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ABSTRACT OF THE DISSERTATION

Performance Analysis of an Ultra-Low Power MFSK System

by

Yi Xiang

Doctor of Philosophy in Electrical Engineering
(Communication Theory and Systems)

University of California San Diego, 2022

Professor Laurence B. Milstein, Chair

In this dissertation, we investigate the problem of designing an ultra-low power M-ary

frequency shift keying (MFSK) system. In Chapter 2, we design a communication system

that operates under stringent power constraints, but is flexible with bandwidth constraints. Our

approach is to consider some of the key elements in a transceiver and optimize them for low

power consumption, as opposed to optimizing them to minimize, say, average probability of

error. An obvious consequence of this is that high complexity components of the system, such as

matched filters, forward error correction that employs iterative decoders, coherent demodulators,

and bandwidth-efficient modulation formats, are not feasible for this research. Rather, our system

xi



is designed using MFSK with non-coherent detection, optimized two-pole bandpass filters (BPFs),

and Reed-Solomon (RS) codes with hard-decision decoding. Among other things, we show that

by properly optimizing the key parameters of the BPFs and RS codes, we can design the system

to be significantly less complex than an optimal one, and only lose about 1.2 dB in terms of

performance.

In Chapter 3, we extend the results from Chapter 2 to incorporate fast frequency hopping

(FFH) and intelligent jamming. The system still operates under stringent power constraints, but

is flexible with bandwidth constraints. Our system is designed using MFSK with non-coherent

detection and FFH, optimized two-pole BPFs, and RS codes with hard-decision decoding. Among

other things, we show that by properly optimizing the key parameters of the BPFs and RS codes,

we can design the system to be significantly less complex than the MF system with a performance

loss of less than 1.4 dB in terms of performance in most scenarios that we considered. Further,

the 2-pole BPF system can actually outperform the corresponding MF system by up to 2.4 dB

with multi-tone jamming.

In Chapter 4, we extend the results from Chapter 2 to incorporate Gaussian filtering. We

improve our previous design by considering the power-bandwidth tradeoff, and we show that

we can save a large percentage of system bandwidth by sacrificing a small amount of power,

when the demodulator and coding parameters are optimized. For example, we can save 50%

of system bandwidth at the cost of 1 dB loss in performance compared to our previous system

design. We quantify the performance loss as a function of both the system bandwidth saved and

the time-bandwidth product of the Gaussian filter. We keep M = 16 as our baseline design, and

compare the performance of the M-ary GFSK system with the corresponding MFSK system.

xii



Chapter 1

Introduction

1.1 MFSK System Operating with Ultra-low Power Consump-

tion

The motivation for this research is the need for low-power communications systems that

yield good performance at very low power levels. Examples of the need for such systems vary

from reducing the size and weight of batteries used by foot soldiers who carry tens of pounds

of equipment in their backpacks, to various low-power internet-of-things (IoT) applications that

have a wide spread of applications from wearable fitness trackers to transportation, healthcare,

consumer electronics and many others [1] -[3]. Note that with very stringent power constraints,

many of the routine functions in a communications systems have to be carefully chosen. For

example, some types of forward error correction (FEC) that rely upon complex decoders, such as

those employing iterative decoding, would be unacceptable because of power consumption at the

decoder.

To make such a system plausible, we assume that, while power is a very scarce resource,

bandwidth is not. Similarly, while most systems use as a design criterion that of optimizing the

receiver so as to minimize, say, the average probability of bit error, our approach is to use ad
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hoc designs based upon power consumption, and optimize the key components of the resulting

suboptimal receivers.

According to a survey that studies recent ultra-low power receivers [4, Fig.4], nearly all

low-power receivers (whose power is <1mW) use non-coherent modulation techniques. Most

designs use either envelope detection based On-Off keying (OOK) or binary non-coherent FSK

[5]. Coherent communication requires significantly higher power to demodulate the received

waveform because the carrier phase has to be accurately tracked to enable low BER detection,

and thus a phase lock loop (PLL) is necessary in the receiver [4]. The problem is that, to the best

of our knowledge, the state-of-the-art in power consumption of PLLs that have sufficiently low

levels of phase noise is 550 microwatts [6], meaning the PLL of a coherent receiver alone requires

more than 50% of our total budget of 1 mW. As a result, rather than looking for modulation

formats that are bandwidth efficient, such as the commonly used MQAM and MPSK, we limited

our modulation techniques to those that are power efficient, such as orthogonal MFSK. Similarly,

regarding the filtering at the receiver, rather than attempting to implement a matched filter, we

chose the simplest type of bandpass filter (BPF) we are aware of, which was a two-pole BPF. For

the same reason, we limited our FEC to Reed-Solomon block codes with hard-decision decoding.

While Reed-Solomon codes with soft-decision decoding are seldom used with non-coherent

MFSK, a non-coherent MFSK system with Reed-Solomon codes and hybrid soft decision-hard

decision decoding has been shown to have an additional coding gain of a fraction of a dB

compared to hard decision decoding [7].

The total power consumption consists of both transmission power and circuit power, and

references such as [8] -[11] consider jointly optimizing the tradeoff between the two. As an

example, it is found that 80% of power saving is achievable by optimizing transmission time

and modulation parameters [11]. In this paper, we consider only minimizing transmission power,

subject to a given level of performance.

The demodulator consists of a parallel bank of M branches, each with a BPF whose center

2



frequency is the frequency of the corresponding tone, followed by an envelope detector and a

sampler, and we choose the largest among the M test statistics from the samplers to make a

decision. As a point of comparison, this structure, if used with matched filters, is the optimal

non-coherent receiver when the input waveform does not have phase continuity at the symbol

transition times (i.e., the phase of each pulse is i.i.d. with a uniform pdf from 0 to 2π). The

performance of this optimal structure in comparison with some other modulation techniques in

flat Rician fading channels is analyzed in [12], and the performance analysis for non-coherent

orthogonal BFSK in correlated Rician channels is presented in [13]. We reduce the complexity of

this structure by using 2-pole BPFs at the price of sacrificing some performance.

The problem with 2-pole BPFs is that they are non-orthogonal, and they cause both inter-

carrier interference (ICI) and inter-symbol interference (ISI). Our goal is to optimize modulation

parameters (filter bandwidth, tone spacing and sampling time) in the presence of ICI and ISI to

achieve the best system performance, i.e., to minimize the Eb/N0 (or SNR per bit) required to

reach a certain probability of error. In this paper, we choose the symbol error rate (SER) Ps = 10−3

for an uncoded system and bit error rate Pb = 10−5 for a coded system. We consider two types of

channels: additive white Gaussian noise (AWGN) channels and Rician fading channels (including

Rayleigh fading channels as a special case).

1.2 FFH-MFSK System operating in the Presence of Intelli-

gent Jamming for Ultra-low Power Communications

Frequency-hopping spread-spectrum (FHSS) frequency shift keying (FSK) is widely

used in military communication systems because of its anti-jamming capability. In particular,

fast FH with M-ary FSK (FFH/MFSK) is a typical non-coherent communication scheme with

the potential for applications in both military and civilian communication systems [19]–[22].

Among the intelligent jamming strategies are partial-band noise jamming (PBJ) and multi-tone

3



jamming (MTJ). Attempts have been made to study and combat various intelligent jammers

and interferences in different channel conditions with appropriate signal selection and error-

correction coding [22]–[30]. The combined effects of diversity and coding to combat MTJ in

a Rayleigh fading channel are studied in [22]; the performance of an optimal ML receiver in

PBJ and frequency-selective Rician fading channels is derived in [23]; the composite effect of

MTJ and PBJ in a Rayleigh fading channel with time and frequency offsets is analyzed in [24];

the performances of an FFH/MFSK system with various receivers under MTJ are compared in

[25], [26]. The performance of an FFH/BFSK system with a suboptimal ML receiver under

MTJ in frequency-selective Rayleigh fading channels is studied in [27]. The performance of an

FFH/MFSK system with product combining under PBJ in Rayleigh fading channels is analyzed

in [28]. The use of RS codes to combat PBJ and MTJ in a slow FH system is studied in [29], [30].

The use of index modulation based FHSS to combat a reactive symbol-level jammer is proposed

in [31]. The design of waveforms to mitigate the effect of single tone jamming signals in time

hopping SS systems is studied in [32]. The effect of phase noise in the frequency synthesizer on

an FFH/MFSK system is analyzed in [33].

In [34], we addressed the design and performance analysis of an ultra-low power com-

munications system. As a concrete example of constraints that ultra-low power consumption

impose on system design, such as in [34], consider a scenario where it is required to communicate

over a range of at least 1km, with a data rate of at least 100kb/sec, and an uncoded bit error rate

(BER) of 10−3 or less, in an AWGN channel, subject to a total power constraint, which includes

both transmitter and receiver power consumption, as well as the power consumption required for

transmission, of 1mW [35].

However, what was missing from [34] was the presence of intelligent jammers. Therefore,

in this chapter, we add the presence of a partial-band jammer which maximizes the performance

degradation by optimizing the fraction of total spread spectrum bandwidth jammed. We also add

the presence of a multi-tone jammer which maximizes the performance degradation by optimizing

4



the amount of power in each jammed slot. Further, we revise our system design to include FFH.

1.3 M-ary GFSK System in Ultra-low Power Communications

In Gaussian FSK (GFSK) modulation, a Gaussian filter is used to reshape the transmitted

signal, resulting in a smoother transition between symbols, and thus decreasing out-of-band

spectrum. GFSK is frequently used in applications such as Bluetooth receivers [47] – [50].

Attempts have been made to study and implement GFSK receivers for the purpose of reducing

power consumption and improving system performance. A mixed-signal GFSK demodulator

was proposed in [50], with a power consumption of 6 mW, which can tolerate up to 200 kHz

frequency offset at a 2 MHz intermediate frequency. A GFSK receiver with an ultra-low power

consumption based on injection-locking was presented in [49], achieving a power consumption

of 1.8 mW, and a Bluetooth GFSK data rate of 1Mb/s. GFSK demodulators with large frequency

offset tolerance between the transmitter and receiver were proposed in [48]. An optimized

differential GFSK demodulator that outperforms conventional differential demodulators was

developed in [47]. The use of GFSK with frequency hopping spread spectrum (FHSS-GFSK)

to detect drone communication signals in a non-cooperative scenario was proposed in [53]. The

theoretical performance of a FHSS-GFSK system considering the effect of a post-detection filter

was calculated in [54].

While we used orthogonal signaling in [34] and [43] for optimal performance, in this

chapter, we study the power-bandwidth tradeoff for the system proposed in [34], by employing

Gaussian filtering. We show that we can save a large fraction of bandwidth at the cost of a small

performance degradation, when all the parameters of the demodulator and code are optimized for

the proposed M-ary GFSK systems.
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Chapter 2

Design and performance analysis for short

range, very low-power communications

2.1 Demodulator performance in AWGN channel

In this section, we analyze the performance of an MFSK non-coherent demodulator in

an AWGN channel. We first find the optimal performance when we use 2-pole BPFs under the

idealized condition of no interference. We will see that with continuous phase, we can derive a

closed-form formula to calculate symbol error rate. We also find the demodulator performance

when the signal phase is not continuous. Note that both of these latter two results incorporate all

sources of degradations, including ICI and ISI.
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2.1.1 System model

Select

the

Largest

Sample at t = TsEnv. Det.H1(ω)

Sample at t = TsEnv. Det.H2(ω)

...
...

...

Sample at t = TsEnv. Det.HM(ω)

S(t)+nw(t)

Figure 2.1: MFSK non-coherent demodulator

The block diagram of an MFSK non-coherent demodulator structure is shown in Fig. 2.1,

where nw(t) is additive white Gaussian noise with single-sided power spectral density N0, Ts is

the duration of time from the start of any pulse to the time when that pulse is sampled (as part of

the test statistic), and the dehopped signal S(t) is given by

S(t) =
∞

∑
l=1

APT
2
(t− (l−1)T − T

2
)cos(2π f (l)[t− (l−1)T ]+θl), (2.1)

where A is the pulse amplitude, and T is the pulse duration, so that the bit energy is given by

Eb = A2T/2, and

Pa(x),


1, |x|6 a,

0, elsewhere.
(2.2)

Also, θl is the random phase associated with the lth pulse, and is uniformly distributed between 0

and 2π, and f (l) is the carrier frequency of the lth pulse. Note that

f (l) ∈ { f1, f2, . . . , fM}, l = 1,2,3, . . . (2.3)
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where f1, · · · , fM are the center frequencies of each tone, and the filters are 2-pole BPFs with

transfer function and corresponding impulse response

Hi(s) =
2πWs

s2 +2πWs+(2π fi)2 i = 1,2, . . . ,M,

hi(t) = 2πWe−πWt cos(2π fit)u(t) i = 1,2, . . . ,M.

(2.4)

respectively, where W is the filter bandwidth and ∆ f , f2− f1 is the tone spacing. We assumed

fi �W,∀i when we derived the impulse response from the transfer function. The goal is to

minimize Eb/N0 required to reach a certain level of symbol error rate, Ps. The parameters we

optimize are the time-bandwidth parameter, z, the modulation index, h. and ratio between Ts and

T , r, defined as

z =W ·T, h = ∆ f ·T, r = Ts/T. (2.5)

2.1.2 Idealized baseline system

In this subsection, we initially present the performance of BFSK in an AWGN channel,

assuming we use 2-pole BPFs, but ignore the effects of interference. With those simplifications,

we only optimize the parameter z in (2.5). The resulting performance will be used as a baseline

for comparison to realistic models in Sections II, III and IV. Without loss of generality, assuming

that frequency f1 is transmitted, the bandpass transmitted signal is given by

s1(t) = Acos(2π f1t +θ)PT
2
(t− T

2
). (2.6)
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The output of H1(ω) is

x1(t) = s1(t)∗h1(t) =


A(1− e−πWt)cos(2π f1t +θ), 0 6 t 6 T,

A(eπWT −1)e−πWt cos(2π f1t +θ) t > T.
(2.7)

Finally, after the envelope detector and sampler, the noiseless test statistic g1(T ) is

g1(T ) = A(1− e−πWT ) = A(1− e−πz). (2.8)

The noise power, after filtering, is easily shown to be σ2 = N0πW
2 , and the bit error rate is

Ps,2−pole =
1
2

e−
g1(T )

2

4σ2 =
1
2

e−
Eb

2N0
2(1−e−πz)2

πz ,
1
2

e−
Eb

2N0
· 1

f (z) . (2.9)

Since the performance of a matched filter system is

Ps,MF =
1
2

e−
Eb

2N0 . (2.10)

the performance loss by using the 2-pole filter is

f (z) =
πz

2(1− e−πz)2 . (2.11)

We find the minimum of f (z), in dB, as shown in Fig. 2.2. The optimal parameter is seen in

Fig. 2.2 to be z = 0.4, and the minimal performance loss is 0.89dB. Figure 2.3 compares the

performance results.
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Figure 2.2: Performance loss vs. z

Figure 2.3: Optimal performance w/o interference
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The result shown above is for BFSK, but it can be easily generalized to MFSK. From

chapter 4 of [14], the symbol error rate of MFSK with non-coherent matched filters detection is

Ps,MF =
M−1

∑
n=1

(−1)n+1

n+1

(
M−1

n

)
e−

n log2 M
n+1

Eb
N0 . (2.12)

The symbol error rate of MFSK with non-coherent detection with 2-pole BPFs, when ignoring

interference, is given by

Ps,2−pole =
M−1

∑
n=1

(−1)n+1

n+1

(
M−1

n

)
e−

n log2 M
n+1

Eb
N0
· 1

f (z) , (2.13)

where f (z) is defined in (2.11).

2.1.3 Demodulator performance with continuous phase in an AWGN chan-

nel

In this subsection, we analyze the system performance in an AWGN channel, assuming

we have continuous phase between pulses. To be specific, the goal is to find the optimal 3-tuple:

(z,h,r), at a given symbol error rate (Ps = 10−3). We first consider non-orthogonal tone spacing

and arbitrary sampling time. We then consider the special case of orthogonal signaling (h ∈ I+)

and sampling at the end of the pulse (r = 1). Finally, we compare the results and see how much is

the gain that non-orthogonal signaling can yield.

