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Photoinduced magnetic force between nanostructures

Caner Guclu,* Venkata Ananth Tamma, Hemantha Kumar Wickramasinghe, and Filippo Capolino†

Department of Electrical Engineering and Computer Science, University of California, Irvine, California 92697, USA
(Received 24 March 2015; revised manuscript received 31 August 2015; published 7 December 2015)

Photoinduced magnetic force between nanostructures, at optical frequencies, is investigated theoretically. Till
now optical magnetic effects were not used in scanning probe microscopy because of the vanishing natural
magnetism with increasing frequency. On the other hand, artificial magnetism in engineered nanostructures led
to the development of measurable optical magnetism. Here two examples of nanoprobes that are able to generate
strong magnetic dipolar fields at optical frequency are investigated: first, an ideal magnetically polarizable
nanosphere and then a circular cluster of silver nanospheres that has a looplike collective plasmonic resonance
equivalent to a magnetic dipole. Magnetic forces are evaluated based on nanostructure polarizabilities, i.e.,
induced magnetic dipoles, and magnetic-near field evaluations. As an initial assessment on the possibility of a
magnetic nanoprobe to detect magnetic forces, we consider two identical magnetically polarizable nanoprobes and
observe magnetic forces on the order of piconewtons, thereby bringing it within detection limits of conventional
atomic force microscopes at ambient pressure and temperature. The detection of magnetic force is a promising
method in studying optical magnetic transitions that can be the basis of innovative spectroscopy applications.

DOI: 10.1103/PhysRevB.92.235111 PACS number(s): 07.79.−v, 68.37.−d, 78.67.Bf, 81.05.Xj

I. INTRODUCTION

Magnetic properties of materials are very weak and al-
most completely vanish at optical frequencies [1]. Therefore,
matter’s magnetic properties and magnetic field-matter inter-
actions at optical frequencies are treated as exotic and their
investigation is in general absent in science and engineering.
Since matter also possesses electronic states that involve circu-
lation of electrons and spin transitions at optical frequencies,
it would be desirable, despite their weakness, to be able to
directly interact with magnetic dipole transitions.

There has been recent interest in optical-frequency mag-
netic response of engineered nanostructures such as photonic
crystals and optical metamaterials [2–4]. Artificial magnetism
is achieved at optical frequencies by enhancing and controlling
the emission characteristics of the magnetic dipolar term in the
multipolar expansion of scattered fields [2,5–13] by nanostruc-
tures. Therefore, metamaterial-based magnetic nanostructures
open up new possibilities of exploring the optical magnetic
field-matter interactions. In our pursuit to develop future tools
to investigate optical magnetic interactions, it is of particular
interest to explore the concept of photoinduced magnetic
nanoprobes (i.e., working at optical frequencies) that can be
used in scanning probe microscopy (SPM) [14–18]. Some
recent research focused on the enhancement of magnetic
field near nanoapertures to record the spatial distribution of
magnetic fields within magnetic nanostructures [19,20]. In this
work we elaborate on the idea of a magnetic nanoprobe that can
be used in SPM to detect photoinduced magnetic forces. The
study of optical magnetism through SPM tools based on mag-
netic nanoprobes can boost the development of spectroscopy
applications based on magnetic dipolar transitions.

The capability of atomic force microscopy (AFM)
has been extended recently by allowing for measurement
of photoinduced forces [21–24]. Indeed, it has been

*cguclu@uci.edu
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experimentally demonstrated that optical forces, measured by
an AFM, could be used to image optical electric fields [23] and
characterize both linear [21] and nonlinear [22] polarizability
of materials. While the previous work has been devoted to
measuring the optical interaction of photoinduced electric
dipoles [21,22,25,26], in this work we explore the concept
of nanoprobes capable of supporting photoinduced magnetic
polarizability such that the interaction between nanoprobe and
matter could be investigated in the future using photoinduced
magnetic forces. This concept is fundamentally different
from the previously developed magnetic force microscopy
[27–29] that operates with magnetostatic fields, since here
the magnetic force of interest is generated by magnetic field
oscillating at optical frequency.

