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Summary

• Agaricomycetes produce the most efficient enzyme systems to degrade 

wood and the most complex morphological structures in the fungal 

kingdom. Despite decades-long interest in their genetics bases, the 

evolution and genetic repertoiresfunctional diversity of both wood-decay 

and fruiting body formation are incompletely known.

• Here, we perform comparative genomic and transcriptomic analyses of 

wood-decay and fruiting body development in the Auriculariopsis ampla 

and Schizophyllum commune (Schizophyllaceae), a familyspecies with 

secondarily simplified morphologies and an enigmatic wood-decay 

strategy and weak pathogenicity to woody plants.

• The plant cell wall degrading enzyme repertoires of Schizophyllaceae are 

transitional between those of white rot species and less efficient wood-

degraders such as brown rot or mycorrhizal fungi. Rich repertoires of 

suberinase and tannase genes were found in both species, with tannases 

restricted to Agaricomycetes that preferentially colonize bark-covered 

wood, suggesting potential complementation of their weaker wood-

decaying abilities and adaptations to wood colonization through the bark.

Global fFruiting body transcriptomes in the twoof A. ampla and S. 

commune species revealed a high rate of divergence in developmental 

gene expression, but also several genes with conserved developmental 

expression, including novel transcription factors and small-secreted 

proteins, some of the latter we suggestmight represent fruiting body 

effectors. 

• Taken together, our analyses highlighted novel aspects of wood-decay 

diversity and fruiting body development in a widely distributed family of 

mushroom-forming fungi.
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mushroom-forming fungi, RNA-Seq, small secreted proteins, transcription 

factors, wood decay

Introduction 

Mushroom-forming fungi (Agaricomycetes) are of great interest for 

comparative genomics due to their importance as wood-degraders in global 

carbon cycling and as complex multicellular organisms that produce 

agriculturally or medicinally relevant fruiting bodies. Recent advances in 

genome sequencing has brought new light on several aspects of 

lignocellulose decomposition and the genetic repertoire of fruiting body 

development in mushroom-forming fungi (Ohm et al., 2010, 2011; Sakamoto 

et al., 2011; Sipos et al., 2017; Krizsán et al., 2019)(Ohm   et al.  , 2010, 2011;   

Sakamoto   et al.  , 2011; Sipos   et al.  , 2017; Krizsán   et al.  , 2019)  . 

The Agaricomycetes display diverse strategies to utilize lignocellulosic 

substrates. While genomic analyses have helped to uncover the main 

patterns of duplication and loss of plant cell wall degrading enzyme (PCWDE)

families, our understanding of the enzymatic repertoires of Agaricomycetes 

and how they use it to degrade various lignocellulosic components of plants 

is far from complete. Fungi have traditionally been classified either as white 

rot (WR), in which all components of the plant cell wall are being degraded

(Floudas et al., 2012), or brown rot (BR), in which mostly cellulosic 

components are degraded, but lignin is left unmodified or only slightly 

modified (Martinez et al., 2009). Comparative genomics has improved our 

understanding of the evolution of plant cell wall degrading enzyme (PCWDE) 

families significantly, yet our understanding of the enzymatic repertoires of 

Agaricomycetes is far from complete. Several species have been recalcitrant 

to such classification as WR or BR, which prompted a reconsideration of the 

boundaries of thethis classic WR and BR dichotomy (Riley et al., 2014; 

4

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88



Floudas et al., 2015). Such species are found across the fungal phylogeny, 

but seem to be particularly common among early-diverging Agaricales, 

including the Schizophyllaceae, Fistulinaceae and Physalacriaceae (Ohm et 

al., 2010; Riley et al., 2014; Floudas et al., 2015). Schizophyllum commune, 

the only hitherto genome-sequenced species in the Schizophyllaceae, for 

example, produces white rot like symptoms, but lacks lignin-degrading 

peroxidases, one of the hallmark gene families (e.g. lignin-degrading 

peroxidases) of WR fungi (Ohm et al., 2010; Riley et al., 2014; Floudas et al., 

2015; Zhu et al., 2016). Accordingly, iIt lacks the ability to degrade lignin and

achieves weak degradation of wood (Schmidt & Liese, 1980; Padhiar & 

Albert, 2011; Floudas et al., 2015), although this might be complemented by 

pathogenic potentials on living plants or the activity of other, more efficient 

degraders that co-inhabit the same substrate(Schmidt & Liese, 1980). 

Analyses of the secretome and wood-decay progression of S. commune 

revealed both WR and BR-like behaviors (Takemoto et al., 2010; Zhu et al., 

2016)(Takemoto et al., 2010; Zhu et al., 2016), although several questions 

on the biology of this species remain open. For example, whether the 

Schizophyllaceae shows specialization to decay certain types/parts of trees 

or how they compare with pathogenic Agaricomycetes are not known.

Fruiting body production, is a highly integrated developmental process 

triggered by a changing environment, such as a drop in temperature, 

nutrient depletion or shifts in light conditions (Kües & Liu, 2000; Kües & 

Navarro-González, 2015; Sakamoto et al., 2018). It results from the 

concerted expression of structural and regulatory (Martin et al., 2008; Stajich

et al., 2010; Ohm et al., 2011; Muraguchi et al., 2015; Nagy et al., 2016; Lau 

et al., 2018) genes as well as other processes, such as alternative splicing

(Gehrmann et al., 2016; Krizsán et al., 2019), allele-specific gene expression

(Gehrmann et al., 2016) and probably selective protein modification

(Pelkmans et al., 2017; Krizsán et al., 2019). Known structural genes include 

ones coding for hydrophobins (Lugones et al., 1996; Wösten et al., 1999; 
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Bayry et al., 2012) , lectins (Cooper et al., 1997; Boulianne et al., 2000; 

Hassan et al., 2015), several cell wall chitin and glucan-active CAZymes

(Wessels, 1994; Fukuda et al., 2008; Sakamoto et al., 2011; Konno & 

Sakamoto, 2011), and include probably genes for cerato-platanins, expansin-

like proteins (Sipos et al., 2017; Krizsán et al., 2019), among othersand an 

array of other genes (Liu, 2005). Regulators of fruiting body development 

have been characterized in several species, in particular in Coprinopsis 

cinerea (Stajich et al., 2010; Cheng et al., 2013; de Sena-Tomas et al., 2013; 

Muraguchi et al., 2015; Masuda et al., 2016) and S. commune (Ohm et al., 

2010, 2011; Pelkmans et al., 2017). Despite much advances in this field, 

several aspects of fruiting body development are quite poorly known, 

including, for example what genes have conserved developmental roles 

across fruiting body forming fungi or how cell-cell communication is 

orchestrated in developing fruiting bodies. S. commune has served as a 

model organism for fruiting body development for a long time (Kües & Liu, 

2000; Ohm et al., 2010; Kües & Navarro-González, 2015). This species, like 

the genus Auriculariopsis other Schizophyllaceae (e.g. the genus 

Auriculariopsis) produce secondary simplified, ‘cyphelloid’ fruiting bodies, 

which derived from more complex ancestors. Whether this simplification is 

correlated with a reduced repertoire of developmental (structural or 

regulatory) genes or what the streamlined development of the 

Schizophyllaceae can tell about the minimal genetic toolkit required for 

fruiting body development are not known, however. are reduced 

morphologies derived from more complex ancestors. Cyphelloid fruiting 

bodies are inverted cup-like forms with unstructured (e.g. A. ampla) or 

slightly structured (e.g. S. commune) spore-bearing surfaces (hymenophore).

