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ABSTRACT OF THE THESIS

Learning convolutional latent space

energy-based prior model

by

Dehong Xu

Master of Science in Statistics

University of California, Los Angeles, 2021

Professor Ying Nian Wu, Chair

Learning good representations without supervision remains a key challenge in machine learn-

ing. We proposed to learn an energy-based model (EBM) in the latent space that stands

on the deep generative model. Different from the original latent vector space, we formu-

late a convolutional feature map EBM in the prior. Using short-run MCMC sampling from

the prior and posterior distributions of the latent vector, both the prior EBM and the gen-

erator model are learned jointly. Using the convolutional EBM method allows the model

to exhibit strong performances in terms of image generation and capture more explainable

representations.
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CHAPTER 1

Introduction

One potential way to increase data efficiency and generalization of machine learning methods

is to train generative models [GPM14] [KW13]. In recent years, deep generative models have

achieved impressive results and applications in image, audio, videos, and text generation.

Also, Many types of generative models have flourished in recent years, including likelihood-

based generative models, which include autoregressive models [UML13], variational autoen-

coders (VAEs) [KW13] [RMW14], and invertible flows [DKB14] [DSB16]. These models can

generalize great representations in an unsupervised way without any labeled data. At the

same time, the learned representations can be used in many challenging downstream tasks,

such as few-shot learning or reinforcement learning.

The generative model assumes that observed data is generated from a low-dimensional la-

tent space, which often follows a non-informative prior distribution. Although we can learn

a powerful top-down network to map the latent space to the image space, another way is

to make the prior more expressive. Instead of generating data from Gaussian noise, we can

assume the prior distribution follows an energy-based model (EBM), which we call it a latent

space EBM [PHN20] [PNC20]. To gain more explainable representations in the latent space,

we change the latent vector into a feature map, which may give some texture/texton features

as in Filters, random fields, and maximum entropy (FRAME) [ZWM98] [ZM98].

Moreover, in order to yield more explainable representations, we hope to make more effective

use of the latent space. Unlike the original dense latent vector in the variational autoencoder

(VAE) [KW13] framework, we formulated the latent space as a feature map. In this way,

each patch in the feature map would contain more explainable semantic representations.
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Both the latent space EBM and the generator network can be learned jointly by maximum

likelihood estimate (MLE) or its approximate or variational variants. Each learning iteration

involves Markov chain Monte Carlo (MCMC) sampling of the latent vector from both the

prior and posterior distributions. Specifically, both the prior and posterior can be sampled

by a short-run MCMC [NHZ19] [NPH20], which only runs a fixed number of MCMC itera-

tions from a fixed initial distribution.

The organization of the thesis is as follows. Chapter 2 provides some related works to in-

troduce the background of our work briefly. Then, in Chapter 3, we move into our model

construction, how we train the model, and some details. And for Chapter 4, some results

are shown in this part, and there also includes some empirical analysis to show how well

our model works. Finally, we will draw conclusions based on our methods, experiments, and

results in Chapter 5.
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CHAPTER 2

Background and Related Work

In this chapter I will describe several previous works that my project is built upon, to provide

a context for my methodology.

2.1 Generative model

Generative modeling is currently one of the most popular unsupervised learning methods,

which is widely used in computer vision, natural language processing (NLP) and audio gen-

eration, etc. In unsupervised learning, the data is provided without any label or feature.

Unlike supervised learning tasks, such as classification and regression problems, which try

to formulate a f(x) to predict an output label y, in the generative model, we only have raw

data x. A general goal for generative modeling or representation learning is to represent the

input x by some hidden representations, which can capture some key information, structure,

or patterns of x. And hopefully, the representation can be simple, explainable, and easy to

understand. This means we need to figure out how the raw data is generated by only given

data x itself. In a generative model, we only deal with the real data distribution P (x).

