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ON THE CLUSTER STRUCTURE OF THE S MATRIX

James Hamilton Crichton ,_:é )
e _ . Lawrence Radistion Laboratory ( S o gl-;-
s . , University of California . : : S :
T o Berkeley, California : ‘ ;
' ;y ' , Co February 9, 1965 ot
ABSTRACT |
L : L) b
We investigate conditions imposed on the S matrix by the requirement . = .}

.that interactions between elementary particles be of short range., We will
congider, in particular, two distinct properties of elementa;y-particle o é
_interactions, vhich we call cluster properties: (1) that interactions” |
between particles piocead independently of thé presence of other particles
. far avey in space and timé;.(2) that multiparticle scattering processes !
'océur predominantly by means of a freely-propagating pafticle connecting,:
in a'causal way, successive scattering processes which involve fewer particles.'
" We formulate these properties as limiting equations involving plane-vave.

"-fS-matriﬁlelements; These equations imply a structure in the S matrix which
:”“'Qe‘éall the clustér structure, We demonstrate the 1ndependence of the , B .'ﬁ
“i ficluster proéer&ies from the usually-postulated propefties of the S mgtrix; - .;:;;fs
'Kﬁi Lorentz invariance and unitarity. We show that the S §pgrators obtained" df ‘ fA“f%

‘from the Feynmah perturbation theory and from the LSZ formalism satisfy both:'

'cluster properties. We claim that _gx.realistic theory of elementary- }:'

'5‘{fparticle 1nteractiona must satisfy these properties.  ff-'“_~g;;',' N
N . e N
TN ' i - EN ‘\\ i
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I, INTRODUCTION.

This study is concerned with a clsss of properties which any

‘ realistic theory of elementary particle interactions must satisfy, The

properties vhich concern us are those which derive from the short-range,

.', or approximately local, nature of elementary particle interactions, We

',choose to discuss these properties and their consequences in terms of the

"\. .o
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.Adescription of the interacéion was not attempted by Heisenberg, and he vss ;.v?f

."‘S"
HE TR

"? i thus able to bypass the dive gence difficulties. In his formulation L

: %

o Heisenberg proposed in particu%ar that S be a unitary operator and that
;‘\' o .

‘;;;' ;Tlit svmmute vith Lorentz transformations. He slso,indicated‘a‘ Bt

S matrix. _

-Let us review briefly the S-matrix-program proposed by Heisenberg.1
In tne4early 19&0'5; he attempted to isolate from the quantum field theory
of that time, beset as it was with divergence difficulties, those concepts‘
which are generally valid. and which would occur in any future theory l

(possibly not beset by divergence difficulties): He studied in particular -

" the observable quantities in scattering processes: - the asymptotic behavior

in coordinate space of the wave functions of the participating particles.

To discuss these quantities he introduced a matrix S5, whose plane-wave

f"}; momentum-spsee matrix elements give the transition probability amplitudes

!

-. for scattering and production processes for two or more particles.‘ That is, _f;:f

the plane-wave S-matrix elements determine the transition probability

'? amplitude between an initial state of non-interacting particles and a

\ :
final state of non-interacting particles. ‘The observable quantities in

\

coordinate space are obtained by Fourier transformation., A detailed - \\- B
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A‘ildg‘ although we do not formulate,it rigorously. In a naive and intuitive

LY

¥ the ideas to be developed in\the present study., . . _ . ? -

-2~ | y | Sy S
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"connectedness structure” for the S matrix which implicitly suggests -

We may interpret the spi rit of Heisenberg' 8 program to be the following:: '

4 In any reasonable theory of elementary-particle interactions we must. be ableh?&f 2

... ito define an S matrix, Ultimatel{C of course, the theory must reproduce . .Q-';xx
1l

'viall experimental results in detai
J correct detailed theory, ve can nl&ertheless say that any candidate :

‘ for the S matrix must satisfy such general conditions as unitarity and

’-i meaningful task to inquire what further conditions on the § matrzx would

' . sense, we mean that two particles interact only vhen they are "close" to

i, each other, but we do not specify in detail what 1s meant byd"close."

fi”when the particles participating in.a scattefing process tend to be more”i
* and more separated, they tend to behave as free particles because the

{ii interaction ceases to be effective. In other words, ve mean that short—
,ﬁ; range' forces are of such a nature that asymptotically a multiparticle

‘ ;F system can be described hy free.particle states.' Of-courseo this

wﬂ assumption about the forces is necessary if S-matrix elements taken between;i

selves.- The further conditions on the S matrix which we propose are, a8

- free-particle states are to be the observable quantities in aﬂtheory which .

VI
-

i\

However, even if we do not know the

ﬂorentz invariance, or be excluded from consideration. It is thus a

limit the choice of theories., It is this task to which we address our-
\

'; we have said before, those which derive from the short-range of the inter- -

* actions. - . _ 3

By "short-range" force, wé have in mind a definite notion, - ;E 7f¥f

Rathef, our notion is tnat for very early times and for very iate times,

’.

K3




. ‘ff Jf'vant to assume any knowledge of results from those areas; we use the word.

“3- o
avoids the specific details of the interaction, It is this notion of
"sho;t rsnge" which is referred to hereafter. To avoid misunderstanding, LR
1t should be pointed out that we are gét'restricting the interactions to ‘
be derivable from potentisls which vanish outside a finite region or which }
nsve an exponential decrease, The notion of short range used hereé is much .
'mcre‘general. For simplicity, howeves; Coulomb«type forces are excluded
ftom‘consideration.2 |

We turn nos to the terminology to be employe;; In s multiparticle
"systen any given particle will interact, we assume, only with particles in
~its neighbofhood only with particles which are clustered about it, Or,
o in a negative sense, a psrticle will not interact with particles which: sre{'
inot clustered about it., Hence we ¢all the properties to be discussed here

cluster propertiés. Of course, the word cluster has been .used extensively:;f

" in.both classical and quantum statistical mechanics, but ‘here wedido:.not

5 in an elementary sense, The cluster properties on which we will focus, tov'.fgy,ﬁl

":”fbmust have a certain structure, which we sccordingly call the cluster

':zdg-decomposition of the S mstrix.

':‘ff'single-'or multi-particle asymptotic state, Here we have in mind the

- |
" be stated below, will be shown to have the consequence that the S mstrix

We will further use the word cluster to designate an& normslizsble:;f

. negative connotation of the word, A normalizsble momentum-spece wsve-

. : PR

'Eﬁ function defines for a system of freely-moving particles a region in-
coordinate space and in time, outside of which, the probability for finding '

ffﬂrfsny particle in & given finite volume is vanishingly small.j One may even:

’iidesignete some fonrovector Qg, T) such thst fsr enough sway from the

i * ' .
‘. ¢ -E, ~. . [ R . R T
: . i - H ot .o L, . .‘-‘_", A": '.r‘.'f. . ,{ R
K P

ﬁ;i_“ﬁf




"~ " probability is arbitrarily small, Of course, the probability in the PR

wlje

point " R , or much earlier or much later than T , or,bgth, such a

" neighborhood of (R, T) need not be large either. In this very vague

T

[

. about the time T « We wish to use the word cluster for a single- or

They are:

R

B tends to 1nfinity.

S the time-like separation of the clusters, IT - T2|2 - IR

h;_ cussion of the first and second cluster properties. f

and negative sense, the particles are "clustered" about the point R at

o multi-particle system to emphasize this feature of all normalizable vaves

functions, i.e., all bona fide wave. functions.

We now state those cluster properties which ue will study in detail.-iyf'ff

, -7 ‘\"

(1) Two clusters. initially descrived by free-particle wave functions

" characterized by_space-time parameters (Bl’ Tl) and (52, T2) » in the

sense described above, tend not to interact with each other in the'limit

that either 'lg_l - ,52( tends to infinity, or |'r:.L ‘- T2|. tends to infinity,

or.ooth.

(2) For two .clusters initially described by free~partic1e wave functions

the latter is within the forward light cone of the former, the predominant

: interaction between ‘the clusters is by means of a single particle propagating

freely from the ' earlier ¢luster to the "later" cluster in the limit that ﬁ‘-

|2
av2 d

L~

What other. properties, suggested by (1) and (2), it would be useful.

¢ to study will be discussed later, We now begin an intuitive physical dis-A_'

A
\
.

"w

What"ve.have in mind for the first cluster prOperty-is'the idea

i LT . .. ©l ! »

. that when two particles scatter off each other, that:event‘ietnot affected e

L characterized by space-time parameters Ry Ty ) and ( s To) s such that I

Q'
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by the presence of other particles very far awvay at the time of the
interaction. The first cluster property is thus obvious in the case LR
of classical particles interacting by‘meana of a potential which decreases N
rapidly with distance, It is also obvious in the quantum-mechanical case .
with short-range interactions. Two particles effectively do not interact
- as long as the amount of overlap of their wave functions in any finite
region is vanishingly small, Of course, this fact insures the possibility
of describing the asymptotic states as free-particleﬁstates. But,

,,x

furthermore, if during the entire duration of a collision process in-
volving two or more particles, the amount of overlapmgf the wave functions

: . of one group of particles with those:of the rest of,t?e.particlea is %

' alwaya vanishingly small, then the two groups of part%clee, or cluaters;‘

evolve eepanately and oo not influence each other., ; C | )

.Let us consider two particular clusters, we’contemplate the

”f»v - "rigig" dieplacement of one cluster with respect to the othe;, either ‘.'.'f ?f
o \ ' o

Ifé';‘ftf:'; T a'space-like'Or else in a time-like direction.‘ Let us characterize
| ~ the twofclustere by four-vectors (Bi’ ?1) and (Eé‘ T2) ,.in the sense‘
ldeacribed above. For simplicity.we first set 'Tl Bth? There may be n

\ significant overlap between the two:flusters. However, as lgl _‘le
' tenda to infinity, the amount of overlap in‘any finite region tends to\
'\vzero, so that the elusterautend to develop indevendently of each other
‘vi\.in this limit, This is the\spatial vereion of the first cluster propert;x&;

and T # T ¢ The "earlier"

»aﬁ R lT - T l tends to infinity, the amount of overlap in any finite region

o ?fl s tends to zero, so that the "earlier eluster tends to develop independently.

R
P

3

s "‘.d’u




B -
of the "later"” cluster, and vice versa, This is the tedporal version of :
_the first cluster property.3v . IS o 1i‘“@¥fl

o Both the spatial and the temporal versions have the consequence
" that the transition:probability amplitude for two separated clusters tends

to the product of the transition probability ampliitudes for each cluster

'ng_i :L::i“ . as the separation between them tends to infinity. Let il' i ~ designate

'~;;5j_the'initial non-interacting states. of. clusters 1 and 2, respectively,

l::f' :i-; -:.andf :1 N f2 designate the final non-interacting states, The initial
;?.Ii_TQ;‘?E 'state'bf'the-system as a whole is the tensor product '1112 s the final
E" l}ff,£-l: state flf2 + Let the transition probability amplitude between an inital
L va;i:i. state i and a final state f o that is, the S-matrix element between‘&’
%ifi ;%a?j; ‘ “ these two stetes, be designated by s{r;i) Finally. let A be some }%;

“* ‘parameter characteristic of %the separation, either spacelike or timelike,' \ _

the first cluster property can be

""i;z;‘?;'zbetween the two clusters. Th

S . o o
- ' ¢ represented in the following wa
Aiju';-_;yfu.-jfi; _ i }iz S(flfz;ilia) = ‘S(fl;il)S(fQ;iz) . _ '(;-1)

[y

«
. y
CE N

Of course the interactions\yithin a eluster,mey influence the

. development of another cluster with later characteristic time, What
o §

' is meant by the temporal version of the first cluster property is that

,3}:';f;f:7:'” thL probability for "earlier" and "later events to be related vanishes ;j._*;;%i
}éélﬁ 1;2;1”?: asithe appropriate time difference tende to infinityo- A crude notion of :*

? ot};i;ki'{causality may be introduced here: the probability for "1ater".events to g

{ 4;;.‘:%£;influeoce earlier ones must vanish feeter, as the time separation tends L L

4 -“;il?~‘ ?to infinity, than ‘the probability for "earlier events to influence "later _Tlfﬁz
‘;?:f\“i:: A;t‘onesi It is an intereating problem, then to find the dominant processes |

|
i
t
l
X
)



" particle can be prepaied soithat it is concentrated at roughly‘the

L8 : n7-

[y

;hich conttiﬁute to causally-connected events and to ffgg the rate at
wvhieh the prébability for them vanishes as a function of the time
separation, because this informatiS? will give gome macroscopic causality
properties of the § matrix., This iﬁformation is contained in the second

1

cluster proPéfty. \
In considering the second cluster property, we are thinking of,
for example, a three-particle process in which, first, two particles scétter
.of}.each other and then one of these scﬁtters off tﬁg third particle, The
probability for this process is, of course; less thaﬁ that in which two
‘particles scatter, with'the third particle passing by without'interaction.

Suppose, for example, that there are two éxtremely massive particles
4

‘
by

fixed in space a'distance A apart, Quantum mechanically, of coﬁrse, a
thiswéituationﬁcan persist only for s finite‘time.. Suppose furthermore
that a wa§e packet for a lighter particle is directed toward one of the
stationary particles; There is a certainlprobability that a.scattered l
wave will be produéed, The amplitude of the scattered wave will fall

off as gheiinVerae of the distance from thg‘scattering center, in order
‘that probability be conserved, so that the probability for an ihter-‘
action involving the second fixed partiéle is propértional to A2,

Thus the probabilify for an interattion iﬁvolving all three particles

is A-z times smaller than the probability for just two of the particles

-interacting, as A tends to infinity. But for large enough A , the
. second fixed particle's wave function will spread out over an arbitrarily
- large volume by the time that the scattered particle arrives to be

. scattered a second time, Of course the wave packet for the.fixed

LR
!
1
i

’
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arrival time'of the scattered wave, However, the scattered particle's

-

" wave packet will also have spread, so that the situation can no longer

'  be as simply described as with claesicei particles, Nevertheless, we

still expect a decrease in the amplitude as a function of the separation
"_A ... There is, in fact a faster decreaae than is called for by the naive
1’.geometrieel considerations of the classical cese.

Quantum mechanicaliy, ve could discuss this.ekample in terms of
concentrated, for example, Gaussian, wave packeté.h éﬁuppose there are.
defined six single-particle wave packets, three for the initial statef
and three for the final state of the three-particle system, Let
i packets ¢l ’ ¢2 , and ¢3 ~all be éharacterized by a four-tvector n
(il;tl)‘ and backets ¢hﬁ¢5 , and ¢6 by (52’t2) ,_with't2 >t

1l
and (%, - tl)z - (g, - 51)2 > 0. First, packets 1 and 2 interact in

ft. the neighborhood of x, at about the time t, » while packet 4 passes .

~1

" by. Packet b, however, can interact with a particle scattered from the __'i‘j;f..

U first i‘nteraction vhich arrives in the neighborhood of x, at about
| .

1 .. the time t The result of this second scattering is the appearance

2 *

R of the packets 5 and 6, the other final state packet being packet 3.,

Z"T;resulting directly from the first interaction. The S-matrix element
.ia of the form | o
' o6 T ST
. N 3 ® * ) : :
s(e51) = TT °py05 (25)06 ()03 (p3)0;(p; )0, (5,08, (py,)
L i=1 e “woo . ' -

+ T
LA

o 333(352623 ‘BLEth)

| :‘ where the action of the § operator is represented by the integral kernel, G

33(95?623’31223h)' This expresaion depends on the characteriatic four- o

.(1‘2)", 5

SR v A o et
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vectors Q}l,tl), (52’t2) only in the phases of the wave functions,
. ag would be made explicit ﬁy specifying the wave packets in more detail.

_ Explicitly, the dependence would appeafias a factor
o ' . exp [ipyox) + pyox) + pyexy - pyix, - Pgxy. = Py X, )]

. but sincé energy and momgntum are conserved, i.e,, P, *D,*tD " P3 + pSA+.p6,‘Q  '

only the difference X, = X, 8appears, €.g., ' : ‘ n

exp [-i(pS + pg = p)e(x, - x;)] K

As |x2 - xlf- ﬁecomes iarger and larger! the final state of the first -
pair of wave packets (the'first clﬁster) tends .more and more to a, H
' non-interactiig state, independent of any "later" interaction with the
e .'jj; third pacget. fhus it is meaningful to describe the interaction of.
L ;i‘\‘ E particles 1 and'2‘by a twoéparticie S-matrix element. Similarly,
- ; because the so-called inte:mgdiate particle does tend to a free particle

~ state as |x2 - x,| tends to infinity, the initial state for the second

1
scattering‘is a free particle state and it is meaningful to désqribe the

‘,4{‘f', ‘second séatﬁering ds well by a two-particle S-matrix element. It should |

"'}i' be.emphasized th;t it’is.the short range of the interaction which permité’
':ﬂV_? ;,ﬁ: the intermédiatgistate to pr?pégate f;eeiy;';On these;grbunds_ve éxpect

" . the S-matrix elémen?o Eqs (I-2), tb_tendito factor in ihe'formz'.-

R O
s .



! summed over all of them, ' They have -a fictitious existence, of course, n' L '°f

o s(fsl)

-
S

PR

P
A e
P

LN

_ S(f£1)n+ . ' o o A

L U e a8 s e B 0T

::.°n two particlés.‘ We have introduced 1nterﬁediate states wv(E) and

 because they are.never "measured." By the usual assumption that such a'

- set is a complete set of one-particle states, mathematically expressed

':vé.obtainYAn equaliy transparenﬁ expfeasion,vwithoﬁt gnobsérveé quaptities:.

. - o , '.fd Esd £6d th Eﬁ (P )¢6 (96)322(p5p6’phk)¢h(ph)

i'.f'g pjr 3543 d3~l¢ (p )Szz(kp §A)¢l(gl)¢2{22)] | L “.j:i’f éﬂ"'

] O

e W,

* N

L

* j ‘1-3236322d3?,id351¢3. (23)%, (580 (R3ky 5212 9 (g 19,(pp)]

as |x2 - xll +> . ' | ) . {I=3a)

In Eq. (If3a), the S (psp6 3Pk, k,) represents the action of the S'operator-

e

: # : T S R
Ligy (ko (K5) = 650k = ky) = - -

N LIRS
. - ,
, L.y
. -

- B * - . :
. .. . v ST . . v
. b . . T o
l <o . . R Fh
. . v - N M -t .
. Lt - L . v

<

,/
d 23d 22
lx-xlwoﬂ-'_.; T | . (1-3v)

"The quantity in the square brackets is, in a senae. the non-interacting

C intermediate-particle wave packet.' Since, by four-momentum conservation,

P P
s »
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‘K= p5 *+ Pg = Pys the dependence of S(f i) on x appears

2~ 1
(implicitly)only ina phase»factor, exp [-ike (x2 - xl)]. This is the -

.
o ot o sl e

- phase which would occur if the intermediate state‘vere translated back
I

S ;.to the point x1 , 80 that it would be spread out by the time it interacts Tf‘i"

jiw::' ff:T N with vave packet k, Thus the rate at which S(f;1) vanishes is determined

Ai‘t.by the rate of spreading of a single-particle wave packet. It is a well=- .H
. known result in quantum.mechanicsthat normalizable,~free single-particle
time-dependent coordinate-space wave functions tend to zero as ltl-3/2 .
~ for large |t! In the same way, S(f;i) tends to zero as ‘fast as
-x l-3/2

Ix as Ix- - xll tends to infinity. (The mathematical

details ‘involved are revieved in Appendix ‘A.) ) i
Let us discuss the quantum-mechanical case in more generality;
" Again consider two clusters, characterized by four-vectors (R,,T,) and
L (R,T,) respectively, such that the latter is within the forward light.
 cone of the former, or anyway that a significant neighborhood of'the
'iv;%latter is within the forward light cone of a significant neighborhood of
'?the formerj We wish to allow for the possibility that one or more particlesvi‘ff“?