Albeit the hymenophore structure of S. commune resembles gills (hence the 

common name 'split gill'), it is not homologous to real gills of mushrooms, 

rather, it results from the congregation of several individual cup-like fruiting 

bodies.  
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We here analyze PCWDE repertoires and fruiting body development in 

Auriculariopsis ampla and its close relative, S. commune. both Both species 

produce simple, cup-shaped fruiting bodies and can inhabit the bark of dead 

logs, with a preference for bark, albeit S. commune is also observed on 

decorticated or sapwood.of which primarily inhabit the bark of dead logs and 

produces simple, cup-shaped fruiting bodies. We sequenced the genome of 

A. ampla using PacBio platform and generated RNA-Seq data for a time 

series of fruiting body development. Through analyses of gene repertoires 

for plant cell wall degradation in A. ampla, S. commune and 29 other 

Agaricomycetes, we detect signatures of adaptation to wood colonization 

through the bark and suggest that these two species have unusual plant cell 

wall degrading enzyme repertoires. Using theBy sequencing developmental 

transcriptomes of A. ampla and comparing it to that of S. commune, we 

identify genes with a conserved pattern during developmental genes that 

might be linked to fruiting body development, including small secreted 

proteins, some of which show extreme expression dynamics in fruiting 

bodies.

Methods

Genome sequencing

The sequenced strain of Auriculariopsis ampla was collected in Szeged, 

Hungary and cultured in liquid malt-extract medium (deposited in SZMC, 

under NL-1724). DNA was extracted using the DNeasy Blood & Tissue Culture

kit (Qiagen), following the manufacturer’s protocol. The genome was 

sequenced using Pacific Biosciences RS II platform. Unamplified libraries 

were generated using Pacific Biosciences standard template preparation 

protocol for creating >10kb libraries. 5 ug of gDNA was used for each 

library and sheared using Covaris g-Tubes (TM) to generate >10kb 

fragments. The sheared DNA fragments were then prepared using the Pacific
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Biosciences SMRTbell template preparation kit, by treateding with DNA 

damage repair, had their ends repaired and 5’ phosphorylated. PacBio 

hairpin adapters were then ligated to create SMRTbell template, which were 

then size-selected using AMPure PB beads. SMRTbell libraries were 

sequenced on a Pacific Biosciences RSII sequencer using Version C4 

chemistry and 4-hour sequencing movie run times. Filtered subread data was

assembled with Falcon version 0.4.2 

(https://github.com/PacificBiosciences/FALCON) and polished with Quiver 

version smrtanalysis_2.3.0.140936.p5 (https://github.com/PacificBiosciences/

GenomicConsensus).

For the transcriptome, Stranded cDNA libraries were generated using 

the Illumina Truseq Stranded RNA LT kit. mRNA was purified from 1 ug of 

total RNA using magnetic beads containing poly-T oligos. mRNA was 

fragmented and reversed transcribed using random hexamers and SSII 

(Invitrogen) followed by second strand synthesis. The fragmented cDNA was 

treated with end-paired, A-taileding, adapters ligated to themion, and 

subjected 8 cycles of PCR. The library was then quantified library was then 

and sequenced on the an Illumina HiSeq2500 sequencer using HiSeq TruSeq 

SBS sequencing kits, v4, following a 2x150 indexed run recipe. Illumina fastq

files were QC filtered for artifact/process contamination and de novo 

assembled with Trinity v2.1.1 (Grabherr et al., 2011). 

The genome was annotated using the JGI Annotation pipeline

(Grigoriev et al., 2014) and made available via JGI MycoCosm 

(jgi.doe.gov/fungi;(Grigoriev et al., 2014)). The data also deposited at 

DDBJ/EMBL/GenBank under the accession (TO BE PROVIDED UPON 

PUBLICATION).

Fruiting protocol, RNA extraction and transcriptome 

sequencing

Fruiting and RNA extraction
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Auriculariopsis ampla was grown on solid sterilized poplar (Populus alba) 

bark and solid wood pieces plugged into MEA in 250 ml glass beakers. 

Cultures were incubated for 14 days in the dark at 30°C, then transferred to 

room temperature 60 cm under a light panel of 6 Sylvania Activa 172 

Daylight tubes, with a 12 hr light/dark cycle and >90% relative humidity. 

Primordia started to develop 7 days after the transfer to light. 

Vegetative mycelium, Stage 1 and 2 primordia, young and mature 

fruiting bodies were collected, flash-frozen in liquid nitrogen and stored at -

80°C. Stage 1 and 2 primordia were defined as 0.1-1 mm closed, globular 

structures and 1-2 mm long initials with a central externally visible pit, 

respectively. Total RNA was extracted using the Quick-RNA Miniprep kit 

(Zymo Research), following the manufacturer’s protocol. Three biological 

replicates were processed. 

RNA-Seq

Transcriptome sequencing was performed using the TrueSeq RNA Library 

Preparation Kit v2 (Illumina) according to the manufacturer’s instructions. 

RNA quality and quantity were assessed using RNA ScreenTape and 

Reagents on TapeStation (all from Agilent); only high quality (RIN >8.0) total 

RNA samples were processed. Next, RNA was DNaseI (ThermoFisher) treated

and the mRNA was purified based on PolyA selection and fragmented. First 

strand cDNA synthesis was performed using SuperScript II (ThermoFisher) 

followed by second strand cDNA synthesis, end repair, 3’-end adenylation, 

adapter ligation and PCR amplification. Purification was done using 

AmPureXP Beads (Beackman Coulter). DNA cConcentration of each library 

was determined using the KAPA Library Quantification Kit for Illumina (KAPA 

Biosystems). Sequencing was performed on Illumina instruments using the 

HiSeq SBS Kit v4 250 cycles kit (Illumina) generating >20 million clusters for 

each sample.