Non-orthogonal signaling

As we will see in Section V, Figs. 2.4 and 2.7, the analysis that accounts for ISI only

from the previous pulse matches very well with simulation results that incorporate many previous

pulses. Hence, in this section, we consider only the previous pulse as the source of ISI. Consider

detecting the symbol number p in the pulse train, with the demodulator shown in Fig. 2.1. We

11



define in (2.14) sm
i (t), which consists only of the pulses number p and p−1, where the frequency

of the pulses numbered p and p−1 are fi and fm, respectively:

sm
i (t),APT

2
(t− T

2
− (p−1)T ) · cos(2π fi[t− (p−1)T ]+θp)+

APT
2
(t− T

2
− (p−2)T ) · cos(2π fm[t− (p−2)T ]+θp−1).

(2.14)

where i,m ∈ {1,2, . . . ,M}. To achieve phase continuity, the relationship between θp and θp−1

is θp = θp−1 +2π fmT mod 2π. Without loss of generality, we assume θp−1 = 0 and thus θp =

2π fmT , and the sampling time to detect the pulse number p is T ′ = (p−1)T +Ts. Let Psm
in denote

the probability that the current symbol (number p) is at frequency fi but is detected as fn,n 6= i,

and where the previous symbol is at frequency fm. Then the union bound on the average symbol

error rate is

P̄s =
1

M2

M

∑
i=1

M

∑
n=1,n6=i

M

∑
m=1

Psm
in. (2.15)

By symmetry, the above equation can be simplified to

P̄s =
2

M2

M/2

∑
i=1

M

∑
n=1,n6=i

M

∑
m=1

Psm
in, (2.16)

where, from chapter 9 of [15],

Psm
in =

1
2

[
1−Q(

√
bm

in,
√

am
in)+Q(

√
am

in,
√

bm
in)
]
, (2.17)

and

{
am

in
bm

in

}
=

1
2σ2

[ A2
1+A2

2
2 −2|ρin|

√
A2

1
2

A2
2

2 cos(θ1−θ2 +φin)

1−|ρin|2
∓

A2
1

2 −
A2

2
2√

1−|ρin|2

]
. (2.18)
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In (2.17), the Q(·, ·) is the Marcum-Q function, defined as

Q(a,b) =
∫

∞

b
xe−

x2+a2
2 I0(ax)dx, (2.19)

where I0(·) is the modified Bessel function, defined as

I0(x) =
1

2π

∫
π

−π

ex cosθdθ. (2.20)

The parameters are defined as follows: A1 and A2 are signal amplitudes at the output of the filters

Hi(ω) and Hn(ω), respectively, θ1 and θ2 are the corresponding phases; ρin is the normalized

complex cross-covariance between the two complex Gaussian processes, and σ2 is the noise

power at the output of any filter. Detailed analysis can be found in Appendix A.

We do a 3D optimization to find the optimal 3-tuple (at the symbol error rate Ps = 10−3)

of (z,h,r). The optimal performance curves for M = 2 and 16 are shown in Fig. 2.4 and Fig.

2.5, respectively, in Section 2.4. We compare results from analysis and simulation, where we

collected 1000 errors for each data point in the simulation.

Orthogonal signaling

In this section, we consider the special case of orthogonal signaling and sampling at the

end of each pulse (r = 1). We assume that 2π fi =
2niπ

T , ni ∈ I+⇒ fi =
ni
T . Therefore, the tone

spacing is

∆ f = | f2− f1|=
∣∣∣n2

T
− n1

T

∣∣∣= |n2−n1|
T

, n1,n2 ∈ I+. (2.21)

This can be simplified to h = ∆ f T ∈ I+. Note that for spectral efficiency, the positive integer h is

often chosen to be 1, and phase continuity with orthogonal signaling simply means θ1 = θ2 =

θ3 = · · ·, θ.
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Since orthogonal signaling is a special case of non-orthogonal signaling, and sampling at

the end of each pulse is a special case of sampling at an arbitrary time, the analysis in the previous

subsection still applies here. It can be greatly simplified though, as shown in Appendix B.1.

Assuming we choose the minimum tone spacing satisfying orthogonal signaling, that is,

h = ∆ f T = 1, then we are left with only one variable to optimize with respect to, namely, the

time-bandwidth parameter, z =WT . We do an exhaustive search to find the optimal z for MFSK

for M = 2,4,8,16 and 32 at symbol error rate Ps = 10−3. The Eb/N0 required by a matched filter

and a 2-pole BPF, along with the optimal parameter z, are shown in Table 2.1.

Table 2.1: Optimal parameter z and performance when h = 1

Filter

M
2 4 8 16 32

MF 10.95 8.60 7.30 6.40 5.75

2-pole 11.73 9.69 8.48 7.60 6.94

zopt 0.6 0.56 0.54 0.52 0.5

The comparison between orthogonal signaling and non-orthogonal signaling is shown

is Fig. 2.6 in Section 2.4. As we can see, there is not much room for improvement by using

non-orthogonal signaling, especially when M is large.

The analysis here holds for general M. As a special case, when M = 2, it reduces to BFSK,

where symbol error rate Ps equals bit error rate Pb. From (2.16), we have for M = 2

Ps = Pb =
2

M2

M/2

∑
i=1

M

∑
n=1,n6=i

M

∑
m=1

Psm
in =

1
2

(
Ps1

12 +Ps2
12

)
. (2.22)

From (2.17),

Psm
12 =

1
2

[
1−Q(

√
bm

12,
√

am
12)+Q(

√
am

12,
√

bm
12)
]
, (2.23)
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where {
a1

12

b1
12

}
=

Eb

N0
· 2(1− e−2πz)2(

√
k2 + z2∓ k)2

πz(4k2 + z2)
, (2.24)

and

{
a2

12

b2
12

}
=

Eb

N0
· 2(1− e−πz)2

πz(4k2 + z2)
· {[
√

k2 + z2(1+ e−πz)∓ k(1− e−πz)]2− 16k2z2e−πz

4k2 + z2 }, (2.25)

as shown in Appendix B.2.

2.1.4 Demodulator performance with discontinuous phase in an AWGN

channel

In this subsection, we analyze the system performance in an AWGN channel, assuming

we have discontinuous phase between pulses. The goal is still to find the optimal 3-tuple: (z,h,r)

defined in (2.5). We then compare the results with those from Section 2.1.3 and see how much

is the gain the phase continuity can yield. We will only consider the more general case of

non-orthogonal signaling here.

The definition of discontinuous phase is straightforward: the phase associated with each

pulse is i.i.d. uniformly distributed between 0 and 2π. The waveform is, in general, discontinuous

at the boundary between consecutive pulses. Mathematically, if θp is the phase associated with

the pth pulse, then θp ∼U [0,2π],∀p.

The analysis for the symbol error rate is similar to Section 2.1.3. We let Psm
in(θp) denote

the probability that the current symbol is at frequency fi but is detected as fn,n 6= i, where the

previous symbol is at frequency fm, given that the phase associated with the pulse number p is θp

(we still assume the phase associated with the pulse number p−1 is θp−1 = 0). Then the union
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bound on the average symbol error rate is

P̄s =
1

M2

M

∑
i=1

M

∑
n=1,n6=i

M

∑
m=1

[∫ 2π

0
Psm

in(θp)dθp

]
. (2.26)

By symmetry, the above equation can be simplified to

P̄s =
2

M2

M/2

∑
i=1

M

∑
n=1,n6=i

M

∑
m=1

[∫ 2π

0
Psm

in(θp)dθp

]
, (2.27)

where

Psm
in(θp) =

1
2

[
1−Q(

√
bm

in(θp),
√

am
in(θp))+Q(

√
am

in(θp),
√

bm
in(θp))

]
, (2.28)

and where am
in(θp) and bm

in(θp) are defined in (2.18), except that some parameters are now

functions of θp.

Again, we do a 3D optimization to find the optimal 3-tuple. The optimal performance

curves for M = 2 and 16 are shown in Fig. 2.7 and Fig. 2.8, respectively, in Section 2.4. Note that

we are always better off with phase continuity, but the difference between the two cases decreases

with alphabet size M, and is smaller than 0.2 dB at M = 16, as shown in Fig. 2.9.

2.2 Demodulator performance in flat, slow Rician fading chan-

nels

In a Rician fading channel, pulse train S(t) is given by

S(t) =
∞

∑
l=1

RPT
2
(t− (l−1)T − T

2
)cos(2π f (l)[t− (l−1)T ]+θl), (2.29)
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where the signal amplitude R is Rician distributed:

fR(r) =
r

σ2 e−
A2+r2

2σ2 I0(
Ar
σ2 ).

(2.30)

Let γb denote the Eb/N0 of the AWGN channel, and γ̄b denote the average Eb/N0 of the Rician

fading channel. From chapter 2 of [16], the relationship between γ̄b and γb is

p(γb) =
(1+K)e−K

γ̄b
e−

(1+K)γb
γ̄b I0

(√
4K(1+K)

γb

γ̄b

)
, (2.31)

where K is the Rician K-factor defined as

K ,
A2

2σ2 . (2.32)

We have analyzed the performance in AWGN channels in Section 2.1.3 (continuous phase) and

Section 2.1.4 (discontinuous phase), resulting in (2.15) and (2.26), respectively, for the symbol

error rate. We now denote (2.15) by P̄scont
AWGN , and (2.26) by P̄sdisc

AWGN . The performance in a Rician

fading channel with continuous and discontinuous phase are, respectively,

P̄scont
Rice =

∫
∞

0
P̄scont

AWGN p(γb)dγb, P̄sdisc
Rice =

∫
∞

0
P̄sdisc

AWGN p(γb)dγb. (2.33)

As is well known, the Rician fading channel is equivalent to the Rayleigh fading channel

when K = 0, and is equivalent to an AWGN channel when K = ∞. We choose K = 0,10,∞ to

illustrate the optimal performance curves, where we do the optimization by exhaustive search.

The optimal parameter pairs (z,h) are summarized in Table 2.2, with precision 0.04 for both, and

the optimal value is r = 1.
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Table 2.2: Optimal parameter pairs (z,h) for different M and K

Continuous phase, optimal pair (z,h)

K

M
2 4 8 16

0 (0.4,0.8) (0.44,0.88) (0.44,0.96) (0.44,1)

10 (0.48,0.8) (0.52,0.92) (0.48,0.96) (0.48,1)

∞ (0.52,0.84) (0.56,0.92) (0.52,0.96) (0.52,1)

discontinuous phase, optimal pair (z,h)

K

M
2 4 8 16

0 (0.56,1) (0.52,1) (0.48,1) (0.44,1)

10 (0.64,1.04) (0.56,1.04) (0.52,1) (0.48,1)

∞ (0.64,1.04) (0.6,1.04) (0.56,1.04) (0.56,1)

The optimal MFSK demodulator performance is presented in Section 2.4. For M = 2 and

16, K = 0,10,∞, and continuous phase, the results are shown in Fig. 2.4 and Fig. 2.5, respectively.

The optimal MFSK demodulator performance for M = 2 and 16, K = 0,10,∞, and discontinuous

phase are shown in Fig. 2.7 and Fig. 2.8, respectively.

We summarize the performance of 2-pole BPF system with non-orthogonal signaling with

continuous/discontinuous phase, and compare them with matched filter performance in Fig. 2.9

in Section 2.4. There is approximately a 1.2 dB gap between the matched filter and the 2-pole

BPF system for the discontinuous phase case for all M′s and K′s. The performance of the 2-pole

BPF system for the continuous phase case is similar to matched filter performance when M is

small, and approaches the discontinuous phase performance as M increases. This is because

phase continuity is most beneficial when the previous symbol is the same as the current one,
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which happens with a probability of 1/M. In other words, phase continuity is less likely to help

when M becomes larger, thus making the performance with continuous phase similar to that with

discontinuous phase.

2.3 Demodulator Performance with Reed-Solomon Codes

The choice of RS codes with hard decision decoding here is particularly appropriate

because of the lower complexity compared to, say, soft decision in general, and iterative decoding,

in particular, and the straightforward manner in which the RS encoded codewords can be mapped

to the MFSK signal set. The optimal RS codes for an optimal non-coherent MFSK receiver with

hard-decision decoding in Rician channels are analyzed in [17]. We optimize for the suboptimal

system the code dimension k in conjunction with the 3-tuple z,h,r for 16FSK with (n,k) RS

codes, where the code length n = 15 or 255, i.e., one or two FSK symbols per RS symbol. We

fixed the code length (at either 15 or 255) and exhaustively searched all possible values of code

dimension, k, to find the k that minimizes the Eb/N0 required at a BER of Pb = 10−5. We will

see that the optimal code dimension k is the same as those found in [17], when n = 15.

Application of this transmission scheme to a fading channel generally requires that coded

data be interleaved after encoding in order to randomize symbol errors due to burst errors caused

by deep fades, thus improving decoder performance [18]. Here we assume that perfect interleavers

(i.e., infinitely long) are used. Let Ps be the MFSK symbol error rate, then the uncoded RS symbol

error rate is

PRS,uncoded =


Ps, n = 15

1− (1−Ps)
2, n = 255,

(2.34)
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and the bit error rate for the coded system, from chapter 7 of [14], is given by

PRS,coded =
n+1

2n
· 1

n

n

∑
i=t+1

i
(

n
i

)
Pi

RS,uncoded(1−PRS,uncoded)
n−i, (2.35)

where

n = 15 or 255, k = 1,3, . . . ,n−2, t =
n− k

2
. (2.36)

The optimal system parameters (time-bandwidth parameter (z) and code dimension (k))

are listed in Table 2.3. The other optimal parameters can be shown to be h = ∆ f T = 1 and

r = Ts/T = 1 for all cases.

Table 2.3: Optimal Parameter Pairs (z,k) for different K and n

n
K

phase
continuous discontinuous

15

0 (0.44,5) (0.44,5)

10 (0.44,9) (0.48,9)

∞ (0.48,11) (0.48,11)

255

0 (0.44,117) (0.44,117)

10 (0.44,173) (0.48,173)

∞ (0.48,201) (0.48,201)

Note that the (2.35) – (2.36) assume the modulator, the channel, and the demodulator form

an equivalent discrete (M-ary) input, discrete (M-ary) output, symmetric memoryless channel.

For the system with 2-pole BPFs, we do not retain symmetry because of the ICI and ISI. However,

we can achieve an upper bound on the coded error rate by replacing Ps with the highest channel

crossover probability among all the M possible transmitted symbols.
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In general, the loss by using 2-pole BPFs (relative to matched filters) is consistent with or

without coding. That performance degradation is no greater than 1.2 dB for M = 16. The optimal

coded performance curves are shown in Figs. 2.10 – 2.13 in Section 2.4, where Eb is the average

energy per information bit.

2.4 Numerical Results

In this section, we present the numerical results for the various systems. Figs. 2.4 and 2.5

show the performance analysis and simulation results with both ICI and ISI in AWGN, Rayleigh

and Rician (K = 10) channels with continuous phase and nonorthogonal signaling for M = 2

and 16, respectively. Figure 2.6 shows the performance difference between orthogonal signaling

and nonorthogonal signaling in an AWGN channel. Figs. 2.7 and 2.8 show the performance

analysis and simulation results with both ICI and ISI in AWGN, Rayleigh and Rician (K = 10)

channels with discontinuous phase and nonorthogonal signaling for M = 2 and 16, respectively.

Fig. 2.9 shows the performance difference between continuous and discontinuous phase in

AWGN, Rayleigh and Rician (K = 10) channels. Figs. 2.10 and 2.11 show the performance of

RS (n = 15) coding in Rayleigh and Rician (K = 10) channels, respectively, for M = 16. Figs.