. produced in the interactions of the first cluster can take part in .the

" interactions of the second cluster. _Again we may see that the S-matrix R

h element involving, say n particles, propagating freely from the region

* of the first‘to the second interaction, depends on the separation 1R2 --Ri
‘}:E gr”ff; only throughlthe pnases of the n intermediate particles and decreases

““to zero as fast as Ir, - |-3n/2 IR - Ry | tends to infinityo s ﬂj“_iifi
I - .It is as if a wave packet representing each intermediate particle is o

"?#translated backwards in time 80 that by the time it arrives at the second

':ff:cluster,lit is;spread out. We choose to call these processes in which n

.o



' amplitude is smaller by a factor of A

"i8 of order A~

-]_2-

pérticles leave the first cluster and interact with thé‘hecohd,
n=particle transfers, It is seen from these arguments that the one-
partiéle‘trahsfer processes dominate the transfer processes, In fact,
the corrections to the asymptotic limit for one-particle transfers are
larger than the two-particle transfer contributions for large enough
time-liké-éeparations. This dominance of the one~particle transfers
is of'course’true.also in the classical case. That macroscopic -
causality is involved can be seen as follows: Suppose a particle
produced in éheiinteractions of cluster two proceeds to the region of’
cluster one, B&'the time it reaches this region its wéve-packet

=32 e amplitude for each 1,

!‘\- ’

“pgrticle in the first cluster will also be reduced by at least a factor

at that time because there has been roughly a period of time A

since the characteristic time of the cluster. Thus the amplitude for an

.- anti-casual transfer, one from the "later" cluster to the "earlier" one,

3/2 s for large ‘l s compared with the amplitude for a

| . : :
causal transfer, one from an "earlier" cluster to a "later" one,

N

In view of the discussion of the previous paragraphs, it is

:;fg-possible to represent symbolically and somewhat imprecisely,thé consequences
[fffof‘the second ¢luster propert&.on the structure of the S matrix, just

' as Eq. (I~l) represents the.conseQnences of the first. 'Agaiﬁ‘let i

) iaiz designate the initial ndn—interacting states of clustefs;bhé‘and tﬁo,
.ﬁ;;quespectively,:and let fl’ 'f2 »desighate;the%final\sfages.lzLét.  -

g <7 8(f31 p) be the function of 3 given by T

M
“




' ' » v;
s(f; i g)’ijd?gl" see d?p;;f d?gl' vee dip!'lie}f (91" ...“p:f)

. n. FEX) ", " sen ] 1 eee .,.
" ST T B B e B 9,0 0t )

-

-

:1 where S '(pl", AN Eh"igl" 'y By ') represents the action of the S matrix

“ in describing the development of an n-particle initial state in an m-particle ';

final state. Analogously we define s(r ,g,i) by

’
¢

, o . . L )
'S(f'g,i)l: jdpl .oc dp dz ees dtgnﬁ (21 000‘9 )
a sie M - 'y « i ! vee 1! T
x 8 f+1-ﬂ1(21 » N Bn o B3BL's *° .Meni)ﬂi(pl " B, )
We suppose the characteristic. four-vectors X, s X, are such that . _
: c : Sy - - 1/2 .
C Xy =Xy is forward t;melike, and A= +[(x2 - xl)o(x2 -.xl)] /.. Then.

from what has been said above, we expect that

uni 3/2 imh(s(

N

l 2! 1 2) - S(fl,i )S(fz,l ) ‘ ‘ﬁ. '. B
'fd Rs(fe‘iaa)s(fla%ii)}. = 0 . (I-ka)

We furthermore expect that the macroscopic causality conditibn‘for this

‘configuration of particles be expressed by the limit

' : : lim 3/2fd P S(fzp,i )S(fl,ilp) | ¢ (I=kDb)

' We have' neglected some trivial spreading effects in writing down .
A

 Egs. (I-ha) and (Iéhb) These will be studied in more %etaxl in '

Y

A
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iOur main obJectives are to dra attention to the underlying physlcal

\principles and to atate preciaely vhat their consequences are for the
e . \
s atructure of the s matrix. N

: .‘-

LA A
L Do
. g o e S
. A et s
.ok vt . . ‘
LY . . . .

w1l
Section IV,

They do not affect our conclusion aﬁout tﬁéaimportance of
the one-particie transfer term.

From the results of the discussions about the first and second

cluster properties, it is clear that "higher order cluster properties"
2 could be formulated., For example, in the case of three clusters with
- characteristic four-vectors X s Xy X

3 such_that both Xy = Xy and
.x3 - X, ure forward time-like, a possible event is one in which a

particle produced by the interactions in the first cluster interacts

in the second cluster, and a particle produced from the second cluster
“interacts in the third. Then one could argue, as above, that the

amplltudes for these processes are the largest of any,in which there are

- ;(
interactions among all three clusters, and that these amplitudes are of !
_order _(l l )“3/2 for large Al = +[(x - x )'(x - X )11/2 and large +
Ay = +l(xy = x,)e (x - %, )]1/-2.

We will. not discuss these higher order
cluster pr0perties, however, because they are seen to follow‘from the

’ \
‘vfirst,and second'prOperties, and add nothing new,

v

The cluster properties which we have discussed above will be

given a more precise, mathematical statement in the following sections,

‘ We have sought to emphasize the fundamental physical concepts from which
i" our conclusions will be drawn,

Of course, these conclusions, as ¥

A} X'
requirements on the structure of the S matrix, have already been in-

hY
corporated into many theorfts.. Hence, we shall indicate some theories \\

2k

which fulfill these requiremepts and give examples of some which do not.

+

\.“ . ] L
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For the sake of completeness, we sketch briefly ‘the treatment
which these requirements on the S matrix have received in the past, :
The cluster properties of vacuum expectation values of time=
ordered products of field operators, or 1t-functions, were investigated

T Kfistensen,e and Freese9 (for possible

by Watanabe,6 Symanzik,
f . | - application in the quantum theory of fields). With the introduction of
| | - asymptotic free-field operators in the Lehmann-Symangik-Zimmermann
formalism, the t-functions could be related directly%to plane«wave S=
matrix eiemeﬁts,lo Zimmermann proved that the r-funitions hgfg a certain
- singularity structure, and, as will be shown later, this structure imﬁlies
that the S matrii given by'thé t=funictions fulfills the requiremepta of,
our first and second cluster properties.l1 ' : . ]
Cluster properties havé also been studied in the so-called

‘a*ioﬁatic quantum field theory. The fundamental obJects'iﬁ the theor;k_
are vacuum expectation vaiuea of products of field'opérators, the Wightman
\ functions. In this approach\ the asymptotic. condition is not assumed, but\\:

e d ‘ , . \‘
oo - iderived from the axioms., This has been accomplished by assuming a spatial ‘§

~‘cluster property for Wightman ctions in work by Haag, Coester, Araki,
L 12-15 . : ,
Hepp, and Ruelle, The existence of an asymptotic condition allows
for an S matrix and it has Been shown by Hepp that such an S matrix

‘ﬁltimately obtained from the axioms\ would satisfy the requirements of

| the spatial ver?ibn of the first clu?ter property.l6
: In the Qo-called S-ﬁatrix théqry,»which is based on certain
- . _-'. aﬂalyticity'properties of théls-matrix elements togeéher with Lorentz -
o vj . A_ invariance and unitarity, Stapp and others adopt fhe clustervdecomposition
'Q?“‘?jf:  , ‘the S matrix'és a.postulate.lf 01ivé has derived frqm.g set.ofjs-ﬁatrix n

of
R L : o |

.
e |
b . X
. g - . 1

|
i
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postulates, including this "connectedness structure,"’%feingularity
~structure in multioarticle matrix elements similar to the requirements
of the second cluster property.l8
We conclude this section with a survey of the contents of our
'vstudy. In Section II we develop a mathematical framework suitable for

o \
4 @ more precise statement of\ the cluster properties. Particular attention
i

will be paid to plane~wave Simatrix elements, treated as tempered dige - *,

tributions. In Section III, the first cluster prOpegty is stated in ' \\ )
: I

'{these terma, The possibilities\for a diagrammdatic representation are

t

discussed. The relationship between the first cluster property and

:ﬁnitarity and Lorentz invariance iiginvestigated. Then, as examples, wew

discuss the Feynman perturbation theory, Zimmermann's work on-the

*

t-functions,‘and an S matrix given Q& a Hermitian phase metrix._ A

\
counter-example is given which violates the first cluster property.
' MJch the same treatment is given the second cluster prOperty in Section Iv,
-\‘- -
Sectiou v 13 reserved for some eoncluding remarks. - ,' .

i

’ - "
. . .
. . ! . . X o N .
B °} . . N . . o . : N [
- - . .. . - N : N - " e
LS Tt A -, . . . . - Lt
R L e . . ] ,
o B Lo . - . i
3 . . . L . R R
N Y ¥ . T . . . DR L . - .
* - : . . (Y - - - . L. . : L B .
o N . o " o N . B i - ., .. v -y I .
e . . .
‘ “
.
.

i



1T
II. MATHEMATICAL FORMULATION  °

. In this section we present \the mathematical framework on whith

our study is based.
\

A complete, realistic theory of elementary-particle interactions
would include many differenp types ofaparticles, ¢lassified according to
' mass, spin, statistics, and internal quantum numbers. The cluster
properties must hold, we ciaim, in any realistic theogy, no matter how
rich the variety of particles, They do not depend oéﬁthe internal
 structure of the particles, This being the case, the 1nclusion in the

discussion of an arbitrary number of different typesfof particles vould

: complicate the discussion without leading to any further insight .into the

cluster properties, Hence, for simplicity, we shallglimit our discussion
to the case of theories with only one kind of particie, namely, & neutral,
‘scalar boson with a finite magss, m, The problem of extending the results
to theories with many types of particles is essentially 8 problem of

' developingla suitable notation, and we shall not diacuss thia problem

- here,

A. General Properties of the S ﬁatrix '

We review briefly the general properties of & . The details
19

" have been discussed extensively elsewhere, The S operator, being

defined by matrix elements between normalizable multiparticle non-interacting.ﬁ' '

' statee, thus has an action on the Hilbert space 7+-appr0priate to the

'v_~description of any number of identical non~interacting particles, in

‘vaarticular, S maps - -onto itself. The n-particle subspace 7¥'

"of N is. thus spanned by vectors of the form "i}”

,:/. '




o M . ‘ . g’
J{d3pl coe d?g w(p, *°° gn)a*(gl) cee a?(gn)lvac> R

L J
S

X n
where the functions w(gl o0 gn) are square-integrable symmetric
"momentunm-space wave functions," and the fa*(gi) are plane-wave boson _" . ff_
.creation operators. The familiar algebra involving the a+(g) and their
. hermitian adjoints, the annihilation operators a(z),’is defined as ‘
'follows .": | _ _ | _ | , _ L
\ ' _ . . _ | N

latp)yalp)] = [a¥(p)a’(e1)] = 0, [a(p)iatp)l = 6 (pop) L
| | (1I-1)

;ZWé assume the existence of .a unique vacuum state, |{vac) , with the

.
1&
.

" - properties
a(p)lvac) = 0o -, (vaelvae = 1 -,  (11-2) " -
We require S td be a unitary operator in-accordance with the:

“'customary probebility interpretation in Quanthm mechanics,

' Thé Lorentz invariance of the description of a scattering process -

: Eis.A by an S-matrix element imposes the requirement thatAthe S- Opefatof'V

. commute withAthe unitary operator U(M,z) representing an inhomogeneous

proper Lorentz transformation, Here M is a four-bye-four matrix

"5,~representing a homogeneous Lorentz transformation and 2z 1is a four-

f'f{ - .vector representing a translation.' On a position variable x in fours

;[tspacg such a transformation gives . x' = Mx + z , and on a four-momentum

“,;:variable, ‘P s P'. = Mp . The action of U(M,z) on%theﬁonegpart;clq R

_: ”’*;:QLorenyz'group, is fﬂ C ; L

subspaég, which thus provi&eé an'irredﬁcible'reprgsedtntion.fér the

Fo.

Ty e

“
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u(M,2)at (U2 (M,2) = [ulp)/ul(p) 126l P et (pr) (11-3)
" where p' ='(p',w(p')) , and m(p) o *(p + m° 1/2. The metric here is

such that if ' z 18 the foursvector (z,t), then zop' = w(p')t « z°*p',
' Ay (" LY.V

t . The Lorentz group.also acts irreducibly on the no-particle subspace but

”}'the éorrespondiné representation is the trivial onme: .

\ ., o .'.U(M.z)]vac> 2 |vac) .. . (11-h)

{

. ) & ’
That the S -operator commute with the unitary opera%ors U(M,z) implies
that S act like a constant of modulus unity on the vacuum state vector,
and on the one-particle subspace. Without loss of generality, this

' : ' ) I
- constant can- be chosen to equal one., In summary, S’ maps 9% - onto f
itself and satisfies the.following requirements: ‘
cssto=osTs 2 1T, 0 e (11m5a)

. : L 5 SU(M.Z) = U(M,z)S‘ . . . SR (II...S‘b)
' S|vac). = [vac) o - (II=5¢)

1’ ) . + . N ’ . : .

Sa gg)]vac> = @ (g%lvac>‘ 6 (11-54)

'B. Plane-Wave S-Matrix Elements'aS'Temgered Distributions

The quantities ofphySicalinterest in scattering theory are‘_:

3

the S-matrix elements between initial states ‘)

e = feg e g g e g s

Qlep <=

L

T ARSI

£t 3 i




and fiﬁal statee . ': - : . ‘. r,"% f:::

_Wr) = jd coe d3£; Wf(-?.l" o )9' (P ") eera (E ”mc)

<w wa><~’ ,

iiﬁhich are therefore of the form

|

.
i
* s

i 3., . » i ,
; ,'<wf|sl¢i) s J{Aiﬁl ool d3p" 321' coe-adpr y (p,":*** " )

AR : ang £ § g

L

.Sn n (pl"g '!o-“,”i;f;h" oac"vp;li)wi'(gl' ..'; p! ). . ,

1 " Y, - “‘ni ‘ .
- ]// o o o . R
, N g o , N .
The kernels Snfh are the appropriate planeé-wave S-matrix elements, |
~+ which are defined by Lo - '
smn(l..’,l"’ :.a’ P ”‘21" ".Bn') 5 (Vacla(gl"v) oo a(gm".)’: - } " .',,

~7m
oty et e
XSa (Bl'),... a (gn')lvac) .

o o - (11-6)

.. Thus the quantit1es of phys1cal 1nterest are bilinear functionals, on the_

‘:,"space of square-integrable momentum»space wave functions," defined by

the plane~wave S-matrix elements., The mathematical statement of the
. cluster properties can thus be made as statements about the Smn 9 gg-'

objects which define functionals on the space of square-integrable

;‘functidns. Weaker statements could be made by restricting the space

' . of functions on which the Smn define & functional,. Hoqever, the
. o : ' v &

o subepaee must be dense in the larger space to insure thetfthe physical .

quantities, thevs-metrix elemehts,lcan be represented by:the fgnctionels

 defined on the swbspace, . 5 h
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For our purposes we choose a particular subspgce dense in the

e e -

;',gft . space of square-integrable functions, namely the space of teatiné functions *

E v with reepect to which tempered distributions are defined.2° These E
: ;\ © functions may be characterized as infinitely differentiable and rapid;y’ S
'i‘ decreasing., We make this choice beceuse'tempered'dfstributioha have = .
??; :;‘;"1K received much attention in'elementarylparticle theories in recent times:\ '
S ?Y for example, in axiomatic quantum field theory. Of course other \%
choices could be made, but, for definiteness, we restrict the mathematical ti\ :
i statement of the cluster prope \iea to be etatemente about the S } _ I;XJ

' as tempered distributions, ? : ' . . . R

f{i ?,cﬁv‘f' : '* " The appropriate spece of h\sting functions is defined as followh:

.fgfgi‘f;?‘ ’7_Let <8(P3n) be the set of all complex-valued functions #( '0“ pn)‘ f A
R _of the n three-momentum variables\\pi. covy P, such_?hat"u" S “nf¢
?.A O ’: , \ : N w fe . .";:" i .",:'
‘ el (a) g is infinitely differentiable. N
‘ 2, 51/2 F e SR U §

.(n) Ir P"’_‘El *p, *t4p ) s then .- 0 T - g -

:".-.'-'“ oL ‘:’ e . . a T . v ,
[ D - F o ap,tees L “3n g D , 3

Lo for any"k,m' and any choice of the. indices ay such that 'z a = me -
7R S 4=l
o " Furthermore, let AX(P be the subset ' of all functions in 4f(P TR

*

' which sa.tisfy the additibnal. conditions that R

S ,. L.

(c) ¢(2l 00013 ) is a symmetric function of "the momentum variables

! ‘. . R 'v . . :‘ . Ll
- \‘ S pl. (R X ‘n‘g \‘.. . :, - oo o '.-, I: B o \v "

'\l

7 (d) The function ¢ is normalized to’ unity in the sense that ;” "; 1
B AR BT TSR Y e 2 : 5
S S ”]'A;g“v”;,[d gl <,f.d”3nl¢(911“' En)IV“f;; : A
- S ) s T TS ‘.‘ & ' L K . ' -"". e s T e
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With each function ¢ in J (P3n) let us associate an operator
. ' S
. ‘ \"

"1 = (a1)7/? fd‘?gl o dp iy ceeplat(p) e atm) (11D

> AT

and a vector Af{mlvac) + - We may designate A*{¢} as the creation

‘ dperator for the @ cluster, keeping in mind the discussion of

: 'S:ection I. This désiénation is meaningful, of course, not only for the '

testing functions g , but for all normalizable mome,ntum-space wave
functions, This vector, A {¢}|vac> s 13 a unit veétor in Nn .

Furthermore, vectors of the form cA {¢)‘vac> , whe‘:re ¢ is any

. | . . _
constant and @ ‘is any function in <8(P3n) , are dense in ')7‘

Thus, all physica.l S-matrix elements, say between an m-particle final ‘1

]
\

state and an n-particle initial state, can be represented arbitrarily.
closely by matrix elements of the form <vaclA(¢ }s A {¢ }lva.c) .
vhere ¢ ,¢ belong to ty(P3m) Q (P3n) . respectively'& (We define

A{g} to be the Hermitian adjoint. of A+{¢} )

The general properties of the S Operator, Eqs. (II-S), are, in,

'terms of the tempered distributions Smn ’ ' - o e

(kl) f e dﬁk (B0 %0 B 3Bp s "..'." Bk) \

k=0 _ _
. )i ‘ nk (21"’.~".’2p';2i!9 o¢e' Ek) E ".';.
| 5 6mn Z ' 63(21',_' 6'2;1)-"‘.?6- 83(,2111" f_og‘;m)’ s e B (If‘."aa) .

T
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" vwhere 54 denotes the sum over all permutatiqné of the indices
: : PR

l (XX ] ’-m)
ql o‘.oo am

o l’, 000' m;

m ae B -
T tete2 T tatp 28, (,% +ov pim, 0y oot 20)
o o |

*

H [m(ﬁi")llla H [m(pdi)jllas <ﬁ1"o “.’.ng"i;?l" .GO'O ‘gn")
i=1 S J=1

“where t@,w(@)) = M{g.w(ﬁ)) M defining a homogeneous Lorentz trans--u
”Z_ formation, ) 4 ; !
.‘..; ' A K i - n Com .
o Spleys vty .pl s **ts pp') = exp |ize Z p,' -:Z pl")
o . . . ‘ . . J=1 - ii=1
* 8 (Pl'"'um P ")
‘ > ‘
. ’ (11-8¢)

"z 'defining a space-time translation;

S0 %k gy =8 = 0 for mr0

B ", K] _. " S . ‘ T
‘ 811€§1 g ) o= Egl "5 ). e S1in = Spp = 0 for a>1

:Qxi;t;L E . - ; | » . Lo | ; - ‘ (II-BQ)

: Of course, by their definition, the S (p1 100 Py ,pl LN p . are

15?3 symmetric in the primed variables and- in the aouble-primed variables ‘
s_e_p.a.r.at.elx. B I e

R : ' - (11-8b)

e ety
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We consider further the "cluster" creation operators., It is
Aevident that two such operators acting'on the‘vacuum also define a

'Vjﬁhysically acceptable state, Snpﬁose ba 'is an m-particle testing .

" function and ¢, is an n-particle testing function, Then we have

. \-l.l
.

“*

atig at g dvacy = (mtad 22 (m 4 m)11h fa{e; af"sm
x @ (B a On' E“nmb(g“ml .000 gum )a (B ) veé g (2 +n)!vac)
: : (11-9)

- . o . 1 eeoep+n
where L 1is the sum over the permutations a."ees q

of the m+ n’

P 1 m+n y
. . - . i
momentum variables, 'Except for normalization, Z g (p *eep ) i
a “ﬁl ) ~ﬂn o
f'xﬂ (p *es p ) belongs to AX(P3(m+n))
41 “nen

To give meaning to. the notion of "far awayi in space and time, ‘

we must atudy the effects of space-time translations on the free- .
v

particle states, including the subspace spanned by the ¢ functibns.'