In order to boost the optical magnetic force to measurable
levels, a strong magnetic near field and its spatial derivatives
are to be created using a magnetically polarizable probe.
As natural magnetism fades at optical frequencies, such a
probe design has to rely on artificial magnetism achieved
by optical metamaterials. Indeed, optical forces in engineered
nanostructures are a subject of recent attention [30]. Recently,
magnetic force on magnetodielectric particles is investigated
using Mie polarizabilities [31–33].

In particular, in this paper we investigate the
electromagnetic interaction between two nanoprobes at
nanometer-scale distance from each other illuminated by a
LASER beam. We show that a magnetic nanoprobe could
be conceived by two exemplary realizations of magnetically
polarizable nanostructures: (i) a nanosphere of dense dielectric
material supporting a strong magnetic dipolar polarizability
and (ii) a circular cluster of plasmonic nanospheres. The
force between two identical magnetic nanoprobes driven by a
beam is investigated as a measure of possible achievable force
levels. In both cases, the force between the two magnetic
probes is shown to be in the measurable range even at ambient
pressure and temperature. These findings open the way to
investigate magnetic dipolar transitions in matter using SPM
with specially conceived photoinduced magnetic nanoprobes.

Though not developed in this paper, to further isolate the
magnetic force detected by a magnetic nanoprobe from the
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FIG. 1. (Color online) Two magnetically polarizable nanoparti-
cles excited by an external magnetic field oscillating at optical
frequency. A force will be established between the two particles,
denoted here as “magnetic force.”

usually stronger electric one, structured light illumination
could be used. An example of such an illumination scheme
is a vector vortex beam with high magnetic-to-electric field
contrast along the beam axis as reported in [34,35].

II. FORCE BETWEEN TWO MAGNETICALLY
POLARIZABLE NANOPARTICLES AT OPTICAL

FREQUENCY

The force exerted by a local magnetic field Ĥ
loc

on a
nanoparticle with magnetic dipole moment m̂ is found by
F̂(t) = μ0m̂ · ∇Ĥloc, which is a compact representation of
F̂(t) = μ0

∑
j m̂j ∂Ĥloc/∂j , with j = x,y,z, and m̂j represent-

ing the components of moment m̂ (note that the bold vectors
here denote instantaneous quantities and the hat “ˆ” denotes a
time domain quantity). In the following we consider the setup
in Fig. 1, where the force is only z directed owing to the symme-
try (thus in this section we drop the subscript z in force given
by F̂ = F̂1z) and it is equal to F̂ (t) = μ0m̂ ∂Ĥ loc

z /∂z, with
m̂ = m̂1z (due to symmetry, the subscript z of magnetic dipole
moment z component is suppressed). A more general case is
given in the Appendix. We consider a time-harmonic external
field, therefore the magnetic dipole and field are expressed as

m̂ = Re{me−iωt }, Ĥ loc
z = Re

{
H loc

z e−iωt
}

(1)

in terms of complex valued time harmonic vectors (phasors).
Hence, the time-average force on a magnetic dipole is found by

〈F̂ 〉 = μ0

2
Re

{
m

(
∂H loc

z

∂z

)∗}
, (2)

where the asterisk denotes the complex conjugation.
We consider first a general formulation with two nanoparti-

cles with assigned magnetic polarizability. Then we exemplify
it with two possible examples of magnetic nanoprobes either
nanospheres with a magnetic polarizability at optical frequen-
cies (for example obtained by a magnetic Mie resonance
of a dense dielectric nanosphere), or a circular cluster of
plasmonic nanospheres that has been shown to support a
looplike resonance equivalent to a magnetic dipole at optical
frequencies [6,7,9,12,13].

Considering a system of two nanoparticles as in Fig. 1,
where each, at position ri , possesses a magnetic dipole
moment mi , with i = 1,2. Each particle’s magnetic moment
is related to the local magnetic field Hloc(ri) acting on it by
mi = αmm

i Hloc(ri), where αmm
i is its magnetic polarizability

that is assumed to be isotropic. The local magnetic field acting

on a nanoparticle is the sum of the magnetic field generated
by the other particle and the external driving field which is
assumed slowly varying in space for simplicity, as it would
be in several illuminating systems due to the subwavelength
distance d and particle radii.