2.12 and 2.13 show the performance of RS (n = 255) coding in Rayleigh and Rician (K = 10)

channels, respectively, for M = 16. Note that in Figs. 2.10 – 2.13, for both the coded and uncoded

cases, the simulation curves for the continuous and discontinuous cases fall virtually on top of

one another.
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Figure 2.4: BFSK, continuous phase

Figure 2.5: 16FSK, continuous phase
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Figure 2.6: Orthogonal vs. nonorthogonal, AWGN

Figure 2.7: BFSK, discontinuous phase
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Figure 2.8: 16FSK, discontinuous phase

Figure 2.9: Continuous vs. discontinuous phase
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Figure 2.10: 16FSK-RS(15,5)-Rayleigh

Figure 2.11: 16FSK-RS(15,9)-Rician
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Figure 2.12: 16FSK-RS(255,117)-Rayleigh

Figure 2.13: 16FSK-RS(255,173)-Rician
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Chapter 3

On the use of FFH-MFSK for ultra-low

power communications

3.1 Demodulator performance in full-band noise jamming

In this section, we analyze the performance of an FFH-MFSK non-coherent demodulator

in full-band noise jamming. The analysis in this section serves as a basis so that we can easily

generalize it to partial-band jamming in later sections. The transmitted signal is given by

s0(t) =
∞

∑
m=1

A0PT
2

(
t− (m−1)T − T

2

)
cos
(

2π f (m) [t− (m−1)T ]+θm

)
,

(3.1)

where A0 is the amplitude of the transmitted signal, T is the symbol duration, so that the

symbol energy is given by Es = A2T/2, bit energy is given by Eb = Es/ log2 M, and Pa(x), 1

for |x| 6 a and 0 elsewhere. Also, the random phase of the mth symbol, θm ∼ U [0,2π], and

f (m) ∈ { f1, f2, . . . , fM} is the frequency of the mth symbol. The block diagram of an FFH-MFSK

non-coherent demodulator is shown in Fig. 3.1 [14], [37] – [40], where the received dehopped
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waveform, r(t), is given by

Select

the

Largest

∑
Sample at
Tc, . . . ,LTc

(·)2H1(ω)

∑
Sample at
Tc, . . . ,LTc

(·)2H2(ω)

...
...

...
...

∑
Sample at
Tc, . . . ,LTc

(·)2HM(ω)

r(t)

Figure 3.1: FFH-MFSK non-coherent demodulator structure

r(t) = s(t)+nw(t)+nJ(t). (3.2)

In (3.2), nJ(t) and nw(t) are additive Gaussian noise of the jammer and thermal noise,

with single-sided power spectral density NJ and N0, respectively, Tc is the hop duration, L > 1 is

the number of hops/symbol, and (·)2 denotes square law detection. The dehopped FSK signal s(t)

is given by

s(t) =
∞

∑
l=1

APTc
2

(
t− (l−1)Tc−

Tc

2

)
· cos

(
2π f (l) [t− (l−1)Tc]+θl

)
, (3.3)

where A is the amplitude of the received signal, f (l) is the frequency of the lth hop, and the

random phase of the lth hop, θl ∼U [0,2π]. Note that here the L hops of a symbol have the

same frequency prior to hopping and after dehopping, i.e., f (1) = · · ·= f (L), f (L+1) = · · ·= f (2L)

and so on, but they do not need to have the same frequency, as we will see later, when we use

chip-interleaving. The filters are either matched filters or 2-pole BPFs. The transfer function and

impulse response of the ith 2-pole BPF are given by (2.4), where we set the tone spacing to be
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∆ f , f2− f1 = 1/Tc, i.e., we use the minimum tone spacing that satisfies orthogonal signaling,

since the optimal performance we found in [34] was almost always achieved with this tone

spacing. We optimize the time-bandwidth parameter z ,WTc to minimize the Eb/NJ required

to achieve a predetermined BER for the 2-pole BPF system, and we compare the results to the

corresponding matched filter system.

Lastly, we will ignore thermal noise in most of the following analysis, which is consistent

with the typically dominant jamming power, as is done in references such as [14], [41], [42].

However, we will come back to show how insignificant the thermal noise is when we consider

PBJ in Section 3.2.

3.1.1 Matched filter detection

The symbol error rate (SER) of an FFH-MFSK-MF system in full-band noise jamming,

Ps,MF , is given in [14]. The numerical results for M = 16 and L = 2 are presented in [43]. In a

slow, flat, Rician fading channel, the symbol amplitude R is Rician distributed, as shown in (2.30).

If we let γ denote the instantaneous Es/NJ , and γ̄ denote the average Ēs/NJ with Rician fading,

the pdf of γ is given by (2.31).

Then, the FFH-MFSK-MF system performance in full-band noise jamming and slow, flat,

Rician fading is given by Equation (5) of [43]. Numerical results for M = 16 and L = 2 with both

no fading and Rician (K = 10) fading, are presented Section IV of [43].

3.1.2 Two-pole BPF detection

One problem with 2-pole BPF detection is that there exists both inter-carrier interference

(ICI) and inter-symbol interference (ISI), where ISI primarily comes from the previous pulse

[34]. Let Psm
in denote the probability that the current symbol is at frequency fi but is detected as

fn,n 6= i, and where the previous symbol is at frequency fm. With square-law combining of the
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output signals from the corresponding 2-pole BPFs for the L hops, the output of either branch i or

branch n is the sum of 2L correlated non-central chi-square random variables (rv). We employ

the union bound and thus do pairwise comparison. The test statistic is a linear combination of 4L

correlated non-central chi-square rv’s, i.e., we are interested in the quadratic form

Q(X) =
2L

∑
i=1

X2
i −

4L

∑
j=2L+1

X2
j , XT AX , (3.4)

where X , defined in Appendix C, has a multi-normal distribution with mean vector µ = E[X ] and

covariance matrix Σ =Cov(X). The weighting matrix A is given by

A =

I2L 02L

02L −I2L

 , (3.5)

where I2L and 02L denote the 2L× 2L identity matrix and zero matrix, respectively. Detailed

analysis on computing µ and Σ can be found in Appendix C. It turns out that, as shown in [44],

Q(X) can be represented as a linear combination of 4L independent non-central chi-square rv’s:

Q(X) = XT AX =
4L

∑
i=1

λi(Ui +bi)
2, (3.6)

where λ1, . . . ,λ4L are eigenvalues of Σ
1
2 AΣ

1
2 , the U ′i s are i.i.d. standard normal random variables

and b = [b1, . . . ,b4L]
T = PT Σ

− 1
2 µ, where P is a 4L× 4L orthogonal matrix that diagonalizes

Σ
1
2 AΣ

1
2 , i.e.,

PT
Σ

1
2 AΣ

1
2 P = diag(λ1, . . . ,λ4L), PPT = I. (3.7)

Then the characteristic function of the random variable Q(X) can be found as the product of the

individual characteristic functions, and Psm
in = Prob(Q(X)< 0) can be evaluated numerically.
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The union bound on the average symbol error rate is, by symmetry,

P̄s,2pole =
2

M2

M/2

∑
i=1

M

∑
n=1,n6=i

M

∑
m=1

Psm
in. (3.8)

In a Rician fading channel, the union bound on performance is given by

P̄s,2pole−Rice =
∫

∞

0
P̄s,2pole · f (γ)dγ, (3.9)

where f (γ) was defined in (2.31).

The optimal time-bandwidth parameter, z, and the corresponding performance of our

ad-hoc receiver in comparison with the matched filter system performance for various 2-pole BPF

systems are listed in Table I of [43], and the numerical results for M = 16 and L = 2 with both no

fading and Rician (K = 10) fading are presented in Section IV of [43].

3.1.3 Demodulator performance with diversity and/or RS coding

Diversity can be achieved by interleaving the hops and thus improving the performance

in a slow, flat, Rician fading channel. Detailed discussion including the optimal parameters and

performance can be found in Section II of [43] and detailed analysis is shown in Appendix D.

Alternatively, we can use FEC to improve performance. Detailed analysis including the optimal

parameters and performance can be found in Section II of [43].

3.2 Demodulator performance in partial-band noise jamming

The previous section focused on full-band noise jamming, where the jammer jams the

entire spectrum. In reality, the jammer may jam a fraction of the spectrum to degrade system

performance. In this section, we consider an FFH-MFSK system using either matched filter

or 2-pole BPF detection under PBJ. To be specific, for the matched filter system, we find the
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worst-case performance, and for the 2-pole BPF system, we find the NE at a given BER.

Suppose the partial-band interference is a zero-mean Gaussian random process with a flat

power spectral density over a fraction ρ of the total spread spectrum bandwidth, Wss, and zero

elsewhere. Furthermore, as is common in the literature, we assume that on a given hop, each

M-ary band lies either entirely inside or entirely outside WJ [41]. In the region or regions where

the power spectral density is nonzero, its value is NJ/ρ.

As in previous sections, we will ignore thermal noise. To justify this, we compare the

performance with and without thermal noise when M = 2 and L = 1 with matched filter detection

both in a non-fading channel and in a Rician fading channel. Let a , NJ/N0, and since jamming

is usually dominant over thermal noise, we assume a > 1 (typically a� 1). We denote γ , Eb/NJ

(so that Eb/N0 = aγ) for an AWGN channel and γ̄ , Ēb/NJ for a Rician fading channel, where

Ēb is the average (over the fade) received energy per bit.

Let f (x) = 1
2e−

x
2 and g(x) = K+1

2(K+1)+xe
−Kx

2(K+1)+x [45], so that the approximate BER, ob-

tained by ignoring thermal noise, is given by Pb1 = ρ · f (ργ) for the non-fading channel, and

Pb1 = ρ · g(ργ̄) for the Rician fading channel. Since Eb/NJ = γ,NJ/N0 = a, we have Eb
NJ
ρ
+N0

=

1
1

ρEb/NJ
+ 1

Eb/N0

= γ
1
ρ
+ 1

a
. Thus, the BER with jamming and noise is given by

Pb = ρ · f

(
Eb

NJ
ρ
+N0

)
+(1−ρ) · f

(
Eb

N0

)

= ρ · f

(
γ

1
ρ
+ 1

a

)
+(1−ρ) · f (aγ) ,

(3.10)

for a non-fading channel, and for a Rician fading channel,

Pb = ρ ·g

(
γ̄

1
ρ
+ 1

a

)
+(1−ρ) ·g(aγ̄) . (3.11)

The exact BER and approximate BER, Pb and Pb1 with different ρ′s in non-fading and
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Rician (K = 10) fading channels are shown in Figs. 3.2 and 3.3, respectively, where a = 5 is used.

The noise-free approximation is valid as long as Eb/NJ is reasonably large, and the approximation

is better for smaller ρ. As we will see later, both conditions are satisfied in this paper. As a

result, we will continue ignoring thermal noise, and the consequence of which will be error-free

detection with a probability of 1−ρ.
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Figure 3.2: M = 2,L = 1,K = ∞

Figure 3.3: M = 2,L = 1,K = 10
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Detailed discussion of the FFH-MFSK system with MF/2-pole BPF detection under

PBJ can be found in [43] and detailed analysis on finding the worst-case performance of the

FFH-MFSK-MF system both in a non-fading channel and in a Rician fading channel is shown in

Appendix E.

3.3 Demodulator performance in multi-tone jamming

A second, sometimes more effective, class of intelligent FH jamming than PBJ is MTJ.

In this category, the jammer divides its total received power into a number of distinct, equal

power, random phase continuous wave (CW) tones, and distributes them over the spread spectrum

bandwidth according to some strategies, as will be discussed shortly. Because CW tones are

the most efficient way for a jammer to inject energy into the non-coherent detectors, MTJ is

particularly effective against a FH/MFSK system. Unlike PBJ, where the performance improves

with the alphabet size M, the performance in MTJ degrades with M. In this section, we analyze

the performance of an FFH-MFSK non-coherent system under MTJ, both with MF detection and

with 2-pole BPF detection, in a non-fading or slow, flat, Rician fading channel. To be specific, for

the matched filter system, we find the worst-case partial-band jamming performance, and for the

2-pole BPF system, we find the NE at a given BER.

Some simplifying assumptions that allow us to focus on the issues of interest are [41]

• Thermal noise is dominated by jamming interference and thus negligible.

• Each jamming tone coincides exactly in frequency with one of the Nt available FH slots

(no frequency offset).

• Changes of location of slots that are jammed coincides with hop transitions.

While these assumptions can never be achieved in practice, they simplify the analysis and yield

somewhat pessimistic performance results.
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There are two MTJ strategies: independent MTJ, where the jammer distributes the tones

pseudorandomly over all slots, and band MTJ, where the jammer places n ∈ [1,M] tones in each

jammed M-ary band. Independent MTJ and n = 1 band MTJ are shown to result in the same

performance when Eb/ηJ is large, and n = 1 band MTJ is shown to result in more performance

degradation than n > 1 MTJ. Therefore, we will focus on n = 1 MTJ in this paper.

In this section, we analyze the performance of an FFH-MFSK system under MTJ in a non-

fading or slow, flat, Rician fading channel, with MF and 2-pole BPF detection. Specifically, for

MF detection, we find the worst-case parameter and performance, and for 2-pole BPF detection,

we find the parameter and performance at NE, and we compare the performances with different

channel conditions and filters. The entire analysis is based on the assumption that Eb/ηJ is large.

3.3.1 Matched filter detection

The asymptotic BER of an FFH-MFSK system with MF detection as Eb/ηJ → ∞ can be

shown to be the same as that of a SFH system,

Pb =
αLM

2log2 M · Eb
ηJ

, (3.12)

where detailed analysis is provided in Appendix F.1. In (3.12), α is the SJR to be optimized by

the jammer and the worst-case performance is found by optimizing α as

Pb,wc =


1
2 ,

Eb
ηJ

6 M
log2 M ,

M
2log2 M ·

1
Eb/ηJ

, Eb
ηJ

> M
log2 M ,

(3.13)
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with the worst-case parameter α be

αwc =


log2 M

M · Eb
ηJ
, Eb

ηJ
< M

log2 M ,

1−,
Eb
ηJ

> M
log2 M .

(3.14)

In a Rician fading channel, we assume that the system and the jammer experience independent

fades, with a Rician K-factor Ks for the signal, and K j for the jammer. Then the performance is

given as a function of c , αrL (αr is the average SJR), to be optimized by the jammer:

Pb(c) =
cM

2log2 M× Eb
ηJ

∫
∞

0

∫
∞

x
√

c
h(x,Ks)h(y,K j)dydx

,
G(c)

Eb/ηJ
,

(3.15)

where

h(r,K) = 2(K +1)re−K−(K+1)r2
I0

(
2
√

K(K +1)r
)
. (3.16)

Detailed analysis is shown in Appendix F.2. The worst-case performance is found by differentiat-

ing Pb with c and setting to zero:

Pb,wc = Pb(c∗), where P′b(c
∗) = 0. (3.17)

The optimum value of c, denoted by c∗, along with the worst-case performance, characterized

by G(c∗), for Ks,K j ∈ {0,10,104} is shown in Table 3.1. Note that we have a sanity check that

when Ks,K j → ∞,c∗ = G(c∗) = 1− ε (the numbers are slightly off because Ks and K j are not

large enough). The Ks = 0 scenario is slightly different, as shown in Appendix F.3.
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Table 3.1: Values of c∗ and G(c∗).

G(c∗) c∗

Ks

K j
0 10 104 0 10 104

0 1 Eb/ηJ · log2 M/M

10 0.4047 0.5145 0.5909 1.222 0.829 0.758

104 0.3679 0.5261 0.9454 1.000 0.745 0.952

3.3.2 Two-pole BPF detection

In a non-fading channel with 2-pole BPF detection, the average SER is given by

Ps =
1
L

P1 +
L−1

L
P2 ,

h(z,α2)

Eb/ηJ
, (3.18)

where P1 denotes the conditional SER when the jammed hop is the last one, P2 denotes the

conditional SER when the jammed hop is not the last one, and α2 =
r2

s
r2

j
denotes the SJR, where rs

and r j are the amplitudes of the signal and jamming waveforms, respectively. Detailed analysis

can be found in Appendix J.

Note that the SER is a function of the system’s parameter, z (time-bandwidth parameter),

and the jammer’s parameter α2. From (3.18), in order to improve the performance, the system

optimizes z to minimize h(z,α2) (but subject to z > 0.24 for M = 2 or z > 0.2 for M = 16

to keep the eye open), and in order to degrade the performance the jammer optimizes α2 to

maximize h(z,α2). The two players iteratively optimizes their strategies until a NE is reached.

The numerical results for L = 2 hops/symbol are summarized in Table 3.2.
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Table 3.2: Parameters and Eb/ηJ at Pb = 10−3 at NE.

