B. Experimental Results

This section compares our results with previous quantization
methods. In all tables “FP” refers to the full-precision model;
“MP” denotes mixed-precision weight quantization; and “T”
denotes the target precision of CSQ. Weight compression ratio
“Comp” is computed with respect to the full-precision model.
CIFAR-10 results. For ResNet-20 on CIFAR-10, we compare
CSQ with various previous methods. As shown in Table I, CSQ
outperforms previous methods under all activation precision.

Table I: Quantization results of ResNet-20 models on the
CIFAR-10 dataset.

A-Bits Method W-Bits Comp(×) Acc(%)

32
FP 32 1.00 92.62

LQ-Nets [5] 3 10.67 92.00
BSQ [8] MP 19.24 91.87
CSQ T1 MP 26.67 91.70
CSQ T2 MP 16.00 92.68

3
LQ-Nets 3 10.67 91.60
PACT [4] 3 10.67 91.10

DoReFa [3] 3 10.67 89.90
BSQ MP 11.04 92.16

CSQ T2 MP 16.93 92.14
CSQ T3 MP 10.49 92.42

2
LQ-Nets 2 16.00 90.20

PACT 2 16.00 89.70
DoReFa 2 16.00 88.20

BSQ MP 18.85 90.19
CSQ T1 MP 22.86 90.08
CSQ T2 MP 16.41 90.33

Table II: Quantization results of VGG19BN models on the
CIFAR-10 dataset.

A-Bits. Method W-Bits. Comp(×) Acc(%)

32
FP 32 1.00 94.22

LQ-Nets [5] 3 10.67 93.80
CSQ T2 MP 16.00 94.10

ZeroQ [24] 4 8.00 92.69
8 ZAQ [25] 4 8.00 93.06

CSQ T3 MP 10.67 93.90
QUANOS [26] MP 7.11 90.70

4 CSQ T3 MP 10.67 93.62

3
LQ-Nets [5] 3 10.67 93.80

Non-Linear [23] 3 9.14 93.40
CSQ T2 MP 16.00 93.58

Notably, the CSQ-T2 model with 3-bit activation enables
an 1.5× further compression vs. BSQ [8] under the same
accuracy. Similarly, CSQ also demonstrated superior per-
formance on the VGG19BN model, as shown in Table II.
Under full-precision activation CSQ enables a nearly lossless
16× compression, largely pushing the frontier of previous
methods. Furthermore, CSQ method even surpasses non-linear
quantizers, which are generally powerful but unfriendly for im-
plementation. Comparing to non-linear quantization methods
LQ-Nets [5] and [23], CSQ achieves both higher accuracy and
higher compression ratio up to 1.8×.
ImageNet results. To evaluate the scalability of CSQ, we
perform experiments on the large-scale ImageNet dataset on
deeper models. Table III shows the results of ResNet18 and
ResNet-50 obtained by different quantization methods [3]–
[5], [8], [9], [22], among which CSQ consistently shows
strong performance. For ResNet-18, the model obtained by
CSQ-T3 with an average of 3-bit weight precision and 8-bit
activation precision achieves almost the same accuracy as the
full-precision baseline. CSQ-T2, with 4-bit activation, achieves
a higher compression rate (15.23×) with a tiny accuracy drop.
This result significantly outperforms the W4A4 uniformly



Table III: Quantization results of ResNet-18 and ResNet-50
models on the ImageNet dataset.

ResNet-18 ResNet-50
Method W-Bits Comp(×) Acc(%) W-Bits Comp(×) Acc(%)

FP 32 1.00 69.76 32 1.00 76.13
DoReFa [3] 5 6.40 68.4 3 10.67 69.90
PACT [4] 4 8.00 69.2 3 10.67 75.30

LQ-Nets [5] 3 10.67 69.30 3 10.67 74.20
HAWQ-V3 [22] 4 8.00 68.45 4 8.00 74.24

HAQ [9] \ \ \ MP 10.57 75.30
BSQ [8] \ \ \ MP 13.90 75.16
CSQ T2 MP 15.23 69.11 MP 14.54 75.25
CSQ T3 MP 10.67 69.73 MP 10.67 75.47

quantized model reported by HAWQ-V3 [22] with 1.9×
further compression. For ResNet-50, CSQ also achieves better
efficiency-accuracy tradeoff, beating strong mixed-precision
quantization baseline HAQ [9] and BSQ [8].

C. Ablation study

In this section, we discuss the key designs of the CSQ al-
gorithm, including the comparison of the proposed continuous
sparsification vs. STE in quantization-aware training (QAT),
the effectiveness of the budget-aware model size regulariza-
tion, and the control of accuracy-model size tradeoff. The
quantization schemes obtained by CSQ under different model
sizes are also demonstrated. All experiments in this section are
conducted using ResNet-20 models [18] with 3-bit activation
on the CIFAR-10 dataset [20].
Effectiveness of continuous sparsification. In this work,
we replace the commonly used STE-based [11] QAT with
the proposed bit-level continuous sparsification in training
quantized models. Table IV compares the QAT performance
for a uniformly-quantized model trained with STE (STE-
Uniform) and continuous sparsification (CSQ-Uniform). All
models are trained from scratch with fixed-weight precision.
STE-Uniform follows the implementation in [27] where the
floating-point latent weight is linearly quantized in the forward
pass, and accumulates gradients in the backward pass with
STE. For CSQ-Uniform, we utilize the weight parameteri-
zation in Equation (3), where no bit mask is applied and
only bit representations are trained. Under all precision, CSQ-
Uniform outperforms STE-Uniform significantly, showing the
effectiveness of bit-level continuous sparsification in leading
to better convergence of quantized models. Additionally, as we
propose to apply another level of continuous sparsification on
the bit masks, the resulted bi-level continuous sparsification
enables the proposed CSQ to find a better mixed-precision
quantization scheme (CSQ-MP), which further boosts the
performance over uniformly quantized counterparts.
Budget-aware model size regularization. As proposed in
Section III-B, CSQ utilizes a budget-aware regularization to
encourage the quantization scheme to meet a target precision.
In this section, we explore the influence of the two hyperpa-
rameters in the regularization: base strength λ and the target
precision, on the final averaged precision achieved by CSQ.