The former is evaluated through the dyadic Green’s function
(GF) GHm(r − r′) used for evaluating the magnetic field
generated at r by a magnetic dipole at r′. The system of
equations can be constructed as

mi = αmm
i Hloc(ri) = αmm

i [Hext + GHm(ri − rj ) · mj ], (3)

where i, j = 1, 2. The external magnetic field is here assumed
to be polarized along the z axis and as a consequence of
symmetry the resulting magnetic dipoles will be also purely
z directed. When the two particles are assumed identical, i.e.,
having the same polarizability, the solution for each magnetic
dipole moment reduces to

m = αmmH ext
z

1 − αmmGHm
zz (d)

, (4)

where GHm
zz is the zz entry of the dyadic GF GHm and

is a function of d = |r1 − r2| only. The evaluation of the
force on nanosphere 1, as in (2), is then completed by
taking the derivative of the local magnetic field H loc

z = H ext
z +

GHm
zz (z + d/2)m, with respect to z. As mentioned previously,

assuming that H ext
z is slowly varying with z over the system

scale, one has ∂H loc
z /∂z = m ∂GHm

zz /∂z and the time-average
force takes the form

〈F̂ 〉 = μ0

2
|m|2Re

{
∂GHm

zz

(
z + d

2

)
∂z

}
z=d/2

. (5)

In the quasistatic regime d � λ0 (where λ0 is the free space
wavelength), the Green’s function is well approximated as a
real function GHm

zz (z) = 1/(2π |z|3). Under this condition we
obtain

∂H loc
z

∂z

∣∣∣∣
z=d/2

= m
∂GHm

zz

(
z + d

2

)
∂z

∣∣∣∣
z=d/2

= −3m
GHm

zz (d)

d
.

(6)
Neglecting the GF dynamical terms, the time-average force

on nanosphere 1 is finally represented as

〈F̂ 〉 = −3μ0

2

∣∣∣∣ αmmH ext
z

1 − αmmGHm
zz (d)

∣∣∣∣
2 GHm

zz (d)

d
. (7)

An approximation of the force expression is obtained
by neglecting the other dipole’s contribution to the local
magnetic field where H loc

z ≈ H ext
z and hence each magnetic

dipole is simply generated by the external magnetic field as
m ≈ αmmH ext

z . In other words, the coupling mechanism for the
determination of the dipolar strengths is neglected, and this is
equivalent to assuming |αmmGHm

zz (d)| � 1 in the denominator
of (4). The approximate expression for the force under this
approximation will be noted as 〈F̂a〉 and it is given by

〈F̂a〉 = −3μ0

2

∣∣αmmH ext
z

∣∣2 GHm
zz (d)

d
. (8)

It is clear that the latter scales as d−4. In both expressions
(7) and (8) it is clear that the force is linearly proportional
to the square of the external magnetic field magnitude.

235111-2



PHOTOINDUCED MAGNETIC FORCE BETWEEN . . . PHYSICAL REVIEW B 92, 235111 (2015)

10
ˆlog /1NF 10 âlog /1NF

FIG. 2. (Color online) Plots of magnetic force at optical fre-
quency: (a) log10(|〈F̂ 〉|/1N) and (b) log10(|〈F̂a〉|/1N), normalized to
1 N, versus center-to-center interparticle distance and the magnetic
polarizability of the particles, using quasistatic Green’s function.