M z∗ α∗2 h(z∗,α∗2) 2-pole performance MF

2 0.24 0.34 0.582 27.6 dB 30.0 dB

16 0.2 0.38 2.263 30.8 dB 33.0 dB

We see that the 2-pole BPF detection results in better performance compared to MF

detection, for both M = 2 and M = 16. This is because ISI is helping the system. With MF

detection, there is no ISI, so the jammer only needs to win by ε in terms of power for each tone it

jams, while with 2-pole BPF detection, since there is ISI, the jammer needs to put more power

in each tone it jams in order to make sure jamming is effective. Therefore, with fixed jamming

power, the jammer can jam fewer tones and the performance is better. Moreover, M = 16 results

in a performance that is roughly 3 dB worse than that for M = 2, and this is consistent between

MF and 2-pole BPF detection.

With Rician fading, the changes are that the amplitudes of the signal and jamming

waveforms, rs and r j, are now random variables. The pdf of rs is given by

f (rs) =
2(Ks +1)rs

Ωs
e−Ks− (Ks+1)r2

s
Ωs I0

2

√
Ks(Ks +1)

Ωs
rs

 ,
(3.19)

and for the pdf of r j, we simply replace Ks by K j in (3.19). The SJR is now defined as the ratio

between the total power of the signal and jamming waveform: αr2 =
Ωs
Ω j
. The performance with

2-pole BPF detection is found by integrating out the Rician amplitudes as

Pr
s =

1
L

Pr
1 +

L−1
L

Pr
2 ,

hr(z,αr2)

Eb/ηJ
, (3.20)
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where for i = 1,2,

Pr
i =

1
Eb/ηJ

· αr2L
(2π)L+1M2 log2 M

M

∑
i=1

M

∑
n=1,n 6=i

M

∑
m=1

∫ 2π

0
· · ·

∫ 2π

0

∫ 2π

0

∫
∞

0

∫
∞

0[
1−u(µi

T Aµi)
]

fRs(rs) fR j(r j)drsdr jdθ1 . . .dθLdθJ.

(3.21)

It can be shown that Pr
s is independent of Ωs and Ω j, using the same method described in

Appendix F.2. Then, similar to the non-fading case, the system optimizes z to minimize hr(z,αr2)

and the jammer optimizes αr2 to maximize it. The two players iteratively optimize their strategies

until an NE is reached. Different from the non-fading case, now the NE is achieved when z→ ∞,

and αr2 and the corresponding performance are the same as the MF case, since ISI is diminishing

for large z. However, we notice that when z > 0.6,hr(z,αr2) is almost independent of z since ISI

is small, and thus we will use z = 0.6 to generate the numerical results. The numerical results for

L = 2 hops/symbol and Ks = K j = 10 are summarized in the table below.

Table 3.3: Parameters and Eb/ηJ at Pb = 10−3 at NE.

M z∗ α∗2 h(z∗,α∗2) 2-pole performance MF

2 0.6 0.4145 0.515 27.1 dB 27.1 dB

16 0.6 0.4145 1.935 30.1 dB 30.1 dB

We can use FEC to improve performance under MTJ. The idea is the same – we want

to find the NE, but now the system has two parameter, the time-bandwidth parameter z and

the code dimension k (suppose we fix the code length n), and thus the optimization is more

time-consuming. The uncoded and (15,5) RS coded performances under MTJ in a non-fading or

Rician (Ks = K j = 10) fading channel are presented in Fig. 3.8 in Section 3.4.
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3.4 Numerical results

In this section, we present the numerical results of previous sections. In all the figures of

this section, M = 16,L = 2 and (15,5) RS code is used, where applicable. Figure 3.4 shows the

performance analysis and the simulation results for both matched filter and 2-pole BPF detection

for both non-fading and Rayleigh fading channels, with and without diversity, under full-band

noise jamming. Figs. 3.5 and 3.6 show the performance where RS coding is used in a Rayleigh

fading channel, with and without diversity, under full-band noise jamming, respectively. Fig.

3.7 shows the performance comparison for K = 0,10,∞, with and without coding, with and

without diversity, under full-band noise jamming. Fig. 3.8 shows the results under MTJ in either a

non-fading channel or a Rician (Ks = K j = 10) fading channel, with and without coding. Fig. 3.9

shows the performance comparison of a FFH-16FSK system with MF or 2-pole BPF detection

under PBJ or MTJ, in a non-fading or Rician (K = 10) fading channel. The 2-pole BPF system

performs worse than the MF system by about 1 dB under PBJ, but is no worse than the MF system

under MTJ.
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Chapter 4

Performance analysis for an ultra-low

power GFSK system

4.1 Demodulator performance in an AWGN channel

In this section, we analyze the performance of a GFSK non-coherent demodulator with

2-pole BPF detection in an AWGN channel. The demodulator consists of a parallel bank of M

branches, each with a BPF whose center frequency is the frequency of the corresponding tone,

followed by an envelope detector and a sampler that takes a sample at time t = Ts. We choose the

largest among the M test statistics from the samplers to make a decision, as shown in Fig. 4.1,

where the received waveform is given by
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r(t)

Figure 4.1: Receiver structure

r(t) = s(t)+nw(t). (4.1)

In (4.1), nw(t) is additive white Gaussian noise (AWGN) with singled sided power spectral

density η0, and s(t) is a pulse train of rectangular pulses of duration T , filtered by Gaussian filters.

The lowpass equivalent signal of one pulse in s(t) is given by

sl p(t) = PT
2
(t− T

2
)∗gl p(t), (4.2)

where Pa(x) is a rectangular pulse defined in (2.2) and the transfer function and impulse response

of the lowpass equivalent Gaussian filter are,

Gl p( f ) = e−2π2δ2 f 2
,

gl p(t) =
e−

t2

2δ2

√
2π ·δ

,

(4.3)

respectively. The detection filters H(ω) are 2-pole BPFs, and the transfer function and impulse

response of the ith filter were defined in (2.4). The impulse response of the lowpass equivalent
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filter of the 2-pole BPF is given by

hl p(t) = πWe−πWtu(t). (4.4)

We define 

zg =
√

ln2
2πδ

T,

z =WT,

h = ∆ f T,

r = Ts/T,

(4.5)

where W is the bandwidth of the 2-pole BPF, ∆ f is the tone spacing, zg is the time-bandwidth

product of the lowpass equivalent Gaussian filter, z is the time-bandwidth product of the lowpass

equivalent filter of the 2-pole BPF, h is the modulation index, Ts is the sampling time and r is the

normalized sampling time. Note that all the parameters in (4.5) are dimensionless, meaning our

results are independent of the symbol duration (or data rate). For each pair of (zg,h), we optimize

z,r to minimize the Eb/η0 required at a bit error rate (BER) of 10−3.

The total system bandwidth of an M-ary FSK system is given by

B = (M−1)×∆ f +Bsig, (4.6)

where Bsig is the bandwidth of one FSK signal. While there are multiple ways of defining

bandwidth of a signal, such as the null-to-null bandwidth and equivalent noise bandwidth (ENBW),

all with their own advantages and disadvantages, Bsig is roughly on the same order as the tone

spacing ∆ f . Therefore, for a large M (e.g., for our baseline design of M = 16), B≈M∆ f . Since

h = ∆ f T = 1 was shown in [34] – [43] to yield optimal performance, the bandwidth saved by the

system proposed in this paper can be represented as 1−h compared to them.
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It is easy to see that our system experiences both ICI and ISI due to Gaussian filtering,

non-orthogonal tone spacing and 2-pole BPF detection. Therefore, we need to account for both

types of interference when doing performance analysis. Because of the non-causality of the

Gaussian filter, to detect the current transmitted symbol, we need to consider ISI from both the

previous symbols and the future symbols. Based on the analysis in [34], the adjacent symbols

contribute the most ISI, so we consider only one previous symbol and one future symbol as the

source of ISI in this paper. If the transmitted symbol has frequency fi, the ICI branch is the branch

with 2-pole BPF centered at fn, the previous symbol has frequency fm1 and the future symbol has

frequency fm2 , then the union bound on the symbol error rate (SER) is given by

P̄s =
1

M3
1

(2π)2

M

∑
i=1

M

∑
n=1,n6=i

M

∑
m1=1

M

∑
m2=1

∫ 2π

0

∫ 2π

0
Psm1m2

in dθ1dθ2, (4.7)

where θ1,θ2 ∼U [0,2π] and Psm1m2
in is the conditional SER, conditioned on θ1 and θ2, and is

given by [15]

Psm1m2
in =

1
2

[
1−Q(

√
b,
√

a)+Q(
√

a,
√

b)
]
, (4.8)

with

{
a
b

}
=

1
2σ2

 A2
1+A2

2
2 −2|ρ|

√
A2

1
2

A2
2

2 cos(θ1−θ2 +φ)

1−|ρ|2
∓

A2
1

2 −
A2

2
2√

1−|ρ|2

 , (4.9)

where Q(·, ·) is the Marcum-Q function defined in (2.19) and I0(·) is the modified Bessel function

of the first kind and zeroth order, defined in (2.20). The parameters in (4.9) can be shown to be
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given by

A2
2 = I2

2 +Q2
2,

θ2 = tan−1
[
−I2 sin(2π(i−n)hr)+Q2 cos(2π(i−n)hr)
I2 cos(2π(i−n)hr)+Q2 sin(2π(i−n)hr)

]
,

A2
1 = I2

1 +Q2
1,

θ1 = tan−1
[

Q1

I1

]
,

(4.10)

where we use the four-quadrant definition of tan−1(·), and where

I2 = mm1n(r+1)+min(r)cosθ1 +µin(r)sinθ1 +mm2n(r−1)cosθ2 +µm2n(r−1)sinθ2,

Q2 = µm1n(r+1)−min(r)sinθ1 +µin(r)cosθ1−mm2n(r−1)sinθ2 +µm2n(r−1)cosθ2.

(4.11)

In (4.11), min(r) and µin(r) are the real and imaginary parts of yin(r), respectively, i.e.,

min(r) = ℜ{yin(r)}, µin(r) = ℑ{yin(r)}, (4.12)

and yin(r) (which is, in general, complex) is given by

yin(r) =
z

z− j2(i−n)h

[
Φ

(
1− r

λ

)
−Φ

(
−r
λ

)
− 1

2
e−

[2π(i−n)hλ+ jπzλ]2
2 +[−πz+ j2π(i−n)h]r

[
erf

(
− j2π(i−n)hλ+πzλ+ 1−r

λ√
2

)
− erf

(− j2π(i−n)hλ+πzλ− r
λ√

2

)]

+
eπz− j2π(i−n)h−1

2
e−

[2π(i−n)hλ+ jπzλ]2
2 +[−πz+ j2π(i−n)h]r[

1− erf

(
− j2π(i−n)hλ+πzλ+ 1−r

λ√
2

)]]
,

(4.13)

where j is the imaginary unit, Φ(·) is the cumulative distribution (CDF) of the standard normal
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distribution, erf(·) is the error function, and λ is defined as λ , δ

T =
√

ln2
2πzg

. The parameters A1

and θ1 can be found by letting n = i in Equations (4.11) – (4.13). Detailed analysis to find

yin(r) is shown in Appendix K. For the noise parameters in (4.9), the filtered noise power σ2, the

magnitude of the normalized complex cross-covariance |ρ|, and the corresponding phase φ = ∠ρ

when the transmitted signal has frequency fi and the ICI branch is the branch with the 2-pole BPF

centered at frequency fn were found in [34] to be given by

σ
2 =

η0πz
2T

,

|ρ|= z√
z2 +[(i−n)h]2

,

φ = ∠ρ = tan−1
[

zsin(2π(i−n)hr)− (i−n)hcos(2π(i−n)hr)
zcos(2π(i−n)hr)+(i−n)hsin(2π(i−n)hr)

]
,

(4.14)

where we still use the four-quadrant definition of the tan−1(·) function.

We do an exhaustive search to optimize the parameter pair (z,r) of the system with 2-pole

BPF detection to minimize the Eb/η0 required to achieve the BER of 10−3, as a function of zg

and h. The optimal parameters zopt ,ropt , and the corresponding performance (Eb/η0 (dB) at the

BER of 10−3) of the optimal 2-pole system, for zg = ∞(i.e., without the Gaussian filter),1,0.5

and h = 1,0.95,0.9, ...,0.5, are summarized in Table 4.1 and Fig. 4.2 in Section 4.4, where the

accuracy of z is 0.04 (i.e., the values of z we search for are all integer multiples of 0.04), and the

accuracy of r is 0.02.

4.2 Demodulator performance in flat, slow Rician fading chan-

nels

In a flat, slow Rician fading channel, the signal amplitude R is Rician distributed, as

shown in (2.30) If we let γ denote the Es
η0

without fading, and γ̄ denote the average (over the fade)
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Es
η0

under Rician fading, then the probability density function (PDF) of γ is given by (2.31).

As is well known, the Rician fading channel reduces to an AWGN channel when K→ ∞

and reduces to a Rayleigh fading channel when K = 0. For all cases analyzed in the previous

section, let P̄b,AWGN denote the union bound on the BER in an AWGN channel. Then the union

bound on the average BER in a Rician fading channel can be found by integrating the product of

P̄b,AWGN and (2.31) from 0 to ∞.

Note that while the union bound is a tight bound in an AWGN channel, it is not necessarily

a tight bound in a Rician fading channel, and as a result, the performance analyzed by the union

bound can be somewhat pessimistic in a Rician fading channel, especially in a Rayleigh fading

channel, as we will see in Section 4.4.

Similar to the AWGN case, we do an exhaustive search to optimize the parameter pair

(z,r) of the two-pole system to minimize Eb/η0 required to reach the BER of 10−3, as a function

of zg and h. We use the examples of a typical Rician fading channel (K = 10) and a Rayleigh

fading channel (K = 0) to present the numerical results. The optimal parameters zopt ,ropt and the

corresponding performance of the optimal 2-pole system, for zg =∞,1,0.5,h= 1,0.95,0.9, ...,0.5,

and K = 10,0, are summarized in Table 4.1 and Figs. 4.3 and 4.4, where the accuracy is 0.04 for

z, and 0.02 for r.

For a coded system with RS coding, we optimize the code dimension k in conjunction

with the time-bandwidth parameter z and the normalized sampling time r for the 2-pole system

with (n,k) RS codes. We fixed the code length and exhaustively searched all possible values of

code dimension, k, to find the k that minimizes the Eb/η0 required to reach the BER of 10−3.

For the code length of n = 15 and the alphabet size of M = 16 (i.e., one RS symbol

corresponds to one FSK symbol), we repeat the same optimization by exhaustive search as in

previous sections while adding one more parameter to optimize: the code dimension k. We

optimize the triple (z,r,k) to find the optimal coded performance for a given zg and h, in an

AWGN, Rician (K = 10) or Rayleigh fading channel, and measure the coding gain at the BER of

53



10−3 for all cases evaluated in the previous sections. The numerical results are presented in Table

4.2 and Figs. 4.2 – 4.5 in Section 4.4.

If the target BER is smaller, we can use a stronger code. For example, the performance

curves using length n = 255 RS code are shown in Figs. 4.7 – 4.9 in Section 4.4. While we are

supposed to optimize the triple (zopt ,ropt ,kopt) using length n = 255 RS code, since the range of

code dimension k is k ∈ {1,3, . . . ,253}, the optimization would take too long and thus we use

(zopt ,ropt) of the corresponding cases for n = 15 RS code, and only optimize the code dimension

k for n = 255 RS code.

4.3 Numerical Results

In this section, we present the numerical results of the previous sections. Our baseline

design of M = 16 applies to all the figures in this section. Furthermore, the Rician K-factor

is K = 10 and the RS code length is n = 15 r 255 for the coded cases. The metric to evaluate

performance is the Eb/η0 measured at the BER of 10−3, and coding gain is also measured at this

BER. Table 4.1 lists the optimal parameter pair (zopt ,ropt) for the uncoded GFSK system with

zg ∈ {∞,1,0.5} in an AWGN, Rician and Rayleigh fading channel. Table 4.2 lists the optimal

parameter triple (zopt ,ropt ,kopt) for the coded GFSK system with zg ∈ {∞,1,0.5} in an AWGN,

Rician and Rayleigh fading channel. Figs. 4.2 – 4.4 show the optimal coded (n = 15) and uncoded

performance as a function of the modulation index h and the time-bandwidth product of the

lowpass equivalent Gaussian filter zg, for h between 0.5 and 1 (i.e., up to 50% saving in bandwidth)

and zg ∈ {0.5,1,∞}, in an AWGN, Rician or Rayleigh fading channel, respectively. Fig. 4.5

summarizes the coding gain for different parameters (zg,h) and channel conditions, and Fig. 4.6

summarizes the power-bandwidth tradeoff of the GFSK system in terms of system bandwidth

saved vs. loss in Eb/η0. Figs. 4.7 – 4.9 show three examples of optimal coded (n = 15 and 255)

and uncoded performance curves in terms of Pb vs. Eb/η0 (where the optimal parameters for the
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coded and uncoded systems are possibly different). We use monte-carlo simulation to support the

analysis in this paper, where the number of errors collected is 1000 for each data point.