, x
. - Using Eq. (II~3), ve obtain - O . g"QW\

ot = AT o, b

#'(p; **py) = exp (iz¢ Z-_gi)ﬂi(‘pl"'“ P .
' ) “i=1. ;" ' . i ’

If one identifies the @ with a momentum-space wave function, the physical = = .°

“’Jf.interpretation of these equations is obvious. The discussion in Section.I '~

\

i i repeaied here fOr-emphasis} Associated wlth the free-particle state

’>5_descr1bed by ¢ is a region in coordinate space and in time such that,

- \ . ‘,\ : : . . . . . \,»
iy L [ . ‘ . AN

S far enough %vay from this region, the probability for finding any particle

P ) . \,
' \\= S S , SN
A\ : e 5 . ’ . ‘ Coe \

L. (II=10b) o
. .

3



«25e &
. . ; n‘:

oy
o

'in a giveo finite voluﬁe is arbitrarily small, This reéion may be loosely l
identlfied as some neighborhood of a four-vector R , which is therefore j' 2
‘a functional of @# . The space~time translation of amount 2z on the
L, 1‘;'.“state Af{ﬂ}lvac)' shifts this characteristic coordindte-space four-vector .
- by amount 2 o N ‘
Suppose that the functions ¢a. ¢b have characteristic four-:
' - vectors R_, Rb. respective1y. ‘The state A+(¢3}A*{qb)|vac)> is thus'a
state vith two clusters, ¢a and ¢b . 99eparated;";in timeiand in

- . \ : : , LY ,
- coordinate space, by the four-vector R =~ R . Nowilet Af(ﬁsl be -

" i translated by amount - z . The new state is

47\ The two clusters are now "separated" in time and in coordinate space by

ﬁak

kS " the' four-vector R, =R, =2 + 'The expectation is t%at as z tends to
L .

""fffjxfjx_infinity in either a spacel ke or a timelike direction, regardless of - %

'l‘the fixed ﬁector Ra - Rb .

here tends to be no overlap between the
BT ’ h
Aifunctions‘ ¢a and ¢b . Usl

the Riemann-Lebesque. lemma, it can be .

RN rshown that, indeed,

ST vm mt Y, z)A (o }Ivac)ll 18 }{vac)i °||A*{¢b}lvac>||'

lzl-m- - » S

;{l;;ifsﬁ{{f; wherelllﬂ)" o <¢|¢>1/2, and [ | a\X(I |2 2 1/2 for fixed ¢ and:

'¢b° Thus we can give a well-defined\meaning to the notion of two .

-y - -.,u-.

K \ N
: _clusters. be1ng "far awvay" from each other in space and time‘ the . g
';;iffiftx - cl‘sters can be given an arbitrarily large relative space-time dis= Sl

ST T i . v R A

placement such that the overlap betweed them is arbitrarily small.

RV A




B et R T - .

] . \‘A‘.
~26m g
. | . ?2( .
Co . o - 6. Functional Formulation ' &
T y , \
”-4.VE‘_ ' . We can readily anticipate that the consequences of the cluster\‘< ff
'.\ properties on the structure\of the S matrix will be given by an infinite:\ |

hierarchy of limiting equati ns involving the tempered distributions

‘isﬁﬁ . Now, as is well known, he most convenient way of expressing a

<"h1erarchy of relations among s

metric functions of any number of

S
S variables is by means of a generating functional, Some détails of such . . _\ﬂ

'a functional formulation are given in Appendix B, With the view in mind

'of thus expressing the consequences\of the cluster propertiea ‘,
functionally, we introduce the scatterin functional, a functional
" of two independent: functions a(p) and a (p) o e.- . B
- , ' \ Cl _
o iF(uf(p);a(p')}.. : exp (-a-a )-{vac| exp (u *a)S exp (a'a ) |vac) .
\ TR 1}'. _ - B : 1,\7 _ ”;’ E '}§j{h'§?~ (11-12)
1"‘?;i;-iffwithlthe ebbrevietious . R e o ig;'“
ST e et e fd3pa+(p)u(p.) \ ol T (11a13a)
o . o Lo ' Vv el e
g alra E-]‘dspu*gg)a(p) ,i” (11-13b)
aval 5[d3pa(p)af(p),_ ~. . : v (1T-13e)
’ ~ N ~ ' : e . ’

P _bf " As mentioned in Appendix B, the tempered distributions Smp an‘be o

. L ‘recovered by the appropriate functional differentzetion of - v ,3
o : f‘. exp (a‘a YyFiat (p) a(p)]. Furthermore, it is shown there that F{a ,a} 18 g ‘;;;
; 1.the senerating functional for the expansion coefficienta of S if S flfiuf;i
L o ‘18 expanded in a sum of normal-ordered prOducts of annihilation and‘

3 ‘ 4 *
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| -v B < (I1-15¢)

h'i_*};lwhere ‘cl' qn@ ¢, Aare any two ccmple;‘ﬁumberé}'and‘vP

N

- '_“., 3.‘ ‘: give ; "_"-“Jh‘ :." . - E - . e

e i)
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creation operators. That is, &f

F{ét;u}

m,n=0
o) el IR (s i e ) s

i

then"' . ' ‘ ‘ , o

' 'Sv = E:  (mlnt)f1de3£l"‘--- d32m"d3£lv ase dBBn;“*(Blﬁ)"" “*(Rm")

m,n=0

i

X a(glf) vor a‘En')Fhm(Rl"' or Emn;gl.’«.... Rn') . (IT-14b)

{

.C;éarly,'the.-th— are tempered distributions, because of their relatione
'iship to the Smh ¢ Let ué introduce the linear mapping"rz which maps

hr'the function q(é)‘ into a(k) and u*(g) into ‘q*(g)jg as follows:

o mp)es

I3

m m n

r=1 sl ‘ L r=l g=l

5 1 and,.P.2 are

: any.two poweffseries functionalé'oﬂ‘;dg hnd:‘af,,'Eqnaticnsf(II-lh).

- - : -
| 6
. :/.,(z' R B . .

LR
LA

(IT=1ka) -

z ‘(m!nl)-lfdﬁgl” .".d32m'd321' cee dB&'a*(&") 0o a"'(gmn) .'

é

(II-15a) o

o (“1"1'."?2 2) ='~°1W(Pl}' ) °2m}("2) Lo amas

:
i
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| i‘w; B | | | b
" which is an identity following from the definitions of*ﬁ{l and
1.F{a (p),a(p)} o In Sections III and IV! we will use the scattering
v'.l functional F{a ;a} to compactly summarize the hierarchy of rélations
~-¥ ;ff}b* ‘;among the plane-wave's-matrix elements.
" The properties of ~§ expressed by theEgs, (II~5) have the
':'w-following expreasion in terms of the scattering functional. The unitarity

”.j‘condition, according to Eq. (B=-22), is

4
43
s- .

ves g3, SFla gaz-,ag%p | Fzga (p)sa ggp S
j{; (n1)” J[ a’p; .. Py o SRS a3 1.

e ..T,_

- n=0 ) ~“) soe 60 (p )

e o L (II-lTa).

e |

o Lorentz invaridance is given by ,ME/ ' ‘ 3, S E v

/,.

I (T T slutp) 1 1/2 a(pn = Pluly! 12 (p"); lulp")] /%(p'n o
et ': S e T (xzaame) |
| : where (2 w(p’ )) = M{E’ w(g)j M defining 8 proper homogeneous Lorentz

;iﬁ g ;f:$ o transformaﬁion- and’

F(a*(g);¢(g)} = F{e'?? P f(g)'eiz pa(g)} R ;.f: (I1-17e)’
."where z defines. a space=-time translation.‘ EQuations (II-5¢c) and (II~54)

‘. imply thdt

";'nFOO = l,; 'Foﬁ',éf Fpo = 0. fo:  P ,,9"f- (;I-le)
Fln"?"Fﬁlﬁ;' 0':'f9?‘ n > 9;  ‘ “?{ ) '(IIfITe)‘

;?f._’,:‘f..'f
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‘ . , *° © ] B '. ]"' . 6
NJQHM@I=1+Z;z:mm”4-féh".

a0 . ',3 A ] 3 (] . . 3 ’
¢ '“dlpm d-pl AR dApn
_ ‘ m=2 n=? -

Thus the scattering functional must have the form: .

” af(pl") XX uffpmﬁ)a(pl') 00 u(gni)

\
x an(glﬁ. ?".,Em"igl'o e, gn?) Ve 7 (11-28)
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III. THE FIRST CLUSTER PROPERTY T

With the aid of the.formalism of the last Section, we can make a
mofe precise statement of the cluster péoperties. The Tirst cluster

o proterty requires a certain expansion of the_ S matrix in terﬁs of |
"connected" parts which we'cali.the cluster decomposition of the S matrix.
"This section is concerned with the mathematical statement of the first
cluster propertyﬂand how it gives the cluster decomposition a well- '

_ o
defined meaning.

5

7 . 2

A« - The First Cluster Prqperty in Terms of Plane-Wave S-Matrix Elements
T
E

To- discuss the implications of the short range of. interactions H

. we. introduce the "initial" state Iwi)

. H’i)~ = A+{¢1m}U(I,z)A*{¢12}|vac) : . . (111-1)

where the functions ¢il . _(¢12) .describe n, (né)-particle (cluster)
states. we have said in Section II that, for large |z| , the overlap

_ integral ‘of ¢. with ¢ . can be made'arbitrarily small, Likewiee,,
-because of the short range of the interactions among the particlea, the .

3.amplitude for an’ interaction between the particles of cluster one with-

the particles of cluster two can be made arbitrarily smalla This is

. the first cluster property. Let us therefore introduce a Vfinal" state

s,

- .

_,‘(‘_'_.'l}wf) = A"{q'sﬂ'}u("azl,z)A*{gé}|vgc > . (11-2)
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. - where the functions ¢f1. (¢f2) describe m, , (ma)-pdrticle cluster

1
states. The overlap integfal of ¢fl and ¢%é can also be made B .
". arbitrarily small for large enough ]zl;

PR - ' In light of the discussion in the introduction, we formulate

the first cluster property as follows:

< |
.

o = <vac|A{¢f1}SA+{¢il}lVac> x (vaclA{¢f2}SAf{¢ié}Ivac)".
R ’ff e | L | S (111_3)
' | ;;”ii; rEquation (III-3) is thus the precise statement of vhat vas indicated 1
"ifkﬁif' by Eq. (I-1). ‘The sense of convergence in Eq. (TII-3) is roughly this,&i
| "-.sﬁbposing thgt“ 4 ie'eitpef-sPace-like or time-like: Given functioné

¢ii’- ¢12,. ¢f1’ and ¢ , - @nd an € > 0 , there exists 8 four-vector
: *-.2 d;pending on € and on the particular ) functiona. ‘such that
-~ for |azez] > IZ ZI , the abaolute value of the difference between the .
" left and right-hand sides of'Eq. (111-3) is less than € .

Let us clarify the question about the normalization of the state

. L‘i' vectors occuring in Eq. (III-3). For the S-matrix elementvto give the
:-ﬁl'tran81tion probability - amplitude, both the 1nit1al and the’ final states a
: ‘;$5f must be normalized to unity. Thus, for Eq. (III-3) to correctly .

":'represent transition probability amplitudes, the left-hand side must

" e multiplied by i Ji* .';fiV’fVE}}:?{'
LA - nA {¢ﬂ}uu ,2)A" {¢f2}|m>n xn At mn}uu z)A (¢12}|vac)|| vz

?'»f*fand.the'righf-pand_siqe bf'le'z
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1/2

”A {¢fl}|vac)" x A et vacHl] = 4t e, [vac)lx "A (8, ,Hvac]) .

(III-S)

Since lim N(z) = N , however, by.Eq. (II-11) the correction terms

2]+

tend to zero and the limit for the tranaition probability amplitude is

_expressed correctly by Eq. (III-3).

Equation (f11-3) implies a limiting equation for the tempered

distributions Sin ¢ Writing the equation out in detail, we have

lim [d3pl" se e d3p" d ql" e d3q;;l d3
|z [+ee ! ~Te ¥

0aln" o )9’:‘ (9, *** gy M5, 0py" " 1y

~T 2 i
. d m2
, (z oY J)
o i=1 J=1

x 8 (p," t"P s AyMMs 004,
o omganyony 21 m* f

3. 1 see 43.m 43 ces 3 * " eae n. | I osee c'
= jd RS L L D D MR LT A

oy " 2 ~

(Pl sy ***y D 5Pl’o ".’.2' )

11~ ~ty A

3
f oo ]
p1 _ d4gn d

3

K

" 0‘.'p

b |

’ ql ’ “.’.3;1
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Equation (III-6) implies the following limiting equation for the tempered
distributions

) ) n2 N m2 '. . . 8 ’
) lim exp {iz° Z qi - Z q.J" ' ,
- |z]|»>= , ‘ :

i=L - U=

X
]
..
15
J?
. -
‘.
&
g9
-
&
{2
'Q
'Q-

: (p
myS y Rl

(p ':" oao
myny <1

(III~7):

Equation (III«7) is not immediately obvious, because the testing
functions on the left-~hand side of Eq,*(III-6) are not arbitrary ‘testing

functions in the space appropriate to S . s but products of

n .
m) Ty eRy Oy ' ‘
testing functions of lower dlmensionallty. It is true, of course, that.

these product functions "span" the larger space; i.e., functions in
-the larger space can be arbitrarilvaell represented by finite sums of

product fu{xctions.22 In the following, we make these abbreviations

3. 3w 53 3 3 » 3 - | 3 :
dr d"p see d7p d be) see g p! a q," e d d oo g
;+2‘ ~1 xmy ~l , | an _~ Sm | qnz

D.
it

= . b Soon oL . B by
Lty
i=1 9= o : :
. . - and we suppress the momentum dependence of the testing fuhctiohs and the
distributions smﬁ". The problem then is to show that :f'

!z]»w f m,n m n

. | * izea o T
.o * ho
| [ _]’ 471 +2%¢ Spvmn +n ¢ie = 8. S g V. (III-8)
o 172" "2 1+2 1% P4 O

e e e <

f o e e
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'x w3l ’ )
. . d ‘
. . R ) S
.\ where ¢f and ¢i are arbitrary testing functions ip the spaces o
3(m, +m, ) 3(n +n,) . L
%‘gg'(P and 48(P o ) respectively. Firat we represent thesé -
. T
. } functions exactly by means of infinite sums of product functions X
;5-;} j1 j{: ¢fl,u f2,u ’ ¢i ® §£;¢il,v¢12,v ¢
; 2 . _ . ‘
Then the left-hand side of Eq. (III-B), before the limit is taken, is
- i
g the folIOW1ng infinite sum *5

ZZ as g, teral
l+2 fl,u f2,u m1¢m2nl+n2 il,vii2,v o ¢

¢

Because . S 1is bounded (in fact, uniéafy), and z appears in @ phase lL
o . factor, this sum‘convergea hﬁiformly in '# . Hence the limit lzl +> o
; L and the summation over u,v can be inierchanged. The limitﬂof each -’
.;}‘ "term in the summand is given by Eq. (III-G) Thus SRR 8 ’7'4€
T - . o
A BN Z[d"ha“’ﬂ.nq’fa.u my 0y m n ¢11,v¢i2,§ o 4_'_"?‘
',1 - But the r;ght'-&ha.nd side of the above equaitipn ié Just: the rightuhénd ‘aide ’ :{‘I
- of Eq. (III-8). Therefore Eq. (III-6) implies _Eq;.,(xii;7),' o - '
o o a | This limiting equation is thé statement of'the'fi;st qlustef .
. property in termsvbf ihe tempered distributions isﬁn?s‘ Convérsely, anyvll :
. theory which has plane-wave S-matrix elements satisfying qu (III-?) i.
would necessarily aatisfy the first clustfr propertyo ; 'f' g
. !
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| B. Representation by the Functional Formulation

A |
RV "Equation (III=-T) represents a denumerable infinity of equation;,
| :\ one for each set of nﬁmber§\ Nys Dy ml; m, . The totality of these
f gquations-can'be-summarized y means of an equation involving the

}scattering functional, introd i:d in Section II, Specifically, this is

. accomplished by multiplying Eq.\(III-7), for a given set Ny Dy Wy, W,

by af(p,") or o gy daey) <o oty 16T (a") +o TG ety o nlg) 0y Y

‘ vhere a*,u,B* 8 are any four indﬁiendent functionsg and 1ntegrat1ng over
i

all the variables. Further, one divides by nl!nélmllmal and sums

Dy, Dy My, M, over-dll non-negative integers._ The resqlt is-

t t ~izep . !
(a'+B' e )ea iz Dy,
lim (vac|e , (a+8e S ' |vae > .
Iz e ) ©t ‘ i ‘
: toa  qeal gtea. geat T L
= Cvacle® %5 e®'® |vac)(vacle” %5 e |vac « . (111-9)

Equation (III-T), for any choice of RY mi, m, can be recovered from
V'Eq. (III~9% by the appropriate functional differentiation. Equation

~ (111+9) implies for the scattering functional the limit:

|2]+=

(III-10)

In obtaining the last equation, it is necessary to use thg result

C 0 1m exp [[@3p(a(p)8t(p)e P 4 aT(pla(plei®IT)] = 1,
Z"f” -v.-v ~ ~ i
R ‘:. a consequence of the Riemann-Lebesque lemma. Any scatteringUfunctional

satisfying Eq. (III-lO) neceasarily gives plane-wave S-matrix elements
~ which satisfy Eq. (111-7). T .-f-?» ' j;ﬂ_\

lim F{af(g) * Bf(p)eiz'p;a(g) P B(’g)e";iz'p} = F{e';_tv(;g);a(g)}F(Bf(g)'?B(g)} .

. e g Jr—— -
P e T ‘ S
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A
Cs« The Cluster Decomgoeition of the S';Matrii

‘The form of Eq. (111-20) innnediately suggests a different

- representation of the scattering functional, namely

. (IIIfll)"

I;‘{a*;u} = .exp {A{a*;a}

) Of course, Eq. (III-ll) can be used to define a functional A vithout

'any reference to the cluster properties. In light of Eq. (III-lO),

2

C however, such a definition is particularly advantageous. In terms of

N

the functional "A , the first cluster property_is the following:
~ _ o -
1im Aol (p) + tif(p)e'.i 1:',ct(p) + B(p)e z'1’}

FES Ry

.
e

| =‘.A{a*(b);a(p)}”+ A{a*(p);a(b){,’/ . S ()

~ L") ~N .

DR

.+ According to Eq.-(11-18), A’ hes the ferm L e

.

- AtaT;d}' = Z (m!n!) j "oeee d3 o O Bl".'” dgn'a (p,") ** .a*(g ) '

‘ mn>2

xalpy') ot ol My(B)"s ++0 B"iBy's *7t By') ¢ (T1I-13)

The Amn are tempered distributions' because of the relation to the an

through Eq. (III-—ll), and hence to the Sy, ¢+ Like the § ., the

AL (pl s % Bm ,21 » *°%s B, ') are synnnetric in the primed and double-

primed veria.bles aeparately;

ol

The genera.ting f'unctional for the S -is

t (111-1k)

©t Lt . 0 s IR O -
(vac\ @ e’S e® )_a'!vac> = “eu 4 . éxp (A{a*;a}) ' ‘\ e '(Cont'd‘)"

.
oo




| . (III-14)

' where now wve eefine Ail(g";g') to be 63(2” - p') and Al Ay 20
for m > 2.

(We retain, however, the definition of . A , Eq. (III-13),

which does not include A11 .) Hence

Smn(gj?, *s Py .p1 .4"'; ') = AL (D"t B im0t )
- ' _ : - ‘ . i\
+ (p .‘."P OJA (B"‘B"' oo.. E .) cee
part" part’ iuk i kf& R 21 i

(III-15)

. where ji: represents the sum of.partitions of the indices' of the
part" ' '

double-pr1med variables into distince classes i_, i ’e

1 2" H Jl’ ‘12 coey XX
and j{: | represents the sum . of partitions of the ,indices of the single=~
part' S
‘ primed variables into distinct classes k

l' 2;-._---; El’ 12 oo-; eeo N The

' " positive integers My My, *¢¢ sum to m and the positive integers .

My Dy *s¢ gum to n . Some simple examples of the relationship between
\ ' B
, the Smn_and the. Amn are given below for illustration.  o \

"
\

(III~16a)




" u, z " _ "o
SpplPy"sPo" 1Py oPp") (1 RRFL AR TR UV IS TR .
1y .

\ " Nopm ' .
* Aaz(},’l 2P 3P; " 2Pp ) (III-16b)

" ” ", [] ] [] o Z 1, ] - . " - 1] -
833(p;" 1pp" 1P3" 5P 4P " 23" 155 83(py" = py')83(p," ~ py")85(p" = p, ")

+ T Z 6§ (p," =p YA, (p,"sp."sp "ip. ")
e, G, 3% TR a2ty Bk i g’n
. ijk  mn i

{
* Ay3lp "ap,"sB3"ip; aRy aps" ) P (III-16¢) -

4
" .