Usually, the model is defined on a high-dimensional data space, such as image space. For

natural images that we observe in real life, there are very complex dependencies between pix-

els. For example, in the same image, the pixels that are near to each other are highly likely

to have a similar color. Also, in natural image data, if we want to generate hand-written

digits from 0 to 9, in the pixel level, the value of each pixel should be partially decided by

the value from other pixels. Say if given half of the written number image, it can help us
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determine which digit we will generate so that we can get at least get some clues about the

specific value of the rest of the pixels. In other words, in the natural image domain, all the

possible images are not uniformly distributed; otherwise, if we drew samples from the image

space, almost all of the samples would be just random noise, which we never observe in the

real world. In this case, our model needs to capture the hidden information that governs

these underlying dependencies so that the model can give images that are more likely to be

seen in the real world higher probability.

As a result, for natural images, there should be some basic rules, principles, or properties

that the data distribution follows. Considering how human brains process natural image

data and how humans understand images, our brain should not process visual signals on the

pixel level. Instead, when people try to memorize a single image, our brains could not store

all the pixel values, but instead, they may generalize some key features or representations.

With these important elements, we can even reconstruct the image in our brain. Following

this idea, we assume that besides the data space, there is still a latent space that contains

some hidden information about the real data. Similarly, to determine the raw data distri-

bution, the generative model assumes there is a vector of hidden variables z that is used to

generate x. Since the high-dimensional data space contains many complex dependencies, we

assume the latent space to be a low-dimensional space. And for the latent variables, it is not

only seen as the distributed representation of the data but also considered the embedding of

the data. The vector can be interpreted as a code, which generalizes the information from

the high-dimensional data space.

Further, the latent or hidden space should also have some basic properties. As an embedding

of the data, we wish this representation can capture the important properties of the data

and help generate new images that are not included in the training set. Because we assume

the representation can general some underlying explainable information, by changing the

value of the hidden vector, we wish the generated image can also change in a controllable

direction. For example, if some dimensions in the latent vector govern the image’s light,
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then by changing the value of these dimensions, we could get images of the same object but

under different lighting conditions. For a generative model, one of the most important goals

is the ability to generalize and generate new data that are similar but not identical to the

original data by manipulating the hidden vector. In this way, even though we only have a

limited number of samples in the training set, we can generate unlimited images as long as

we learn a strong and reasonable representation. In other words, we need to learn a strong

mapping between the latent space and the data space, so that as long as we walk along with

the latent space, the generated data also walks along with the data distribution in some ways.

2.2 Variational autoencoder

Variational Autoencoders (VAEs) [KW13] [Doe16] is one of the most popular generative

models nowadays. To learn the projection between latent space and image space, the gener-

ative model is a decoder. And we can also pair it with a bottom-up encoder. In this model,

we can learn both the decoder and the encoder jointly. The main structure is shown in

Figure 2.1 below.

Figure 2.1: Variational autoencoder model.

As we can see in Figure 2.1, the variational autoencoder consists of a latent space and a
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data space. Based on the assumption, the data is generated from a low-dimensional vector

space. We can build a top-down model, which is often parameterized by a neural network,

to accept a sample from the latent space, and then it can output a high-dimensional data

point. However, to learn the model, a top-down model may not be enough. We also need

to do inference that is to bottom-up mapping from the data space to the latent space. In

VAE, we are going to learn both the generative model and the inference model jointly.

Suppose that there is no simple interpretation of the dimensions of z, and instead, samples

of z can be drawn from a simple distribution that is standard Gaussian N(0, Id), which we

denote as the prior distribution pθ(z). Then we have a deterministic function f(z; θ), where

θ represents all the parameters, and f : Z × Θ → X. We hope that by sampling from the

simple prior distribution, we can optimize θ such that we can get reasonable X using the

generative function f(z; θ). In other words, we wish to approximate the data distribution

by making f(z; θ) similar to X in the dataset. Formally, the approximation of the data

distribution can be written as:

Pθ(X) =

∫
Pθ(X|z)P (z)dz

In VAE, for simplicity, we assume the conditional distribution to be Gaussian that is

Pθ(X|z) ∼ N(X|f(z; θ), σ2ID). In this way, we can use gradient descend to maximize the

likelihood by letting f(z; θ) approach the original X. In the meantime, we also need a vari-

ational inference model qφ(z|x) to approximate the posterior. In this way, the objective is

to minimize the distance between the true posterior and the approximate posterior, which

also means we wish the inference model to be close to the true posterior distribution. There-

fore, VAE minimizes the Kullback-Leibler divergence (KL divergence) between qφ(z|x) and

pθ(z|x) and apply Bayes rules:
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DKL[qφ(z|x)||pθ(z|x)] = Eqφ(z|x)[log
qφ(z|x)

pθ(z|x)
]

= logp(x)− [Eqφ(z|x)logpθ(x, z)− Eqφ(z|x)logqφ(z|x)]

= logp(x)− [Eqφ(z|x)logpθ(x|z)−DKL[qφ(z|x)||pθ(z)]]

As we can see above, the first term logp(x) is the data likelihood that we hope to maximize.