Considering an external magnetic field with the amplitude
of 2.65 × 103 A/m corresponding to that of an incident
beam with an electric field equal to 106 V/m (i.e., with
average power density of 1.33 × 105 W/cm2), we report in
Figs. 2(a) and 2(b) the values of the time-average force exerted
on nanosphere 1, based on 〈F̂ 〉 and 〈F̂a〉 in (7) and (8),
respectively, versus distance d (horizontal axis) and magnetic
polarizability magnitude |αmm| (vertical axis), as a color map.
One can observe that for distances d smaller than 250 nm,
polarizabilities on the order of 10−21m3 are sufficient for
realizing a magnetic force on the order of 0.1 pN. The formula
in (7) provides a sharp peak due to the feedback (coupling) term
αmmGHm

zz (d) in the denominator, whereas the approximated
formula (8) provides a monotonical growth of force with
decreasing distance. For smaller distances d the coupling term
αmmGHm

zz (d) tends to grow as d−3 thus |m|2 in (5) decays as d6

which is faster than the growth of ∂GHm
zz /∂z as d−4. As a result,

force 〈F̂ 〉 decays as d2 for very small d, whereas 〈F̂a〉 grows
with the rate of ∂GHm

zz /∂z, as d−4. Therefore, the approximate
force formula yields miscalculated huge force levels for small
distances, and it is vital to include the coupling term.

The above results provide an insight into the required
magnetic polarizability to have forces on the order of
0.1 pN; we examine next two magnetic nanoprobes satisfying
such a requirement. Our first nanoprobe type is a magnetic
polarizable nanosphere that can be obtained for example with
nanospheres with large permittivity that are able to exhibit
a magnetic dipolelike Mie resonance even in subwavelength
dimensions. For example, the magnitude of magnetic Mie
polarizability based on formulas 4.56 and 4.57 on page 101
in [36,37] of a Si nanosphere is shown in Fig. 3(a) versus
frequency (horizontal axis) and radius (vertical axis) using the
permittivity values of Si in [38]. A nanosphere made of single
crystalline Si can be fabricated using the femtosecond LASER
ablation method. One can observe the magnetic dipolelike
Mie resonance as a polarizability peak in Fig. 3 ranging
from shorter wavelengths for smaller particle radii to longer
wavelength for larger particles. Based on formulas 4.56 and
4.57 on page 101 in [36], also provided in [37], magnetic
polarizability αmm larger than 10−20m3 are achievable with
Si nanospheres with radius greater than 60 nm, where a few
selected cases with rs = 60, 80, and 100 nm are plotted on
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-22

-21

-20

-19

 

 

60 nm 80 nm 100 nm3
10log /1mmm

Wavelength (nm)

r s (n
m

)

 

 

400 600 800 1000
30

60

90

120

150

-24

-23

-22

-21

-20

-19

rs =

(a) (b)
632 nm

Wavelength (nm)
00 600 800

lo
g 1

0(
|α

m
m
| /

 1
 m

3 )

FIG. 3. (Color online) (a) The logarithmic colormap of Mie
polarizability log10(|αmm|/1 m3) of a Si nanosphere versus free-
space wavelength (horizontal axis) and radius (vertical axis). The
feature denoted by the gray dotted line is the first magnetic Mie
resonance. (b) Magnetic polarizability versus wavelength for radii
rs = 60, 80, and 100 nm.

the right panel to better illustrate and quantify the values
and linewidths versus wavelength. However since nanospheres
have a non-negligible physical size in terms of wavelength, the
force evaluation based on pointlike dipole assumption should
be further investigated for realistic cases with high refractive
index nanospheres. The discussion here is based on having
nanospheres with magnetic polarizability at optical frequency,
and we consider the Si nanosphere as an example only to
show the order of magnitude of the achievable polarizabilities.
In the following we assume the magnetic polarizability to be
αmm = (−7.84 + i14.92) × 10−21 m3 at λ0 = 632 nm.