These expansions of the plane-wave S-matrix elements are just those giveﬂ

by Heisenberg.23 . . '

The statement of the first cluster property in terms of the

A, » is, according to Eq. (111-12),

 1lim lei
|2 fise

z+*4 '
Amn(gl"' .co’sm";fli’ eee, P ')' = O ’ (‘III-]_?)

vhere L' denotes a summation over any subset of the primed variables

and I" denotes a summation over any subset of the double-primed variables,
such that 4 contains at least one variable, but not sll of them. This
equation implies that Amn(gl“’ "‘,‘gm"igl'? “',lgn') cannot contain

- any S=functions, or derivatives of §-functions, which imply conservation

LY



oy

of a subset of four-momenta. If there were such G-fUngtions, the Amn

\
i

would"obviously vanish identically. bf course, the Amn must contain o

overall four-momentum conserving-é;fdnction, Just as the Snm must,

according to Eq. (II-8¢c), Thus the expansion of the S,, into the

i
|

:',Aﬁn is an expansion with respect to four-momentum conserving §-functions, s

It should be noticed that the expansion of the Sin " into the
‘:J.Amn 1s a cluster expansion of the type mentioned in Appendlx B, -

J'Eqs. (B-25) through (B-27), in two different sets offvariableso Thus,
'we call the A cluster amplitudes and the expansion of the S matrix

deﬁ“ed by E‘ls- (11-16), (III-11), end (ITI-13), namely. ©

o . ' " : 1’

‘. - 5 3?7 exp Z (m!nl)-l‘fda‘yll" soe dipm"d%l' ves dipn &P ") e g (P "y -
' mln;2 . "~ . . A
X 0(21' ) see a(gn')Amn(gl"t LEKIN Bm"321" ...’.'Bn')‘ , (III-lB)

the cluster decomposition of the S matrix..

We have shown. that the cluster decomposition is a consequence of -

. the first cluster property. It is meaningful insofar as the plane-wave

';_,'S-matrix elements satisfy Eq; (I1I-7), which in turn is true if the

' j,interactions described by the S matrix have a short range, Conversely,

”79uﬁ:of course, the assumption that Eq;,(III-18) is the correct expansion of
'"5J. the S matrix with respectfto four-momentum’conserving G-functions implies';‘

‘“;w‘Eq. (III-?). which allows the 1nterpretation that the interactions are of

"rshort range. - We prefer the first point of view, that the cluster '

f.decompOBition of the S matrix derives from simple physicsl considerations. | _




. it can be represented by a straight line.

' to a cluster amplitude A, ,, with 1< m"g m, 1

of the momentum variabies, (c) represents terms of the form A

@liQm

‘”f:« -

f;

(The second point of ¥iew has been taken by wquers in the
analitic S-matrix theory. They include the cluster decomposition as

a péstulate.)17'18 ' . | )

D. A Diagrammatic Representation of the Cluster Decomposition
We comment briefly on the possibility of a diagrammatic represen-
tation of the cluster decomposition of the 8§ matrix, We wish to represent ;

graphically Eq. (III=15), relating the Smn to.the iAmn + To this end

‘" we associate with each cluster amplitude A, 8 didé&am like the one
. shown in Fig. 1. There are n 1lines which enter from below, which are

“labelled with the initial momentum variables,”and m lines leaving L

\ »

-+ from above, which are labelled with the final momentum variables. The fV‘

~ circles represent the interactions which the 'Amn describe. Since - »

Ali is the three-momentum S-function and thus describes no interactions,"A

-

' We représent the .Smd by a sum of diagrams, each term in the sum

i ﬁ} given by onle or more diagrams of the t&pe in Fig. 1, each corresponding

n' { Nle

/A .

SSL' has contributions from four terms, diagrammati-

cally given in Fig. 2, (a) througﬁ (d) .. Fig. 2(a) represents 'ASh' (b): 

For example,

reﬁresents the terms of the form A - which differ only in permutations

32A22

3All; and

.1_(d), terms of the form A32A11A11 It should be,no?ed.ﬁh§t:numep;cal- -

:coefficients are suppressed in these figures. For a large spacéqfime v

¥ . . AR
. .- X ;
. e

e
e T
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translation of one initial and one final-state particle, only diagrams (c)
- y .‘ - and (é) will contribute to the S-matrix element. Similarly, if two particles
. -in the initial state and two particles in ‘the final state are given a
.large space~time ‘translation (together), only diagrams (b) and (d) will
contribute to the S-matrix element. The diagram (a) does not contribute
n&‘Eto either.matri¥.élement and hence must represent the amplitude for all
"fjf}?fj' ffour initial'particles interacting among themselves to produce the
| "Ldesired final:state. The diﬁgrams (b) through (d) réiresent amplitudes
:in which some of the particles do not interact with some other particles,
These remafks are, of course, quite general, &he cluster
: 4 amplltude A represents the amplitude for n initial partlcles all ! I
-=:” - interactlng among themselves and producing .1 final particles, The V
- ~.~__c0ntributions to the S-matrix element arising from the case when some ” : .
:‘ Qf the particles do not intéréct with_pthers come from products of two
'1jor moré.cluster amplitudes. These considerations are, in fact, oﬂe of
’lthe Justifiéations that'OIiie uses‘in‘introducihg the clusfer decomposi«
’tion as a‘;ostulate *in the analytic S-matrix theory. 18 They'wqpld lead

—_ to the following expanszon of the S :

R

) T A s B )
BRI D I I LUARS L LR
Ccimiane 0" part" part' o
.i o (p ’p s '.‘;p";p'.j"(.)‘ (P "oio.p ’p .'{00)-0{.; 
wk S e L e e S
R . SUREE A S RN hIITe15Y)
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. ] H .
" 'with the same notation as above and an arbitrary numericai coefficient

,c(m m, "‘-nkn sers eet). Thus these considerations by themselves do

_ . not lead to the cluster decomposition of the S matrix, whereas the first

"clustet property, with its result, Eq. (III-?),gives unambiguously the

" ‘expanéion, Eq. (I1I-15).

' In a perturbation theory with a diagrammatic representatlon, for

» '5_example,the Feynman perturbation theory, each . A is defined by an

‘7'7, infinite set of connected graphs, each graph having @ outgoing lines

g

;'and n incomingjlinés and an arbitrarily.complicatedﬁstructure. In the
tFeynman pefﬁurbation theory, there is.agaociated'withle&ch.connected

'lgraph an overall four~momentum conserving é-function, and no other four-‘

" ‘momentum &-functions. Thus the identification of the Amn ‘with the sum - f -
. of connected graphs is unambiguous. It maey be, however, that in terms - 5;,;»f* -

X ""{:of amplitudes so defined by a single four~momentum G-fnnction, the

"fplane-wave S-matrix elements are not given by Eq. (I1I-15), It turns

) 'i; out that the Feynman pertﬁrb&tion,theory gives plqne-vave‘s-matrix
- elemehts ané’clusfér amplitudés which safisf& Eq}'(III-ls), but it is a

2 trivial matter to write down a perturbation theory which does not,<as

iwlll be seen in part H belov.,
We can summarize this discussion by stating that a diagrammatic
threpreaentation'of the cluster decomposiiioh of the § mgtrix'is possible

' “and that the cluster amplitude is given in perturbation theories by the -

-

sum of connected graphs wifhithe hpproptiate pumber:of ;gcoming and oute f.'f‘

" going lines,  ;:}.

%
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invariance,

'.the‘first clueter property.

“ﬁh‘5fdecomposition, we introduce the invariant cluster emplitude Gmn" N

i3

.

E. Lorentz Invariance and the First,Clustenférogertx

First, we wish to point out that we have not depended on the

invariance of the S -matrix with respect to proper homogeneous Lorentz

‘transformations in our discussion of the cluster properties. The ine
- varjiance under the homogeneous group is, in fact, irrelevant to the
h formulation.oé c¢luster properties, and our results would be equally.
valid in a non-relativistic theory, However, if we db deal with a

relativistic theory we must naturally convince ourse%Ves that the

cluster properties. which we assume are consistent wiih relativistic

R

It should be noted that we do depend on the translational !

s s gl

o : i .
invariance of the S matrix. This property is equivalent to the re=

qﬁirement that the plane-wave S-matrix elements contain d«functions

~which imply conaervation of overall four-momentﬂm. This alone, of

"course, does not imply the cluster decomposition, or, equivalently,

' : . o : e
To make explicit the relativistic invatiance of the cluster -

\

' . ¢ ’ n ’ : ' " ' .\:‘ . .
‘k‘.Aﬁn(gl"o‘ .o 9 P 9Pl ’ o ;o P ZPJ. ,“ Z pJ . : - \.‘ﬁ\

W ie1 j=l

H [ea«pl' 25 1’
i=1 ‘

o TE




: transformstions map m onto itgelf,

< ""
’ -hh- .
. STk
- : 4

. p In Eq. (III-19). ‘the overall four-momentum-conserving G-function is

exhibited, as are certain relativistic" factors, On the ‘right-hand side,

‘;Qithe pd-h are given by w(pd") and the »,' h by w(pi'). Thus the -

G,, @re defined on the same 3(men)-b dimensionallmanifoid that the A
(and S . ) are. Let us denote this manifold by‘?ﬂ . ‘the Lorentz

In light of the covariance properties of the s ’,,their
relation to the A » 8nd the definition above, thefgc satisfy

3

m

Gmn.(Mpl"’l 6...’ Mpmf';Mpl', hety :Mpnf) & Gmn(pl"' ‘P i'ipl'o Y P") ’ ,'

(111-20) e EARRE

.

i
vhere M is a four-by-four matrix representing the action of a proper

homogeneous Lorentz transformation on a four-vector. Ihus the -Gmn 4' ]
¥ . :

"

' are Lorentz scalars. - o B S A

In terms of the distributions G , the limit, Eq, (III-17),

' 4s expressed as

iz A
| 2]+ \ L R ‘w

‘.\

- where,iin A'= S'pi' - Z"pJ ’ E denotes a summation over any subset

: of the primed variables, and E" denotes a summation over any aubset

‘mof the double-primed variables, such that A, contain at least one

is obviously Lorentz 1nvsr1snt. , o : f‘ 'i E i_- %
’ v : t : - )\
: ¥
For completeness, we express the cluster decomposition of the ' %‘
. PR SRV o R ‘ o ; o ‘.1'. c ‘ ) :“\‘.\ ‘
\ 8 matrix in terms of the Gmgz-x; S .Af‘ N '\ksf
: .

11'

'vsriable, but not all of them; The condition.:expressed by Eq.. (III-21) -

R

lim e * %G (p)"y *t0, pm";pl'. veeyp,t) = 0N (IIIe21)
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il [6( )(pd m)(2w(gd'))1/20(33')]

H

T fe","’(::i";m)(au(ﬂi"))1’ %t (p, )
i=1 , v’e ‘ \

\
t
v

. £
U | §
i ;!
n i'. : - . : ‘
Gh }Z: pi - E: Py' |Gy (P " .' LI I AN NI
i=1 J=1 1 '

e o } L (11e22)

- where '6(+)(p;m) = 6(p°p.m2) if p is forward time-like but vanishes !
otherwise, In Eq. (III-22), the 6(*) functions and four-momenturme=

'coneerving d=function restrict the integration to the mainfold ﬁ”%mﬁ'

I 'F. Unitarity and the First Cluster Pronerty-

That unitarity and the first cluster property are distinct

. properties of the S matrix should be clear, because unitarity is concerned.?t5'~' .
- with the normalization of state vectors,fwhich has nothing at all to do - |
f"with the interactions, However,.the_firsﬁ cluster property”is.a | '

’ property.of the interactions described by a unitary S matrix 80 that fl-{vu>'

‘ :these pioperties must be combatible. This compatibility is expressed

by the fact that the unitarity relations, Eq. (II-8a), when given

]ﬁ -selely in terms of;the cluster_amplitgdes, contain only cqnnectedffde

. A
PR A R

.......
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i
o \

terms. That is, in a given unitarity re.‘Lationl express‘éd in terms of the
Amn’ there are no non-vanishing terms which contain a factor of a .
§-function corresponding to the conservation of a subset of initial and
final four-momenta. In particular, the three-momentum §-functions on
the right<hand side of Eq: (II-8a) do not appear.

We give some examples of this last remark:

' » 1 (3 .3
" ", [] ] [] ', ” LU —
Ayo(py"spo"sp; ' sBo") + Axs(py "upy "5y "sBy") * 55 {‘d 21472,
. .
X Ayp(py"oBp" 3By B Aon(y 'R 301 0Rp) = O - (r11-238)

. . ' . * o
A33(21" '22" ’33" ;Biv ’22' .230 ) + A33(910 ’22 (] .230 ;B]," '22" ’23")

, 3 no.n ' ‘ " 1o "
*t ) 2 f O pAo(Ry" 1Bg" g ' 1B By ' 0B, " 3B, " 0B)
2 .
8

|

1 Z 443, .3 ow o, ¥ (e VYo ipy

v - f 49147 poA33(Ry " 100" 23" 381 P2 sRy " Aoa (R 0B, ' 3213

: 123 ‘ . .
"po .

3 3 . 'u ", * ? ' ', "
j 4P oA (Py" 1Pg" i1 105 )A33(Py 4Dy " 4R33Py s P00 ")

———
e
~< W
et
—————
FEw
VDN
Qw

~

A

3. .3 , wo.on . n, * ' ' Yip
* 37 ) 9P P8 Pahys(p) "op, " 4R33Py 1P 03 ) A33KR, 4Ry " 13" iRy 2PoeP3)

Py 3.3 "wo_on o _on, Y\ " fm Vem
*3 j a’p,d 22532(21 oPp" 0B33Py oBp A3 (P 0B 403 3Ry 0B) = O
| . {111-23D)
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These relations hold when the total four-momentum in ééa} is below the
rgu'ﬁéte» o threshold for particle production. |

| ; The increase in complexity beyond the three-particle casge is

. p?}" A . :t considerable. The unitarity relations msy be expressed diagrammatically
| with more ease,, Olive gives examples of such diagrams.18 Integration.

: Rblﬁﬂ over an "intermediate momentum vsriable is represented by a strsight

“1ine between the two circles (representing cluster amplitudes) sharing

 that variable, The complex conjugation of the clustgr amplitude can be
represented by a circle with, for example, a minus sign. with the cluster
" amplitude itself being given by a circle with a plus sign. Extermal

momenta are‘given by straight lines going to and from the circles, a8
i

- t

" before, (For completeness, there should be associated with the diagramma-
' ‘i tical representation of the unitarity relations a prescription for .
‘f;:}‘,;;‘. f determining the numerical coefficients.) :
. A We now indicate how the-unitarity relations can be expressed B ;,}
: entirely'in fconnected” terns by using the functional'formulation of '[‘; };;
 Appendix B) The totality of unitarity relations im_roiw}ing both . '. '
"connectedﬁ and "disconnected" parts is summarized tysﬁq; (II-lGaS:
m%g);a(gfmf‘{a“(g);a*'(gn +{F{J('g);a(g)_}.F”fa'(g,)?“;'a*,"(g)ﬁ-= o,
_ ' ' \," o (111-24)

- using the functional product bracket introduced in Appendix B.. Now, it . ,;C,l}} .
. can be shown’ that for any two connected functionals A end B 'y &nd

'o':real Variables s 'and ts '

o, ts} =_ (SA*B exp({ sA tl} )

.‘,




' !

5

wherev.( }c indicates the connected part of the functional product /

o »bracket, which has a well-defined meaning. This is.Just the generating ,2? S
function for the expansion of the functional product bracket {Am,Bn}
into connected functionals, Hence, for F = exp A , the left~hand

'side of Eq, (III-2L) is identically:

L . o ‘ e S . T
S em (A{J(R);agp)}.»f A"{J(g);a"’(gn + {p{a_*(g);a_(p)};v?{ﬁ(@;a*’.‘(ﬁ}jc) .

- Therefore, Eq. (I11-2L4) can be expressed entirely byemeans of an . o
;- o

equation of its connected parts: ' R "4 }\' ' o
| A(a (p).a(p)} + A" (g)'u (g)} : '\\'?
o ol ey e e LN
+ j[: (mint)™" Aa (p)sa(p)} , A {a (p)sa” (p)}f .= 0. . TS
T omadl o ' - o S o . o o
' : '\ (III-25)

[N
A

'.pf'This functional expression summarizes the totality of "connected" nnitarity S

. . : . » ’ #*
_'reletions. For example, the terms A+A + {AA } contain the

B o “ﬂ"\' \ o
* . o L ( o -,'
b expressions on the left-hand sides of the Egs. (III-23). S ﬂ -
;f:ﬂ' j?: ’ Conversely, if one 't requires that the expansion of the scattering\.

\;:f,i functional into connected parts be determined by the condition that the \_'~ X
:p'idi?‘?* ﬂ;nnitsrity relations be expresjed conpietely‘in terms of comnected A"
S vifunctionalsfaloneg then one.ob ins F = exp A. In this sense, one

could say that the cluster decomposition follows' from the connectedness

 if'g': fl\fiuTOf the unitarity relations. Of course, both follow from the physical

q,‘4;}@;-cond1tion expressed by Eq. (III-T), so that the lsst remark does not

”.vimply a8 logical dependence of the ot st cluster property on unitarity.

32
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We will later give examples of operators whichféatisf} Lorentz ine
variance and unitarity but not the first cluster property, which further

illustrates the obvious independence of these properties., -

G. Feynman Perturbation Theory

We now give three -examples of S operators which satisfy the
requirements of the first,cluster property, i.e., they admit the cluster
decomposition, The first will be Feynman perturbation theory, by whichn\

~ . we mean the power series expansion of operators of the form:

’S = T{exp(ifd xoC(x))} ’ _5 : (1I1.28)

, where T indicates the familiar time-ordered product:
- ‘E | . o |
. . ET (£ (xl) e I(xn)) = Z O(ta -ta ) XK e(ta -tu ) )

1 eee¢ n 1 2 . n-1 n - :i.’,‘
al [ XN ] an)

xdilx., ) oo é[(xd ) ., ~ g' (I11-29)
Ql . \\ n @«

And the operators l:(x) sétisfy casu;l commutation relations in order
Ahat'the T product have a Lorentz-ihvariant meaning: o

L@, Lx)] = 0 if x-x' is spacelike - . (I11-30)
' We wish:to show that whenever Eq.‘ (111;28) defines an S matrix, this

'S matrix has the cluster decomposition,

Ir L(x) is constructed by taking_prpduéts of free-field operators

_ at the point x , then the expansion of Eq. (III-28) can be represented

by a well-known diagrammatical method, the method of the Feynman-Dysoﬂ

' graphs. These graphs represent the expansion, as éiven by_Wick's thedrem, B

" of the time-@rdered operator} Eq;A(IIIQQB),"into sums of nofmaléordered_

A . ' [
. Y




. : ’ ,_;.‘3;:} '
products. In terms of these graphs, the cluster decomposition of the

S‘matrix is obvious: each clustervamplitude> Amn is determined by

' summing the contributions from all conneécted graphs with n incoming

‘and m ~outgoing lines, because a connected graph has a $~function

' expressing.conservction of overall four-momentum and none expressing
f Q:conservation'of a'subset of four-momenta. It must be‘ahown, however,
that the combinatorial aspects of the cluster decomposition are satisfied,
e, that Eq. (III-15) is satistied, ;
We solve thls problem not by considering the Feynman-Dyson

‘ graphs but by showing that the scattering functional given by Eq. (III-28)

is the_exponential of & connected functional. In this way, those detaiﬁs

* of the atructure‘of'the graphs other than their connectedness can be |
"ignored{ We do assume that there.is asgociated with each,connected
greph an overali four-momentum §e-function, eo that it will be sufficient
to shoJAtbet the S operator oflEq._(III-28)'satisfies the spatial
';vereion of the first cluster property; : o

Ipiperturbation theory;[f(x) is‘assnned to be a sum of proddcts
of”field‘operetorsg (or their‘derivatives), taken atfthe pointi X o |
(The- products are normal-ordered in order to avoid a certain type of
ﬁ»t 4divergence.) Because of this form of oC(x),,we can 1nfer that the

:/’

functional

B TN S IR
TL{u*;u} £ _efu ¢ (vaclea"a;[dhxet(x)ea_a {vac)

/

" oo -

be a connected functional in the sense that all the kernela L (21 s %%

- gl' ,°") defining‘the functional contain only one four-momentum

Yy . ;,‘3,- ‘_‘/_
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conserving §-function. In particular, the kernels deﬁiéing

4 t tea .\ weat - B
L(a"as¢) e ® Cvacle® 2L (t)e™*® Jvacy (111-31)

with

L) _==f adix) (I11-32)
. contain one and only ohé three mome;£uﬁ conserving é=function. In ihé
- following discussioh we thﬁs'aééumg, ;ithout further specifying'thei
- nature ofci(x), tha£ the fd;étional L{af;a} is a copnected functional,

. ¥ ‘
.We alséwassume, for simﬁlicity, that including the d%&ails of a re=
normalization program will not affect our result. - |

We define X ]

P ..L? i —u'a+ :a*-a . " L g"a'ai‘- 4
L{a jazt, f tn),z e (vafle «J:(tl) oo ,(tn)e | Ivgc) t
‘ : ' ' (III1-33)

so that

" Fla';a) = j{: in(nr)‘ld[dxi wesat T {é(a*;a:gl oo tn?:} e (oInedk)
ot L : . o

- Ve ¢

. Now using the multiplication rule, Eq. (B~21), we note that

t, ot TSR +]
L{a ja:t.%,) = L(aTjazt JL(a ja:t,) + {%(a sat, ),L(a ;g:tzi} .
4 ' L A L
Since ‘a functional product bracket of connected functiond%s.is also

connected, this is an expansion into connected~functiégals: R

- . SR SN SR ST
- P(a jastyty) = Lo(a ,astl)pc(a sazty) +LolaTsart ty) 0oy
v U e B R

. van ol IR L



- conserv1ng G-function. The sum over partitmons j{:f ‘ has been

- [T "3
»_.-x.