Some observations from the figures and tables are as follows:

By the nature of union bound, it is an upper bound that is not always a tight bound, and

for our case, in a fading channel, it provides a pessimistic estimate. We need to resort to accurate

simulation (collect enough errors) for the exact performance. Furthermore, the gap between the

actual performance and the union bound decreases with K: in a Rayleigh fading channel, it can

be over 6 dB, in a Rician fading channel, it is roughly 1 dB and in an AWGN channel, since the

union bound is tight, the gap is negligible at Pb = 10−3, as can be seen in Figs. 4.7 – 4.9, for

the uncoded cases. If we use the union bound to compare the performance in different channel

conditions, we will get inaccurate results.

The analysis is less accurate when zg is smaller. This is because ISI becomes more severe

and more pulses other than the immediate previous and future pulse can affect the decision on the

current symbol, and since the analysis only considers the immediate previous and future pulse

as the source of ISI, it tends to give overly optimistic results. However, for the values of zg we

chose, the analysis is accurate, as can be seen in Figs. 4.7 – 4.9.

For any zg and any channel condition, the performance degrades with decreasing h, but

the performance degrades faster when K is larger and when zg is smaller.

For any h and any channel condition, a smaller zg can make the transition between FSK

symbols smoother and thus decrease out-of-band spectrum, at the cost of more performance

degradation.

For any zg and any channel condition, the performance degrades faster with decreasing

h for an uncoded system, compared to a coded system, meaning the power-bandwidth tradeoff

leans towards bandwidth for a coded system. For example, for z = 0.5 in a Rician fading channel

the performance degradation between h = 0.5 and h = 1 (i.e., the amount of performance loss to

save 50% of bandwidth) is 2.4 dB for a coded system, and 6.8 dB for an uncoded system. It can
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be inferred that if a more powerful code is used (e.g., n = 255 RS code) and optimized, then we

could save more bandwidth for the same amount of performance degradation, and the results will

be shown when they are ready... the joint optimization is impossible because the code dimension

k ∈ {1,3, ...,253} and this range is way too large to search in.

For any h and any channel condition, the coding gain increases with decreasing h. Fur-

thermore, the coding gain is smaller when K is larger, but also increases faster with decreasing h.

This is intuitive since coding is more effective for worse uncoded performance.

The performance degradation increases faster when h is smaller – when the bandwidth

is already small, we need to sacrifice more power in order to further save bandwidth, e.g., for

the case of coded 2-pole GFSK system with zg = 1 in an AWGN channel, we sacrifice 0.8 dB in

performance for 30% saving in bandwidth, but we need to sacrifice another 2.5 dB (i.e., 3.3 dB in

total) in performance for another 20% (i.e., 50% in total) saving in bandwidth. This is similar

(but opposite) to the diminishing return of M-ary FSK for large M.

As can be seen in Tables 4.1 and 4.2, the optimal z increases with decreasing h, regardless

of whether the system is coded or not. This is because decreasing h results in more severe ICI

and ISI, and we have to use larger z to reduce ISI, at the cost of increasing the noise power going

into the system.

It can be seen from the tables that for all cases we evaluated, the optimal r is 1 without

Gaussian filtering (i.e., zg = ∞), which is consistent with what we found in [34], and for most

cases we evaluated, the optimal r is in the vicinity of 0.9 with Gaussian filtering. This is due to

the pulse shaping effect of the Gaussian filter, making the filtered signal waveform peak before

the end of the symbol duration.

It can be seen from Fig. 4.6 that for all cases we analyzed, i.e., any zg ∈ {∞,1,0.5} and

any channel condition, we can achieve at least a 30% saving in bandwidth at the cost of no more

than 0.9 dB loss in power when all the parameters of the coded 2-pole system are optimized.

The performance loss of a GFSK system compared to the corresponding MFSK system is
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a function of zg and h. Specifically, it is a decreasing function of both zg and h.

Table 4.1: Optimal parameters (zopt ,ropt), uncoded.

zg

h
1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5

AWGN

∞

zopt 0.52 0.52 0.56 0.56 0.56 0.6 0.64 0.72 0.8 0.88 0.96

ropt 1 1 1 1 1 1 1 1 1 1 1

1
zopt 0.6 0.6 0.6 0.6 0.64 0.68 0.76 0.88 0.96 1.08 1.2

ropt 0.92 0.92 0.92 0.94 0.94 0.94 0.94 0.92 0.92 0.9 0.88

0.5
zopt 0.64 0.64 0.64 0.64 0.68 0.72 0.8 0.92 1.08 1.28 1.44

ropt 0.88 0.9 0.9 0.92 0.92 0.92 0.92 0.9 0.88 0.84 0.82

Rician (K = 10)

∞

zopt 0.48 0.48 0.48 0.48 0.52 0.52 0.56 0.64 0.72 0.8 0.88

ropt 1 1 1 1 1 1 1 1 1 1 1

1
zopt 0.52 0.52 0.52 0.52 0.56 0.6 0.68 0.8 0.88 1 1.08

ropt 0.92 0.92 0.94 0.94 0.94 0.94 0.94 0.92 0.92 0.9 0.9

0.5
zopt 0.56 0.56 0.56 0.56 0.6 0.64 0.76 0.88 1 1.16 1.4

ropt 0.9 0.9 0.92 0.92 0.92 0.92 0.92 0.92 0.88 0.86 0.82

Rayleigh

∞

zopt 0.44 0.44 0.44 0.44 0.48 0.48 0.48 0.52 0.56 0.6 0.68

ropt 1 1 1 1 1 1 1 1 1 1 1

1
zopt 0.44 0.44 0.44 0.48 0.48 0.48 0.52 0.56 0.64 0.76 0.84

ropt 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.92 0.92

0.5
zopt 0.44 0.44 0.44 0.44 0.44 0.48 0.52 0.64 0.76 0.88 1

ropt 0.92 0.92 0.92 0.94 0.94 0.94 0.94 0.92 0.9 0.9 0.88
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Table 4.2: Optimal parameters (zopt ,ropt ,kopt), coded.

zg

h
1 0.95 0.9 0.85 0.8 0.75 0.7 0.65 0.6 0.55 0.5

AWGN

∞

zopt 0.48 0.48 0.52 0.52 0.52 0.52 0.56 0.6 0.64 0.72 0.72

ropt 1 1 1 1 1 1 1 1 1 1 1

kopt 13 13 13 13 11 11 11 11 11 11 9

1

zopt 0.52 0.52 0.52 0.52 0.56 0.56 0.6 0.64 0.68 0.72 0.84

ropt 0.92 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.92

kopt 11 11 11 11 11 11 11 11 11 9 9

0.5

zopt 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.6 0.64 0.68

ropt 0.9 0.9 0.9 0.9 0.9 0.92 0.94 0.94 0.94 0.94 0.92

kopt 11 11 11 11 11 11 11 9 9 9 7

Rician (K = 10)

∞

zopt 0.48 0.48 0.48 0.48 0.52 0.52 0.52 0.56 0.6 0.68 0.72

ropt 1 1 1 1 1 1 1 1 1 1 1

kopt 11 11 11 11 11 11 11 11 9 9 9

1

zopt 0.52 0.48 0.52 0.52 0.52 0.52 0.56 0.6 0.64 0.72 0.84

ropt 0.92 0.92 0.92 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.92

kopt 11 11 11 11 9 9 9 9 9 9 9

0.5

zopt 0.48 0.52 0.52 0.52 0.52 0.52 0.52 0.56 0.6 0.68 0.76

ropt 0.92 0.92 0.92 0.92 0.92 0.92 0.94 0.94 0.94 0.94 0.92

kopt 9 9 9 9 9 9 9 9 9 9 9

Rayleigh

∞

zopt 0.44 0.44 0.44 0.44 0.44 0.48 0.48 0.48 0.52 0.6 0.68

ropt 1 1 1 1 1 1 1 1 1 1 1

kopt 5 5 5 5 5 5 5 5 5 5 5

1

zopt 0.44 0.48 0.48 0.48 0.48 0.48 0.52 0.56 0.6 0.68 0.76

ropt 0.92 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94

kopt 5 5 5 5 5 5 5 5 5 5 5

0.5

zopt 0.44 0.44 0.44 0.44 0.44 0.44 0.48 0.52 0.56 0.64 0.72

ropt 0.92 0.92 0.92 0.92 0.94 0.94 0.94 0.94 0.94 0.94 0.94

kopt 5 5 5 5 5 5 5 5 5 5 5
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Figure 4.2: AWGN
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Figure 4.3: Rician (K = 10)
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Figure 4.4: Rayleigh
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Figure 4.5: Coding gain
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Figure 4.6: Performance loss vs. bandwidth saved
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Figure 4.7: AWGN, zg = ∞,h = 0.6.
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Figure 4.8: Rician (K = 10), zg = 1,h = 0.7.
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Figure 4.9: Rayleigh, zg = 0.5,h = 0.8.

The text of this chapter is, in part, a reprint of the paper, “Performance analysis for an

ultra-low power GFSK system”, submitted to IEEE Transactions on Communications. The

dissertation author is the primary researcher and author of the paper.
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Chapter 5

Conclusion

The essence of Chapter 2 was the use of a spectrally-inefficient, but power-efficient,

waveform, in conjunction with low complexity filtering, and low complexity demodulation, with

the goal of minimizing transmission energy consumption, subject to a predetermined average

probability of error. Hence we chose non-coherent MFSK instead of coherent MQAM, we

chose RS encoding with hard-decision decoding instead of soft-decision iterative decoding for a

capacity-approaching code, and we chose simple two-pole bandpass filters instead of matched

filters. What we found was that by carefully optimizing the system parameters, such as filter

bandwidth, tone spacing, sampling time and code dimension, we could achieve the desired

performance with a penalty in Eb/N0 of at most 1.2 dB compared to a more conventional design

using non-coherent FSK with matched filter detection.

We specifically compared the performance of an MFSK non-coherent receiver when the

matched filters are replaced by 2-pole BPFs, for AWGN, Rayleigh, and Rician (K=10) channels,

both with and without phase continuity. We chose M = 16 as our baseline design, because going

to M = 32 results in twice the bandwidth and twice the complexity, while only yielding roughly a

0.6dB gain in Eb/N0, as can be seen in Table 2.1. We further considered a coded system with

Reed-Solomon codes. For both coded and uncoded systems, the peak performance degradation

66



occurs in the absence of fading when we use BFSK and we have discontinuous phase, where

the difference between using two-pole BPFs and matched filters is about 1.5dB. In all channels

we evaluated, the demodulator performance with phase continuity was better than that without

phase continuity, but the difference decreases with the alphabet size M. For BFSK, a continuous

phase system can outperform its discontinuous phase counterpart by as much as 1.5dB, while the

difference reduces to less than 0.2dB when M = 16. More specifically, for M = 16, the largest

performance degradation is when the channel is AWGN, and the corresponding performance

degradation is about 1dB with or without phase continuity. For an RS (code length 15 or 255)-

encoded system with 16FSK in a Rician fading channel, the optimal code parameters, as well

as the coding gain, vary with the K-factor. For a Rayleigh/Rician(K=10)/AWGN channel, the

coding gain is about 30/9/1.4 dB, respectively, at bit error rate 10−5, for code length 15, and about

34/11/2.9 dB, respectively, for code length 255.

In Chapter 3, we further considered fast frequency hopping and intentional jamming, in

both fading and non-fading environments, with the goal of minimizing overall power consumption.

We compared the performance of an FFH-MFSK non-coherent receiver when the matched filters

are replaced by 2-pole BPFs, for AWGN, Rayleigh, and Rician (K=10) channels. We further

considered a coded system with RS encoding and hard-decision decoding. What we found was

that by carefully optimizing the system parameters, such as filter bandwidth and code dimension,

we could achieve the desired performance with a penalty in Eb/NJ of 0.8–1.8 dB compared

to the more conventional design using non-coherent FSK with matched filter detection. To be

specific, with full-band noise jamming, the 1.8 dB, performance degradation only occurs when

we use diversity combining in a Rayleigh fading channel. In all other cases, the performance

degradation is between 1.0 dB and 1.4 dB, which is consistent with what we found in [34]. With

PBJ, the performance degradation was between 0.8 dB and 0.9 dB. With MTJ, we found that

the worst-case performance of an FFH-MFSK system with 2-pole BPF detection was no worse

than the corresponding MF system: in a non-fading channel, the 2-pole system outperforms the
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corresponding MF system by 2.4 dB for M = 2 and 2.2 dB for M = 16, and in a Rician fading

channel, the performances of the two systems are identical at the NE, because an NE is reached

when filter bandwidth is large, and thus ISI is negligible.

In Chapter 4, we further showed that compared to the system proposed in Chapter 2,

we could potentially save a large fraction of total system bandwidth at the cost of a small extra

performance loss by decreasing the tone spacing and optimizing key parameters, including filter

bandwidth, sampling time and code dimension. For a fixed loss in performance, the saving in

system bandwidth was greater when the channel condition was worse, i.e., when the Rician K-

factor was smaller. For example, in an AWGN channel, we could save 30% of system bandwidth

at the cost of 0.56 dB in performance, or we could save 50% of bandwidth at the cost of 2.4 dB in

performance, where the metric to compare performance was Eb/η0 measured at the BER of 10−3

for the optimal coded system; while in a Rayleigh fading channel, we could save 30% of system

bandwidth at the cost of 0.25 dB in performance, or we could save 50% of system bandwidth at

the cost of 1 dB in performance.

Furthermore, we extended the results to a GFSK system where a Gaussian filter is used

to smooth the transition between pulses, and decrease out-of-band spectrum. We quantified the

performance degradation of the GFSK system compared to the corresponding MFSK system, as a

function of the time-bandwidth product (zg) of the Gaussian filter, and the fraction of bandwidth

saved. For example, if we want to save 25% of system bandwidth and we use Gaussian filter with

time-bandwidth product zg = 1, the optimal coded GFSK system is worse than the optimal coded

MFSK system by 1.4 dB.
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Appendix A

Non-orthogonal signaling and continuous

phase

Hn(ω) Env Detsm
i (t)

em
in(t)

rm
in(t)

Figure A1: Signal filtering (2-pole)

For the block diagram shown in Fig. A1, we first consider filtering a single pulse given by

si(θ, t) = Acos(2π fit +θ)PT
2
(t− T

2
). (A.1)

The output ein(θ, t) can be expressed as

ein(θ, t) = min(t)cos(2π fnt +θ)−µin(t)sin(2π fnt +θ), (A.2)
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where ∆ωin = 2π∆ fin = 2π(i−n)∆ f ,

min(t) =
AπW

(∆ωin)2 +(πW )2


[
(∆ωin sin(∆ωint)+πW cos(∆ωint))−πWe−πWt

]
, 0 6 t 6 T[

eπWT (∆ωin sin(∆ωinT )+πW cos(∆ωinT ))−πW
]
e−πWt , t > T

(A.3)

and

µin(t) =
AπW

(∆ωin)2 +(πW )2


[
(πW sin(∆ωint)−∆ωin cos(∆ωint))+∆ωine−πWt

]
, 0 6 t 6 T[

eπWT (πW sin(∆ωinT )−∆ωin cos(∆ωinT )+∆ωin

]
e−πWt , t > T

(A.4)

Based on this, we consider filtering two consecutive pulses (pth and (p−1)st). Let the

input signal be sm
i (t), where the current (pth) symbol is at frequency fi, and the previous symbol

is at frequency fm, and let the corresponding output signal of the nth filter be em
in(t). That is, if

sm
i (t) =si(θp, t− (p−1)T )+ sm(θp−1, t− (p−2)T )

=Acos(2π fi(t− (p−1)T )+θp)PT
2
(t− T

2
− (p−1)T )+

Acos(2π fm(t− (p−2)T )+θp−1)PT
2
(t− T

2
− (p−2)T ),

(A.5)

then the output is

em
in(t) = ein(θp, t− (p−1)T )+ emn(θp−1, t− (p−2)T )

= min(t− (p−1)T )cos(2π fn(t− (p−1)T )+θp)−

µin(t− (p−1)T )sin(2π fn(t− (p−1)T )+θp)+

mmn(t− (p−2)T )cos(2π fn(t− (p−2)T )+θp−1)−

µmn(t− (p−2)T )sin(2π fn(t− (p−2)T )+θp−1).