Bioinformatic analyses of RNA-Seq data 
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RNA-Seq analyses and mapping of raw data were carried out as reported 

earlier (Sipos et al., 2017; Krizsán et al., 2019). “Total gene read” RNA-Seq 

count data was imported from CLC Genomic Workbench (ver. 9.5.2, CLC bio/

Qiagen) into R 3.0.2 (R Core Team, 2018). Only genes that were detected by 

at least five mapped reads in at least 25% of the samples were included in 

the study. Subsequently, “calcNormFactors” from “edgeR” 3.4.2 (Robinson 

et al., 2010)  was used to perform data scaling based on the “trimmed mean 

of M-values” (TMM) method73. Log transformation was carried out by the 

“voom” function of the “limma” package 3.18.13 (Ritchie et al., 2015). Linear

modeling, empirical Bayes moderation and the calculation of differentially 

expressed genes were done using “limma”. Genes showing at least four-fold 

gene expression change with an FDR value below 0.05 were considered as 

significantly differentially expressed. Multi-dimensional scaling (“plotMDS” 

function in edgeR) was applied to visually summarize gene expression 

profiles revealing similarities between samples. 

Developmentally regulated genes were defined as genes showing an 

>4-fold change in expression through development. In comparisons of 

vegetative mycelia and stage 1 primordia, we only considered genes 

upregulated in primordia, to exclude genes that showed a highest expression

in vegetative mycelium because those might be related to processes not 

relevant for fruiting body development (e.g. nutrient acquisition).

Phylogenetic analysis

Single-copy orthogroups were identified in MCL clusters of the 31 

Agaricomycetes and were aligned by the l-ins-i algorithm of MAFFT (Katoh & 

Standley, 2013). Ambiguously aligned regions were removed using the 

'strict' settings of Trim-Al. Trimmed alignments >100 amino acids were 

concatenated into a supermatrix. Maximum likelihood inference was 

performed in RAxML 8.2.11 under the PROTGAMMALG model, with a gamma-
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distributed rate heterogeneity and a partitioned model. A bootstrap analysis 

in 100 replicates was performed.

Identification of orthologous groups

Orthogroups have been identified using OrthoFinder v 1.1.8 (Emms & Kelly, 

2015). Two analyses were performed, one to delimit orthogroups across 31 

Agaricomycetes species and the second to find co-orthologs shared by A. 

ampla and S. commune. Functional annotation done using InterProscan 

version 5.28-67.0.  

Analyses of Carbohydrate Active Enzymes (CAZymes)

CAZymes were annotated using the CAZy annotation pipeline (Lombard et 

al., 2014). Of all the families found in the dataset, we retained ones with a 

putative role in plant cell wall (PCW) degradation (Floudas et al., 2012, 2015;

Riley et al., 2014; Nagy et al., 2016)(Table S1) and analyzed their copy 

numbers across the 31 species. We also assessed genes encoding proteins 

with putative roles in suberin and tannin degradation. We extracted the best 

BLAST hits (BLAST 2.7.1+, e-value<0.001) from the 31 species for proteins 

implicated in suberin (Kontkanen et al., 2009; Martins et al., 2014) and 

tannin degradation (Gonçalves et al., 2012; Nieter et al., 2016). We then 

identified the orthoMCL clusters of the 31 species containing the best hits. 

These clusters were used for further analysis as putative suberinases or 

tannases (Table S1). 

We compared copy numbers of A. ampla and S. commune to that of 29

Agaricomycetes species, including brown rotters (BR), ectomycorrhizal 

(ECM), saprotrophs/litter decomposers/organic matter degraders (S/L/O), 

white rotters (WR) and uncertain. Phylogenetic PCA was performed on 

CAZyme copy numbers using the phyl.pca (Revell, 2009) function from 

phytools (Revell, 2012). A copy number matrix normalized by proteome size 

(Table S1), and the ML species tree, were used as input. Independent 
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contrasts were calculated under the Brownian motion model and the 

parameter mode="cov".

Analyses of transcriptome similarity and fruiting body 

genes

Pairwise comparisons of A. ampla and S. commune gene expression based 

on Pearson correlation coefficient among all replicates and developmental 

stages of orthogroups containing >1 developmentally regulated genes were 

performed using custom Python scripts (pandas v 0.18.1 and Matplotlib v. 

1.1.1 libraries). The same analysis was performed for 252 co-orthologous 

transcription factors (TFs). The matrix of Pearson correlation coefficients was 

plotted as a heatmap using the Matplotlib 1.1.1 pyplot framework.

Expression heatmaps were created using the heatmap.2 function of R 

‘gplots’ package. Hierarchical clustering with Euclidean distance and 

averaged-linkage clustering was carried out on FPKM values using ‘hclust’ 

function in R.

We identified TF genes in the 31 species based on InterPro 

annotations. Only proteins containing domains with sequence-specific DNA 

binding ability were considered as TFs (Krizsán et al., 2019). 

Small Secreted Proteins (SSPs) were defined as proteins shorter than 

300 amino acids, having a signal peptide, an extracellular localization and no

transmembrane domain. Proteins shorter than 300 amino acids were 

subjected to signal peptide prediction through SignalP 4.1(Petersen et al., 

2011) with the option “eukaryotic”. Proteins having extracellular signal 

peptide were checked for their extracellular localization using WoLF PSORT 

0.2 (Horton et al., 2007) with the option “fungi” and were checked for the 

absence of transmembrane helices, using TMHMM 2.0 (Krogh et al., 2001). 

12

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318



Results and Discussion

The genome of Auriculariopsis is typical for the Agaricales

To obtain a second representative genome from the Schizophyllaceae, we 

sequenced that of Auriculariopsis using PacBio, and assembled it to 49.8 Mb 

of DNA sequence in 351 scaffolds (mean coverage: 54.38x, 343 scaffolds >2 

kpb, N50: 19, L50: 0.53 Mb). We predicted 15 576 protein coding genes, for 

which BUSCO analysis showed a 98.6% completeness (273 complete, 28 

duplicated, 2 fragmented, 2 missing). We included A. ampla and S. commune

in a comparative analysis with 29 other Agaricomycetes. A species 

phylogeny was reconstructed from 362 single-copy orthologs (142 436 

amino acid characters) for the 31 taxa; the inferred topology resembles 

published genome-scale trees of Agaricomycetes very closely and received 

strong (>85%) bootstrap support for all but two nodes (Fig 1a). Across the 

phylogeny, the gene repertoire of A. ampla (15 576 genes) is very similar to 

that of S. commune(Ohm et al., 2010) (16 319 genes) and the average gene 

count in the analyzed  Agaricales species (17 655), but more than that of F. 

istulina hepatica (Floudas et al., 2015) (11 244 genes), the sister species of 

the Schizophyllaceae. We found 8 significantly overrepresented (p-

value<=0.05) and 16 underrepresented (p-value<=0.05) InterPro domains 

in both species, relative to the other 29 species (Table S2). 

The Schizophyllaceae may be adapted to decaying barked 

woodearly colonization of wood

We analyzed copy numbers of 45 PCWDE families (Table S1) as well as 

putative suberin- and tannin-degrading families as well as pathogenicity-

related genes. Phylogenetically corrected principal component analyses 

portray a clear separation of the Schizophyllaceae from species with most 

nutritional modesthe other 29 Agaricomycetes, but patterns of separation 

differ based on the main substrate of the PCWDE families. Based on cellulose

repertoires, A. ampla and S. commune cluster together with WRs and S/L/O, 
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suggesting a similar arsenal of CAZymes for cellulose degradation (Fig 1b). 

