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Using 3D-Scene Data from a Mobile Detector
System to Model Gamma-Ray Backgrounds

Marco Salathe, Mark S. Bandstra, Brian J. Quiter and Joseph C. Curtis

Abstract—Integration of contextual sensors into vehicle-borne
mobile radiation detector systems delivers a rich description of
the environment that could be used to estimate the complex and
variable environmental gamma-ray backgrounds in urban areas.
The predictions could potentially increase the sensitivity to illicit
radiological and nuclear materials and could provide realistic
inputs to urban radiological search simulations and algorithms.
Recent work in this field has focused mainly on the predictive
power of segmenting and classifying imagery from cameras and
elected in its approach to aggregate the locations of gamma-ray
interactions within the fielded detector array to a single point.
This work builds upon the previous effort by leveraging LiDARs
to create a 3D representation of the detector system and the
surrounding scenery and demonstrates further improvement in
the capability of attributing observed gamma-ray backgrounds to
classes of surrounding materials.

I. INTRODUCTION

THE Radiological Multi-sensor Analysis Platform
(RadMAP) [1] was developed to investigate how

contextual sensors can enhance radiological data. RadMAP
carries a suite of radiation detectors and synchronized
contextual sensors. A recent work [2] that was part of the
Multi-agency Urban Search Experiment (MUSE) collaboration
[3] has shown that panoramic videos can provide a semi-
quantitative understanding of the sources of environmental
radioactivity observed in gamma-ray detectors - particularly
the array of 100 2”×4”×4” NaI(Tl) detectors. In addition
to imagery generated by a pair of Ladybug3 cameras [4],
RadMAP has fielded numerous additional contextual sensors,
notably an inertial measurement unit (IMU) and LiDARs.
The LiDARs produce 360 deg scans of the surrounding
environment within their 30 deg opening angles every 0.1 s.
The different scans can be used in Simultaneous Localization
and Mapping (SLAM) to create a detailed spatial map of the
entire facility and provide the exact location of the vehicle
itself within that three-dimensional (3D) map. This eliminates
some inherent constraints of the previous video-based analysis
and allows a more complete description of the measured
geometries throughout the radiological survey. The methods
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Fig. 1. A diagram of the analysis procedure. Parallelepipeds represent methods
by which data are generated, round boxes represent intermediate data products,
and rectangles represent analysis steps.
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Fig. 2. A top down view on the labeled voxel-grid of the MOUT facility. The
track of RadMAP is displayed in blue.

developed to leverage the 3D information, detector-specific
sensitivity calculations, and gamma-ray energy specificity
to algorithmically attribute measured gamma-rays to the
surroundings are described here, along with some initial
results.
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II. METHODOLOGY

This work will focus on measurements conducted at the
Military Operations in Urban Terrain (MOUT) facility at the
Fort Indiantown Gap (FTIG) National Guard Training Center,
for which radiological ground truth data have been collected
on site [5]. The examined sequence is limited to a 165 s long
period of continuous motion of RadMAP and is identical to
the one used in the previous study [2].

Google Cartographer [6] was used to perform SLAM on the
LiDAR’s scan data and acceleration vectors measured by the
IMU to produce a temporal trajectory of the vehicle and a
voxelized representation of the training facility. Hand labeled
images from the Ladybug3 cameras were used to update the
classifier weights of the pre-trained DeepLabv3+ [7] image
segmentation neural network to distinguish features such as
grass, forest, buildings, concrete, asphalt, etc. The retrained
network was then used to segment the Ladybug3 camera
images sampled at 3 Hz. The classified images were projected
onto the voxelized map to segment it into the above mentioned
classes. A top down view of the resulting voxel-grid colorized
by each class is shown in Fig. 2. Finally, the resulting voxelized
map was turned into a triangular mesh using an enhanced
version of Open3D’s [8] pivoting ball algorithm.

The spectral response of the detector modules was simulated
in MEGAlib [9] for 13 monoenergetic far field gamma-ray
sources at 520 points subtending the unit sphere. Through
interpolation, a probability distribution of the gamma-ray en-
ergies emitted from each surface for any detected energy at all
possible angles can be approximated. The field of view of each
individual Na(Tl) gamma-ray detector at any given moment as
RadMAP moves along its trajectory was extracted from the
mesh to calculate the angular coverage of each image-derived
material class.

A feature vector αl encodes unknown aspects of the scene.
In the most simple case it describes the areal radiation emission
rate (emitted photon current) of each class, but can also encode
spectral information. Here, each material class was divided in
119 equally sized energy bins to include spectral information.
Probabilities of detecting gamma-rays associated with photon
emissions comprise the system matrix Rl at timestamp t as a
function of emitted (E) and detected (E′′) energy given by:

Rl(t, E
′′, E) =∑
E′,i

Ai(E
′′|E′)Sair(E

′|E, ri(t))
δl,label(t,i)∆Ωi

π
(1)

where Sair describes scattering in air – a function of the
distance to a given surface ri(t). The effective area Ai de-
scribes the detector response of a given surface. The function
δl,label(t,i) maps the coverage of a solid angle element ∆Ωi to
the respective class. The sum over all solid angle elements
should cover the entire unit sphere, thus elements that are
obstructed by intervening materials are not considered in the
above description.