- : \ pﬂrt.

-52- Co '.‘.‘

3
3

- v.y.-,«f?'.‘:‘

£
Proceeding in this way, we obtain the hierarchy

. * " A )
L(“,;a:§l soe fn) a Lc(a ;a:tl tes tn)'»

| , e
+ j{: Lola'gast, t, .eve)p (a'ast, ¢ jeve) oo

part. it Iy 92
(111-35)
~ where the L "are connected functionals in the sensexthat 1u.
S . _ o . _ f& :
O . £ ‘.
1lim L (a + 3* ix p-a + Beix p°t1 dee ¢ ). § \“
dw IR . a h ?“‘ ‘
o i/ " :
.‘.. ! : f.‘ L " ... . ) é:" \\r«
L, (a sasty ' tn) + Lc(B B2t tn) . L S (1I1-36)

. That is, the kernels defining L, contain one and only onexthree-momentpm E

»
'
i

. part é
defined before} the order of the variables in each L on the right-hand

; ”', side must be the same as that on the: left-hand side. *Then it is trivially

true that _ N
‘-'T{L(af';uztn v b)) = T (e ey v} ey
E: L, (o' ,a'ti ti ."')}T(L Ga s tjl 32 )} ser -;‘ (1;143?2

i

Cant .
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using the result, Eq. (B=27). Thus the scattering functional satisfies
the sigtial version of the first cluster property. In the diagrammatic

| repreaentaﬁion, A(af;u} is given by £ﬁe sum of all graphs which have

: one overall three-momentum conserving S-function and no others. But .
these graphs can be. unambiguously identified witthhe connected graphg;\_
R-each of which having one f&hr—momentum 6-function and no others, Thus ;

' the operator defined by Eqs. \(III-28) through (III-30) satisfies the

H \

[

" 'first cluster property. é ' \_‘
, : ) 5
It should be mentioned that the Feynman-Dyson graphs represent \
» : o I ", .9 XX l | . - ‘\j“\
amplitudes ;zjmn(pl , » P30y P ) defined on:a U(m+n) = &4 ‘ A\

dimensional manifold, which reduceﬂio what we have called the invariant '|
' cluster amplitude .G’ (pl". ***s P, ,Pl ‘““*p ') when the four=-
momenta are on the mass shell, i.e,, pi h = m(p Y, pJ K= w(gJ )e
- The Gmn given by the Feynman perturbation theory thus have a well-

. de}ined continuation off the man1fold.772mn. One example of,this

continuation is ‘crossing symmetry: \

i B . o

PPN RS AT A a’bmﬂ.n-l(_'pl"' "o Bpam By'ipy's ttt pn-l)

‘_ ‘_.' " ° " ¢ - ‘.-" t coe 9‘ -
",&m_l’n,.,l(l)l y °*°% Ph.1? Pm ’ Pl s, 9 P, ) . (111 39)
This:reiationéhip is,.in general, meaningless for the invariant ecluster
amplitudes we have defined unless.there is given a prescription for
continuing the men's from the manifold.?ﬂ to the manifoids

?7%mﬁ1,n31 ané~,'§ -1,n+1° When it is defined, crossing symmetry is -




=5ka %

§
related to the first cluster property in that it is the connected
- o

amplitudes which possess the symmetry,

He The t=Functions

The second example we give of a theory which satisfies the first

10

cluster property is the so~called LSZ formalism, It is shown in

Appendix C that the scattering functional is given by

F{a*(g);aﬁg)} = ji: (nl)'%;[dyxl oo dhxn¢411) e O(x )K cee K tlx), ves,’

n=0 1 n
) (111-40)
where T . ' ‘ ;t
olx) = (2n)"3/2 f a%pl2a(p) 1™ 2a(p)e % 4 T (p)el®®} L (111-M1)

-
. ]

From Zimmermann's work it will be shown that there is a connected
functional A , which satisfies Eq. (III-1l), such that F = exp A
Welfirat express the séattering functional in terms of the Fourier

transforms of the T=functions:

: . . ) n
~‘t(xl’ vy xn) E (2ﬂ)-30/2fdhql oo dl‘q.n exp|-} quox‘j T(ql’ ,.‘..’ qn) .

J=1 (III-b2)

(+)

; v
By suitable manipulations, employing the 6 function defined &s in

Eq. (III-22), Eq. (III-il) becomes

xn)
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v

. s‘*’(-p;m)(em(g))l’a *( g)] . (T11-43)

Then from the last two equations comes the result

Fa' (p) a(p)} z (n1)" f d"p

H (ot )(-pi,m)a(-gi) . a‘ )(pi,m)n (21))(2wléi))1/_2]
i=1 -

; - .’,‘ II [21:1(-1».1 +m )] ) t(pl. ***y p,) .. : - (111-bk)
\.Jal -

-

. ‘, , L Zimmermann showed that the momentumespace ‘r-t‘unctions could be -
expanded in ‘the following way.

T(pys **ty pp) =6g(py 4 et 4 p )nlpy0 000, p)

‘+ Z 6 (p ‘ +p "'""YH(P P 000)6 (p +p _ ....oco)
: L\Fy i i %1, Lr¥g FFy.
part, 1 2 12 o 2
x n‘p‘jl’pdg’ ..‘-.) oo o : . oo (III=45)

. where the sum over partitions z " has been» deﬁne’d before.and where.
pa.rt.
the ¥ functions do not have any more four-momentum G-ﬁmctions. This
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i

J

'13 Just the cluster expansion mentioned in Appendix B, The corresponding

prope}ty for the space-time t~functions is

ll?m 7("1’ TN xm' y]_ +a, *°°, yn + B.) = t(xl’ oo xm)-((yl, see L ¥y
a|+e :

. (III-L6)

Equation (III-Uk) shows that F may be interpreted as the

. ! {
generating functional for - ) ;
kY

n .
T tenitp® « a1 tloyy 0oy 50
=1

defined on the "function”
(20 26" (pimlatep) + 6 (pimdat ()

Then, from Eqs. (B=25) and (III-45), 1n F is in the same way the ’
generating functional for
i n .
N 000 in. 2 2 “~ .
sy(pyercerep )yl I [2oilepy® ¢ m%)1) Filpyy o0ty B))
J=l . '

defined on the same .function,\ Hence

n

-

) .-
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S 2 fn oL Ty
';\ F{a 40} = exp ZE: (n!) d pl vee g p ) (p AL S ) '
: .“ p . nal

. f
- i :
Ly E H
i . '-;‘ e 2
. N ToF
[ . ? \ . ) . . - 8 , a -
ERUTER S A ‘I n L : R

4

=1

x H [21ri(-p‘1 +m)] n(p”*“' Apn)
,1-1 - ‘

»

" Thus F{a j;a} = exp Ala’ ;a} with - _ SRR L :

‘ V:-A{.q';q} = Z. .(m}n]) d pl Jeee d3pm"d3?1. ce e d3p 'd (p]_") :"G (P )
Sl mme A

Vo

o , : Lo Y
B ¥ “‘9 ') e “(Ph') II [2“1(2“(n "))"1/2(-:1!’1"2 f n )] ﬁ;ﬁf‘»
o A L SRS _1_
S N R SO ;:_f |
Lo H [21:1(2«»( '))‘1/,? .p‘1 )y

Do . 6&(pl" ". .‘ v. . .A.". pm" -_,. pl' v.‘ . .- .pnq )‘ﬁl( pl" , e , pmn . -p‘l,' ’{":’T:f‘,v'*‘ s B ‘-Pn') . : , .
| "._,(III-uS)
' Slnce the N do“not have any further four-momentum-conserving G-functions9

L it is obvious that the A given by Eq. (III-hB) satisfies Eq.“(131~12).

The inVariant cluster amplitude is thus given by.




Poes
Lol
pter

~50. |
m ? . ‘]
Gon(Py"s oco 2 "i0)%y **typ ') = (2n1)™ "¢ ] (121"2 v u2)
i=)
n ‘ |
~ II “Piz + n%) nlpy"y veey P = Pp's e =) . (ITI-L9)

J=1

It shquld be emphasized again here that Gmn is defined only on the

manifold 1nmh s 80 that on the right-hand side of thg above equation,
oy = ' " . " . ‘ 3 ~-

Py w(gi ) and Py = 0(23 )o {The function 3 is s;ngula; at
these points, but the singularities do not occur in the Gmn because

of the factors -pi"2 + n° and , --pJ'2 + m2,)

1. The’Connected Phase Matrix

As a final example of an operator shtiefying the requirements of

“

the first cluster property we give

S = exp (ih)_ , - . - (I11~50)

with the Bhase operator n defined by

= ) (@™ f adp " e @dp tadp v eee @p raT(p,") e aT(p ")
m,n=2 ~ ~ ~ ~ ~ . ~
. m N . n .
Balgy') o+ alo,)( | leu(p, ™2 ) ] tewtp, 2172

i=1 3=1

.m n ‘
~ ) ‘
GH‘ZZ: pl" - ji: pJ' hm*n(.pln"'..? 'pm"’ Pyle ttts pn')' '
M=l R NEREY L ‘ ' (III-51)
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the distributions ’E; having no further four-momentum conserving
G-fuﬂétions. Lehmann, Symanzik and Zimmermann introduced this
repfesentation to discuss causality proberties of the S matrix in

field theories.eh They specified that the 'Hn have no four-dimensional -
§-functions in order that "all observable quantities like cross-sections

- and their generalization for many-particle ﬁrocesses would be finite.,"

We shall show that this prescription gives exp(in) the correct cluster

, decomposition structure,

' There is no simple relatibnship between the cluster amplitudes
and the ?H . IWe bypass this difficulty 5y using the functional
formalismE  as in the previous examples, we show that the scatterlng 1L
functional F is the exponential of a connected functional. To this |

end we define. ,~ _ ' Lo

t -a-a‘f d*‘-# n aoa..f‘ ‘ | s | T
E {a'ja} = e ° (vacle” “ne " |vacd N = . (11I~52)
) ‘ :_‘L . e v ‘ . . . V‘F :
‘Thus =~ .,/,
: 'n=0

It is shown 1n Appendlx D thet the E are related to thelr connected

parts Enc by ‘the formal power series o

E: (it)%(n 1)'1E {u ;al = exp j{: (it) (m)'1 °{u ,a} - ;*  ‘(111-53)

n=0 | n=1
vwhere the functionalé Enc{a*;a} _satisfy

lim E (u + B* iz¢ p'a + Be -1z-p} = E c{n*;a} +E c(B*;B}. .
IZI” n - » n_ n - .

(II:—'j;‘ ) :
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A
t
Hence - P TaE '
. F(a*;a.} ':u exp Z in(nl )-].E C{“ ,a} ) . (111-55) . - ” r
: n=l - . - ’ ' ' RS

..pand because of‘Eq.i(IIi-SQ):/the_scattering functional satisfies
' Eq: (III~10), ' | o ‘

In this example, the first cluster property is introduced rather
artificially. In.the examples of the Feynman perturbation theory and
the” 1.functionsthia property follows from ‘more fundamental assumptions.
In the former the dynamical principles from which 1t is derived assure
the cluster deeompos1tion. 'In_ﬁhe latter, the cluster decompos?tion

follows from lgcélity and the_esymptotic condition, . : - 11 R

J. A CouhberdExample‘

We now give an example of a unitary and Lorentz-invariant

"f'operator whlch does not aatisfy the firat cluster property.‘ Let

P 8 = exp (1) K : .‘f L (1,115156)' |

: where . . . - SRR T,

. H: d[elgl"d‘gz"d‘gl'd‘32'(2w(pl")2w(32")2w(gi')Qw(ga')) 1/2

. 1"t 1] - " . 1 n ':J "' ' ' ] ‘:A R

gy o e velata ) ?“f? : s

. w
e

o o 'and n" (pl »2,’ ,pl ,p2 ) = h(pl ,p2 ,pl ,pz"). i h is a Lorentz-

@ f} invarlant function of ‘the four-momentum variables, then S‘ is unitary

O SN
‘. and Lorentz invariant, % . : . e L .
2 _ N : L AN
- \
! ‘ \
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. S '

5

has the action of.the identity on all the n%ﬁagticle
subsp;ces for n f 21 and a non-trivial action on the %;b-particle
. h subspace, Thus S' describes the interaétionsvof two particles with
| each other, and only if there are no other pérticles present. The mere
presence of other particles, no.matter how far away, drastically affects
- the two-particle interaction: it turné it off. This is clearly a

violation of the first cluster property., The latter requires that h

vanish identically and thus that s! Be the identity operator,

This violation is also seen in the functionéi‘formulatioﬁ.
~ The scattering functional given by S' is

- oy t
F'{u*;q} = e (vac|e® “%51e®'® |vacd = 1 4 e *'¢

D(u*gq} -,
where,‘in

\
\
N
S

‘ "". : = | 3 ." 3. w3 3 vt '" t " ' 'ﬂ : !\‘
| _D(a ’a}, dp, P, d$1 a7py'a (py"Ja (p," Jalp, )°‘.<32 )
S RS S S A L A A A X T

\
|

Y
| .

the function d is determiped by h and contaihs no §~functions. ‘Thenx

L 1lim .F'{uf';'8+e‘1z'p; a

8ei?P} = 148 (piaia) - 1) %
: + e %% (Fr{8";8) - 1)
K- |

#hich manifestly differs from thé correct -expression, Eq. (III-10)..

To conform to that equation, we mu tlhaVe‘ F' = 1, which corresponds
to § #1I, |

The éxample given}here_is.a fepresentative'of;a class of operators,

o S \ R . |
eprnentialé‘of a finite sum of dyadd\in which the unitarity and Lorentz=
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invariance are easily expressed, which violate the'firgt\cluster
property. Impohing the first cluster property on each operator
re&uces it to the identity. ' .

This concludes our discussion of this property and the cluster

decomposition of the S matrix,
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IV. THE SECOND CLUSTER PROPERTY

We have shown in the previous section that there is a well-
defined meaning for the "connected parts" of the plane-wave S-matrix
elements. Accepting this consequence of the first cluster propert&,rwe
proceed to discuss more precisely the second with the aid of the cluster
' amnlitudes, the Amn . Because the second cluster property depends
decisively on the effects of wave-packet spreading, as we have

indicated in the introduction, e first investigate }he effect of this
phenomenon on Sematrix elements in which a single initia&.er‘final-state
particle is given an arbltrarily large time-like displacement. (It is
obvious that such matrix elements are of the same order in the displace—
g ’ K

ment parameter as the matrlx elements for the one-particle transfer

}

processes.) We then obtain the transition probability amplitude for &
one¥particleltransfer process, from which we can obtain a limiting
‘;eequation ror tne cluster'ennlitudes. The totality of these equaticns

| represent the consequences of the second cluster property for the

. A
. structure of the S matrix.

A, Vave~Packet Spreading

In this section, we will deal with time-like translations
only, determined by a four-vector z , which we parametrize by rthe -

- real number T and the three-vector v , with: x°x'?fl:

£

s

"z = (1-y )-1/2

r(x.l)fé (t/m)no;p° = =B (y,1) .
' _ V1 =-v o '

‘Thus ‘z'z = 12 > 0 and 2, 2. m2. From what has been said alreadj in

’ Section I and II it is clear ‘that S-matrix elements of the form

v et e o

T AT T A ST = —— . v

. .
S e

oy




EE DS

-6l .

Cvaela(gyds AT(8 (T, (x/m)p JAT (8, )} |vac )

; {éive the transition probability amplitude between a final state, repreéented
~"by the momentum-spacé wave function ¢f and the initial state represented
by ¢ii¢i2. Whatever ¢iéz is, there is defined, at least crudely, a

f-region in the coordinate'spacelof the particles and in the time, far

away from which the time~dependent cdordinate;space wave function

t'isﬂvanishingly small, The corresponding region for the function ¢£2

is displaced with respect:to that'for ¢12 by the amount (t/m)po. '

'AV'Agaln, for sufficiently large t , either positive or negative, fhe

amount of overlap of ¢4 with ¢ can be made arbitrarily small. h

Of course, the first cluster property requires that

lim <vac]A(¢ 3s AT (8, }U(I (t/m)p )A {¢ }Ivac) = 0 ;
1""‘“ -

t

To determine the leading terms of the matrix element in inverse

‘powers of I l . it is helpful to exhibit the T dependence{

(vaclAw }s A {¢11}U(I (t/m)p )A {9, }Ivac) f gf(g) exp [i(r/m)p 'l

where

£(p) =j B d3p. 13

P 1 eo0 d P t¢ ( " oo»"gml-l)'l

X By (B e By e g 'P)¢11(P1 Py )“’12(?) .

L g

We may assume f(p) to be a squ&re-integrable, continuous function of '

A

p . In this forﬁ, the matrix element hgs'éhe,appearance bf a time=

~

depehdent coordinate-space wave function. The asymptotic behavior of_f

'é,such wave functidns is well known. The asymptotic.behavior'gives the;‘

v

),

. '\ '

A}

L e N ILIER h
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" wave-packet spreading effect, the 1'3/2 dependence f?n\large T o
This result is obtained by evaluating the integral in the asymptotic : | .335 ‘
AR ~limit by the method of stationary phase, The necessary results derived N
;;" 5 i from @his method are’reviewed)in Appendix A. Applying these results to
_the S-matrix element abové,bwe obtain

. Ma | 13/2 ~itm (vaclA{¢f}S A*{cbﬂ}U(I.(r/m)p ¥ (g .}Ivac>
b Todm o

Ve

L= (2"m)3/2[“ﬂ?¢)/m] exp (13ﬂi/h)¢12(go)er3Pl" I

ap,adp !t <radp "
A s
T ‘ * " w ' ' R ,
s xBe(p e MmNt by ')Sm a1 (B2 0t BB 00t By aPo) .
S | (e A
1 Following the argument f Section III, Part A, we see that o

Eq. (IV-l) 1mplies the following limiting eqnation, in the sense of

“

tempered distributions, among the plane=wave S-matrix elemente .

y
4

fTifﬁ” |T|3/2 exﬁ [i(t/m)po'(p - po) ﬁn,n+lg?1"’ ‘ ’.ym 'vl"jf.."gn'!v)
" (2mm) 32wl )/n) exp (+37i/b)6.( \. yoo o
Bo’/ml €xp RZ3ME/RIOR = Po) vyl \
xfsm.n+1€?l"’ B ,Vm ’pl » T Py "% ) - (v=2)

and a similar equation for tranelatlons of a single particle in the final
- state.
. ) ' . I ;

L
N sk S Tl

Clearly the same limits must hold for the cluster amplitudes.A

‘ T S

_ o e e

Sl T C S
T s ' «




f o e

o .
. ) . .
R 2 . )
. " - -

atm 132 exp (1(e/m)p e(p, = B )IA
,1-)100 o ’

= (2ﬂm)3/2[m(p )/m] exp (+ 311'1/1;)1\ n+l(21 . o.; Emvi;‘elc; 0‘0' Bn"Bo)

l'x8(p=p) - » . | v , . (1v-38)
. o

li;n l"|3/2 exp [ i("/m)p .(p - p )]A (p 0'00 " ... A .‘.. P,

Thbe mtlen'il * B oR3R1r "0 Kp

- (21"!1)3/ [W(p )/m] exp (* 3ﬂi/h)A el n(Bl . coo’ P‘nlll’go;al". ...i E,n.)
) . S L (Iv=3b)

4
¥
1

* 30 -n,

These equations shoulc be compared with Eq. (III-17)., Here we see

" Just how fast the A eiz'é “vanish with |z]| for large  |z]

.these particular choices of 4 and z ; In general, if more than one
momentum variable occurs in 4 4 then we would expect additional

Yy

factors of 1 to determine the rate at which Aﬂmei‘("'/m)p"fA

vanishes for large <t . Thus an S-matrix element describing an inter-

o
e

) e
T
=

o= .

e

action involving two initial-state particles vhich are displaced by the .. .i..