Using such magnetic polarizability in a system as in
Fig. 1, we report in Fig. 4(a) the force exerted on one of the
nanoparticles according to (7) and (8). We recall that we have
used the quasistatic approximation of the Green’s function
GHm

zz in (6) that leads to the simple expressions (7) and (8).
In Fig. 4(b) we show the magnetic force values also when all
the dynamic terms of the Green’s function GHm

zz are kept in
the calculation of the magnetic dipole moment and the GF
derivative in (5). Results indicate that a force on the order of

accurate Hm
zzG

(a) (b)

quasistatic Hm
zzG

attractive force for any d attractive repulsive

F̂ âF F̂ âF

FIG. 4. (Color online) The force exerted on a magnetically po-
larizable nanosphere, versus interparticle distance d in a two particle
system as in Fig. 1 at 632 nm wavelength with a magnetic
polarizability of αmm = (−7.84 + i14.92) × 10−21 m3. Using the
quasistatic approximation of GHm

zz the force is attractive as in (a).
When the dynamic terms of GHm

zz are included as in (b) at short
distance the magnetic force is stronger, whereas at larger distances
the force is repulsive.
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0.6 pN is present in the system for d = 210 nm, and that the
quasistatic approximation of the GF provides underestimated
force values. Neglecting the coupling term in the evaluation
of the magnetic dipole strength in (5), on the other hand,
leads to the overestimation of the force at short distance d

as discussed with regard to Fig. 2. These results show that
the coupling term (1 − αmmGHm

zz ) in determining m must be
accounted for distances smaller than 400 nm for the considered
value of magnetic polarizability αmm. Interestingly, using
the more accurate evaluations that include the GF dynamic
terms show that the force turns from attractive to repulsive
as d exceeds 400 nm. Also, the observation that the force
(5) vanishes at a certain distance close to half a wavelength
[Fig. 4(b)] underlines the importance of the dynamic terms in
the GF. Finally, we would like to point out that high-density
nanospheres with a “magnetic” Mie resonance can be polarized
also electrically, i.e., they may be induced by an electric
polarization by the illuminating field. However, illuminating
vector beams with high magnetic to electric field contrast,
such as vortex beams with azimuthal electric field polarization
[35], that possess a vanishing electric field and longitudinal
magnetic field along the propagation axis, open the scenario
where the electric force can be significantly reduced compared
to the magnetic force, leaving the magnetic force the only
detectable force contribution.

III. FORCE BETWEEN TWO MAGNETICALLY
POLARIZABLE PLASMONIC NANOCLUSTERS

We investigate the possibility of force detection using arti-
ficial magnetic dipoles made of circular clusters of plasmonic
nanoparticles as in Fig. 5(a) that, for simplicity, is considered
nondeformable. Such plasmonic-based magnetic clusters can
be sculpted on a microscope nanotip using a focused-ion
beam. For this investigation a cluster of plasmonic nanospheres
shall suffice to demonstrate the feasibility of magnetic force
detection. Similarly to the previous case, we assume that
the two circular clusters are immersed in a time harmonic
field at a frequency close to the looplike resonance of a
circular cluster. We evaluate the time-average force associated
with the interaction of near magnetic fields and the cluster
resonance that supports circulating plasmons. However, since
each resonant loop constitutes an effective magnetic dipole,
this force interaction can also be equivalently interpreted as
the one caused by equivalent magnetic dipoles immersed in a
magnetic field as in the previous section.

00 ik x
zH e

y

x

zm

d

(a) (b)

y
x

2 sr

g

00 ik x
zH e

FIG. 5. (Color online) (a) A nanocluster exhibiting an effective
magnetic dipole moment normal to the cluster plane generated by
a circulating electric dipole disposition. (b) The two-cluster system
similar to the one in Fig. 1, for which the force is evaluated.

Let us consider a system made of N polarizable plas-
monic nanoparticles at rn, with n = 1, . . . ,N . The equivalent
electrical dipole moment of each particle is determined by
pn = αn · Eloc(rn), where αee

n is the electric polarizability
tensor and

Eloc
n = Eext(rn) +

∑
m∈{1,...,N}\{n}

GEp(rn − rm) · pm (9)

is the local electric field at the nth dipole position generated by
the external electric field excitation and the electric field due to
all the other polarized particles in the system [made of either
one or two clusters as in Fig. 5(b)]. Here GEp is the dyadic
GF used for evaluating the electric field at rn due to an electric
dipole at rm with a given moment pm. Then by multiplying (9)
by αee