Minimizing the KL divergence DKL[qφ(z|x)||pθ(z|x)] is equivalent to maximize the second

term above that is Eqφ(z|x)logpθ(x|z)−DKL[qφ(z|x)||pθ(z)]. Because KL divergence is always

greater or equal to 0, the data likelihood is larger to equal to the second term, which means

it is a lower bound. Since the direct likelihood is hard to maximize, maximizing its lower

bound can also be a useful tool for getting a rough idea of how well the model captures a

particular datapoint X. And we usually called it the evidence lower bound (ELBO).

Above all, to learn the mapping between these two variables, VAE has a top-down generator

pθ(x|z), a prior pθ(z) and a bottom-up approximate posterior qφ(z|x). Both the encoder and

decoder are neural networks, which are parameterized by θ and φ respectively. Also, all the

parameters in the neural network can be trained through back-propagation and reparame-

terization trick in order to maximize the evidence lower bound (ELBO):

logpθ(x) ≥ Eqφ(z|x)[pθ(x|z)]−KL[qφ(z|x)||pθ(z)]

In variational autoencoders, we assume the prior pθ(z), the posterior qφ(z|x) and the pθ(x|z)

all follow Gaussian distributions. In this way, we can easily draw samples from them and

also make the KL term in the loss function easy to compute.
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2.3 Energy-based model

As we have discussed previously, the main purpose of representation learning is to encode

dependencies between variables. By capturing those dependencies, a model can be used to

answer questions about the values of unknown variables given the values of known variables.

Energy-Based Models (EBM) [Ng11] [LCH06] capture dependencies by associating scalar

energy (a measure of compatibility) to each configuration of the variables.

In variational autoencoder, due to the computational simplicity, the model uses fixed prior,

which is a standard Gaussian distribution to formulate the latent vector. This assumption

indeed can make the model have fast sampling speed and easy computation when calculating

the KL divergence term. However, for the reason that all the samples are drawn from the

same unchangeable prior distribution, the model lacks flexibility. Even though VAE can

learn a relatively good mapping between the latent space and the data space, the recon-

structed and generated images are often blurred. Thus, dealing with this drawback of VAE,

we are thinking about how to build a more flexible and learnable prior distribution for the

latent space. And in the meantime, the sampling process and computation are manageable,

which is one of the reasons why we plan to use EBM.

The architecture of the EBM is the internal structure of the parameterized energy function

E(·), where the energy function could be as simple as a linear combination of basis functions

(as in the case of kernel methods), or a set of neural net architectures and weight values.

However, because the prior model needs to be a probability distribution, the only consistent

way involves normalizing the collection of energies for all possible outputs. The simplest and

most common method for turning a collection of arbitrary energies into a collection of num-

bers between 0 and 1 whose sum (or integral) is 1 is through the Gibbs distribution [Zhu03]:

p(Y |X) =
e−βE(Y,X)∫

y∈Y e
−βE(y,X)
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where β is an arbitrary positive constant akin to an inverse temperature, and the denomina-

tor is called the partition function (by analogy with similar concepts in statistical physics).