(A.6)
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where we used (A.3) and (A.4). Simplifying (A.6) yields

em
in(t), a(t) · cos(2π fnt +θp−1)−b(t) · sin(2π fnt +θp−1), (A.7)

where

a(t),min(t− (p−1)T )cos[(2π fn(p−1)T − (θp−θp−1))]+

µin(t− (p−1)T )sin[(2π fn(p−1)T − (θp−θp−1))]+

mmn(t− (p−2)T )cos[2π fn(p−2)T ]+

µmn(t− (p−2)T )sin[2π fn(p−2)T ],

(A.8)

and

b(t),−min(t− (p−1)T )sin[(2π fn(p−1)T − (θp−θp−1))]

+µin(t− (p−1)T )cos[(2π fn(p−1)T − (θp−θp−1))]

−mmn(t− (p−2)T )sin[2π fn(p−2)T ]

+µmn(t− (p−2)T )cos[2π fn(p−2)T ].

(A.9)

Next we find the envelope of em
in(t) and sample at t = (p− 1)T + Ts , T ′. Without loss of

generality, if we assume θp−1 = 0, then the envelope and corresponding phase, when sampled at

t = T ′, are

rm
in(T

′) =
√

a2(T ′)+b2(T ′), (A.10a)

θ
m
in(T

′) = tan−1
[

b(T ′)
a(T ′)

]
. (A.10b)
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To simplify (A.10), first notice that

∆ωinTs = 2π(i−n)∆ f Ts = 2π(i−n)∆ f T ·Ts/T = 2hr(i−n)π. (A.11)

Then,

min(t− (p−1)T )|t=(p−1)T+Ts = min(Ts)

=
Az

(2(i−n)h)2 + z2

[(
2(i−n)hsin(2hr(i−n)π)+ zcos(2hr(i−n)π)

)
− ze−πzr

]
.

(A.12)

Similarly,

µin(t− (p−1)T )|t=(p−1)T+Ts = µin(Ts)

=
Az

(2(i−n)h)2 + z2

[(
zsin(2hr(i−n)π)−2(i−n)hcos(2hr(i−n)π)

)
+2(i−n)he−πzr

]
,

(A.13)

mmn(t− (p−2)T )|t=(p−1)T+Ts = mmn(T +Ts)

=
Aze−πz(1+r)

(2(m−n)h)2 + z2

[
eπz
(

2(m−n)hsin(2h(m−n)π)+ zcos(2h(m−n)π)
)
− z
]
,

(A.14)

and,

µmn(t− (p−2)T )|t=(p−1)T+Ts = µmn(T +Ts)

=
Aze−πz(1+r)

(2(m−n)h)2 + z2

[
eπz
(

zsin(2h(m−n)π)−2(m−n)hcos(2h(m−n)π)
)
+2(m−n)h

]
.

(A.15)
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With the assumption θp−1 = 0 and sampling at t = T ′, we rewrite (A.8) and (A.9) as

a(T ′)

=min(Ts)cos[(2π fn(p−1)T −θp)]+µin(Ts)sin[(2π fn(p−1)T −θp)]

+mmn(T +Ts)cos[(2π fn(p−1)T −2π fnT )]+µmn(T +Ts)sin[(2π fn(p−1)T −2π fnT )]

=[min(Ts)cos(θp)−µin(Ts)sin(θp)+

mmn(T +Ts)cos(2π fnT )−µmn(T +Ts)sin(2π fnT )]cos(2π fn(p−1)T )

+[min(Ts)sin(θp)+µin(Ts)cos(θp)+

mmn(T +Ts)sin(2π fnT )+µmn(T +Ts)cos(2π fnT )]sin(2π fn(p−1)T )

,A · cos(2π fn(p−1)T )+B · sin(2π fn(p−1)T ),

(A.16)

and

b(T ′)

=[min(Ts)sin(θp)+µin(Ts)cos(θp)+

mmn(T +Ts)sin(2π fnT )+µmn(T +Ts)cos(2π fnT )]cos(2π fn(p−1)T )

+[−min(Ts)cos(θp)+µin(Ts)sin(θp)

−mmn(T +Ts)cos(2π fnT )+µmn(T +Ts)sin(2π fnT )]sin(2π fn(p−1)T )

=B · cos(2π fn(p−1)T )−A · sin(2π fn(p−1)T ).

(A.17)

From (A.16) and (A.17), we obtain

a2((p−1)T +Ts)+b2((p−1)T +Ts)

=(A2 +B2) · cos2(2π fn(p−1)T )+(A2 +B2) · sin2(2π fn(p−1)T ) = A2 +B2.

(A.18)
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Then, the output in Fig. A1, along with the phase, are given by

rm
in(T

′) =
√

a2((p−1)T +Ts)+b2((p−1)T +Ts) =
√

A2 +B2, (A.19)

and

θ
m
in(T

′) = tan−1
[b((p−1)T +Ts)

a((p−1)T +Ts)

]
. (A.20)

The signal amplitude and phase at the output of the filters in (2.18) are

A1 = rm
ii (T

′), A2 = rm
in(T

′), θ1 = θ
m
ii (T

′), θ2 = θ
m
in(T

′). (A.21)

Now consider the noise. We will derive the normalized complex cross-covariance and the

corresponding phase between the two stationary Gaussian-noise processes ni(t) and nn(t) in Fig.

A2.

Hi(ω)

Hn(ω)

nw(t)

ni(t)

nn(t)

Figure A2: Noise filtering (2-pole)

We express ni(t) and nn(t) as

ni(t) = nci(t)cos(ωit)−nsi(t)sin(ωit),

nn(t) = ncn(t)cos(ωnt)−nsn(t)sin(ωnt).
(A.22)

It can be shown that the filtered noise power σ2 with 2-pole BPF is

σ
2 =

N0

2

∮
hi(τ)

2dτ =
N0πW

2
, ∀i. (A.23)
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From chapter 1 of [15], letting n̂(t) be the Hilbert transform of n(t), we have

nci(t) = ni(t)cos(ωit)+ n̂i(t)sin(ωit), nsi(t) = n̂i(t)cos(ωit)−ni(t)sin(ωit),

ncn(t) = nn(t)cos(ωnt)+ n̂n(t)sin(ωnt), nsn(t) = n̂n(t)cos(ωnt)−nn(t)sin(ωnt),
(A.24)

and

E[ni(t)nn(t)] =
N0

2
1

2π

∫
∞

−∞

Hi(ω)H∗n (ω)dω = E[n̂i(t)n̂n(t)],

E[ni(t)n̂n(t)] =
N0

2
1

2π

∫
∞

−∞

Hi(ω)H∗n (ω)[ j · sgn(ω)]dω =−E[n̂i(t)nn(t)].
(A.25)

The normalized complex cross-covariance is defined as

ρin =
1

2σ2 ·E[(nci(T ′)+ j ·nsi(T ′))∗ · (ncn(T ′)+ j ·nsn(T ′))]. (A.26)

Let

X , ∆ωinT ′ = 2π(i−n)∆ f ((p−1)T +Ts) = (i−n)(p−1+ r)2hπ, (A.27)

we can rewrite (A.26) as

ρin =
1

σ2 ·
[(

E[ni(T
′)nn(T

′)]cos(X)−E[ni(T
′)n̂n(T

′)]sin(X)
)

+ j ·
(
E[ni(T

′)nn(T
′)]sin(X)+E[ni(T

′)n̂n(T
′)]cos(X)

)]
.

(A.28)

Now let us find E[ni(T
′)nn(T

′)] and E[ni(T
′)n̂n(T

′)] using (A.25). The filter transfer

functions are

Hi(s) =
2πWs

s2 +2πWs+ω2
i
' 2πWs

(s+πW )2 +ω2
i
, ωi� πW. (A.29)
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Then

∫ B

A
Hi(ω)H∗n (ω)dω ,− j(2πW )2

∫ jB

jA

−s2

(s+a)(s+b)(s+ c)(s+d)
ds, (A.30)

where we define

{
a
b

}
, πW ± jωi,

{
c
d

}
,−πW ± jωn. (A.31)

Then (A.30) can be rewritten as

∫ B

A
Hi(ω)H∗n (ω)dω =− j(πW )2

[
1

2πW + j ·2π∆ fin

(
log

( jB+a)( jA+ c)
( jB+ c)( jA+a)

)
+

1
2πW − j ·2π∆ fin

(
log

( jB+b)( jA+d)
( jB+d)( jA+b)

)]
.

(A.32)

To simplify this, we use the assumption fi�W,∀i. Define

r ,
√

ω2
i +(πW )2 '

√
ω2

n +(πW )2,

ε , tan−1
(

πW
ωi

)
' tan−1

(
πW
ωn

)
.

(A.33)
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where ε� 1. If we let A = 0 and B→ ∞, we obtain

∫
∞

0
Hi(ω)H∗j (ω)dω

= lim
B→∞
− j(πW )2

[
1

2πW + j ·2π∆ fin

(
log

c( jB+a)
a( jB+ c)

)
+

1
2πW − j ·2π∆ fin

(
log

d( jB+b)
b( jB+d)

)]
=− j(πW )2

[
1

2πW + j ·2π∆ fin

(
log

(−ω j− jπW )

(−ωi + jπW )

)
+

1
2πW − j ·2π∆ fin

(
log

(ω j− jπW )

(ωi + jπW )

)]
'− j(πW )2

[
1

2πW + j ·2π∆ fin

(
log

re j(π+ε)

re j(π−ε)

)
+

1
2πW − j ·2π∆ fin

(
log

re j(2π−ε)

re jε

)]
'− j(πW )2

[
1

2πW + j ·2π∆ fin
·0+ 1

2πW − j ·2π∆ fin
· ( j2π)

]
=

(πW )2

W − j ·∆ fin
.

(A.34)

where the approximations on the 3rd and 4th lines of the derivation follow from (A.33). Similarly,

if we let A→−∞ and B = 0, we have

∫ 0

−∞

Hi(ω)H∗j (ω)dω' (πW )2

W + j ·∆ fin
. (A.35)

Substituting (A.34) and (A.35) in (A.25), we get

E[ni(T
′)nn(T

′)] =
N0

2
· 1

2π
· 2W (πW )2

W 2 +(∆ fin)2 =
N0

2
·πW · W 2

W 2 +(∆ fin)2 ,

E[ni(T
′)n̂n(T

′)] =
N0

2
· 1

2π
· −2∆ fin(πW )2

W 2 +(∆ fin)2 =
N0

2
·πW · −W∆ fin

W 2 +(∆ fin)2 .

(A.36)
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Recall from (A.23) that σ2 = N0
2 ·πW . Finally, we simplify (A.28) as

ρin =
1

σ2 ·
[(

E[ni(T
′)nn(T

′)]cos(X)−E[ni(T
′)n̂n(T

′)]sin(X)
)

+ j ·
(
E[ni(T

′)nn(T
′)]sin(X)+E[ni(T

′)n̂n(T
′)]cos(X)

)]
=

W (W cos(X)+∆ fin sin(X))

W 2 +(∆ fin)2 + j ·W (W sin(X)−∆ fin cos(X))

W 2 +(∆ fin)2 .

(A.37)

Thus,

|ρin|=
W√

W 2 +(∆ fin)2
=

z√
z2 +((i−n)h)2

,

φin = ∠ρin = tan−1
[

W sin(X)−∆ fin cos(X)

W cos(X)+∆ fin sin(X)

]
= tan−1

[
zsin(X)− (i−n)hcos(X)

zcos(X)+(i−n)hsin(X)

]
.

(A.38)

where we use the four-quadrant definition for tan−1 and X = (i−n)(p−1+ r)2hπ was defined

in (A.27). Notice that both terms in (A.38) are independent of the pulse duration T . While |ρin|

is independent of pulse index p, φin is dependent on p. It can be shown that the dependence will

cancel out the phase terms in (A.21), making the final results of (2.18) independent of p.
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Appendix B

Orthogonal signaling

B.1 MFSK

With orthogonal signaling and sampling at the end of each pulse, the parameters in (A.21)

can be simplified as

A1 =
√
(mii(Ts)+mmi(T +Ts))2 +(µii(Ts)+µmi(T +Ts))2,

A2 =
√
(min(Ts)+mmn(T +Ts))2 +(µin(Ts)+µmn(T +Ts))2,

θ1 = tan−1
[ µii(Ts)+µmi(T +Ts)

mii(Ts)+mmi(T +Ts)

]
,

θ2 = tan−1
[ µin(Ts)+µmn(T +Ts)

min(Ts)+mmn(T +Ts)

]
.

(B.1)
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From (A.12) ∼ (C.5), with h ∈ I+ and r = 1, we have

min(Ts) =
Az2(1− e−πz)

(2(i−n)h)2 + z2 , mii(Ts) = A(1− e−πz),

µin(Ts) =
Az(−2h(i−n))(1− e−πzr)

(2(i−n)h)2 + z2 , µii(Ts) = 0,

mmn(T +Ts) =
Az2e−πz(1− e−πz)

(2(m−n)h)2 + z2 , mmi(T +Ts) =
Az2e−πz(1− e−πz)

(2(m− i)h)2 + z2 ,

µmn(T +Ts) =
Az(−2h(m−n))e−πz(1− e−πz)

(2(m−n)h)2 + z2 , µmi(T +Ts) =
Az(−2h(m− i))e−πz(1− e−πz)

(2(m− i)h)2 + z2 .

(B.2)

Simplifying (A.23) and (A.38) yields

σ
2 =

N0πW
2

=
N0πz
2T

, |ρin|=
z√

z2 +((i−n)h)2
, φin = tan−1

[−(i−n)h
z

]
. (B.3)

B.2 BFSK

Letting i = 1,n = 2,m = 1 in (B.1) ∼ (B.3), we have

A1 = A(1− e−2πz), A2 = A(1− e−2πz)

√
z2

4h2 + z2 ,

θ1 = 0, θ2 = tan−1
[2h

z

]
,

σ
2 =

N0πz
2T

, ρ12 =
z√

z2 +h2
, φ12 = tan

[h
z

]
.

(B.4)

Then, pluging (B.4) in (2.18), we obtain

{
a1

12

b1
12

}
=

Eb

N0
· 2(1− e−2πz)2 · (

√
h2 + z2∓h)2

πz(4h2 + z2)
, (B.5)

80



where the bit energy is Eb = A2T/2. Similarly, leting i = 1,n = 2 and m = 2 and following the

same procedure, we obtain

{
a2

12

b2
12

}
=

Eb

N0
· 2(1− e−πz)2

πz(4h2 + z2)
· {[
√

h2 + z2(1+ e−πz)∓h(1− e−πz)]2− 16h2z2e−πz

4h2 + z2 }. (B.6)
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Appendix C

FFH-MFSK system with 2-pole BPF

detection

We use the union bound and, thus do pairwise comparison. The block diagram is shown

in Fig. 4.1, where, as discussed in more detail in Appendix A, the output of the ith filter can be

expressed in terms of the in-phase and quadrature components as

xi(t) = [ai(t)+nci(t)]cosωit− [bi(t)+nsi(t)]sinωit, (C.1)

where ai(t) and bi(t) are the in-phase and quadrature parts of the output signal, respectively, as

will be defined in (C.3) and (C.5), nci(t) and nsi(t) are the in-phase and quadrature parts of the

output noise, respectively, and we sample at Tc, . . . ,LTc. Without loss of generality, we assume “i”

is transmitted and “n” is the ICI branch. Thus, after the square law detector and summation, both

the ith and the nth branch are the sum of 2L correlated non-central chi-square random variables,

with different non-centrality parameters. We take the difference to form a new random variable,

which is a linear combination of 4L correlated non-central chi-square random variables. Let X be
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a multi-normal random vector defined as

X =



X11

...