=3/2

four~vector (t/m)p_ 1is of order t compared with the ‘same matrix -
element, but in which only one initial-stete.particle is>so'disp;aced,_.
(assuming there are four or more initial-gtate particles). The latter
f;'matfix element is,‘in turn, of crder .t-3(2 vcompared'ﬁith the.sace'
_matrix element, but in which no particles are displaced.

"intermed1ate-state" particle, in the sense used in thei

;‘- Introduction, similarly displaced will give a factor of < 3/2u and two ‘




O

‘or more such particles displaced will give a factor ofgw%'3 s 88 was
mentioned béfore. Thus, with the second cluster prope;t& and these e
initial and final-state single-particle wave-packet spreading effects,

1(t/m)po*d ¢ order 1-3/20

we are determining all the terms of Amne
no matter what subsets of initial and final momentum variables we include

-in Aa.

B. 'Requirements of the Second Cluster Property

on the Cluster Amplitudes’

I

. }
We proceed.’'as indicated in Section I, with the notation of

Section III, Part A. For the initial state
i

. B

loy = ATto (I, (e/m)p AT(g, Hvae) (Iv-ba)
and thg final state

' '|¢f)~= ;A*(¢fl}U(IL,(T/m)po)A*(¢f2}Ivac> B | C(IVebb) .

4

we consider the leading terms in inverse powers of T, for large r; of
(wflslwi) , having first subtracted out as suggested by the first cluster

property,

(P Isl8, D< B 0808,) = <vac|Atqﬂ}s Af{_(bi'l}Ivac)'(vgcllA{(bfa}S x*wia}‘l'vac) .

For definiteness, we take T t6 be positive.
Let s now calculate the contribution'of the one-particle transfer
processes. (We offer Figure 3 as a "visual aid" for thé‘fbllowing-discussiona)

We define a étaté~fector, assuming

n-»2:

A
g e, e

. T e ot R

&

[——

i e g - S

P
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Z A (¢(N)}£vac> ' ,‘

N=2

o

ROPTR 1 1

s A?{¢il}|vac) »'
A {¢6N))lvac> = (Nl)“l/zfd%;cl soe dB&(Nlnll)-l/Z[dBEL' eoe d32:‘1

x anl(l‘l' oo’c? »51{;21" ooe E;ll)wi}(gl' .o_oe 2;‘ )

1
| x-a+(§l) 4g~'af(§N)lvac)'_ Y y:f "-tfﬁl' (IV=5
'I‘hehﬁealso define the state vector
Iy =. Z A {¢(N)}U(I,(t/m)po)A?{ﬂiz}Ivac) . - (Iv=6

N=2 )

" In constructing the vector [I) -we have taken into account all of the

. interactions of the‘part.icles in the first system among . 'themselv'esl.

" We have not taken into account any of the interactions of the particles’

o .Of the second system among themselves or of interactions between the
‘ -systems. Now we wish to take into account the interactions of the
- particles of the second system with themselves and with one partlcle

. from the first system. To do this, we let S act only on these

- particles in the vector II) . That 'is,. S has the action of the

identity oﬁ all but one of the particles in the first system, because

the interact:.ons of those partlcles a.mong themselves are already ts,ken '

;'"'care of in ]I) | o '

Let us designate by lII) the new vector obtained in this way

from [I> Explicitly, takmg i.nto a.ccount a fsctor for the poss:.'ble-' '

' choices of the psrticle from the ﬁrst system, ve obtain

.,/
e
e




':{ processes are to be found in- (w ]II) » because of the way in which we}

b..'_sg;lt

1/2

E: [(N l)x]'l *ee 4 kN(nl!n 1"

]II)
AN N=2

3 ‘9‘-00')‘ 3 | br ooc | 1 'oot ] v. ". ;...' [}
'“.[é Py d Pn wny Bae 77T ypiBy'e ttte By M50 (Ry 2 )

At "1 ~1
. ’ - BT o .mp
a3 e 43 . ' :
'3J[d gl°_f?’ d Sﬁé¢12(21' "7,En ) exp A(t/m)p E{: 9"

i=1

o a 1‘ "'ooo“ t N ¥ * J eoe 1. >l l v
% a (El)' a {fN-l)S a (kg a (g ") a (gna)ltac) . )
' N S (Iv-T)
B The‘contfibutions to (w ISlwi) arisinglfrom one-particle transfer 3
'ahave constructed the vector III) . With our particular choice of |w1>:{

“v'fand ‘[@f> ; the second'cluster.prOperty may be expressed‘as follows: The

g'leading terms of (wflslw Y - (¢fl|sl¢il)<(¢f2|8|¢ > in inverse powers

'“i‘fof ’Td as tends to infinity are. obtained from <@f|II>

Thé identification of the leading terms (1n inverse powers of

e '1) in (WflII> 15 straightforward. We use the asymptotic llmit already

.:'f famlliar to us in the discussion of the wave-packet spreading effects.

’;[The result_is f;ftjﬁ




~To-

3/2 imt
t1im 1 (¢f11f>
T ‘rﬁﬂ

in,1)~1/2

= (2m)*2(a(p )] exp (= 3ni/b)(a LENS

L

3. n cos 3w 33 w ‘e e 3w " oeia n " see M
fd By a’p 1d3 ’ d«?'“z jt.l(pl e l)¢f2(ql K 2)
o 3.1 see adar 33 cee a3 g \ ‘9 t ‘g |';u‘; t
“Jen dfnld..,l Can P fey’ 0 Ml )

" see ", 0o s )
Sm "*l,(q'l’ ..".Sm 0~1'n °o3;1 ’Eo)

222 v 2 2
: . . ! . . . h
" soe Ll N [} ‘o e [ - . . - ¥
S'ml*l’nl(’gl s “I',m]_ 930 931 ’ ’ snl) . (1v 8)

LY

Equation (IV-8) thus represents the leading terms in <wfIS|w > due

_to one-particle transfer processes, It should be noted that they are

\

causal, by construction. We have not included.anti-causal contributions,
|
namely those in which the later 1nteractions influence the earlier ones,

because, by the argument in the Introductlon, they vanish faster than
32, , : \ '

We mustvemphasize that there are other terms in <wflslwi>

.-of order 1'3/2, namely, those duée to wave-packet spreading effects,

. Tnus there are contributions to the overalI.S-metrix element of‘order

-3/2

N | arising f:on the following situations: - I 'ﬁ

»

(l) A particle in the fiist, or "earlier," cluster'does not intef-XK ‘

R —

ey e
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(2) Likewise, a particle in the second cluster doeswnot interact
with perticles in that cluster, but with particles in the first E .'v
cluster¢ \
(3) A particle from the first cluster is observed with respect to B
the "translated" final states although it did not interact with the
;‘pcrticles in the second cluster.
(h)l Similarly, a pcrticle from the second cluster is observed ﬁith
respect to the "untranslated" fincl states although it did not interact
t.with the particles in the ﬁirst cluster,
The important thing\to notice about these four types of contribu- \
" tions is that they are "disconnected," that is, they do not 1nvolve any., N
%interaction between the first d second clusters. Thus the contributions : &
‘listed above can-be ignored if ve consider only the‘connected‘oart of
(wflslwi) , Le€u, those contributions which involve interactions ,’ o lki
between particles which are originally in different clusters., The B ﬁ
mathematical statement of the second cluster property, then, is the | T‘ \
\ .
followmg.l ln the limit that = goes to infinity, the connected part

<w§|S|wi§ is dominated by the connected part of (wflII7 , the

causal one-particle transfer contribution
| . : Lo
-1im 13/2

] = 0 '; 0 (1ve9),
t*fw -

[<wf| Iw O

connected (W l I> connected

- Thia limit implies the following limiting equation, in the sense of

tempered distributions, among the cluster amplitudes ;

-



i

T2
. | np .
lim , 13/2 exp [i('t/m)po' Z ql Z qJ" + P, ".,
© L .
™ ' | i=1 e N '
X "

Amlmz’nl*nz(gl."'.'.é’ R;l.sl"' .’ovo. g.m2;£1l' .6... B;‘l. 819’ ooo’ 3;‘2)
. = (2"m)3/2[m(p )/m) exp (v 3ui/h)Am2'n *1(21"' NPT RN ;;.’ g .Ro).,

. . .‘" '3 " >x' ' XX} ' | 2 VR ' ) ’ .
Aml*l'“ngl » e B BoiPy'e T By >, L (1v=20)

. where m, > 1,'m2‘; 2, n, 2-2, n, > 1 ., This limit involving tempered
distributions follows from Eq, (IV-9), because of arguments similar = - H

\
!

.to those used in Seétion III, Part B.‘ This limit, we eclaim, must hold
in any reasonable theér& giving a unit;ry, Lorentz-invariant’s matrix""
with tﬁe'cluster decompositidn.',It éﬁfiousl& requires a'structure in.
-thezs-matrix eiemgnts not ‘given by these'oth;r proﬁerties.
.Th% Simpiest'exémplé of Eq. (Iv-10) is for the case of

:three particles in fhe initial state and three in the final state. ‘;f
" two of the 6utg§ipg.particles and one of the incoming particles are ‘
gifen'thetsamerforward time~-like translation, we obtain ﬁhe-result
Yosexp [1le/mlpgtle, ¢ 4" = 0" ?‘qe.">17‘33‘2i" 5" ésg" 28y

T

"lim T
R
’ = (21rm).3'/-2 [w(BQ)/m] exp“(-'3ﬂi/h)A22(gl",32fisl .20) 22(91 +B,30; ' sDp") .
R I (1v-11)

This simple case also .illustrates the causal.nature of Eq..(iv-lo).f-j,

' Suppose one butgoing and two incoming particles are éiveﬂ'thgfsame ;;:



«T3e

forward time=like translation. It is clear physically fhat the connected .-

1

part of the relevant o-matrix element must vanish faster than 1-3/2, as

vas discussed in the Introduction. Correspondingly,aEq. (IV~10) gives
3/2

1m T exp [i(t/m)p «(p + q.' + q,' =~ a.")]
T+ . ° e 1 2 1

A33(Bl“ Opz")gln ;Sl. ’,S'l' 932' ) = (2m)3/2[w(2°)/m] l eip (- 3“1/1‘) .

Al (q,"5q," JA " - IVel2
R IR L VR P 31(pl »Py" sP ,pl )' ( }

“But A, and 'A31' vanish identically, because of the impossibility of '

conserving overall four-momentum, so that -

»

3/2 : ..' ,‘ . , - a " " ", "W, v ' ;
%i?» T efp {i(f/m)po (ql  *qy' = q;")]Ag5(p,"0p, '2%,'21 ') = 0
- (Iv-13)

as required. -

C. Functional Formulation

We wish to summarize the totality of Eqs, (IV-3) and (IV=10) as
_a condition on the scattering functiénal F'.' df'coursg,'me must first

. obtain the condition on the functional A .. By straightforwérd expansion

" of | S
A{d*(g)'+ B*(g) exp [-i(rlm)po'b];ﬁ(g) +'8(g)eXP[i(T/m)p°?P]} i;

' u51ng the two equations cited above and the assumption that they give all
' ~3/2

the terms of order ﬁi '® s om arrives at



. - The

!
1

exp [-1(r/m)po-p]§a + 8 exp [i(t/g)p *pl}

1im 372 )ata’ + 8t

T+

- A(°‘*3°‘} - MB*W} -fd3q’ exp[i(t'/m)éo'qlﬂ(q) {‘\ia ol

: ‘ . t, :
-fd3q exp [-i(r/m)p‘,'qlﬂ*(g) .9-&%-'-9-1- - jd3q exp [i(t/m)po'_q] a*(q)

Sa. (g)
M [d3q exp [~i(t/m)p *qJa(q) —j—g-—A{B g}
68 (q) s8(g,

L : ' ‘
- fd3q' exp [«1(7/m)p_«q] SAL8 8} 6“: ia) = .0 . (IVelk)
~ " o 68(%} sa (g) :

v

One recognizes the first three terms from Eq. (IiI—l2). The next four
terms represent, completély,'thé effects of the wéve-packet spreading of
a single final or initial particle, given by Eq.. (IV=3).  The last term

summarizes the totality of connected, causal, one-particle transfer’

processes.

With the relationship F = exp A, and again by a straightforward

procedure, one obtains



~15-
. ' i
«,limrt3/2

'F{a* + Q* exp tfi(t/m)poep];a + B exp [i(f/ﬁ}po-p]}

L - .

t, oiateat - | [ @3a ex p s
- Fla fa}F{B‘.B’} - {J[a q exp [i(t/m)po q]B(g) EETET

.

+fd35 exp [-ii(‘r/m)Pc,'(ﬂB*(q). . *fdsq exp [1(v/a)pg*als’(3) =

30 . o luln) b t, t,
+er q exp (ri(r/m)Po 2Ja(q) EETET{] F{a 3a}F{8 ;8}
-fd3g exp [-.i(r/m)pc;q] %;-ﬁ-}- « $Ea ial = 0 .  (Iv-15).

Guf(d)
~ o i
. N

~ As with the previous equation, it is easy to picg ouf thé first cluster -
pfoperty, the wave-packet spreading effects, and the causal one-partiélek
transfer contriﬁution. These equations are completelyiequivélent and |
faithfully represeﬂt the totality of Egs..(III-T), (IV-3) and (IV-10),
Causality‘can be viewed in the fuﬁctional formalisﬁ in the
following ¢ay. It shouid béAnotiéed,that these functional equations
are invariant undér the simultaneops interchange of both theEQunctiqns;
a*(g) wiﬁh B*(g) exp [-i(t/ﬁ)po'p] and the functions a(R) \with’
: 6(2) exp [i(f/m?po°p] ’ 'exceptvfor the last term, the causal one-
“particle transfer term, Thﬁs ; sort of éymmetry in the scatteriné
functional is broken by the requirement that the S matrix have macroscopic
R gauéalitj. Performing tﬁg interchange of the functions is seen to'ﬁ;\\

. ‘i'g‘effectiiely chénge the sign of 1 » 50 that what Eq. (IV~15) sumﬁarizésﬁx

o | 3} .X'is again the influéncing of \later events by earlier events but not vice %

,zVersaz This. "formulation of ‘the principle of causality in differential 'ﬁ;
?fgrm"'should be compared with that of Bogoliubov and Shirkdv.25 ‘ : ?A

N - .
e s b e S8 T AR e AT A ) R (g S R
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D. The Plane-Wave S~Matrix Elements ;é

.
———t

The limiting equation for the plane-wave S-matrix elements T
corresponding to Eq. (IV-10) is obtained in a straightforward way

by functionally differentiating Eq. (IV~15): m, times with respect

1
to af(p), m, times with respect to ”Bfgy), n; times with‘respect

> times with respect to 8(p) . Here we assume
-~ .

Dy, D,y Wy, My > 1. The.result is

f ) . nzg ma |

1in /2 exp [i(t/m)p + [p + Z q,' - Z q ") 1
T+, © . o o 1 J :
i=l §=1 .

ll’ see [211] ..,?’ g‘l ) ' "

2 v
. v
. ‘ . . \
: " Py "o, oo . ! .
“Sn (B e B sggtep s e pg ) ‘ \
' . : 4
ml i \
- "o L., " ces
- E: Sm2+1,n2(31 ’ ’ sz’gj id) s ’ qéz)
J=1 : . \
" (R " ee e "'° LN ] '
‘ X ml-l.nl(gl » (p,"] ’ ?ml'?,l" 92;11)
+ | (] "8 " XX ", L] cee [ eee J .
Z Z 63(31 -va ) m2'n2-l(s‘l ’ ’ 29%_1 ’ (q,'] ’ %12)
i=sl Y=l
) " e RPN n o, tee :
e e D] g )
- 3 ' " 'co- "o ' LXK : [N N ] see
fd k Sm2’n2*l(~l ’ ’ ana’il.l ’ ’ %2'5)8?1*1’211(2‘1 9°°9,D sliagl ’ 'Rx’ll).
= 0 (Iv-16)
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The bracketing of a momentumvvarigble in certain of the ?mn above is to .
1ndic£te that the variable is not present in the argumenf of that .Smn ’ ,; S
but is someplaceeelse'in the same‘termé The first two terms in Eq. (IV-1l6)
g ;' ér course represent the first cluster property., The last: term includes
| theicaupal one;particle trénsfer contributions, To intrepfe£ the wave=- |
. packét spreading effects, we réfer~to the list enumerated in Part B of
this section, betweén Eqs. (IV-8) and (IV-9). The third and fourth terms
in the above equation represent contributions of tiﬁes (2) and (&),
' respec£ive1y. The fifth term refresents the situation inW%ich a particle
initiallyiin the second cluster does not interact at all,"but'is4observed “
with respect/to final ét@tés appropriate to the particles'emefging fromh ‘.
the interactions of the first clustéf.! Identical terms are.cont;;ned 1‘ |
in both the third and foufthitefms, in their disconﬁected parts, 8o that .~
the fifth termfaésures'thaf/£his contribution is counﬁed#corrgcfly; The

‘wave~packet spreading phenomena of types (1) and (3) are contained in

 the disconnected parts of the last term.,

4
E. The Pogssibility of a Diagrammatic Representation

At this point, it ﬁay be hoped,-and,.indeed, Eq. (IVQIO).suégests,
that there is.an 1mmgdiate‘extension of the diagrammaiic,teChﬁique
introduced in Section III, P#rt D. it mighﬁ be thoughtthat, after all
contributions from physically realizable one-particle intermediate states

. ; o are éuﬁtracted from a cluster amplitude; the rémaihder tepdé to zero

«3/2"

' faster than =1 under any forward fime-like translation of a non-trivial:

e subset of initial and final particles. Thus, if one would define a

"reduced" amplitude R by )
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.

:l Amn(glﬁ’.f'°o‘Em"iBl'ot"Z?Qgﬂ'). z ;Rﬁn(glnf T Pt"i?g"}f'°-.9nf?L“

s

i
.

S : 1 onel SR
>.4' : E:V ' E: 3: 3{: [r!(e - 1)l(m - r)l(n -g + 1)!]

. :‘ l '.u‘.,o m
, a see o'

(1 Sk L

l' " 1.000 8
‘f ( ',. E" "B' RETTR B' ’E)
- ~ rs 2 .ap Blf'; i »Bsnl.

Vx. Am-;+l n-s+1( oP o‘é‘f:’Prfipé>' ‘s D) i (1v-17)
. _ ~ 2%+l gy TN £

one would hope that

1in - +3/2 exp [1(x/m)p -'('z"pi" - "p,")IR_(p,", ¢*¢, p "sgl'.":'. p,')
T ety s T e -

R

. where Z' and I" denote sums over subsets of the initial and final

iparticles, respectiQely. However, such is obviously not the case because

the decompositioh; Eq. (IV-l?), is not causally consistent. Anti-causal

f terms, as well as causal, occur in the sum on the rlght-hand side, s0,

.E-TTVere not present in Eq. (IV-lO),.can also vanish as slowly aB"T k

.that if the causal nature of the’ A is to be malntained, the R

; \

. must. cancel the antm-causal terms. Slnce the anti-causal terms, whlch

..3/2

-

B i'Eq; (IV-18).is false. Thus diagrams based on the decomposztion, Eq. (IV-lT)

.. are not of much 51gnif1cance.

’
._‘

1

causal nature of the dxstrlbu' on 11m (w + ie) 13 well known"

. ‘ . : ) i
Of course, it may be possiblé to introduce a'factor inside the\:

AN
integrand on the rlght-hand side of Eq. (IV-lT) whlch would tend to ,_e'*

e

i+ o+ -

'lvl"
i

‘ \i‘ . . '(fV-iB)'. -
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lim exp (iwt) 1im (w + 1e)™t = ~2nis(w) 5
N ‘ €0+ , o5
. o ‘
lim. exp (iwt) lim (w + ie)-l = 0 . ‘ (1v-19)

T+ @ e-+0+

However; to use this causal function, it is necessary to continue the
A off the manifold on which they are phyéically defined.. Without
further assumptions.ﬁeyon&\unitarity and Lorentz invariance, it is not
known how this can bp done, \ There are, of course, theories which allow
for £hislagd in thosé theories the second cluster property has an
a-obfious diaéramnatic‘represent tion. We are thlnklng, for example, of
' the Feynman perturbation theorv, which will be discussed in more detail

.later,

F. Lore;kz Invariance

That the second cluster property is consistent with the Lorentz
. invariance requirement on the S matrix is clearly seen by\eibressing it
A| ‘ ' = '

and (IV-lO) one obtains on ‘the manifold m

‘ ' - n " om
. | N o
lim 13/2 exp | i{t/m)p_» .E: a4 - Ez: QJ"
L TP$o0 .
RS =1

s
(L q"~Lq .m)G
3 ) g 4 Tt

(29. - Lq',p", * P 3P1 'y .‘.'."'p,_ ) = .0
J g 1 ‘,1 b . my l - nl . .