The definition shown above is a general case involving both x and y, and it can be used in

different forms. Basically, EBM aims to learn an energy function E(·) that gives low energy

to the input, which is highly likely to appear in the data set, while giving high energy to the

input that does not follow the real input data distribution. Then, the exponential term e−E(·)

can give a high probability to the data that contains in the training set but a low probability

to the rest of the inputs. In representation learning, we only want the distribution defined

by E(·) to model the latent variables. If we absorb the parameter β into the energy function,

the formulation will look like below:

p(z) =
e−E(z)∫

z∈Z e
−E(z)

Because the latent space in our model remains a continuous space, which is the same as VAE,

we use integral to compute the normalizing constant in the denominator. We often use Z(·)

to represent the normalizing term. Since the normalizing constant is the integral w.r.t. z,

its value would only depend on the parameters. This means that if we fix the value of the

parameters, the normalizing term is a constant, and it will not influence the distribution

anymore. Then we may input the value of z to get its probability.
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CHAPTER 3

Method

In this chapter, I will talk about our model and how we train the model. First, I will start

with some basic assumptions and include the main structure of the model. Next, I will

derive the loss function from the maximum likelihood perspective. Also, I will talk about

some details about how to train the model in a manageable way.

3.1 Model

Let x ∈ RD be the observed data examples, such as images, and z ∈ Rd be latent variables.

Suppose we have the following distribution,

z ∼ pα(z), x ∼ pβ(x|z)

where pα(z) is the prior model and pβ(x|z) is the top-down decoder model. α and β are

learnt parameters in these two models. In the classic VAE model, the prior model p(z)

just follows a standard Gaussian distribution, which is not informative. To build a more

expressive model, we need to have a stronger prior. Thus, in our model, the prior pα(z) is

formulated as an energy-based model or a Gibbs distribution,

pα(z) =
1

Z(α)
exp(fα(z))p0(z)

where fα(z) is a multi-layer perceptron (MLP) parameterized by α and p0(z) is a reference

distribution, assumed to be isotropic Gaussian as in VAE. Z(α) is a normalizing constant,
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which can be calculate by

Z(α) =

∫
exp(fα(z))p0(z)dz = Ep0(z)[exp(fα(z))]

We can regard the energy term exp(fα(x)) as a exponential tilting of the original standard

normal prior distribution p0(z). In this way, the energy-based model can approximate many

kinds of complicated distributions by changing the values of the neural network parameter α.

With this more informative prior, the model can generalize different representations based

on various training data. Also, in this model, we made the latent space to be a convolutional

feature map. The latent vector z is defined on a 2D plain and on each position of the 2D

plain, there is a vector. The advantage of this method is that we also give the latent space

some spatial and structural properties. In this way, the model may capture some sketch,

texture, or texton patterns. For example, if a vector from a single position in latent 2D plain

controls a particular part of the data space, say the bottom-right corner of the image. Then

if we change the vector, the bottom-right corner of the image may also change respectively.

Furthermore, different dimensions in the vector may represent some properties of the specific

part of the image patch, such as light, size of the object, or color. In this case, as long as

we change the specific dimension of the latent vector, we can manipulate the image patch in

the way that we want.

For the generator model, it is identical to the decoder in the VAE,

x ∼ N(gβ(z), σ2ID)

The generator is often called a decoder, which is defined as a conditional distribution. As

is shown above, we assume the top-down conditional distribution as a Gaussian distribu-

tion with mean gβ(z) and variance σ2. The generator is a de-convolutional neural network

parameterized by β. The decoder receives a sample from the latent space and gives the

mean of the generated data. After sampling from the Gaussian distribution, we can get the

generated image.

Thus, as is shown in Figure 3.1, the latent variable Z follows an energy-based prior distri-
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bution pα(z). The probability of each specific latent vector z is calculated by going through

a simple multi-layer perceptron (MLP) fα(z). Since the distribution is formed by using a

neural network, we can never know either what exactly the distribution looks like or what

is the exact probability of each sample, for the reason that the normalizing constant is in-

tractable. Instead, we can only get the energy for each z, if we input the sample into the

neural network. In other words, we cannot directly draw samples from the distribution.

Figure 3.1: EBM prior and top-down generative model.

To sample from x, we can use reparameterization tricks x = gβ(z)+ε, where ε ∼ N(0, σ2ID).

However, a sample from z may not be easy because we can’t directly calculate the integral in

the normalizing constant Z(α). So we may need to run a MCMC to approximate the prior

distribution, which will mention in the following section.