Enzyme families acting on crystalline cellulose (cellobiohydrolases - GH6, 

GH7) were present in lower numbers than in WRs and S/L/O species, similar 

to ectomycorrhizal ones. The pattern was mostly identical for hemicellulases 

and pectinases (Fig 1b) where CAZyme copy numbers were similar to that of 

WRs and litter decomposers. However, some CAZymes with xylanase and 

pectinase activities, including xylosidases, pectate lyases, pectin 

acetylesterases, and acetyl xylan esterases (AA8, GH30, GH43, GH95, CE12, 

PL1, PL3, PL4), have higher copy numbers in the two species than in most 

WRs. This could imply their ability to degrade hemicellulose and pectin, as 

reported previously (Zhu et al., 2016). However, ligninolytic CAZymes 

revealed a clear difference from WR species. Here, both Schizophyllaceae 

clustered towards ectomycorrhizal and BR species, which lack the ability to 

effectively attack lignin polymers. We find that this pattern was primarily 

driven by the absence of class II peroxidases (PODs, AA9) and reductions in 

copper radical oxidases (CROs) in the Schizophyllaceae. The absence of 

PODs has been already shown before (Martinez et al., 2009; Floudas et al., 

2012; Riley et al., 2014) , whereas CROs, which supply hydrogen peroxide in 

lignin degradation, were found to have very low numbers of CROs (AA5, 2-3 

genes) in Auriculariopsis and Schizophyllum as compared to ECM, S/L/O and 

WR species. In this regard, the Schizophyllaceae resembles BR species, 

which usually have reduced CRO repertoires and are usually 

underrepresented in BRs(Floudas et al., 2015)., were found to have very low 

numbers of CROs (AA5) in Auriculariopsis and Schizophyllum as compared to 

ECM, S/L/O and WR species. 

Because A. ampla and S. commune often occur on bark dead logs as 

first colonizers, we also examined protein families that putatively degrade 

important bark compounds. Suberin, lignin and tannins represent the major 

components of bark (Kontkanen et al., 2009; Gonçalves et al., 2012; Martins 

et al., 2014). We built on previous datasets to obtain putative suberinase
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(Kontkanen et al., 2009; Martins et al., 2014) and tannase (Gonçalves et al., 

2012; Nieter et al., 2016) copy numbers for 31 species in our dataset. In 

general, suberin comprises aromatic compounds cross linked by poly-

aliphatic and fatty-acid like components which requires extracellular 

esterases and lipases for their breakdown (Kontkanen et al., 2009). Based on

phylogenetic PCA of putative suberinases A. ampla and S. commune were 

transitional between typical WR and ECM, BR (Fistulina), uncertain 

(Cylindrobasidium, Pluteus) or tentative WR (Fibulorhizoctonia) species. This 

separation is most pronounced along the first axis (PC1), the main 

contributor of which is the AA3 family. A. ampla and S. commune had few 

genes in this family, similar to most ECM species. In terms of most other 

families, A. ampla and S. commune resembled WR species. The cutinase 

(CE5) repertoires of the two species are similar to those of litter 

decomposers and certain WR taxa (e.g. Galerina, Dendrothele, 

Fibulorhizoctonia, and Peniophora), although this family was missing from 

several WR species. Tannin acyl hydrolases (tannase, EC 3.1.1.20) are 

responsible for the degradation of tannins, polyphenolic plant secondary 

metabolites characteristic to the bark and wood tissues. Tannases were 

found in 10 out of 31 species, mostly in those that occur preferentially on 

bark, such as Auriculariopsis, Schizophyllum, Peniophora, Dendrothele and 

Plicaturopsis, and a few others (Gymnopus, Pterula, Fibulorhizoctonia, 

Omphalotus and Fistulina). This could indicate a specialization of these 

species to substrates with high tannin content, such as bark, suggesting 

adaptations to the early colonization of bark-covered wood. Notably, Pluteus,

a species with an uncertain nutritional mode, groups closely together with A. 

ampla and S. commune on the suberinase PCA, although it had low 

pectinase, hemicellulase and cellulase copy numbers, leading to a position 

close to ECM species and some litter decomposers in other PCA analyses (Fig

S1).
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As S. commune has been reported as a weak pathogen of shrubs and 

trees (Takemoto et al., 2010), we examined the copy numbers of 22 gene 

families previously reported to be linked to pathogenicity in Agaricomycetes

(Mondego et al., 2008; Olson et al., 2012; Sipos et al., 2017) by 

Agaricomycetes, including CBM50s, salicylate hydroxylases, secondary 

metabolism-related genes, homologs of pathogenesis-related 1 protein, 

among others. Both species have rich repertoires of thepathogenicity genes 

(Fig S5, Table S3), similar to other WR and pathogen species (e.g. Armillaria 

spp.), although none of the families stand out as enriched. This is in line with 

the reported weak pathogenic ability that has been reported for S. commune

(but not yet for A. ampla) and may reflect a recent acquisition of the 

potential or that other processes (e.g. gene expression regulation) underlie 

its evolution.

Taken together, the CAZyme composition of A. ampla and S. commune

shows similarity to that of WR species when concerned with cellulases, 

hemicellulases and pectinolytic gene families. What sets them apart from 

most WRs is the absence of class II peroxidases, which is also the case for 

BRs and ectomycorrhizal fungi. However, they have several putative 

suberinases and tannases that might depolymerize important bark 

components. This might indicate an adaptation to degrading bark 

components, which, although needs to be verified by additional studies, 

would provide a framework for interpreting the odd CAZyme composition of 

the Schizophyllaceae (Riley et al., 2014; Floudas et al., 2015) and would 

expand our understanding of the nutritional diversity of wood-decay fungi.

Transcriptomics reveals a high rate of developmental 

evolution

Auriculariopsis ampla and S. commune have a similar developmental 

progression (Fig 2a-2e), permitting a comparison of their transcriptional 

programs. Fruiting body development starts in both species with the 
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appearance of minute globose primordia (stage 1 primordia), in which a 

cavity develops (Stage 2 primordia). This cavity further expands in A. ampla 

to produce an open, pendant fruiting body (Young fruiting body and fruiting 

body stages), whereas in S. commune radial slits emerge from within the cup

to form pseudolamellaeseveral such units form a multi-lobed assemblage.

To compare their development, we generated RNA-Seq data from 5 

developmental stages of A. ampla (vegetative mycelium, stage 1 and stage 

2 primordia, young and mature fruiting bodies, see Fig 2a-b,d) in biological 

triplicates, >30 million (30-78M, mean: 46M) paired-end 150 base reads for 

each sample on Illumina platform (mean read mapping: 83%, Table S43). 