n we obtain the system of N equations

pn − αee
n ·

∑
m∈{1,...,N}\{n}

GEp(rn − rm) · pm = αee
n · Eext(rn),

(10)
where n = 1, . . . ,N , which can be solved for the N dipole
moments pn. As we are using nanospheres in the following,
the electric polarizability reduces to the scalar polarizability
αee, here evaluated by Mie theory [36]. When excited at the
so-called “magnetic resonance” frequency [6,13], the cluster
assumes a mainly circulating disposition of dipole moments,
as in Fig. 5(a), that forms an equivalent magnetic dipole.

In a frequency range around the magnetic resonance the
field along the z axis is strongly enhanced as reported in [13],
and leads to force manipulation. Next we show that a circular
cluster as in Fig. 5(a) possesses magnetic polarizability levels
shown to yield desired force levels as evaluated in Fig. 2.
For this purpose we consider a circular nanocluster made
of six identical silver nanospheres in vacuum excited by a
plane wave propagating in the x direction, with magnetic field
H ext

z = H 0
z eik0x polarized along z, as depicted in Fig. 6(a). The

equivalent magnetic dipole moment of the cluster is given by

m = −iω

2

∑
Cluster

rn × pn, (11)

where the electric dipole moments pn are determined by
solving (10). The zz entry of the overall equivalent magnetic
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FIG. 6. (Color online) The magnitude of the zz entry of the
magnetic polarizability tensor of circular cluster of silver nanospheres
(left) for various gap distances g and (right) for various nanosphere
radii rs. The obtained values are comparable to those in Fig. 3.
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polarizability tensor of this nanocluster is defined via

αmm
zz = mz

H 0
z

, (12)

which is reported in Fig. 6 for the several nanosphere radii and
gap distances varied around the central design with a radius
of 50 nm and a gap of 7.5 nm. Nanospheres are assumed to
be made of silver with measured permittivity function taken
from [38]. In the considered ranges, the polarizability level and
linewidth is mainly controlled by the nanosphere radius, rather
than the gap distance as observed in Fig. 6. Importantly, these
plots show that magnetic polarizability values on the order of
10−20 m3 are realizable, close to the required values reported
in Sec. II.

When two such nanoclusters are placed close to each other
and illuminated with a plane wave as illustrated in Fig. 5(b),
a strong magnetic field is generated at the magnetic resonance
which, in turn, exerts a force on each cluster. The instantaneous
magnetic force exerted on a cluster is evaluated with the
magnetic component of the Lorentz force

F̂(t) = μ0

∫
[Ĵ(r) × Ĥ(r)]dr3, (13)

where the integral domain coincides with that of all the
nanospheres of a cluster. Here Ĵ is the volume current density
associated with the electron movement in the plasmonic
nanospheres, and Ĥ is the time domain magnetic field. The
volume of each polarizable nanoparticle is subwavelength
and close to its plasmonic resonance the current inside each
particle is basically uniform because of the spherical shape
[36] leading to dp̂n/dt = ∫

Ĵ(r)dr3. Under point dipole limit,
the magnetic component of the Lorentz force (13) on each
subwavelength-size electrically polarizable particle is solely
due to the local magnetic field [39] which varies slowly at the
equivalent dipole position (i.e., the center of the subwavelength
nanoparticle volume). Then the above magnetic force integral
reduces to the summation

F̂(t) = μ0

∑
n∈ Cluster

dp̂n

dt
× Ĥloc(rn). (14)

We recall that we assume the clusters to be nondeformable,
and we are interested in the force exerted on one of the clusters
by the other one, therefore the summation in (14) is over
a single cluster (note the symmetry in the system), whereas
local magnetic field Ĥloc is taken as the field produced by the
other cluster and the external beam. Assuming time harmonic
excitation, the instantaneous dipole moments are represented
as p̂n = Re{pne

−iωt }. Therefore, analogously to what we have
shown at the beginning of this paper, the instantaneous force
has the form