The marginal distribution is

pθ(x) =

∫
pθ(x, z)dz =

∫
pα(z)pβ(x|z)dz

And the posterior distribution is

pθ(z|x) =
pθ(x, z)

pθ(x)
=

pα(z)pβ(x|z)∫
pα(z)pβ(x|z)dz

12



3.2 Maximum likelihood

Imagine we have training data x1, x2, ..., xn. The log-likelihood is going to be:

L(θ) =
n∑
i=1

logpθ(xi)

where θ = (α, β) represents all the trainable parameters in both the prior and the top-down

generator model.

Next, because we need to use gradient ascent to optimize our log-likelihood shown above, we

have to get the gradient w.r.t. each parameter included. But first, we need to go through

several simple identities, which will help compute the log-likelihood gradient.

For any random variable x ∼ pθ(x), an equation Eθ[5θlogpθ(x)] = 0 always holds. The proof

is shown below:

Eθ[5θlogpθ(x)] =

∫
pθ(x)5θ logpθ(x)dx =

∫
5θpθ(x)dx = 5θ

∫
pθ(x)dx = 0

where the reason why integral and the gradient can change positions is that the integral is

w.r.t. the ransom variable x, while the derivative is dealing with the parameter θ. And the

whole thing equals to 0 is because
∫
pθ(x)dx = 1 and the gradient of a constant number

should be 0.

Based on the equation above, we can also prove that for two random variables x, z ∼ pθ(x, z),

Epθ(z|x)[5θlogpθ(x, z)] = 5θlogpθ(x). The detailed proof is shown below:

Epθ(z|x)[5θlogpθ(x, z)] = Epθ(z|x)[5θlogpθ(z|x)] + Epθ(z|x)[5θlogpθ(x)]

= 0 + Epθ(z|x)[5θlogpθ(x)]

= 5θlogpθ(x)

Thus, the gradient can be computed as follows:

5θlogpθ(x) = Epθ(z|x)[5θlogpθ(x, z)] = Epθ(z|x)[5θ(logpα(z) + logpβ(x|z))]

13



Then, we can derive the gradient for α and β separately. For α from the prior model, if we

just consider the gradient w.r.t. α, the second term does not contain anything that related

to α, so we only need to care about the first term:

5αlogpθ(x) = Epθ(z|x)[5αlogpα(z)]

In this case, the expectation under pθ(z|x) can be sampled from the encoder network, so we

only need to think about how to get the derivative term inside the expectation.

5αlogpα(z) = 5α[fα(z) + logp0(z)− logZ(α)]

= 5α[fα(z)− logZ(α)]

For the normalizing term logZ(α), applying the identity that we got previously,

Epα(z)[log5α pα(z)] = Epα(z)[5αfα(z)−5αlogZ(α)]

= Epα(z)[5αfα(z)]−5αlogZ(α)

Also, we have proved that Epα(z)[log5α pα(z)] = 0. Thus,

Epα(z)[5αfα(z)] = 5αlogZ(α)

So if we substitute 5αlogZ(α) by Epα(z)[5αfα(z)], the gradient for α is

δα(x) = 5αlogpθ(x) = Epθ(z|x)[5αfα(z)−5αlogZ(α)]

= Epθ(z|x)[5αfα(z)]− Epα(z)[5αfα(z)]

where we need to sample z from both the posterior pθ(z|x) and the prior pα(z) to get the

updated α. Because fα(z) is a feed-forward neural network, where α is the parameter, the

gradient 5αfα(z) can be directly computed through back-propagation.

For the generative model, to update β

δβ(x) = 5βlogpθ(x) = Epθ(z|x)[5βlogpβ(x|z)]

where pβ(x|z) follows a Gaussian distribution for image data, so that logpβ(x|z) = ||x −

gβ(z)||2/(2σ2) + constant. Both the gradient for α and β can be computed in close form or
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derived by back-propagation. This means as long as we can get samples from the posterior

and the prior distribution, we can use gradient descent to optimize the loss function.

In the expectation terms, both the prior model pα(z) and the posterior distribution pθ(z|x)

require MCMC sampling. And here we use Langevin dynamics,

zk+1 = zk + s5z logπ(zk) +
√

2sεk

where π(z) is the target distribution that we hope to sample from and k is the index for

iteration. s is the step size for Langevin dynamics and εk ∼ N(0, Id), which is just a standard

Gaussian noise. Suppose we need to draw samples from pα(z) and pθ(z|x). What we are

going to do is just let them be the target distribution and run a iteration to approximate.