Corresponding data for the same developmental stages (Fig 2c, e) for from S.

commune were taken from (Krizsán et al., 2019). Based on global 

transcriptome similarity, fruiting body samples grouped together, away from 

vegetative mycelium (Fig 3a), consistent with the complex multicellular 

nature of fruiting bodies as opposed to a simpler cellularity level of 

vegetative mycelia. Among the fruiting body samples, sStage 1 and stage 2 

primordia were similar to each other in both species, whereas young fruiting 

bodies and mature fruiting bodies formed distinct groups. We identified 1466

developmentally regulated genes in A. ampla, which is similar in magnitude 

to that we reported for S. commune (2000), but less than that for more 

complex species (e.g. 7583 and 4425 in Coprinopsis and, Armillaria; taken 

from (Krizsán et al., 2019). Of the developmentally regulated genes, 967 

showed a significant (≥4) fold change in the transition from vegetative 

mycelium to stage 1 primordia. In terms of significantly differentially 

expressed genes (DEGs), the highest numbers of up and downregulated 

were also found between vegetative mycelium and stage 1 primordia (11656

and 8412 genes, Fig 3b), with much fewer DEGs found in comparisons of 

subsequent stages. which is consistent with the position of samples on the 

MDS plot (Fig 3a). Much fewer genes were differentially expressed between 

stage 1 and 2 primordia and between stage 2 primordia and young fruiting 
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bodies. In fruiting bodies, we found 10910 and 37 significantly up- and 

downregulated genes, respectively, a comparatively higher number that is 

potentially related to sporulation.

We assessed the similarity between the 2 species’ developmental 

transcriptomes by analyzing the expression of one-to-one orthologous gene 

pairs, hereafter referred to as co-orthologs. To identify co-orthologs, 

proteomes of A. ampla and S. commune were clustered into 18,804 

orthogroups using MCLOrthoFinder, of which 7463 represented co-orthologs. 

Of these, 7369 co-orthologs were expressed under our experimental 

conditions in both species (Table S54). Pairwise similarity across the 7369 

co-orthologs was the highest within speciescomparison between 

developmental stages showed highest similarity within species across all 

7369 co-orthologs (Fig 4a). This pattern was more pronouncedstronger in an 

analysis of developmentally regulated co-orthologs (Fig 4b, see Methods), 

indicating that developmental gene expression in A. ampla and S. commune 

has diverged since their last common ancestor so that similarity between 

homologous similar fruiting body stages of the two species is lower than that 

between different stages of the same species. Vegetative mycelia of both 

species differed most from all other stages of the same species but were 

showed some similaritysimilar across species. Similarly, we observed a 

strong similarity between young fruiting bodies and fruiting bodies of A. 

ampla and S. commune, indicating that late stages of fruiting body 

development share more similarity across species than do early stages. 

Similar patterns were observed when the analyses were restricted to co-

orthologous transcription factors (Fig 4c) and its developmentally regulated 

subset (Fig 4d). Similarity between late developmental stages of the two 

species was more pronounced in the analysis of developmentally regulated 

genes. Given that A. ampla and S. commune are each other’s closest 

relatives, the higher within-species than among-species  low overall 

similarity of gene expression among their fruiting bodies (Fig 4) indicates 
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that developmental gene expression has been diverging rapidly since their 

common ancestored at a high speed since their divergence. This is surprising

in comparison to similar analyses of animals, where gene expression 

patterns could be predicted from tissue identities across the entire 

mammalian clade (Breschi et al., 2017). This suggests that fruiting body 

development evolved at a high rate in the Schizophyllaceae, erasing 

identities of similar developmental stages across species. Nevertheless, 

these data revealed some conserved patterns of gene expression during 

fruiting body maturation between phylogenetically closely related species, 

indicating that there should be genes with similar expression profiles in A. 

ampla and S. commune.

Despite the low global similarity, several genes with conserved 

expression patterns could be identified. The most highly upregulated co-

ortholog in A. ampla and S. commune was a heat shock protein 9/12 family 

member, that is homologous to Aspergillus nidulans awh11 and S. cerevisiae 

hsp12, two farnesol-responsive heat shock proteins. These genes showed 

254- and 855- fold  had a significant upregulation in stage 1 primordia of 

both A. ampla and S. commune, (fold change 254x and 855x, respectively) 

and had high expression values in all fruiting body tissues (>5,000 FPKM, 

maximum fold change within fruiting bodies 3.4-3.7), suggesting an 

important role of heat shock proteins during fruiting body development. In 

further support of this hypothesis, homologs of these genes were found 

developmentally regulated or differentially expressed also in Laccaria bicolor

fruiting bodies (Martin et al., 2008), Lentinula edodes (Song et al., 2018), 

Armillaria ostoyae, Coprinopsis cinerea, Lentinus tigrinus, and Rickenella 

mellea (Krizsán et al., 2019). Another co-ortholog with significant 

upregulation in stage 1 primordia included A1 aspartic proteases, although 

the expression dynamics were somewhat different in the two species. We 

observed an induction in stage 1 primordia in both, but, while upregulation in

A. ampla was >200x compared to VM, it was only 14x in S. commune. 
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Aspartic proteases of the diverse A1 family have been reported as highly 

induced in fruiting bodies in several previous studies (Martin et al., 2008; 

Sabotic et al., 2009; Rahmad et al., 2014; Song et al., 2018; Krizsán et al., 

2019), although but no mechanistic hypothesis for their role in fruiting 

bodiesy development has been proposed yet. 

Putative fruiting body genes show developmentally 

dynamic expression

We further examined the expression patterns of previously reported fruiting 

body genes in A. ampla and S. commune of fruiting body genes reported 

from other species. Of the fungal cell wall (FCW) associated genes, 

hydrophobins were mostly developmentally regulated (8 out of 11 genes) in 

A. ampla (Fig S2), often with significantly increased expression coincident 

with the transition from vegetative mycelium to stage 1 primordia (in six 

genes), as observed previously (van Wetter et al., 1996, 2000; Banerjee et 

al., 2008; Ohm et al., 2011; Song et al., 2018). Several members of two 

functionally similar families, cerato-platanins (4 of 5 genes dev. reg.) and 

expansin-like genes (10 of 21 genes) were likewise developmentally 

regulated in both species. Although both families were mostly cerato-

platanins and expansins were often associated with the plant cell wall

(Baccelli, 2014; Tovar-Herrera et al., 2015), their dynamic expression in 

fruiting bodies observed here and previously (Sipos et al., 2017; Krizsán et 

al., 2019) suggest potential FCW-related roles. SFunctional annotations 

uncovered several putatively FCW-active CAZymes (Fig S3), were 

developmentally regulated, including chitin- and glucan- active GH and GT 

families, carbohydrate-binding modules, carbohydrate esterases, AA1 

multicopper oxidases, AA9 lytic polysaccharide monooxygenases, reinforcing

the view that cell wall remodeling is a fundamental mechanism in fruiting 

body development (Sakamoto et al., 2006, 2011, 2017; Busch & Braus, 2007;