*‘ G (p,"y ***5. 2" ,a “o."fo- 3P1"'s %y P! yq.'s ere, ')
o *mz’“l p e o

O (1ve20)

in terms of the invariant cluster»am?litudes, the G, « FromEgs, (I11-19)

*l(ql 1 000’ qm";ql't f;.’>?; 9 z qdf - z.qib) .



The 5(*)-function assures that the distributions G ; el and
' 23
Gm1+l'n1 need be defined only on the manifolds 7Z7m2,n2+1 and

:b?ml*l’nl s respectively., Making explicit the asymptotic limit in the

second term, we have
. np m2
lim “13/? exp |i(t/mlp e+ | p, + Z q' - Z qd"

T =1 = 3=

x (p " eaee .p" q" cee " 3P [ ed e p' q ! e ] )
ml 'n_.,n 1 ’ml’l’ (,'qmz’l’ "nil. 09.“2

. m2 '
= 3/2(21n)l/2 exp (-3;;1/&)61‘ Z <1'j z qi' - Iib
. J=1 . -

* G 2,n2+l(ql ] ...’ qm ;ql ] ...' qn 'pO) L " - !

x (p otP1 e e Py sPyTs e pp ) - (Ivez2)

“my#ny ™ By
These expressions are manifestly Lorentz invariantq

' Ge Unitarity-

Again, as with the first cluster préperty, ip should be obvious
that unitarity and t£e.second c}uster property are distinct properties
of the S maérix. We will illustrate this remark later with an example
of a uﬁitary operator which does not have the second cluster property.

It should be noticed however, for example in the functional
formalism, that thé one-particle transfer term ih Eq. (IVell) bears a

cértain resemblance to the contributions to the unitarity relations

. with one-particle intermediate states, i.,e. there is & similarity between _



«f8le

'andj

™y,

' * #
: d , 6A{a<Ja} SA {a ;a

‘ If might be thought, on the basis of this similarity, that the one-~
particle transfer contrlbutions in the A _are implied by the one-
particle intermedlate state contributions to the unltarity relations, and
can be derived from them. This is false, as we show for a specific case.

Consider the cluster amplitude ' A The unitarity relation

33 °
for A, is given by Eq. (III-23b); the relevant one-particle term is ',

on the second lihe of that equation. The requirements of the second

‘cluster property for A are shown'bj Ed. (Iv-12). We proceed as

33

follows: Define a new amplitﬁde'.A " such that A o0 Aéz,

A33(1°1 'Pp"'+P3"3p; " P 2"5’3') 'A33(£’1 '22 P2y '21 '22 '23 'y

"'% Z Z d3k1;v (P" ’23 ’k)AQQ(g "EB "BB ) .

(Iv=22)

“Subsﬁitutingvfhese definitions info Eq. (III423b), one finds that the
unltarlty relation in terms of the A ﬁo lonéér has a one-particle

term.. Thus, if one infers the existence of the one-partlcle transfer
term in A, from the one-particle term in the unitarity relation,

33

- then one must 1nfer that - A33 has no such term. Then the one-particle




S
e
ry

i
59 whﬁ%h have both

~

tranéfers must come from thg terms E;[ABK A22 o

causal and anti-causal contributions,-violating Eq. Civ-12). Therefore, .

as we claimed, the suggesting off%he pfevious paragraph is false. .
We see from this'expmple thevmore general fact, that unitarity

and the second cluster property are distinct because the former contains

nothing of cgusality while the }atter|is definitely causal in nature.

of course,Aunitarity along with some other 6ondi£ion vhich implies

causality, for exanmple certain analyficit& pfoperties of the Gmn N

may be sufficient to insure the requirements of the second cluster

property.

.

He Feynman Perturbation Theory ' . 'fy

'  we-how‘give two examples of operators which satisfy the require~ .
ments. of the.;écond cluster.property. The first will Se'the Feynman
perturbafion theory, discussed previoﬁsly in Section III, Part Q;

There it was argued that the sum of.all cbnnected graphs obtained by
; the Wick deéomposition of.Eq. (I1II-28) with m outgoing and n

incoming lines, labelled by four-momenta pl", 00y Py '

and 'y +ey By

| respectively, represents a Lorentze-invariant distribution
’éymn(pl"’ cen, pm";pl', see pn'),idefined on a k(m+n) = k @imensional

manifold,-which, when put on the.massﬁshell, becomes a possible
\

candidate for the invariant cluster amplitude Gon? . Y
Gmn(Pl"9 y pm";pl"' "..D ?n')
" dee W,y o ‘ XX (B i
al&m(pl . Tt P ’pl ’. " Pa )| " ome(p."):p! =w-(r )y .
C o P21 S S R0 ) y

: O (1v-23):

- ‘_\'



We now show that the G 8o defined satisfy Eq.’ (IV—2;), and hence
: #
the second cluster prOperty. We’ rely on the graphicalaapproach for this
_ : 1 demonstration, |
We consider the set of all connected graphs contributing to the

plane=wave S-matrix element for n incoming and m outgoing particles

~ with momenta ‘?1', eee, p

~n' and energies w(gl'), vee, m(pn'). and

momenta 'gl",:.{."gm" and energies w(el"). cos, ”(Bm") , respectively,
Asgide ffom»kinematical factors and an overall.four-momentum conserving
G-function, the‘sum of the contributions from the connected graphs is

the anplitude Gmn(pl"; eee pm";gl',-"', gn') » From this set of graphs,
a subset of the following type can be selected without ambiguity: those
grapns‘for which r outgoing and s incoming lines are:disjoint.fron'@f
the renaining m-r outgoing and n-s incoming lines except’for a

single internal line, Calling the sum of contributions from this'subset

mélls ,.8uch a selection uniquely defines a decomposition of G for
. : _ o . \
a given r and 83 : , : - o \;

G (p,"s ***y B "spy"s 00y B, ') = c{1) (py"s ***s P 5Py "s =y p,")

mn:rs
:‘ B G(a)' (p." cee M, U eee ') ' . (Iv=2h)’
. 1 ° sto_Plo |an. .. -

mn:rs

( )

- For convenience, in the subset of graphs giving G g? let the

four-momentum of the internal line be direcced toward the part of the graph -

'A containing the r outgoin@\and 8 incoming lines., This assumption is
§ ‘.\.

'. - ;Vno restrlctlon ‘because of th crossing symmetry of the Feynman amplitudes.\\

. & .
_ For any given subgraph of ‘N8 lines going to mer+l llnes, in this \§

4\:‘

: X,
;subset, there will.be a sum of graphs which correspond to all possible K

¥ X Lo CN

subgraphs connecting s+l ‘lines to r lines. Summing over the suographs ' &i, i
N - , : o . . S x . A




E»Where p w( '), pjh

i

“Bla

{

o CA
of - nes’ lxnes going to m-r+l "1ines gives back the contribution from
the entirevsubset. Then, from the’ Feynman rules ' :%K: |
o S | I
(1) " w.. e : -
G (P s 0y b D, Ny 00, P-')"N ;
‘mx_l.rs 1 . m 1 . n nmirs 1 oe.,m )[1 ‘oon n )
“1 s e am \81 ee e Bn
. \.
1‘ 9 2 -l .;\
x 1im zp;--ZDé em” o+ ie
“rlE | Y \
,27 Pl s “**y Dl iPh s ***y Dy s I D' - Ipt
r,s+l{ a . a ’“g BB g%y 3 BJ \

or -

. " “..; - -
x‘29m9r+l,n-s (pur » 2% Py i‘,pa

J
be determined below._ _ :' \\

i ' One contribution to. ¥ meps 18 i(2ﬂ)-h associated with the

Feynman denominator, but one factk; of (2n) -3/2 is needed for the
i

ation of - both1£7 and .

conventlonal external-line normal rog+l
’

'5wéyh-r+1,n-sa? 80 there remains 1(21) "1, The need for another facpoh

l coies from the;fact that the sum'ove} pefmutations of ell outgoing

. momentuﬁ variables among themselves'end all  incoming momentum wvariables:
among themselves includes too much, Any.twohtefms in the sum Vhich are
' '.{ the same except for a permutation of the r 'momentum variables among
'l3 themselves, the 'e' ‘momentum varlables among themselves, etc., are in s
v', fact identical.- (For simplicity, we assume that r # m - r - and

Yoo #3n - 8. ) The same graphs are summed‘in each, although nerhaps

j

+

' - .
), and N_ . is a nume?ieal factor to
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1n some différent order. Hence, a factor of [rlsl(m—rﬁ(n-s)l] -1

must be 1ntroduced to keep the counting correct. Therefore

=1

th:rs‘= =21 rist(m = r)i{n « 8)l o ' : : (Iv=26)

(Ifboth r=m-r and 8 =n - s , there should be an additional
" factor of two ie this expression.) |

It is clear from Eq. (IV-25) that the propertiés;of thev
Feynman denominater will deterﬁine.whether or not the Gﬁn satisfy

Eq. (IV-2l)., It is shown in.Appendix A that

1im lim. 3/2[p -,m2 + ieJ-l exp [i(t/m)pa(po - p)j G
T €0+ : : -
= -ens(em)(2m)¥2 exp (-3n1/W)s,(p - b)) (1v-27)

(2)

mnirs

\Because G has at least two internal lines joining the subgraphs of
 interest, there are at least two corresponding Feynman denominators.

Thus, for a particular set of r outgoing and s incominé lines:

s r
- 3/2 : o ,
lim = exp [i(x/m)p P,' - p.'
L poo e z: J E: i
. J=1 i=1l
xsli)rs(pl , 000’ m";pl" ..T'.pn") = 0 . ' (IV-28)

(1)

o ees For some of

Let us consxder a similar- expression for G
the terms in the sum over the outgoing and incom?ng momentﬁm rariables
in G;i)rs ’ the'momentum Yariables in the Feynman denominator will -

: . correspond to the'momentum rériables in the argument of'the exponential
representing the time~like translation. These terms will vanish as

32, In other terms, there will be the "wrong" variables in the

e e

i s g < e St =




- ~B6~ . e ‘{

S « - ;_.m' )
denominator, and they will vanish faster}tnan _1'3/2 :Thus 3
“1im 132 exp [4(x/m)p, - P, * Z P Z Il R e
T+ @ : J o . .
o(1) » , ‘
mn rs(pl s **% pm";pl" ooo’ pn')
=" tlél(m = r“(n - s)IN . '& (P'l"o’,r'“' pr";p_l" ”':a Ps'.Po)

nmirs " r,s+l
ffm_ru,n-s(pm. "t By ePoiPgags t0te Byt (- 2u><2m)3’2<2m>'1exp< 3mi/4)

*SpiPo * le p;' '-.iZl ;") 1pf) = wlpy")spy = wlpy') -0 (IV-2?)
= o = , ‘ . o . l

“

ASince‘ poh'= uﬁgoi. all the nqmenta on the right;hnnd side are on the

'mass shell. Therefore, with consideration of Eqs, (IV-24), (IV-26) and
. (1Iv-28), Eq. (IV-29) shows that the G = given by Feynman pértunbation'H
J-theory satisfy the second cluster property., _ o - S U
o Thé .fact that Feynman perturbation theory is: thus consistent
--_.with the crude not?on of causa;ity embodied in the second cluster
B E%property is in.no way surpfiaing, of.course. Causality, in the tsense"j
}'ﬂ:we nave'been nsing it, is denermined b&-thelfimefbrdering Operation,‘n:Jn

: so'that the crudé notion qf:"latér" events occuring after, and being

 influenced By,."earlier"‘eventslis assured, Because Eq: (IV=21)

v

“«refers to the limit that- i goes to inflnity, it says nothing aboutf . 3"??f;
’ 1:‘ the much stronger pr0perty, microscoPic causality, which, in the
° -Feynman perturbat;on theory is-imposeq\by both_thg locality'conditionsj-

and the time-ordering. LTJ{' .Tf/ff;:l?x_ffﬁ=
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I\ The t-Functions SEy : -X"

P
el

'As was explained in Section III, Part G, Zimmermann showed that

i thé functions r(pig seey pn),zthe Fourier transforms of.the t=functions
E-in coordinate space, have a unique expansion into certain functions
jﬁﬂpl, LK N ﬁn)'which are free of acuum singuléritfes, iie., G-functionsz

- conserving & subset of four-moment§¢ Because of this property, the

invariant cluster amplitudes in the'LSZ formalism are:

1 ‘
1
b

San(Py"s **s Bp"spy " e py")
? m e n '

[ o2ea®| [T (o2ed) -
i=1 =1 ', '

L A A I

1" . " -‘ ,. : . -h
::pi“f“."(?m-)‘l’ju”w(,ps)! | (Ix‘x_ 9)

‘We now show from Zimmermann's work that the G &° defined satisfy

~'Eq.,(IV-2;), and hence the second cluster property.
§ : '

Using the basic assumptidns'of the LSZ formalism, Ziﬁmermann

found a function o (p,, ¢¢+, p_) which has neither vacuum nor one=-:
1? - n -

particle singularities. The latter are mass-shell d-functions, 5(p2 -m

and principal part denominators, P(p2 - m?.'l, corresponding to one-.v

particle intermediate states. This function is

~o(pyy eeeyp) = il .(qu?‘ - u°) LIC I tapy) o, (IV-30)

u=l

- defingdvon'the U(n - l)-diménsiénal manifold -spanned by the four=-momentun

n

~ variables constrained by the condition iglpi = 0, Here the 'qu are

the set'of all'partial sums of the momentum variables. ‘The one=particle
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- singularities can then be exhibited as fbllows: éﬂ{
‘ g’ M ' ¥
oy coimg) = [ atn (g - u? +ie> | olpyy *o0y B) o “ay-31)
: Lysa e+0+ E : : .

" When one of the a, is put on the mass shell, T is of course

not defined, but the residue 1im [(quz -‘mZYﬁ(Plg"“. pn)] hes a
2,2 ~ P

9 "m
‘welledefined meaning. Zimmermann showed that
2 2 n . v 0@ ) -
L% e m™Inlpyy ceeap M, 5. SR
. p=m P o
‘= 2ni[(p® -~ n®)N(p, , ety p] =)l C
. ) i i 2 . . .
1 - r . p2=n . o {
% [,(p2 - me)?l'(pi ’ p)]l . - : (IV.-32)‘
: - r+l . ‘n p2~m2 ’ A
if p = vgl Py is a particular subset of four-momenta, _
) v * ' R . ‘ o, .'
‘ One can then combine Eqs., (I1I-49), (IV-30) and (IV-31) to
o'bta.in ' o .- ‘ . A S S T
8 r o B
lim 13/ exp [i(T/m)p . p + }: pJ - E: " Gmn(pl"’~; 'y Pm ,Pl',}
S miiﬂ : 2;
o : . \II+D0 w2 2 , o2
o= (2m)] | IL(-pif + II(-p ! + m ) E: Pyt E: oy
- : A=1" J=l UV . 1‘1 7 A
SO S S Sy
P, n(pl"’ ...’_ pm"’ - pl" .-.. - pn') lim lm Y ] .;l - . )

T™® g0+

o .‘ e 1 - s ) - ,, r 2 § : -l o . " ,'A‘ .-

e o0

’ Pn')

.

T e - S 8 ey

PR, S
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Applying the limit, Eq. (IV=27), and'usiné Eq. (IV-32@;;vhich is
allossble since p_ is on the mass shell one arrives at Eq. (IV-21).
Hence the § matrix given by the T-functions satisfies the reqpirements
of the second éluster prope;ty.

‘It should be emphasizéd that Zimmermann's results are not

. consequences of pcrturbation theory, but follow from the assumptions
of the LSZ formalism: locality, Lorentz invariancs, asymptotic
conditions,.etc. Zimmermshn was also able fo give a diagrammatic
representation of this theory to show explicitly the singularities
due to the one-particle intermediate states; that is, he showed that

the functions ™ could be expanded uniquely w1th respect to such

singulariiies. That such a diagrammatic representation is possible
here is due to the fact that the_thsory gives the functions involved

a well-defined_heaning off the mass shell., ' , f'

A J. A Counter-Exampie

We.now inquire what conditions the'second clusﬁer property.

i 1mposes on the Hermitian phase matrix of LSZ II. The invsriant cluster

: amplltudes are given by infinite sums of 1ntegrals 1nvolv1ng products -

of the dlstributions (En « For example

Gpy(p," .p2 32" P ') = ih) (=p,",~p,’ oy ! .pz e, ?g
G33(py"sp," 13"y " .p2 »3') = fhg(=p,",=p,", p3 "»p; ' P .p3')

z pr ‘Sh(P"""P

123 )f 23
‘-'(9192“2 B18283

ool

""P' ‘;P)h ("P :P ols QP)
a, le_ hifv ot al By

3

o x%hf(-p, '...p"3,pB .pe ) + ves -, .vv , ((IV-B)-l!b).

A

A
\

P —
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4

This structure for the Gmn is reminiscent of the reduction of the

unita}ity relatiops atﬁempted in Part G.  There we attémpted fo remove
‘from the unitarity relation the term with a one-particle intérmediatg |
. state,” It is clear that reéresenting the Gmn in terms of tﬂe 'ﬁg
_18 equivalent to defining new amplitudes from the Gén } so that
.,succéésively the terms with one-particle, two-particle, etc.
intermediate states afe.removed from the unitarity relations for such
amplitudes. It is also.clear that this reduction is 'not canal, in
'the sense of the secohd cluéter.property. That is gb say,.thé.causél
éne-particlé tranéfer.contfibutions are not isolated by this reduction;

Thus, for exaﬁple,‘in Eq; (IV-34b) they reside partly in ’K6 i pdrt1y

i
H

in fo)ﬁlﬁ’,,and so on. The second cluster property requires that, e.g.

©

3/2

\-.

-i/2 & )(pl" +p," - plf;m)hh(-pl", EADABARS A N

K
N

1

S » o ‘ \
’ﬁh(-‘p]‘_" - 4p2n + pl.' _pav’pev’p3t) + ...}' = 0 . _ »(IV—BE) \;?.

These are clearly new condition
f . : Y _ )
“in LSZ II., Because of the difficulty of relating the cluster amplitudes

:tp fhe“ﬁn , we prefer to expreés.‘hese conditions funct;onaily in terms

‘:’o% the fqnctionais‘iEnc introduced\in Part I, Section III:

&

L L e
-

. on thei'fin , beyond the conditions given

1im % exp [i(t/m)p *(p)' = p)" = " I{hg(py"s =py"s =p3"4p; ' 4p," 4pP5")

1 T+ o

»
e e

.ot . -
P




Enc(af;u} = connected part“qfre (vac]e n e Svac)

% o o

FRTURR

- 5 °(a" 30} - £ %1800

\ .J;

‘[€3q exp[-i(T/m)P 'qlek(q)

‘ .n-l

5 - i .
[ I
3 R .
i S R R
> oL C

=1

" =9le

¥ +
a *anoa‘a

/2) t .

e

5E {a ,a}

q exp [i(t/m)p q]B(g) -_EETET—“';.“

\*

6E {a sa} -

Gd‘(q)

SE {B 8}

68 (q)

J’B ’ ( y ) )\ 6E {B ,B} 6E {a ,a} .
d”q expl~i(t/m P,'4 : = 0
o | Ge(g) . 6@,(2)- o AT

L .
P A

(IV=36) |

exp [-4(c/ulp +p]; @ + B exp [4(c/m)p +p]¥

GE cta a)

 ‘v[;3q exp Fi(r/m)p.°q]u (q) :—2-;?——— - d3q exp [-1(T/m)p 'q]a(q) -—-ggfgy”

(v-3r)

Equation (IV-3S) immediately %uggests an 6perator which is

\

’ u%itary, Lorentz invarlant and whlch satlsfies the cluster decomp051t10n,
but does not saxisfy the requlrements of the second cluster property.
: P ‘ ‘ : y;; o R :

\
¢
1

R

‘«-,«.