What also need to mention is that 5zlogπ(zk) are all computed through back-propagation

in each case.

3.3 Short-run MCMC

EBM learned in data space such as image space [GLZ18] can be highly multi-modal, and

MCMC sampling can be difficult. Theoretically, it would take infinite steps to get the target

distribution using the iterative updating rule, which is impractical. However, we propose to

use a short-run MCMC not only to approximate the target distribution but also to make

the computation affordable.

Suppose we always start from a fixed simple distribution p0(z), then we update it using

Langevin dynamics and we only do it for K steps, e.g. K = 20,

z0 ∼ p0(z), zk+1 = zk + s5z logπ(zk) +
√

2sεk, k = 1, 2, ..., K

Denote the distribution of zK to be π̃(z). We put the˜sign on top of the symbols to denote

distributions or quantities produced by short-run MCMC, and for simplicity, we omit the

dependence on K and s in notation.
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So that the learning gradients change to

δα(x) = Ep̃θ(z|x)[5αfα(z)]− Ep̃α(z)[5αfα(z)]

δβ(x) = Ep̃θ(z|x)[5βlogpβ(x|z)]

Above are the update rules for α and β, and the expectations are approximate by the short-

run MCMC.

Next, to get the approximation of the posterior distribution p̃θ(z|x) and the prior distribution

p̃α(z), we should use Langevin dynamics that shown above. Langevin dynamics is an iterative

process. We first draw a sample from the fixed standard Gaussian distribution p0(z) to be

our initial z0. And then we can update the value of z by zk+1 = zk + s5z logπ(zk) +
√

2sεk,

where εk is just a Gaussian random noise that follows N(0, Id), s is the step size which is

also a hyper-parameter, and k is the index of iterations.

Thus, for the reason that the value of zk is given from the previous iteration, the only term

that we are going to compute is the gradient term 5zlogπ(zk). Since we are going to sample

from both the prior and the posterior, we will let the target distribution π(zk) be pα(z) and

pθ(z|x) respectively. So for the prior, we get:

5zlogpα(z) = 5z[fα(z) + logp0(z)− logZ(α)]

= 5zfα(z) +
z

σ2

And for posterior,

5zlogpθ(z|x) = 5zlog
pβ(x|z) · pα(z)

pθ(x)

= 5z[−
||x− gβ(z)||2

2σ2
+ fα(z) + logp0(z)]

As we can see above, 5zfα(z) can be computed by back-propagation. We can get both

5zlogpα(z) and 5zlogpθ(z|x) easily. So as long as we get the derivatives, we can use them

to approximate the target distribution.
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CHAPTER 4

Experiments and results

In this chapter, I will explain present a set of experiments that highlight the effectiveness of

my model and show some results. In this paper, we focus on image space and we include

SVHN [NWC11], CIFAR-10 [KNH], and CelebA [LLW15] as my datasets.

4.1 Image reconstruction

Images contain much redundant information as most of the pixels are correlated and noisy.

Therefore we use a latent space to generalize the key information while discarding the re-

dundant information.

Figure 4.1: Left: SVHN 32x32x3 images, right: reconstructions from our model with a

4x4x100 latent space
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To illustrate that the latent vector can extract valuable information out, we can do a re-

construction by purely using the extracted information. Also, to evaluate the accuracy of

the posterior inference, we test it by looking at how the image reconstruction task works. If

we have a test data example from the data distribution, our well-formed posterior Langevin

process should give us a cogent approximate of the posterior and return a representation

of that data example in the latent space. In this way, besides helping to learn the latent

space EBM model, Langevin dynamics also helps to learn the true posterior pθ(z|x) of the

top-down generative model. We can then compare the reconstructions of test images with

the original data to see how the inference and the generator works.

Figure 4.2: Left: CIFAR-10 32x32x3 images, right: reconstructions from our model with a

4x4x100 latent space

In this experiment, we try various datasets and show that we can model x = 32 × 32 × 3

(SVHN and CIFAR-10) or 64 × 64 × 3 (CelebA) images by compressing them to a z = 4 ×

4 × 100 feature map latent space. Reconstructions from the latent space are shown below.