Martin et al., 2008; Ohm et al., 2010; Buser et al., 2010; Konno & Sakamoto, 

2011; Krizsán et al., 2019) but also starch cleaving glycosyl hyrolases (e.g. 
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GH15, CBM20), which might be related to the mobilization of glycogen 

reserves during development. Two out of 10 members of the Kre9/Knh1 

family were developmentally regulated. This family is involved in β-1,6-

glucan synthesis and remodeling in Aspergillus fumigatus (Costachel et al., 

2005), Candida albicans (Lussier et al., 1998), Saccharomyces cerevisiae

(Brown & Bussey, 1993) and Ustilago maydis (Robledo-Briones & Ruiz-

Herrera, 2013) and has been shown to be developmentally expressed in 

Agaricomycetes fruiting bodies (Szeto et al., 2007; Krizsán et al., 2019). Its 

widespread FCW-associated role in both Asco- and Basidiomycota suggests a

plesiomorphic role in β-glucan assembly and co-option for in the cell wall and

suggests that this family has been co-opted for fruiting body development in 

Agaricomycetes. Several other previously reported putatively FCW-active 

CAZyme families (Martin et al., 2008; Wang et al., 2013; Park et al., 2014; 

Zhang et al., 2015; Sakamoto et al., 2017; Krizsan et al., 2018; Song et al., 

2018) (e.g GH5, GH142 (Sakamoto et al., 2005, 2011; Hurtado-Guerrero et 

al., 2009; Ene et al., 2015), Fig S2), also showed developmental expression 

in A. ampla, reinforcing the view that cell wall remodeling is a fundamental 

mechanism in fruiting body development (Sakamoto et al., 2006, 2011, 

2017; Busch & Braus, 2007; Martin et al., 2008; Ohm et al., 2010; Buser et 

al., 2010; Konno & Sakamoto, 2011; Krizsan et al., 2018).

WA. ampla and S. commune have reduced repertoires of defense-

related genes compared to Coprinopsise found developmental regulation of a

diverse array of putative defense-related genes by searching for homologs of

Coprinopsis defense genes (Plaza et al., 2014) (Fig S2) consistent with their 

simplified fruiting body morphologies. A. ampla and S. commune have 

reduced repertoires of defense-related genes compared to Coprinopsis (Fig 

S2). For example, no homologs of aegerolysins or the ETX/MTX2 pore-

forming toxin genes (Lakkireddy et al., 2011), and have s exist in their 

genomes, whereas lectins are represented by 14 lectin genes as opposed to 

39 and 25 in C. cinerea and A. ostoyae. The Schizophyllaceae have several 
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thaumatin genes, which has have been associated with defense in both fungi

(Plaza et al., 2014) and plants (Rajam et al., 2007; Zhang et al., 2017), 

fungal pathogenicity (Zhang et al., 2018) but also with FCW remodeling

(Grenier et al., 2000; Sakamoto et al., 2006). Thaumatins possess endo-β-

1,3-glucanase activity, and are can degrade cell wall components of 

Lentinula L. edodes (Sakamoto et al., 2006) and Saccharomyces (Grenier et 

al., 2000). These properties and their developmental expression in axenic 

fruiting bodies suggest a role in FCW remodeling, although antimicrobial 

activities have also been predicted for certain members (Krizsán et al., 

2019). Cerato-platanins represent a similar case (see also above); they are 

widely expressed in pathogenic fungal-plant interactions (Chen et al., 2013; 

Gaderer et al., 2014), fruiting bodies (Gaderer et al., 2014; Sipos et al., 2017;

Krizsán et al., 2019) and defense assays (Plaza et al., 2014) and are 

significantly enriched in Agaricomycetes genomes (Chen et al., 2013; Krizsán

et al., 2019). Thaumatins and cerato-platanins provide examples for families 

traditionally associated with plant pathogenicity but for which deeper 

analyses reveal morphogenetic functions, suggesting a link between 

morphogenesis and pathogenicity.We detected four developmentally 

regulated cerato-platanin genes in A. ampla, three of which showed an 

induction in stage 1 primordia (Fig S2). S. commune had three 

developmentally regulated cerato-platanins, with non-matching expression 

profiles. Further, in A. ampla we found three developmentally regulated 

lectin genes (Fig S2), as opposed to S. commune, which had eight (Krizsan et

al., 2018). All three genes belong to the ricin-B lectin family and harbor a 

CBM13 domain, which has mannose, N-acetylgalactosamine and xylane 

binding activities (Boraston et al., 2000; Fujimoto, 2013). Ricin-B lectins have

been reported as developmentally expressed in fruiting bodies of all 

Agaricomycetes tested so far (Liu et al., 2000; Wang et al., 2013; Plaza et al.,

2014; Sipos et al., 2017; Krizsan et al., 2018; Song et al., 2018), although 

their functions are unclear. It is the largest family of basidiomycete lectins

(Krizsan et al., 2018) and was shown to be toxic to nematodes (Schubert et 
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al., 2012; Hassan et al., 2015), although their diverse carbohydrate-binding 

abilities (mannose and N-acetylgalactosamine) could confer additional or 

other functions as well.  

F-box and BTB/POZ proteins have recently been reported as an 

interesting family related to fruiting body development (Krizsán et al., 2019).

Auriculariopsis has 246 F-box protein encoding genes, of which 12 were 

developmentally regulated in our dataset. Of the 96 BTB/POZ domain-

containing proteins 26 were developmentally regulated, including some 

genes with remarkable expression dynamics during development (e.g. fold 

change 526- fold changex, Auramp1_515369). This is similar to figures 

reported for S. commune (Krizsán et al., 2019). These domains are involved 

in protein-protein interactions and have been reported to act as 

transcriptional repressors (Collins et al., 2001), members of selective 

proteolysis pathways, and include homologs of yeast Skp1 (Connelly & 

Hieter, 1996) too. Although very little functional information on these 

families is available in fungi, their expression dynamics in development and 

previously reported regulatory roles suggest they could be important players

in fruiting body development.

Conserved patterns of transcription factors expression

We examined expression patterns of transcription factors (TFs) and their 

similarity between the two species. We identified 433 and 437 TFs in the 

genomes of A. ampla and S. commune respectively, of which 252 were co-

orthologs. These were distributed across 28 TF families, with C2H2-type Zinc 

finger and Zn (2)-C6 fungal-type TFs being the most dominant (Table S65). 

Individually, 14.5% and 16% of the Auriculariopsis and Schizophyllum and 

17% of the co-orthologous TFs were developmentally regulated, respectively.