The activity associated with the features can be calculated
using the list-mode Poisson Maximum Likelihood Estimation
Maximization (MLEM) update algorithm [10]:
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Fig. 3. The MLEM solution for the emitted photon currents of the three most
prominent classes compared to the ground truth data from Ref. [5].

αj+1
l (E) =

αj
l (E)

Sl

N∑
n

Rl(tn, E
′′
n, E)∑

l̃ α
j

l̃
(E)Rl̃(tn, E

′′
n, E)

(2)

The sensitivity Sl is the integral of Rl(t, E
′′, E) over time and

the sum over the energies E and E′′. The subscript n refers to a
single gamma-ray detection of which there were approximately
2 millions measured during the 165 s long period.

III. RESULTS

The list-mode MLEM analysis has been completed for the
case where 119 energy bins – spanning energies of 216 to
3072 keV – were used as the feature vector for each class. The
detectors have been all handled as individual modules, 13 of
the 100 detectors were excluded due to poor energy resolution.

The resulting emission spectra are noisy and only the most
prominent classes (shown in Fig. 3) express features that can
be physically interpreted. The noisiness of the features is most
likely caused by inaccuracies in the underlying model, such as
an insufficient description of detector resolutions, the implicit
assumption that each material class emits the same intensity
and energy distribution of gamma rays, etc.



TABLE I
THE SUMMED PHOTON CURRENTS OF THE SPECTRAL FIT COMPARED TO

THE GROUND TRUTH AND THE PREVIOUS WORK. THE DATA FROM [5] AND
[2] WERE ADJUSTED TO REFLECT THE REDUCED ENERGY RANGE.

Class Ground truth[5] Camera only[2] 3D scene
[γ/s/cm2] [γ/s/cm2] [γ/s/cm2]

Asphalt 0.56 0.50±0.07 0.87
Concrete 0.69 0.74±0.04 1.01
Grass 1.68 1.58±0.04 2.60
Gravel 0.56 0.76±0.04 1.12
Building brown 0.31 / 0.47 0.71±0.02 0.90
Building red 0.28 0.83±0.02 0.98
Building white 0.22 / 0.36 0.70±0.04 0.98
Building roof N/A 0.00±0.22 0.80
Forest N/A 0.65±0.04 1.19
Vehicle N/A 0.91±0.10 1.00
Sky N/A 0.38±0.02 0.31
Poles N/A N/A 0.47
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Fig. 4. The predicted number of counts in the detectors calculated by∫ ∑
E Rl(t, E

′′, E)αl(E)dt due to each material class. The sum of the
classes (red) is compared to the total measured spectrum (black).

By summing over all energies, one obtains the average
photon current emitted by a given class listed in TABLE I.
The ground truth currents were adjusted to only comprise the
energy range between 216 and 3072 keV, the camera only value
from [2] were compensated by multiplying them with a missing
factor of 2 and removing 30%, the average in the range 0-
216 keV of the ground truth spectra. The observed currents are
mostly greater than those from the camera-only model of [2],
which can be expected, as the camera only analysis did not
include any scattering and attenuation in air. The currents also
exceed the ground truth measurement by approximately 30%,
but the relative amplitudes agree, suggesting that the fitted
emission spectra indeed carry physical relevant information.

The predicted contribution of classes to the measured spec-
trum in the detectors (presented in Fig. 4) are calculated by
multiplying the emission spectra with the system matrix and
integrating over time. These spectra are less strongly effected
by model inaccuracies and so physical peaks and a continuum
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Fig. 5. The contribution of classes given by
∑

E′′,E Rl(t, E
′′, E) · αl(E),

the fit gross count rate obtained by summing all contributions from classes
(red), and the measured gross count rate (black).

are visible. The sum over the individual contributions is in
good agreement with the measured rate.

The temporal evolution of the detector array count rates due
to the emitted photon current from each material class over the
duration of the measurement is shown in Fig. 5. The summed
contributions to the count rate follows the gross count rate
observed in the detectors and the agreement is an improvement
over the camera based model shown in Fig. 8 of [2].

IV. DISCUSSION

The knowledge about the spatial extent of the surrounding
scene was used to match contributions of individual classes to
gamma-ray event distributions observed in radiation detectors
through list-mode MLEM. The resulting fit is an improvement
over camera imagery only, suggesting incorporation of 3D
information is valuable for associating observed gamma-ray
activity with environmental sources. The inclusion of photon
energy dependence to detection model enabled a direct compar-
ison between spectra measured by RadMAP and those derived
by summing those attributed to the various classes included in
the MLEM model.

The next steps are to limit spectral features by postulating
that the spectra emitted by each class can be described com-
prised as a sum of separate Thorium, Uranium and Potassium-
induced radioactive emissions. The emission spectra for these
elements can be simulated thus reducing the requirement for
a unconstrained spectral fit. Reconstructing spectral activities
for each material class, would demonstrate substantial under-
standing of the radiological environment that has only been
achieved through very labor-intensive ground truth measure-
ment campaigns.
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