As we can see in the figure below, compared to the real natural images, the reconstructions

look only slightly blurrier than the originals.
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Figure 4.3: Left: CelebA 64x64x3 images, right: reconstructions from our model with a

4x4x100 latent space

For implementation details, in the training process, we run 200 epochs. In the short run

MCMC, we use 60 Langevin steps for the prior p̃α(z) and 30 steps for the posterior p̃θ(z|x).

For the learning rate in SGD, we use 1e-5 to update parameters in the latent EBM model

while use 1e-4 to update parameters in the generative model.

4.2 Image generation

In this section, we will show some generated results. As we discussed in the previous chapters,

an excellent generative model should have the ability to reconstruct the same image from

the training set and generate reasonable new images that are different from training data.

Only in this way can we conclude that our model can extract useful information from the

data because the model is not just mimicking the raw data while learning its distribution.

Since we use an EBM prior model in the latent space, we generate images by first randomly

draw samples from the latent EBM. And in this process, we may need a short-run MCMC,

which is the same as we did in the training procedure.
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Figure 4.4: Generated samples for SVHN images.

As we can see in the figures shown here, the generator network pθ in our framework is

well-learned to generate realistic samples and share visual similarities as the training data.

Sampling from the latent distribution and getting the corresponding x on image space,

generative models should have the ability to generate different samples that are not shown

in the training data.

Figure 4.5: Generated samples for CIFAR-10 images.

This could prove in some ways that our latent EBM model generalizes good representations
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of the images, and if we move in the latent space, the output of the generator can also move

along the image space and still get reasonable natural images.

Figure 4.6: Generated samples for CelebA images.

4.3 Analysis

In this part, we will include some results to show our training process. The construction

loss stands for the mean-square error (MSE) between the original data example x and the

reconstructed sample x̂. It reflects the difference between the real data and the synthesized

one on the pixel level. As is shown in Figure 4.7, the construction loss decreases as the

iteration goes. In the first 25 iterations, the loss drops quickly. Because we use stochastic

gradient descent (SGD) to optimize the loss function, the optimization process may not be

a very smooth curve. But we can still see that in the following figures, the training goes

well and the reconstruction loss keeps decreasing. Finally, after 150 epochs, the loss becomes

stable at a relatively low value.
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Figure 4.7: Reconstruction loss

In Figure 4.9, we are showing how the positive energy term Ep̃θ(z|x)[fα(z)] and the nega-

tive energy term Ep̃α(z)[fα(z)] changes along the training procedure. The positive energy

is sampled from the approximate posterior, while the negative energy is sampled from the

prior EBM model. Both samples are drawn using a short-run MCMC. And Figure 4.8 is the

overall energy term.

Figure 4.8: Energy term
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Figure 4.9: Top: negative energy; Bottom: positive energy
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CHAPTER 5

Discussion and conclusion

We can regard a top-down model or a directed acyclic graphical model as a simple factorized

form that is capable of ancestral sampling. The prototype of such a model is factor analysis,

which has been generalized to independent component analysis, sparse coding, etc. An

EBM actually defines an unnormalized density or a Gibbs distribution. The prototypes of

such a model are exponential family distribution, the Boltzmann machine, and the FRAME

(Filters, Random field, And Maximum Entropy) model.

The energy-based model can translate into various forms, such as a loss function or an

objective function. It is easy to specify, although optimizing or sampling the energy function

requires iterative computation such as MCMC.

Although the top-down model usually assumes independent nodes at the top layer and

conditional independent nodes at lower layers, we can modify the top layers by introducing

energy terms to correct the simple independence assumptions. Our work is a simple example

of this strategy where we correct the prior distribution. Maybe in the later work, we can

apply correction to data space.

EBM is a really powerful model that can formulate many complex distributions, but the

bottleneck for this work is the MCMC sampling process. However, doing MCMC sampling in

the latent space really helps our model to be computational manageable. So building a latent

EBM and letting it stands on a top-down neural network can surely get some reasonable

representations. And we hope that we can apply EBM to other more applications in future

works.
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