Table IV: CSQ vs. STE-based QAT performance. STE-
Uniform training is implemented following [27].

W-Bits QAT method Accuracy (%)

4
STE-Uniform [27] 88.89

CSQ-Uniform 91.93
CSQ-MP 92.68

3
STE-Uniform [27] 87.68

CSQ-Uniform 91.74
CSQ-MP 92.62

2
STE-Uniform [27] 84.35

CSQ-Uniform 91.67
CSQ-MP 92.34
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Figure 2: Effect of base regularization strength λ on the
averaged model precision during training. All experiments are
done with a target of 3-bit, as indicated by the “red star”.

Figure 2 visualizes the changes in averaged precision of
CSQ models trained with different initial values of λ. Note
that since the bit masks are not exactly binary, we record the
precision of each layer during training as

∑
b

[
m

(b)
B ≥ 0

]
, as if

the bit mask is gated with a step function. The target precision
is set to be 3-bit for all trails. We note that the final model
precision is not sensitive to the choice of λ in a large range
between 1e-3 and 1, where the model consistently converges
to the desired target precision. λ being too small (e.g. 1e-4
and 1e-6) resulted in less regularization strength to control the
model precision effectively, which is as expected. To this end,
we set λ = 0.01 for all the experiments, which works well
across different model architectures and datasets.

Figure 3 shows the change of averaged model precision
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Figure 3: Effect of different target precision on the averaged
model precision during training.



Table V: Accuracy-size trade-off under different target bits.

Target 1-bit 2-bit 3-bit 4-bit 5-bit FP
Ave. prec. 1.00 1.97 3.05 4.00 5.05 32
Comp(×) 32 16.24 10.49 8.00 6.34 1
CSQ acc. 90.33 91.70 92.42 92.51 92.61 92.62

during CSQ training with different target precision. It can be
seen that the proposed budget-aware regularization controls the
model precision to be close to the target throughout the train-
ing process, and accurately converges to the target precision at
the end of CSQ training. The effectiveness of the regularization
enables us to explicitly control the outcome of CSQ by setting
an exact model size budget, mitigating the heuristic search
of proper regularization strength for a specific model size
required by previous methods [8], [12]. The stability of model
precision throughout the training process also enables better
convergence of the model, effectively leading to a mixed-
precision model that is within the target budget while enjoying
a preeminent accuracy.
Accuracy-model size trade-off. Performing CSQ training
with different target precision effectively controls the size of
the resulted quantization scheme, therefore exploring the trade-
off between model size and accuracy. Table V summarizes
the quantization results under different target bits obtained by
CSQ using ResNet-20 on the CIFAR-10 dataset. Averaged pre-
cision (“Avg. prec.”) is computed across all model layers, and
“Comp(×)” indicates the compression rate compared to the
32-bit floating-point model. The floating-point performance
is also provided under the “FP” column for reference. As
observed previously, the final average precision achieved by
CSQ is fairly precise compared to the target. CSQ enables
a lossless 5-bit quantization, while lower precision can be
effectively achieved with the cost of a small accuracy drop.
Layer-wise quantization schemes achieved with CSQ. Fig-
ure 4 shows the final precision of each layer in the mixed-
precision quantization scheme obtained by CSQ under differ-
ent target bits. Comparing among each other, the trends of
quantization precision for the layers are generally consistent
under different target bits, which echoes observations in previ-
ous mixed-precision quantization work [7], [8]. Interestingly,
the importance ranking produced by CSQ is somewhat differ-
ent from that of the previous work [7], [8]. Our results show a
roughly rising trend in precision from the input to the output
layers, whereas the results from [7], [8] show a declining trend
in precision, with the lowest precision in the final stage. Given
the superior efficiency-accuracy tradeoff achieved by CSQ
comparing to these methods, it shows that the heuristic-based
importance criteria used in previous work may not accurately
reflect the quantized model performance, while CSQ discovers
better mixed-precision quantization schemes.

V. CONCLUSION

In this work, we propose CSQ, a novel method for bit-level
mixed-precision DNN training using continuous sparsification.
We improve the stability of training quantized DNNs with the
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Figure 4: Layer-wise precision comparison of the quantization
schemes produced by CSQ under different target bits;

bi-level continuous sparsification relaxation, and obtain mix-
quantization schemes with explicit target precision utilizing the
budget-aware model size regularization. Extensive experiments
show the effectiveness of CSQ, where we achieve both higher
accuracy and smaller quantization precision on various models
and datasets comparing to state of the arts.
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