F̂(t) = ωμ0

2

∑
n∈ Cluster

Im
{
pn × Hloc∗

n

}

+ ωμ0

2

∑
n∈ Cluster

Im
{
pn × Hloc

n e−i2ωt
}
, (15)

where the first term represents the time-average magnetic force
〈F̂〉 that will be reported in Fig. 7. Note that when the ring of
particles hosts circulating dipolar currents, the local magnetic
field and the dipole moments orthogonal to the z axis lead to net

FIG. 7. (Color online) The z component of the magnetic force
exerted on the upper cluster by the bottom one (left) for various
intercluster distances versus wavelength, and (right) for various
wavelengths versus intercluster distance. In all cases the nanospheres
are identical with a radius equal to rs = 50 nm and a gap equal to
g = 7.5 nm.

force along the z direction on both clusters. When currents are
slightly distorted from a perfect looplike distribution also other
force components may occur. Both the local magnetic field and
the induced dipole moments are proportional to the incident
electric field amplitude, thus the force is linearly proportional
to the incident beam’s intensity. This force will be denoted as
“magnetic force” since it is generated by the interaction with
the magnetic field through the Ĵ × B̂ term of the Lorentz force
(in contrast to the electric force p̂ · ∇Ê exerted to an electric
dipole in an electric field Ê). The magnetic force between the
two clusters here is analogous to the force between of two
magnetically polarizable nanoparticles in Sec II.

Consider a plane wave (i.e., with average power density of
1.33 × 105 W/cm2), illuminating the two circular nanoclus-
ters, each made of six identical nanospheres with a radius of
50 nm and a gap of 7.5 nm, with the magnetic field amplitude
of 2.65 × 103 A/m as in Sec II. In the following the force
is evaluated by (15), even though in Fig. 6 we reported
the strength of the magnetic polarizability for establishing
the analogy with the magnetic dipoles. The z component
of the magnetic force exerted on a cluster by the other one is
reported in Fig. 7, versus wavelength and intercluster distance
d. Note that the z-directed force is purely due to the magnetic
near field of the two clusters because the incident magnetic
field along the z axis does not exert a force along the z

direction as implied by the cross product in (15). We consider
the H field produced by the other cluster only in Fig. 7
and we neglect the one produced by the cluster itself. In
Fig. 7(a) there is a common peak around 632 nm wavelength
for different intercluster distances, while other peaks are
observed at smaller wavelength ranges, out of the magnetic
resonance band. The peaks around 632 nm correspond to a
circular disposition of electric dipole moments, while others
are “magneticlike” resonances excited due to the intercluster
interaction. In Fig. 7(b) the force profile versus the intercluster
distance is plotted for three wavelengths around 632 nm.
Note that calculations yield force levels on the order of 0.3
pN. Moreover, the dependence of force on the intercluster
distance shows remarkable resemblance to the case reported
in Fig. 4(b). For the sake of comparison, in Fig. 8 the average
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FIG. 8. (Color online) The z component of the average electric
force for the same case in Fig. 7.

electric force

〈F̂e〉 = 1

2

∑
n∈Cluster

Re
{
pn · [∇Eloc

n

]∗}
(16)

is reported for the same cases as in Fig. 7. Remarkably,
the electric force is in general in the opposite direction
of the magnetic force and it is up to 7.5 times weaker than
the magnetic force around the magnetic resonance frequency
in the reported distance range when d > 150 nm. This implies
that the overall force direction is dominated by the magnetic
force, therefore the force measurement can be efficiently used
for detecting the magnetic resonance. The electric force can
be further suppressed by exciting the cluster with structured
beams such as azimuthally polarized vector beams [35] with
longitudinal magnetic field and vanishing electric field along
the propagation axis. We also remind that the inner force acting
on a cluster is not necessarily zero. This does not violate the
conservation of momentum, because the total momentum is
given by the sum of electromagnetic and mechanical momenta
[40]. For example, when the power is scattered in a directional
manner, the particle gains momentum in the opposite direction.
Here a cluster is thus also exerting a force also onto itself
when in (15) the magnetic field contributions by the cluster
itself are considered, but the strength is much weaker than
what reported in Fig. 7 around the magnetic resonance at
632 nm. The results obtained by dipolar scattering assumption
is known to deviate from the accurate full-wave representation
when the gap between nanospheres is smaller than a radius.
However, the force levels reported here occur even when the
polarizable particles have gaps larger than a diameter, within
the reliability range of the employed model.