X1L

X21

...

X2L

Y11

...

Y1L

Y21

...

Y2L



,



ai(Tc)+nci(Tc)

...

ai(LTc)+nci(LTc)

bi(Tc)+nsi(Tc)

...

bi(LTc)+nsi(LTc)

an(Tc)+ncn(Tc)

...

an(LTc)+ncn(LTc)

bn(Tc)+nsn(Tc)

...

bn(LTc)+nsn(LTc)



, µ+X0. (C.2)

We compute the mean and covariance matrix of X , i.e., µ = E[X ] and Σ =Cov(X). It was shown

in [34] that only the adjacent hop gives significant ISI, so that only the first hop of each symbol

experiences ISI from the previous symbol, while all other hops experience ISI from the previous

hop of the current symbol. From Appendix B of [34], given that the current symbol is “i”, the ICI

branch is “n” and the previous symbol is “m”, we have, for the first hop,

µa =



ai(Tc)

bi(Tc)

an(Tc)

bn(Tc)


= A



mii −µii m′mi

µii mii µ′mi

min −µin m′mn

µin min µ′mn




cosθ1

sinθ1

1

 (C.3)
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where

min =
z2(1− e−πz)

(2(i−n))2 + z2 ,

µin =
z(−2(i−n))(1− e−πz)

(2(i−n))2 + z2 ,

m′mn =
z2e−πz(1− e−πz)

(2(m−n))2 + z2 ,

µ′mn =
z(−2(m−n))e−πz(1− e−πz)

(2(m−n))2 + z2 .

(C.4)

Note that the terms in (C.4) are very similar to the corresponding parameters in Appendix B of

[34], and θ1 is the difference between the phase of the first hop of the current symbol and the last

hop of the previous symbol. Let θ′1,θ
′
2, . . . ,θ

′
L denote the random phases associated with each

hop of the current symbol, and let θ′0 denote the random phase associated with the last hop of the

previous symbol. We define θi , θ′i−θ′i−1,1 6 i 6 L. Then for all other hops, we have

µb =



ai(2Tc) . . . ai(LTc)

bi(2Tc) . . . bi(LTc)

an(2Tc) . . . an(LTc)

bn(2Tc) . . . bn(LTc)


= A



mii −µii m′ii

µii mii µ′ii

min −µin m′in

µin min µ′in




cosθ2 . . . cosθL

sinθ2 . . . sinθL

1 . . . 1

 , (C.5)

and thus

µ′ ,
[

µa µb

]
=



ai(Tc) . . . ai(LTc)

bi(Tc) . . . bi(LTc)

an(Tc) . . . an(LTc)

bn(Tc) . . . bn(LTc)


(C.6)

which can be easily reshaped to µ in the form of a column vector.

Representing the in-phase and quadrature components of filtered noise of the ith branch
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using Hilbert transforms gives [15]

nci(t) = ni(t)cos(ωit)+ n̂i(t)sin(ωit),

nsi(t) = n̂i(t)cos(ωit)−ni(t)sin(ωit).
(C.7)

Since we use orthogonal signaling and sample at the end of each hop, (C.7) can be simplified to

nci(kTc) = ni(kTc), nsi(kTc) = n̂i(kTc), k ∈ I. (C.8)

The covariance matrix Σ can be represented as

Σ =Cov(X) =Cov(X0) =



A 0 B C

0 A −C B

B −C A 0

C B 0 A


(C.9)

where A,B,C are L×L matrices with the (x,y)th element, respectively,

Axy = Rci(|x− y|Tc),

Bxy = Rci,cn(|x− y|Tc),

Cxy = Rci,sn(|x− y|Tc),

(C.10)

and 0 is the L×L all zero matrix. The diagonal terms in A,B and C can be found using the same
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technique described in Appendix A of [34] as

Rci(0) = E[n2
ci(Tc)] =

η0πz
2Tc

,

Rci,cn(0) = E[nci(Tc)ncn(Tc)] =
η0πz
2Tc
· z2

z2 +(i−n)2 ,

Rci,sn(0) = E[nci(Tc)nsn(Tc)] =
η0πz
2Tc
· −(i−n)z

z2 +(i−n)2 .

(C.11)

For the non-diagonal terms, we have the following relationship:

Rci(xTc)

Rci(0)
=

Rci,cn(xTc)

Rci,cn(0)
=

Rci,sn(xTc)

Rci,sn(0)
= e−πz·x, (C.12)

where x is a non-negative integer. The impulse response of the ith filter is

hi(t) =
2πz
Tc

e−πz·t/Tc cos(ωit)u(t). (C.13)

Letting x , t/Tc, then

hi(t + xTc) =
2πz
Tc

e−πz·(t+xTc)/Tc cos(ωi(t + xTc))u(t + xTc)

= e−πz·x · 2πz
Tc

e−πz·t/Tc cos(ωit)u(t + xTc), x ∈ I.
(C.14)

From (C.8),

Rci,cn(0) = E[nci(Tc)ncn(Tc)] = E[nsi(Tc)nsn(Tc)]

= E[ni(Tc)nn(Tc)] =
η0

2
·hi(t)∗hn(−t)

∣∣∣
t=0

(C.15)

Similarly, for a non-negative integer x,

Rci,cn(xTc) = E[nci(Tc)ncn((x+1)Tc)] = E[nsi(Tc)nsn((x+1)Tc)]

= E[ni(Tc)nn((x+1)Tc)] =
η0

2
·hi(t + xTc)∗hn(−t)

∣∣∣
t=0

(C.16)
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Now (C.16) can be rewritten as

Rci,cn(xTc) =
η0

2
·hi(t + xTc)∗hn(−t)

∣∣∣
t=0

=
η0

2
·
∫

∞

−∞

hi(τ+ xTc) ·hn(τ)dτ

=
η0

2

∫
∞

−∞

e−πz·x · 2πz
Tc

e−πz·τ/Tc cos(ωiτ)u(τ)

· 2πz
Tc

e−πz·τ/Tc cos(ωnt)u(τ)dτ

=
η0

2
· e−πz·x ·

∫
∞

−∞

hi(τ) ·hn(τ)dτ = e−πz·xRci,cn(0).

(C.17)

With µ and Σ, we can numerically find the pdf of Q(X), defined in (3.4), using charac-

teristic functions. The probability of error, where i is sent but n is detected, and where m is the

previous symbol, conditioned on the set of random phases, θ1, . . . ,θL is given by

Ps(i,n,m,θ1, . . . ,θL) = Pr(Q(X)< 0). (C.18)

Then finally, the conditional SER, Psm
in, is found by averaging over the L random phases.
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Appendix D

FFH-MFSK system with diversity

We again use the block diagram shown in Fig. 3.1. The only difference now is that the

input hops have i.i.d. amplitudes, that is,

S(t) =
∞

∑
l=1

RlPTc
2
(t− (l−1)Tc−

Tc

2
)cos(2π f (l)[t− (l−1)Tc]+θl), (D.1)

where Rl are i.i.d. Rician distributed. As in Appendix D, we compute in this appendix the mean

and covariance matrix of the test statistic X , i.e., µ = E[X ] and Σ =Cov(X).

D.1 Matched filter detection

Let R1, . . . ,RL denote the amplitude of the 1st , . . . , Lth hop, respectively, of the current

symbol. For matched filter detection, since there is no ISI or ICI, the parameters are

µ =

[
R1 R2 . . . RL 03L

]T

, Σ =
N0

Tc
I4L, (D.2)
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where 03L is the 3L×1 zero column vector and I4L is the 4L×4L identity matrix. After a simple

normalization, the parameters are equivalent to

µ =

[ √
2γ1
L

√
2γ2
L . . .

√
2γL
L 03L

]T

, Σ = I4L, (D.3)

where γi =
(

Eb
N0

)
i
=
(

LEc
N0

)
i
=

LR2
i Tc

2N0
and the pdf of γi, f (γi), was defined in (2.31).

Similar to Appendix D, with µ and Σ, we can numerically find the probability of error,

conditioned on the set of instantaneous Eb/NJ , γ1, . . . ,γL, denoted as Ps(γ1, . . . ,γL). Then,

Pb =
M

2M−2

∫
∞

0
· · ·

∫
∞

0
Ps(γ1, . . . ,γL)

L

∏
i=1

f (γi)dγ1 . . .dγL. (D.4)

D.2 2-pole BPF detection

Interleaving has no effect on the noise components, so we retain the same Σ as in Appendix

D. Let R0 denote the amplitude of the last hop of the previous symbol, and R1, . . . ,RL denote

the amplitude of the 1st , . . . , Lth hop of the current symbol, respectively. The construction of

the mean vector µ is similar to that in Appendix D – just replace the constant amplitude A is

by Rician distributed amplitudes R0,R1, . . . ,RL. Similar to Appendix D, with µ and Σ, we can

numerically find the probability of error, where i is sent but n is detected and m is the previous

symbol, conditioned on the set of random phases θ1, . . . ,θL, and the set of instantaneous Eb/NJ ,

γ0, . . . ,γL, denoted as Ps(i,n,m,θ1, . . . ,θL,γ0, . . . ,γL). Then finally, the conditional probability of

error can be represented by the following integral:

Psm
in =

1
(2π)L

∫
∞

0
· · ·

∫
∞

0

∫ 2π

0
· · ·

∫ 2π

0
Ps(i,n,m,θ1, . . . ,θL,γ0, . . . ,γL) ·

L

∏
i=0

f (γi)dθ1 . . .dθLdγ0 . . .dγL.

(D.5)

To find the union bound on average SER, we average over i and m, and sum over n.
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Appendix E

FFH-MFSK-MF system under PBJ

E.1 Non-fading channels

Taking the derivative of Ps(ρ) defined in equation (10) of [43] with respect to ρ yields

P′s(ρ),1−
∫

∞

0

(
1− e−v

L−1

∑
k=0

vk

k!

)M−1(v
y

) L−1
2

e−(y+v)

·
[√vy

2

(
IL−2(2

√
vy)+ IL(2

√
vy)
)
−
(L−3

2
+ y
)

IL−1(2
√

vy)
]
dv,

(E.1)

where y , ργ = ρ(log2 M)Eb
NJ

, and the derivative of the modified Bessel function of the first kind,

nth order, is given by I′n(x) =
1
2 [In−1(x)+ In+1(x)]. Let y0 be the value of y resulting in P′s(ρ) = 0.

It is known that when Eb/NJ is sufficiently small, full-band jamming is optimal. Let γ0 be the

threshold so that when Eb/NJ < γ0, full-band jamming is optimal. Then γ0 is found by setting

ρ = 1, and thus γ0 =
y0

log2 M . Finally, plugging y = y0 in (E.1) yields

Ps,worst =
1

Eb/NJ
· y0

log2 M

[
1−

∫
∞

0

(
1− e−v

L−1

∑
k=0

vk

k!

)M−1
·
( v

y0

) L−1
2

e−(y0+v)IL−1(2
√

y0v)dv
]

,
β

Eb/NJ
.

(E.2)
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The worst-case bit error rate can be expressed as Pb,worst =
βb

Eb/NJ
, where βb ,

βM
2M−2 .

E.2 Slow, flat, Rician fading channel

Taking the derivative of Ps(ρ) defined in equation (13) of [43] with respect to ρ yields

P′s(ρ) = 1−
∫

∞

0

∫
∞

0

(1+K)e−K

γ̄
· ∂

∂ρ

[
e−

(1+K)γ
ργ̄ I0

(√
4K(1+K)

γ

ργ̄

)]
·
(

1− e−v
L−1

∑
k=0

vk

k!

)M−1(v
γ

) L−1
2

e−(γ+v)IL−1(2
√

γv)dvdγ

, 1− ye−K ·
∫

∞

0

∫
∞

0
e−yγ

[
yγI0

(√
4Kyγ

)
−
√

KyγI1

(√
4Kyγ

)]
·
(

1− e−v
L−1

∑
k=0

vk

k!

)M−1(v
γ

) L−1
2

e−(γ+v)IL−1(2
√

γv)dvdγ,

(E.3)

where y , 1+K
ργ̄

. Let y0 be the value of y resulting in P′s(ρ) = 0. Then γ0 is found by setting ρ = 1,

and thus γ0 =
1+K

y0 log2 M is the threshold for partial-band jamming as the optimal strategy, i.e., when

Eb/NJ < γ0, full-band jamming is optimal. The worst case SER is given by

Ps,worst =
1
γ̄
· 1+K

y0M log2 M

[
1− y0e−K

∫
∞

0

∫
∞

0
e−y0γ · I0

(√
4Ky0γ

)(
1− e−v

L−1

∑
k=0

vk

k!

)M−1

·
(v

γ

) L−1
2

e−(γ+v)IL−1(2
√

γv)dvdγ

]
,

β

γ̄
.

(E.4)

The worst-case BER can be expressed as Pb,worst =
βb

Eb/NJ
, where βb ,

βM
2M−2 .
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Appendix F

FFH-MFSK-MF system under MTJ

F.1 Non-fading channels

Let Rc be the hop rate, Rb be the bit rate, Rs = Rb/ log2 M be the symbol rate and Nt be the

total number of slots. Then the total spread spectrum bandwidth is given by Wss = NtRs. Letting

J be the total jamming power, Q be the number of jamming tones, and S be the signal power, we

have Eb = S/Rb as the energy per bit, ηJ = J/Wss as the power spectral density of the jammer,

and finally we define α , S
J/Q as the SJR.

For each hop, the probability that the M-ary band containing the keyed tone is jammed is

µ′ =
QM
Nt

=
αM

log2 M× Eb
ηJ

. (F.1)

When Eb/ηJ is large, µ′ is small and the probability that multiple hops of the M-ary band with

the keyed tone are jammed is orders of magnitude smaller, so we can assume that, at most, one

hop of the M-ary bad with the keyed tone is jammed at large Eb/ηJ . Therefore, the probability
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that any hop of the M-ary band with the keyed tone is jammed is

µ≈ Lµ′ =
αLM

log2 M× Eb
ηJ

. (F.2)

A symbol error occurs when a hop of the M-ary band with the keyed tone is jammed in an unkeyed

slot, and 1
α
> L⇒ α < 1

L . Thus, the bit error rate is

Pb =
M

2(M−1)
Ps

=
M

2(M−1)
·M−1

M
·µ

=
M

2(M−1)
·M−1

M
· αLM

log2 M× Eb
ηJ

=
αLM

2log2 M · Eb
ηJ

.