Of the 

These included 5 of the eight previously characterized TF genes of S. 

commune (Ohm et al., 2011): c2h2, gat1, hom1, tea1 and fst4 showed 
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significant changes in expression, in most cases at the initiation of fruiting 

body development, whereas fst3, bri1 and hom2 showed more or less flat 

expression profiles (Fig S65). This is ese expression profiles are consistent 

with previous RNA-Seq based reports (Pelkmans et al., 2017) in 

Schizophyllum and other species (Morin et al., 2012; Plaza et al., 2014; Zhou 

et al., 2014; Pelkmans et al., 2016), except in hom1 and gat1, which, in our 

data behaved differently, probably due to the different resolution of 

developmental stage data. The expression profiles of all eight genes were 

very similar between A. ampla and S. commune. Homologs of Lentinula L. 

edodes PriB (Endo et al., 1994; Miyazaki et al., 1997) (Auramp1_518770, 

Schco3_2525437) were also developmentally regulated, with an expression 

peak in stage 1 primordia. Homologues of Coprinopsis exp1, which was 

reported to be involved in cap expansion (Muraguchi et al., 2008), were 

present in both species (Auramp1_481073, Schco3_2623333) and had a 

matching expression profile, but were not developmentally regulated in our 

data. In our experiments, exp1 homologs (Auramp1_481073, 

Schco3_2623333) showed highest expression in vegetative mycelia and 

lower expression afterwards, which might be related to the lack of proper 

caps in A. ampla and S. commune. 

Of the 252 co-orthologous TFs, 42 were developmentally regulated in 

both species, 27 of which had similar expression profiles between A. ampla 

and S. commune. Nine of the most interesting of these TFs are shown on Fig 

5S6. Six of these genes showed Three of these genes showed highest 

expression in vegetative mycelia and are probably not relevant to fruiting 

body development. For the other six genes an upregulation was observed at 

the transition from vegetative mycelia to stage 1 primordia, which is 

compatible with potential roles in the initiation of fruiting body development 

or accompanying morphogenetic changes. Such TFs, with conserved, 

developmentally dynamic expression might be related to sculpting the 

specialized, cyphelloids fruiting body morphologies of Auriculariopsis and 
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Schizophyllum or more widely conserved fruiting body functions. This also 

shows the power of comparative transcriptomics to identify genes with 

conserved expression patterns during fruiting body development (Trail et al.,

2017) and to generate hypotheses that are testable by gene knockouts or 

functional assays.

Small secreted proteins show dynamic expression in 

fruiting bodies

We detected several genes encoding SSPs in the fruiting body 

transcriptomes. In A. ampla and S. commune 316 and 354 genes encoding 

SSPs in the fruiting body transcriptomes of A. ampla and S. communewere 

detected, respectively, half of which contained no known InterPro domains 

(Fig 56a, Table S76, Fig S4). The SSPs in the two species belonged to 283 

orthogroups in A. ampla, and 315 in S. commune, of which. 133 orthogroups 

were shared by the two species, whereas 150 and 182 were specific to A. 

ampla and S. commune, respectively (Fig 56b). Twenty un-annotated In the 

133 shared orthogroups 39 and 54 genes were developmentally regulated in 

A. ampla and S. commune, respectively. From these, 20 co-orthologs were 

developmentally regulated in both species (Fig 56d) and had a similar 

expression profiles. Annotated SSPs in the two species (Fig 56c) had similar 

expression dynamics and mainly comprised hydrophobins, ceratoplatanins, 

CFEM domain containing proteins, concanavalin-type lectins, and glycosyl 

hydrolases (Fig 5c).

We detected several developmentally regulated SSP-s with no 

annotations and a higher than average cysteine content (mean 5.79-6.23% 

as opposed to 1.67-1.63% for the proteomes of A. ampla and S. commune 

respectively), some of which showed high expression dynamics (FC>50, Fig 

56e). We found 8, 15 and 2, Auriculariopsis-specific, Schizophyllum-specific 

and shared SSPs, respectively, with no known domains but an >50-fold high 

expression dynamics (Fig S4, Table S76). For example, one of the 
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orthogroups (Auramp1_494084, Auramp1_549528, Schco3_2664662) 

showed a considerable upregulation in stage 1 primordia in both species 

(FC=11656 - 1870), suggesting a role in the transition from vegetative 

mycelium to fruiting body initials. Given the role ofSuch SSPs resemble 

effector proteins involved in cell-to-cell communication in ectomycorrhizal 

and pathogenic interactions between fungi and plants (Pellegrin et al., 2015; 

de Freitas Pereira et al., 2018) our observations.  Their expression in fruiting 

bodies raises the possibility that they play signaling roles and may be 

responsible for sculpting the fruiting bodies of these fungi. SSPs with an 

upregulation in during morphogenetic processes (ECM root tips and/or 

fruiting bodies) have been reported in Laccaria (Martin et al., 2008; Pellegrin 

et al., 2015, 2017) and Pleurotus (Feldman et al., 2017) suggesting a role in 

tissue differentiation and that some of the SSPs initially found in ECM root 

tips may actually be morphogenetic in nature. Whether morphogenesis-

related SSPs occur ubiquitously among mushroom-forming fungi and what is 

the mechanistic basis of their role, needs further research. Neverthless, a 

morphogenetic role would provide an explaination for the rich SSPs 

complement of fruiting-body forming Agaricomycetes that are neither 

ectomycorrhizal or pathogenic (Pellegrin et al., 2015; Krizsán et al., 2019).

DiscussionConclusions

In this study we performed comparative genomic and transcriptomic 

analyses of Auriculariopsis ampla, Schizophyllum commune and 29 other 

Agaricomycetes, to understand their peculiar role in forest ecosystems and 

the development of their specialized fruiting body morphologies. The two 

analyzed members of the Schizophyllaceae proved a rich source of 

information for shaping our understanding of Agaricomycete biology and 

their interaction with plants. The Schizophyllaceae are pioneer colonizers of 

dead plant materials with suggested weak pathogenic potentials for 
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Schizophyllum (Takemoto et al., 2010), probably necessitating strategies for 

invading through and/or feeding on the bark. We observed a preponderance 

of tannase and suberinase genes in these and other bark-specialized fungal 

species, which might degrade biopolymers enriched in bark tissues. On the 

other hand, developmental transcriptomes have highlighted several 

interesting genes potentially related to fruiting body development, including 

transcription factors (including 9 new conserved TFs), carbohydrate-active 

enzymes, heat shock proteins, aspartic proteases, as well as small secreted 

proteins. Taken together, the comparative genomics approach we used here 

has led to the consideration ofrevealed some novel aspects of well-known 

and important processes, such as a putative strategy to decay bark through 

tannases and suberinases, or the role of small secreted proteins in f ungal 

morphogenesis.identify conserved genes related to fruiting body 

development and their peculiar wood-decay strategy. The two analyzed 

members of the Schizophyllaceae proved a rich source of information for 

shaping our understanding of Agaricomycete biology. The CAZyme 

composition of A. ampla and S. commune suggests that the wood degrading 

strategies of the two species show similarity to WRs when concerned with 

cellulases, hemicellulases, and pectinolytic gene families. What sets them 

apart from WRs is the absence of class II PODs, which is also the case for BRs

and ectomycorrhizal fungi. However, the reduction in ligninolytic genes is 

compensated by the presence of suberinases and tannases required to 

depolymerize important components bark, to which these species might be 

adapted. Such an adaptation, although needs to be verified by additional 

studies would provide a framework for interpreting the odd CAZyme 

composition of the Schizophyllaceae (Riley et al., 2014; Floudas et al., 2015) 

and would expand our understanding of the nutritional diversity of wood-

decay fungi.