IV. CONCLUSION

We have shown the photoinduced magnetic force interac-
tion between two nanostructures with magnetic polarizability
at optical frequency is in the range of a piconewton. Therefore,
in nanostructures where optical magnetism is properly en-
hanced, magnetic forces can be detected in principle through
a scanning force microscope. Magnetic dipolar transitions,
like singlet-triplet transitions, are dark in current electro-
optical technologies, and thus remain relatively unexplored
in optical spectroscopy. It is foreseen that the conclusions
drawn here pave the way for utilizing force microscopy for

the investigation of artificial magnetism and weak magnetic-
dipole transitions in matter manifesting themselves at optical
frequencies. Magnetic dipole transitions in matter can be
properly enhanced using magnetic nanoprobes as those shown
here and by using structured light as in [35] where the incident
beam is dominated by the magnetic field component. These
transitions may be detected by a scanning probe microscope
with nanoscale precision dictated by the magnetic nanoprobe
near-field hot spot.
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APPENDIX

In Sec. II the magnetic force between two magnetically
polarizable nanoprobes positioned along the z axis under z-
polarized magnetic field was investigated. It is also interesting
to discuss on how the force evolves if these two nanosphere
are misaligned with a relative displacement � along the y

axis. Since the symmetry with respect to the z axis breaks
down in this case, the induced magnetic dipole and the
magnetic field interaction between them cannot be reduced
to simple scalar equations. Therefore, a system solution of
the magnetically polarizable particles under magnetic field
excitation analogous to the electric case summarized in
Eqs. (9) and (10) is employed. Namely, one has to solve for
the two magnetic dipole moments through the following two
vector equations:

mi − αmm
∑

j∈{1,2}\{i}
GHm(ri − rj ) · mj = αmmHext(ri),

(A1)
where i = 1,2.

The average magnetic force calculation is carried out using
the formula

〈F̂〉 = μ0

2
Re{m · [∇Hloc]

∗}. (A2)

In Fig. 9 we report the z and y components of the average
magnetic force 〈F̂〉 on the upper nanoprobe versus the vertical
distance d, for various center-to-center distances � along the
y direction (other physical parameter are the same as those

FIG. 9. (Color online) The z and y component of the magnetic
force between two magnetically polarizable nanosphere versus the
vertical center-to-center distance for various horizontal distances �

along the y direction. All other parameters are as in Fig. 4.
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considered in Fig. 4). It is observed that the z-directed force
reaches attractive maximum when the two nanospheres are
aligned along the z axis. When the nanoprobes are displaced
along the y direction, the magnetic force 〈F̂z〉 significantly
reduces when � reaches only 150 nm. (Note that a Si
nanosphere with the same magnetic polarizability considered
in this example would have a diameter of 160 nm.) The
displacement along the y direction also causes a y-directed
force 〈F̂y〉, which is attractive at small vertical distances, but
it is in general significantly smaller than the z-directed force.
In Fig. 10 the z and y components of magnetic force is plotted
versus the horizontal center-to-center distance � for various
d. The z component of the force is attractive for small � and
turns repulsive for larger � when d = 160, 250, and 350 nm.
Moreover, Fig. 10 shows that the degree of spatial resolution
based on both the force level and polarity that can be achieved
varying the displacement �, especially for shorter distances
d. However, for d = 450 nm the magnitude and polarity of the

FIG. 10. (Color online) The z and y component of the magnetic
force between two magnetically polarizable nanosphere versus the
horizontal center-to-center distance �, for various d . All other
parameters are as in Fig. 4.

force do not provide the good resolution. The y component of
the force is mainly attractive and reaches comparable levels to
the z component for large �.
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