(F.3)

Obviously, the worst case performance is achieved by maximizing α under the constraints α< 1/L

and µ 6 1:

α <
1
L
,α 6

log2 MEb/ηJ

LM
. (F.4)

Therefore,

αwc =


log2 M

LM · Eb
ηJ
, Eb

ηJ
< M

log2 M

1
L−,

Eb
ηJ

> M
log2 M

(F.5)

and let α = αwc in (F.3), we find the worst-case BER as

Pb,wc =


1
2 ,

Eb
ηJ

6 M
log2 M

M
2log2 M ·

1
Eb/ηJ

, Eb
ηJ

> M
log2 M

(F.6)

This happens to be the same as the SFH case analyzed in [41]. Note that Pb,wc increases with M

since the key parameter, µ, increases with M.
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F.2 Slow, flat Rician fading channels

In a Rician fading channel, let Ωs and Ω j be the total power of the signal and jamming

power per jammed slot, respectively, and denote αr , Ωs/Ω j as the SJR. Then, at large Eb/ηJ ,

the probability that any hop of the M-ary band with the keyed tone is jammed is roughly

µr ≈
αrLM

log2 M Eb
ηJ

. (F.7)

The BER as a function of αr is given by

Pb =
M

2(M−1)
·M−1

M
·µr ·

∫
∞

0

∫
∞

0
u(r2

j −Lr2
s ) f (rs) f (r j)drsdr j

=
αrLM

2log2 M Eb
ηJ

∫
∞

0

∫
∞

0
u(r2

j −Lr2
s ) f (rs) f (r j)drsdr j,

(F.8)

where f (rs) was defined in (3.19) and f (r j) follows in a similar manner. If we let

c = αrL, x =
rs√
Ωs

, y = r j

√
αr√
Ωs

, (F.9)

then

Pb =
cM

2log2 M Eb
ηJ

∫
∞

0

∫
∞

0
u(r2

j −Lr2
s )

2(Ks +1)rs

Ωs
· e−Ks− (Ks+1)r2

s
Ωs I0

(
2

√
Ks(Ks +1)

Ωs
rs

)

·
2(K j +1)r j

Ω j
e
−K j−

(K j+1)r2
j

Ω j I0

(
2

√
K j(K j +1)

Ω j
r j

)
drsdr j

=
cM

2log2 M Eb
ηJ

∫
∞

0

∫
∞

x
√

c
h(x,Ks)h(y,K j)dydx

,
G(c)

Eb/ηJ
,

(F.10)

where h(r,K) was defined in (3.16).
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F.3 Signal experiences slow, flat Rayleigh fading

For Ks = 0, G(c) in (F.10) is monotonically increasing, for all K j. Therefore, the jammer

would use the largest permissible c. The constraint on c is

µr =
cM

log2 M× Eb
ηJ

6 1⇒ c 6
log2 M× Eb

ηJ

M
, (F.11)

and thus the worst-case BER is given by letting c =
log2 M×Eb

ηJ
M in (F.10)

Pb,wc =
1
2

∫
∞

0

∫
∞

x

√
log2 M×Eb

ηJ
M

h(x,Ks)h(y,K j)dydx. (F.12)

On the other hand, the worst-case BER is also

Pb,wc =
G
( log2 M×Eb

ηJ
M

)
Eb/ηJ

. (F.13)

Since it can be shown that, for any K j, limc→∞ G(c) = 1, we have the asymptotic performance

lim
Eb/ηJ→∞

Pb,wc =
1

Eb/ηJ
. (F.14)
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Appendix G

FFH-MFSK-2pole system under MTJ in a

non-fading channel

We consider two conditional SER: when the jammed hop is the last one (with probability

1
L ), denoted by P1, and when the jammed hop is not the last one (with probability L−1

L ), denoted

by P2, and thus the average SER is given by (3.18).

First consider the case that the last (Lth) hop is jammed. The filter output of the jamming

waveform in terms of the in-phase and quadrature components is, for the Lth hop,

µaJ = r j



mni −µni

µni mni

mnn −µnn

µnn mnn


 cosθJ

sinθJ

 , (G.1)

and zero for all other hops, where r j is the amplitude of the jamming waveform. Thus the filter

output of the signal plus jamming waveform is

µ′1 =
[

µa µb

]
+

[
04×(L−1) µaJ

]
, (G.2)

96



where [µa µb] was found in (C.6) (replace A by rs) and we reshape µ′1 to the form of a column

vector, denoted by µ1. A symbol error is made if the square-law detector output of the jammed

branch exceeds that of the signal branch, i.e., if µ1
T Aµ1 < 0, where A was defined in (3.5).

Finally, the conditional SER is found by averaging over the transmitted symbol i, the

jammed symbol n, and the previous symbol m, integrating over the L+1 random phases, and

multiplying by the probability that the M-ary band with the keyed tone is jammed, µ, found in

(F.2), as

P1 =
µ

M3(2π)L+1

M

∑
i=1

M

∑
n=1,n6=i

M

∑
m=1

∫ 2π

0
· · ·

∫ 2π

0

∫ 2π

0

[
1−u(µ1

T Aµ1)
]
dθ1 . . .dθLdθJ

=
1

Eb/ηJ
· α2L
(2π)L+1M2 log2 M

M

∑
i=1

M

∑
n=1,n 6=i

M

∑
m=1

∫ 2π

0
· · ·

∫ 2π

0

∫ 2π

0
1−u(µ1

T Aµ1)dθ1 . . .dθLdθJ.

(G.3)

The other case is that the jammed hop is not the last one. We assume the lth hop is jammed where

1 6 l 6 L−1. It is easy to see that the performance is not a function of l. The filter output of the

jamming waveform in terms of the in-phase and quadrature components is µaJ for the lth hop, and

µbJ = r j



m′ni −µ′ni

µ′ni m′ni

m′nn −µ′nn

µ′nn m′nn


 cosθJ

sinθJ

 (G.4)

for the l +1st hop. The filter output of the signal plus jamming waveform is

µ′2 ,
[

µa µb

]
+

[
04×(l−1) µaJ µbJ 04×(L−1−l)

]
, (G.5)

1 6 l 6 L−1, and we reshape µ′2 to the form of a column vector, denoted by µ2. The conditional

SER, P2, can be found using (G.3) – just replace µ1 by µ2.
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Appendix H

GFSK system with 2-pole BPF detection

Hn(ω) Gi(ω)s(r)
x(r)

yin(r)

Figure K1: Signal filtering (Gaussian & 2-pole)

We start by filtering an isolated rectangular pulse cosine wave with frequency fi and phase

θ through a 2-pole BPF centered at frequency fn, and a Gaussian filter centered at frequency fi.

We use lowpass equivalent filtering for simplicity. The input signal can be expressed as a function

of the normalized time r = t/T as

s(r) = cos(ωirT +θ)P1
2

(
r− 1

2

)
, (H.1)

where T is the symbol duration, and the lowpass equivalent signal is given by

sl p(r) = P1
2

(
r− 1

2

)
. (H.2)
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The impulse response of the nth 2-pole BPF is

hn(t) = πWe−πWt cos(ωnt)u(t)

=
πz
T

e−πzt/T cos(ωi−∆ωint)u(t)

=
πz
T

e−πzt/T u(t)[cos∆ωint cosωit + sin∆ωint sinωit],

(H.3)

and the lowpass equivalent impulse response of the filter is given by

hl p(t) =
πz
T

e−πzt/T u(t)(cos∆ωint + j sin∆ωint)

=
πz
T

e−πzt/T+ j∆ωintu(t)

⇒ hl p(r) =
πz
T

e[−πz+ j2π(i−n)h]ru(r)

(H.4)

where

∆ωin , ωi−ωn = 2π( fi− fn)⇒ ∆ωinT = 2π(i−n)h. (H.5)

Therefore, the lowpass equivalent output the rectangular pulse through the 2-pole BPF is given by

xl p(r) = T · sl p(r)∗hl p(r)

= T
∫

∞

−∞

πz
T

e[−πz+ j2π(i−n)h]τu(τ)P1
2

(
r− τ− 1

2

)
dτ

= πzu(r)
∫ r

max{0,r−1}
e[−πz+ j2π(i−n)h]τdτ

= πzu(r) ·
e[−πz+ j2π(i−n)h]τ

∣∣r
max{0,r−1}

−πz+ j2π(i−n)h

=
z

z−2 j(i−n)h
×


1− e−πzr+ j2π(i−n)hr, 0 6 r 6 1

(eπz− j2π(i−n)h−1)e−πzr+ j2π(i−n)hr, r > 1

(H.6)
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and the corresponding bandpass output is given by

x(r) = ℜ{xl p(r)e− j(ωirT+θ)}. (H.7)

Now we add the Gaussian filter. Using the integral [55]

∫
e−

x2
2 + jbx−cxdx =

√
π

2
e−

(b+ jc)2
2 erf

(
− jb+ c+ x√

2

)
, (H.8)

where erf(·) is the error function. We further define

λ ,
δ

T
=

√
ln2

2πzg
. (H.9)
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Then, we can find the lowpass equivalent output of the Gaussian filter as

yl p(r) = T · xl p(r)∗gl p(r)

=
∫ 1

0

z
(

1− e[−πz+ j2π(i−n)h]τ
)

z−2 j(i−n)h
e−

(r−τ)2

2λ2

√
2πλ

dτ+
∫

∞

1

z
(

eπz− j2π(i−n)h−1
)

e[−πz+ j2πh]τ

z−2 j(i−n)h
e−

(r−τ)2

2λ2

√
2πλ

dτ

=
z√

2π [z−2 j(i−n)h]

[∫ 1−r
λ

− r
λ

e−
x2
2 − e−

x2
2 +(−πz+ j2π(i−n)h)(λx+r)dx

(
x =

τ− r
λ

)

+
(

eπz− j2π(i−n)h−1
)∫ ∞

1−r
λ

e−
x2
2 +(−πz+ j2π(i−n)h)(λx+r)dx

]

=
z√

2π [z−2 j(i−n)h]

[
√

2π

[
Φ

(
1− r

λ

)
−Φ

(
−r
λ

)]
− e−πzr+ j2π(i−n)hr

√
π

2
e−

(2π(i−n)hλ+ jπzλ)2
2[

erf

(
− j2π(i−n)hλ+πzλ+ 1−r

λ√
2

)
− erf

(− j2π(i−n)hλ+πzλ− r
λ√

2

)]

+
(

eπz− j2π(i−n)h−1
)

e−πzr+ j2π(i−n)hr
√

π

2
e−

(2π(i−n)hλ+ jπzλ)2
2[

1− erf

(
− j2π(i−n)hλ+πzλ+ 1−r

λ√
2

)]]

=
z

z−2 j(i−n)h

[
Φ

(
1− r

λ

)
−Φ

(
−r
λ

)
− 1

2
e−

(2π(i−n)hλ+ jπzλ)2
2 +(−πz+ j2π(i−n)h)r

[
erf

(
− j2π(i−n)hλ+πzλ+ 1−r

λ√
2

)
− erf

(− j2π(i−n)hλ+πzλ− r
λ√

2

)]

+
eπz− j2π(i−n)h−1

2
e−

(2π(i−n)hλ+ jπzλ)2
2 +(−πz+ j2π(i−n)h)r

[
1− erf

(
− j2π(i−n)hλ+πzλ+ 1−r

λ√
2

)]]
(H.10)

and the corresponding bandpass output signal is given by

yin(r) =ℜ{yl p(r)e− j(ωirT+θ1)}

=ℜ{yl p(r)}cos(ωirT +θ1)+ℑ{yl p(r)}sin(ωirT +θ1)

,min(r)cos(ωirT +θ1)+µin(r)sin(ωirT +θ1),

(H.11)
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where θ1 is the phase associated with the transmitted symbol.

Now that we know the output of signal with frequency fi through branch “n”, yin(r), we

can find the output of the previous pulse with frequency fm1 through branch “n”, ym1n(r), in a

similar manner, to be

ym1n(r+1)

=ℜ{yl p(r+1)e− j(ωm1(r+1)T+θ0)}

=ℜ{yl p(r+1)}cos(ωm1(r+1)T +θ0)+ℑ{yl p(r+1)}sin(ωm1(r+1)T +θ0)

=mm1n(r+1)cos(ωirT +∆ωm1irT +ωm1T +θ0)

+µm1n(r+1)sin(ωirT +∆ωm1irT +ωm1T +θ0)

,mm1n(r+1)cos(ωirT +X)+µm1n(r+1)sin(ωirT +X),

(H.12)

where

X , ∆ωm1irT +ωm1T +θ0, (H.13)

and θ0 is the phase associated with the previous transmitted symbol. Note that we can assume

θ0 =−∆ωm1irT −ωm1T ⇒ X = 0 without loss of generality. Letting X = 0 in (H.12) yields

ym1n(r+1) = mm1n(r+1)cos(ωirT ). (H.14)

Similarly, for the future pulse that has frequency fm2 and phase θ2, the bandpass output is given
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by

ym2n(r−1)

=ℜ{yl p(r−1)e− j(ωm2(r−1)T+θ2)}

=ℜ{yl p(r−1)}cos(ωm2(r−1)T +θ2)+ℑ{yl p(r−1)}sin(ωm2(r−1)T +θ2)

=mm2n(r−1)cos(ωirT +∆ωm2irT −ωm2T +θ2)

+µm2n(r−1)sin(ωirT +∆ωm2irT −ωm2T +θ2)

,mm2n(r−1)cos(ωirT +Y )+µm2n(r−1)sin(ωirT +Y ),

(H.15)

where

Y , ∆ωm2irT −ωm2T +θ2. (H.16)

Note that since θ2 ∼U [0,2π], for any fixed sampling time r, the trigonometries of Y = ∆ωm2irT −

ωm2T +θ2 are essentially the same as those of θ2, and thus we can replace Y with θ2 in (H.15)

when calculating the average error rate, where we need to integrate out θ2. Letting Y = θ2 yields

ym2n(r−1) = mm2n(r−1)cos(ωirT +θ2)+µm2n(r−1)sin(ωirT +θ2). (H.17)

Finally, the bandpass output signal of three consecutive pulses of frequencies fi (current

symbol), fm1 previous symbol, and fm2 (future symbol) coming through the 2-pole BPF whose

center frequency is fn, is the superposition of the three bandpass output signals yin(r),ym1n(r+1)
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and ym2n(r−1), and is given by

ym1m2
in (r) =yin(r)+ ym1n(r+1)+ ym2n(r−1)

=[min(r)cosθ1 +µin(r)sinθ1 +mm1n(r+1)

+mm2n(r−1)cosθ2 +µm2n(r−1)sinθ2]cosωirT

+[−min(r)sinθ1 +µin(r)cosθ1 +µm1n(r+1)

−mm2n(r−1)sinθ2 +µm2n(r−1)cosθ2]sinωirT

,Im1m2
in (r)cosωirT +Qm1m2

in (r)sinωirT

=[Im1m2
in (r)cos(2π(i−n)hr)+Qm1m2

in (r)sin(2π(i−n)hr)]cos(ωnrT )

+ [−Im1m2
in (r)sin(2π(i−n)hr)+Qm1m2

in (r)cos(2π(i−n)hr)]sin(ωnrT ),

(H.18)

where the in-phase and quadrature components are defined as

Im1m2
in (r) =mm1n(r+1)+min(r)cosθ1 +µin(r)sinθ1

+mm2n(r−1)cosθ2 +µm2n(r−1)sinθ2,

Qm1m2
in (r) =µm1n(r+1)−min(r)sinθ1 +µin(r)cosθ1

−mm2n(r−1)sinθ2 +µm2n(r−1)cosθ2.

(H.19)

Note that (H.19) is a function of θ1 and θ2, both uniformly distributed between 0 and 2π. Then,

the parameters A1,A2,θ1 and θ2 in (??) can be represented as

A1 = (Am1m2
ii )2 = A2 ([Im1m2

ii (r)]2 +[Qm1m2
ii (r)]2

)
,

θ1 = θ
m1m2
ii = tan−1

[
Qm1m2

ii (r)
Im1m2
ii (r)

]
,

A2 = (Am1m2
in )2 = A2 ([Im1m2

in (r)]2 +[Qm1m2
in (r)]2

)
,

θ2 = θ
m1m2
in = tan−1

[
−Im1m2

in (r)sin(2π(i−n)hr)+Qm1m2
in (r)cos(2π(i−n)hr)

Im1m2
in (r)cos(2π(i−n)hr)+Qm1m2

in (r)sin(2π(i−n)hr)

]
,

(H.20)
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where again we use the four-quadrant definition of tan−1(·).

The output of a rectangular pulse through a Gaussian filter is

s(t) = sl p(t)∗gl p(t)

= PT
2
(t− T

2
)∗ e−

t2

2δ2

√
2πδ

= Φ

(
2πzg(1− t/T )√

ln2

)
−Φ

(
−

2πzgt/T√
ln2

)
,

⇒ s(r) = Φ

(
1− r

λ

)
−Φ

(
− r

λ

)
,

(H.21)

where λ =
√

ln2
2πzg

was defined in (H.9), and Φ(·) is the CDF of the standard normal distribution,

and thus the received symbol energy is given by

Es =
A2T

2

∫
∞

−∞

s2(r)dr

=
A2T

2

∫
∞

−∞

[
Φ

(
1− r

λ

)
−Φ

(
− r

λ

)]2

dr
(H.22)

and the received bit energy is Eb = Es/ log2 M.

Finally, the filtered noise power σ2, the normalized complex cross-covariance ρ and the

corresponding phase φ = ∠ρ when “i” is the signal branch and “n” is the ICI branch, were found

in [34] as

σ
2 =

η0πz
2T

,

|ρ|= z√
z2 +((i−n)h)2

,

φ = ∠ρ = tan−1
[

zsin(2π(i−n)hr)− (i−n)hcos(2π(i−n)hr)
zcos(2π(i−n)hr)+(i−n)hsin(2π(i−n)hr)

]
.

(H.23)
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