Our analyses revealed a large number of genes with developmentally 

dynamic expression in fruiting bodies of both A. ampla and S. commune. , 
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including transcription factors (including 9 new conserved TFs), 

carbohydrate-active enzymes, heat shock proteins, aspartic proteases, as 

well as small secreted proteins. Particularly interesting are SSP-s with a 

highly dynamic expression through development, because SSPs have been 

described as key components of intercellular communication in pathogenic 

and ectomycorrhizal associations (Pellegrin et al., 2015; de Freitas Pereira et 

al., 2018). Although mechanistic evidence is still lacking, it is conceivable 

that SSP-s with fruiting body specific expression might be involved in 

intercellular communication in fruiting bodies and thus contribute to 

sculpting their morphologies, similarly to their mycorrhiza and pathogenicity-

related counterparts. This hypothesis would provide an explanation for the 

rich SSPs content of fruiting-body forming Agaricomycetes that are neither 

ectomycorrhizal or pathogenic (Pellegrin et al., 2015; Krizsan et al., 2018).   

Our data also suggest that despite the close phylogenetic relatedness 

of Auriculariopsis and Schizophyllum, their developmental transcriptomes 

have diverged significantly since their common ancestors, indicating a high 

rate of developmental gene expression in these taxa. Such divergence might

be related to morphogenetic differences between the two species: while A. 

ampla produces simple cyphelloid (cup-shaped) fruiting bodies, those of S. 

commune consist of several congregated cyphelloid modules. Despite this 

divergence, several genes with a matching expression profile could be 

identified, highlighting conserved roles that await further characterization. 

These data have the potential to highlight not only the genes involved in the 

development of cyphelloid fruiting bodies, but also that of other 

agaricomycete fruiting body types and as such, should be immensely useful 

to understanding the general principles and shared properties of fruiting 

body development in mushroom-forming fungi.
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Figure Legends

Fig 1. Phylogenetic relationships and lignocellulose degrading gene 

repertoire of A. ampla compared to S. commune and 29 other 

Agaricomycetes. A, species tree showing the phylogenetic affinities of the 

Schizophyllaceae (bold, left panel) and copy number distribution of cellulose,

hemicellulose, pectin, lignin degrading gene families as well as those of 

putative suberinases and tannases. B, phylogenetic principal component 

analyses of cellulose, lignin and suberin degrading enzymes. Species names 

colored based on nutritional mode (WR - white rot, BR - brown rot, ECM - 

ectomycorrhizal, S/L/O - soil and litter decomposer, Uncertain - nutritional 

mode not known with certainty). For better visibility, a few species have 

been moved slightly on the plots (information in Table S1) See also Fig S1 for

original plots.

Fig 2. Fruiting bodies and developmental stages of A. ampla and S. 

commune. Developmental stages are indicated on each panel. A, fruiting 

bodies of A. ampla produced in vitro, on sections of barked poplar logs 

plugged into malt-extract agar. B and C, fruiting bodies of A. ampla and S. 
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commune in their natural habitat. D, cross sections of developmental stages 

of A. ampla: left - stage 1 primordium (left), stage 2 primordium (middle) and

mature fruiting body (right). E, Cross section of a mature fruiting body of S. 

commune, showing congregated single fruiting bodies.

Fig 3. Overview of the developmental transcriptome of A. ampla. A, Multi-

dimensional scaling for RNA-Seq replicates from 5 developmental stages of 

Auriculariopsis ampla. Biological replicates belonging to similar tissue type 

group together. The replicates for P1 and P2 cluster together and remaining 

developmental stages keep apart. B, Graphical representation of number of 

significantly upregulated (green) and downregulated (red) genes among 

developmental stages and tissue types in A. ampla. 

Abbreviations: VM - vegetative mycelium, P1 - stage 1 primordium, P2 - 

stage 2 primordium, YFB - young fruiting body, FB - mature fruiting body.

Fig 4. Global transcriptome similarity between developmental 

transcriptomes of A. ampla and S. commune. Pearson correlation coefficient-

based heatmaps show similarity among developmental stages of the two 

species for all 7369 co-orthologs (A), for 1182 developmentally regulated co-

orthologs (B), for 252 co-orthologous transcription factor pairs (C) and 42 

developmentally regulated co-orthologous TF pairs (D). Warmer color 

indicates higher similarity. Biological replicates are indicated next to the 

heatmap (R1-R3). E, paired heatmap of gene expression (FPKM) for 7369 co-

orthologous gene pairs between A. ampla and S. commune. Developmental 

stages for both species are as follows: VM - vegetative mycelium, P1 - stage 

1 primordium, P2 - stage 2 primordium, YFB - young fruiting body, FB - 

mature fruiting body.

Fig 5. The expression patterns of developmentally regulated co-orthologous 

transcription factors and their similarity across the two species. A, 

Expression patterns for 8 previously characterized TFs in S. commune and A. 

ampla. B, developmentally regulated co-orthologous TFs in the two species 

39

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169



with high expression dynamics during fruiting body development. S. 

commune and A. ampla genes are shown by blue and orange lines 

respectively. 

Fig 65. Small secreted proteins in fruiting body transcriptomes. A, 

Repertoires of annotated vs unannotated and developmentally regulated 

(DR) vs. non-developmentally regulated (NOT-DR) SSPs in fruiting body 

transcriptomes of Auriculariopsis ampla and Schizophyllum commune. B, 

Venn-diagram depicting orthology relationships among SSPs of the two 

species. Number in each cell represent the number of shared or species-

specific orthogroups. C, functional annotation terms (InterPro domains) 

present in SSPs of both A. ampla and S. commune. Terms specific to either 

species are not shown. D, expression heatmaps of co-orthologous SSPs in the

two species. Orthogroup IDs are shown next to rows. Blue and red 

correspond to low and high expression, respectively. Greyed-out rows denote

missing genes in orthogroup in which the 2 species did not have the same 

number of genes. Color coded bar next to heatmap shows functional 

annotations of the orthogroups. See Fig S4 for heatmaps of species-specific 

genes. E, expression profiles of genes in four of the orthogroups through 

development, including two orthogroups of unannotated genes. Blue and 

orange denote Auriculariopsis and Schizophyllum genes, respectively. 

Variances across the three biological replicates are shown at corresponding 

developmental stages. See Table S76 for protein IDs. 
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