B
!
k
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§" .= exp (iny,) , ‘ $ 0 (1vi3s)

: . . . . T, \\’
\ ’ ‘= 1 3. w3 w3 \
M2 F[dé’ldl’zd

-

x [2“(21")2"(32")2“’(21 )2“’(;92'”-1/25&(_?1" + ‘R "ep'-p

SRR RN C L AP AR S o (1v-39)

which hh satisfies all the properties listed in Appendix D. In fact,

the operator

S' = exp i _—‘2 ? \n .
, mn ’ . i
-m=0 n=0

for any finine M an& I greater than zero; violates nhe second cluster
_ property..;Sncn'operatons de‘not glve EOrrectly the causel properties of
the one-particle transfer processes., The existenee of such openators
. proves conclusively the independence of the second cluster property
_ from unitarlty, Lorentz 1nvariance and the first cluster property. '

.

e
—
i

d P2'a (pl")a (p,")alp, ") (p,") .

-
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V. CONCLUSION 13

We wanted to formulate very generel condltxons :on the S matrix,
conditlons which arise from the short-range nature of interactions and,
i

therefore, conditions which must be satisfied in any realistic theory.

This we did in Eqs. (I1II-7) and (IV-16), which are limiting equations,

" in the sense appropriate to tempered distributlons, involving plane-wave

S-matrix elements, We point to these equatlons and the structure they

imply for the S metrlx as the results of 'our study, i

Of course, no completely consistent, non-trfiial example of an
S matrix in closed form has yet been given, Neverthe}ess, it seemed
reasonable to see if these conditions were satisfled in present~day W

theorles of elementary-partlcle interactions. We chegked in partlcular,

the Feynman perturbatlon theory and the LSz formallsm and found that

R

- they satisfy these conditions,'

This is certainly not very surprising, of course. Without

" .. going deeply intc the matter, we could say that the cluster properties
1 .

depend on the "locality,“ i.e., microcausality, of the field operators
in both theories. It would then be interesting to see how ‘these
properties could be formulated in nonlocal field theories,

We should note that it is important; for macroscopic causality,

* that the operators of interest to us in both of these theories be

. timee-ordered in the conventional sense, If the tlme-ordering in these ‘

operators were different, the causality propertles would be wrong. (This

is seen, for instance, in the counter-example glven in Section IV in :

it which there is no time-ordering at all, ) 'f ~
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" As to what further cluster properties should bg:%ormulated,

perhaﬁs these two theories could be investig#ted for indications. ‘It
" is hardly necessary to point out that we have made extremely weak
assumptions, Certainly,'stronger assunptions could be made about the
shorte<range nature of the interactions. (As an example, we could
-specify how fast an S-matrix element vaniéhes when a subset of particles
‘are given a large séace-like translation,)

‘ | In cldsing, we should like fo express our co%viqtion that it is
a_meaningfui task to find further cluster prOpertiesgwhich any realistic

_theory of elementary-particle interactions must satisfy.

- . 1
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Lo . APPENDICES | - _ .

e
e -

A, Some Asymptotic Limits

In this éppendix, we wish to state éome well=known asymptotié
limits and to discuss their applicability to the present study.
. We will be concerned first with integrals of the form -

(}:(z)‘ = J’d3g e-ip.zf(g) ’ P, = "’(E');, . v | (A=1)

é
¢

where f(p) 1is. a continuous, square-integrable function of p , and where .

one or more components of the four=vector 2z tends to infinity. 1In

general, 7(z) tends to zero in such limits. . ‘ '
. ) A : : . . 4
For example, when the four-vector z is space~like or on the

i

' light cone, the Riemann-Lebesque lemma applies and we have : ' .

A
o

Um Fz) = 0 , za . (A=2)’

|2+

1
: Of course,lit is meaningful to inquire how fast 3:Zz)ilgoesvto zero as
|z| tends toAinfipity. F&r instance, if f(p) belongg to the claég
of tésting functions'<g%P3) udefinéd in Section II, P;rtkg, then, for
zibspace-liké,'??(z) tends to zero faster than any pqwer‘qf |z| .

In gehéral, hbwever, we do not take up this question for the case of
: . . ' . \

space-like zZ . . ' o - N | Sl
| We do need to know the asymptoticvbehavibr of 3f(z) vhen =z

.jtends to infiAiﬁy in a time-like directién.‘ In this case,. the integral

.cad:bé.evaluatéd'ip the asymptotic limit by'fhe method of statiohary

' phase.26. For convenience, we parametrize z in the following way:'*
. . . B . . . i . H e ) .\‘\v .
S Y

\

i —r————y—_— = A

o e W g i o

gt et e T g A Spam o = 4+ 4

© e e e

e -



z = (t/m)p, 5 p, =mv/(1 - w2 p L = wlip,) iy (A-3)

~ i ’
B H

vhere it > 0 , tg] <1, so that 2z « 2 ='12 > 0 . Equation (A-l) is,
in these terms,
i
F((t/m)p,) = fa{gf(g) exp [-1(1/(1 = v Y2 (uip) = p + W1 .
| | (A<k)
The intuitive argument is that when 7t tends to infinity, the main

contribution to the integral comes from the“néighborhood of the point af : :

:_which the phase'of the integrand is stationary. In our case, this point

 is determined by 'EBGKE) =y and is therefore p = Po Contributions

s
[}

from other values of the variable tend to vanish because of the rapid N
oscillation of the phase. Generalizing the well-known result in one
dimension26 to our threé-dimeneional case, we obtain .

lim 3/2 imT37((1'/m)p ) = (2ﬂm)3/2[w(P )/m]e-3"1/hf( ) . : (A-5)
T4

K This equation‘may be expressed symbolically as

- 3/2

~1im 1
T>

- b
31/! 3(3 4%’»

exp [-1(r/m)p ‘p=py)l= (2wm)3/ [wgyo)/mle
‘ o l‘ _ (Agé)
The last equation is a reminder that

+3/2 exp [i(¥/9)p$f(p - p;Jl

must be treated as a distribution in the variable p . Thus, if £(p)

" belongs to the space 48(P ) of one-particle testing functions, the

function Ef(z) and the various limxts indicated above are well-defzned.

v
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" However, if the function f(p) is a plane-wave S-matrix’element, for
M e ", ces rx
example Sm+1,n(2’2x , » B ’Bl" ’ Bn')' it is not clear that |
the product of the two distributions, with the same variable, has any
' meaning. We will be able to use these limits because, in our applications,

Sm+l A never stands alone, but always in an integral of the form
’ .

3w ces 3. uws3 PP 3 [ * " e ﬁ
_ﬁ& N LS A I TR

‘ " oL LIRS e ¢ ' d’. '
SORU IS NS D SURNE RTINS
which we assume to be a continuous, square-integrable function of P

& .

In the discusslon of examplee of the second cluster property, it
is necessary to have the limiting form of thetfoIlowzng dis;ribution inz\

P

the four-vector variable p
:3/2 exp [-it(p /m) (p - p,)] lim (p° - m2 + ie] el
. : e*0+ ’ . . )

The Feynmén denominator may be partially'fractionated'as follows:

t.

) o . _ - . -"_'r ' - ’ ' -1
(p2 = u® + ie]™t = {2w(p)] 1{[Ph ~ &(p) + ie] ;_- [p, + w(p) = i€] L .
| o REE (A-T)
Using the well-known limits ~ -~ - T )
lim - e T 1in (we-ie)™t = 0
Tt ' e*0+ _ ' ‘ ;
im e gin (w+ ie)™r s -2nis(a) O (A-8)
Thpeo €+0+ o . ‘ , .

and the three-dimensional stationary phase result, Eq. (A-6), we obtain

" the (symbolic) limits* L S | \

Y
AL
Ay Y

Y

S

& e e Tt et b it ¢ o
PR

v e i b mear e w g v v

i r e
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lim 13/2 exp [#i(t/m)p *(p £ p) lim (p° €
T-+b0° : ) _ ) e+0+ c 7

U (-ni/m)(Qum)Blae-BW;/h_sh(P +p,) ik;."? : .a .. o)

' We repeat for emphasis that Eqs.:(A-6) and (A=~9) are to.be
. understood in the sense of distributions with respect to.continuous,

sQuarefintegrab1¢'tésting’functidhs;'ﬂ‘ o R

0

P

JR—




;"\'7’relattons smong the S. may be formally and'concisely expressed.
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! ' : B. ‘Functional‘Formulation

The first and second cluster properties will be expressed as

(131"’ s0ey P 'g.l y s P ‘).

. relationships between the distributions S P

for all positive integers m and n ., There will obviously be an
infinite number of such relations.- As is well known, the most
"economical way of summarizing the totality of relations among symmetric7~"'

functions of any number of variables is by means of a generating

functional, 27 Thus we define, for two arbitrary functions of threee ' -‘»‘:

momentum, a(p) and a Qp) s & Tunctional’

cr ,.1' . - . -l . . . » - » 1‘.
dm{a ',a} = (minl) deE],"’. LERIN d35nnd3£l » .o! dB,?,n‘a*,(gl") oos q*(%v't)
. apy ') o “(Pn')smn(fl"o BRI A ST v, '} (B-1a) °

S tat;a} . Y JonlaTs01 ) (B'-Ib.‘)' |

1 myn=0 -

: We have had to introduce ; functional of two functions here because the -

'f;. Smn are symmetric in the primed and double-primed.variables segaratelz.,i”r”.t
-f?flIf the functions a{p) and 'd*(g)' belong to the space,xX(Ps) of

ftesting functions, then the functionals have a well-defined meaningr'n{

_i.f However, this is not necessary,_since we are interested'only'in hov -

_ The distributions S : may be recovered from the functional
‘?{a ,a} by functional differentiation.; The rules for this operation :_;

should be noted briefly here .by some examples'-,“

C ey
i e i

[ S S R LT
s T ) 5
P
¥ . .

'
e e s

P

S




| wi0le

60%&17 =-§_(p = -v)-l sal(g) ; 0 d'?-;':.?a' | (B;ée)' : ;.javl;;
. Sa(p’ 3 R a~p . Salp) - T ,':%_ i A

Denoting a8 =_[d pa(p)B(p) ‘for arbitrary functiona a(g) » B(Q) v

r'one has therefore

. lég%{s = 8(p') ) ga p'a-e = 3(2:) exp (@'B)':, . | : (B—2b)l

_. Using qu. (B-2a.) s Ve ‘th‘us obtain

e em n
e S 6

~

S (", evy P.ip "y *4e3 D ‘ ' B .
mie 1l . | m X1 .. ~n 601'(21") ese 50,1'(Pm") GQ{Pl').."'&Ga(pn')

Ay{a sa] e (Be3) '%

-a=0 ‘

”giﬁ:Equation (B—3) is also obvious if we rewrite the definition for the

"”_'generating functional in the following form

f:; Tgl&{‘l'?~ : i eg{u?;a} ] (vacleq+°as a'a*l : ‘f : iluz_~:mi‘_ h' L
-..',:' . ‘.' 9 . B - 08 ‘ V&C> " S . (B- )

where the "dot™ notation has been introduced above:

ot é'fd3ga+(g)e(g)' ’ a°a+j=fd3_na(g)a*(g) T e

The functlonel formallsm is convenzent for relating the coefficients ‘

bfﬁof ‘the ordered expansxon of an operator in annihllation and creation
;foperators to the plane-wave matrix elements of that operator., Let Q be

~rany operator on the space

: Then Qv?is uniquely specified by the caeivax
< éfficients ‘Q;;; : L




f’. e

. w]102= .

,‘;
Y

e 3
a1

Z (m]n‘) jd P " XY d P “d3£1 “ee d '8. (P ") vee g (‘Pqn") .'
‘myn=0 . : : ‘
X a(p 1) see a(p ')ann(gl ’ . ’ %";th. 00‘6“;_%') « (8-6)

" The’ generating functional for the plane-wave natrix elements of Q '

| defined by ',; .

"":%n(gl"’.;.'gmﬂ;gl".oo’g;') <VEC!8.(£1 ) sos a(am")qa (El ) ee s a (Bn )lvac},

- I
‘8

o ‘ Lt _ L . L
alat;a) 5 (vacle® '%qe'® fvac) - . . (B-8):

L3

. Substituting the expansion, Eq. (B-6), into the definition, Eq. (B-8),

_we obtain, by_repeaxed use’of~£he cqmmutatien relations:

o w’ /'
ok aral 3 3,
. Qla' ja} = e T Z (minl) " xx d P "d ',... d.gn
. ; " mn_o / R S .‘

, .
.

x.a?;(R:').‘. &f(Rmﬂ)a(g‘l').‘.. G(Eml)%n(glgl' (, ’ &l ’gl " .‘.’ Rn )

(B—9)
We have used here, for example, such results as

Gfoa f( Je -a* LYY .-t ai

=a (p) +a (p) y © a(p) ‘ é a(g) + uﬁg) .

' Thus the generating functional for the coefficienta an is

Q{a ,a} 5, The coefficients are obtained by functionel differentiationz e

.

T

RSP
! . -

t
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sa’(p,") o+ dal(p") balp,*) vicbalp,')

+ : : ‘
-0 0 ' =L 3w o e 33, w33 ¢ eee 33 Tia ") eee qf(q "
x{e Jz (Jikt) _fd'gl . d&adﬁl d'gk"a 631) a (.3'.1 )
) ’k=0 v R . .

Xalgy') or aley090e " 0 gy gt e gDy
' ~ a=q = e

(B-11)
It is not particularly illuminating to carry out the differentiation
_on the right~hand side of Eq. (B-11). It is sufficient to notice that )

one'term will‘be"an- and -all ‘the other terms will be products of one L'

¢
. 8
i

or ‘more three-momentum 6~functions, each invelvihg one primed and one
double-primed variable, with one plane~wave matrix element Qﬁﬁ withL .
k<m and J < n .. It is much more economicel to state that given the;
generating functional Q{a*;a} of the plane-wave matrix elements,

an s the gener:ting functional of the ordered—expansion coefficients
Qén“..is Q{a 3a} '« FPFurther, one sees from Eq. (B=-6), that

given the generating functional of the expansion coefficienﬁs, éhe

1 operator itself is trivially recovered by making the sﬁbstitutiona:

N &*g?) *'af(p), u(p) - a(p), preserving the order given.'

The last remark may be formalized in . the following way. We
,define a linear mapping if] whlch carries out this substitution., Let
P{a ;a} be anglformal pover-series functional of the functions uﬁ?),
and af(p) The linear mapbing ’72 ofvthe set of-allisuéh'formal powef-

”series functionals into the set of all formal power series operating

~on the Hilbert space is then defined by -; o _" "453H .
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’Tl(1) =1 - (B-12a)
Moy, + ey, = o NUE) + ey (B-12b)
n 'bp m ‘ n
NI &gl TToatg| | =| Il aTgp} | T ate)| 4 (3220)
rel ‘L 8=l ' r=1- s=]1 ‘

where ¢y and ¢, are any two complex numbers, and P, "and P, are

1 2

any two power-series functionals, Thus it!is seen from Eqs. '(B=6)"and (B9)

B

that for any operator Q whose action is on /N,

| . 1- - . * 1.0 + .
Q *ﬁn(e-a @ Q{a+;u}) =‘77(e'° a (vac]e° 8ae?’® Ivac)) . (Bw13)
- ° o ) ol

-

The mapping 272 defines a normal-ordered product unambiguously.
If any operator Q is put into Eq. (B-13), it will come out in a
normal-ordered expansion, with correct account taken of the commutation:

relations,

The generating functional for the ordered-ekpansion coefficients
L. ' : '

| may also be given.i.in terms of the vacuum expectation_values of repeated
commutators of the operaﬁor with annihilation and creation operators,

- For this purpose, Qe define for any ywb operators A and B:

(A, B], = B , (A, 8], = (A, B] , (B-1la)
(A, B] = .FA, [5, Bl .1 S : " (B=1bb)

Then
fred o ) (a)ia, 3] e (as)

n=0

. e ——
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Likewise, ) o
‘ . . .
' eheBe™® = exp Z (nl)'l[A, n] WL (B16)
- n=0 ' '

Using these identities, one arrives at, after some simple rearrangements:

t Lt :
@ <vacle°‘ o st
[ © ' . . "\b. o .
| -1y t, t PO U S
T T et i) | e
m=0 n=0 | _ . : '. - “y '\ '
" which is the desired relationship. Also él !x.'
O;nnp (;élﬂ’ rE K] - E'l'. ...._. ;' ')» '
= <vgc|t-4 (g‘lw oo st (5, ta<4"1, [a(p "l “-i] '"][vac>

- 'Of course the combinatorial statements expressed above are elementary and

’\

R
3 1
\

5% Q i, e.,

. the relationship between the ordered-expansion coefficients of an

1

‘\there is no ‘real need for the functional formalism beyond the economy

i~ in notation it offers. In the above paragraphs, we wished to emphasize

| \

operator and its plane-wave matrix elements.

The generating funct onal for the’ expansion coefficients of

(PQ) {0 ,0.} =

T et i e T

(B-18)""
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t t, % |
P'{a*;q} e’ (vaclea aPeé a |vac) ’ o (B-20a)

. t. Lt |
Q'{a+;a} ™ e (vaclea aQe“ & Ivac) ' , . (B=20Vb)

A simple rearrangement of Eq. (B~19), using Eq. (B=16) yields

a*- '-a+'a &-a+ a+-a -'t:i'a'r a'a*
pe e e e Qe |vac)

. (PQ)*{a';a} = (vacle

Inserting on the right-hand side of this equation the plane-wave

expansion of the identity operator , namely,

Z (1) [, +o g atp) =+ o (p ) varCvaclaly,) +v alp,) o

n=0
we arrive at ' . ’ .
3 " )
(PQ)'{G sat = ji: (nt)” J[ b d pn GG(p ) e Gu(p ) EJ(G o)
. nBO v T ’ :
. n .
x § Q'tatia) - | (B~21)

| a'(py) e eat(p)

For a unitary operator U, U vhaufus=1 » Eq. (B=21) yields

' *
j{: (al)~ J( Ceee g3 s"y! (a sal N GnU'{a*;af*) a1
n pn 6u(b ) oo cd(p ) t* **(p )
<n

Sa (pl) *0¢ 8a

(B-22)

' + -q'q+ Q+o qoﬂ*
vhere U'{a’;a)} = e (vac|e® ‘%ue™" |vac) .
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It will prove useful to define the functional 2roduct bracket,

for two functionals P'(a sal and Q'{u ;al %
® Q' ji: (nf)" Jf vee dép 6"?'{a+;a} | g% (gt :a)
L Zn Salp,) ++* Salp_ ) 5“+(21) aa*(gn),
" (8-23)
' Thus Eq. (B-al)ﬁay be rewritten as
'(I’Q'){mlr;cirh= P'(J;a}Q'{a*;a}' + P'{&*;a}.q'{a";a}} .. | (3-21').

In connection with the product bracket, we define a_connected

functional. A functional AP'{uf;a} is connected if

?,
lim P'{u + B+eip.x; a + Be“ip.x

} = priatial + prgtie) L (B-2l)
|xox|>e o

This means, of course, that the kernel functions defining the functional

contain an ‘overall four-momentum conserving §=function and no»d-functions

~ conserving a"subset of four-mpmenta.' This 1dea of connectedness is uaed

- in the functional expression of the first cluster property.

If "P' and Q' are both connected functionals (of a(g) and

a*(p)), then the product bracket - {P',Q'} ; is clearly also a connected
. N - . . .

functional since each term in Eq. (B-23) is. Graphically, one can pictﬁre
the kernels defining P°' and Q° ~as vertices; each functional
! differentiation is & line Joining these vertices, Ir P', Q°, and

‘_iR' are all connected functionals, the -{P'qu,R'} is not. Using the_v

differentlation rules, we find that {P'Q' ') - P'{Q' R'} =« Q'{P',R'}

- is a connected functional, which we denote by {P'Q',R'} . (Generally'f

O we will denote the connected part of a functional by the subscript c.)
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In this fuﬁctional, to use graphicalllanguage, the vertéx representing
P' is Joined vith the vertex representing R' by at iéast one line,
as is the vertex representing Q'. . |

In general, if the functionalé A'y B', see P* Q% ece are

all'conﬂected functionals, the functional product bracket

. {A'B" ¢¢¢, P'Q"' ¢¢¢} can be expanded as a sum of products of connected

functionals, Examples of this decomposition are given in Section III,
Part F, and in Appendix D, _ ' ,
A well-known example of the use of the functional formalism

described here will be used extensively in Section III, so we mention it

here for reference. This is the so-called cluster expansion, first ¥
introduced in classical statistical mechanics by Ursell.?8 Suppose we

are given two sets of functions tn(xl, LN xn) and: nn(xl, e, xn),
symmetrig in the n variables, vhere - n runs over all the positive

integers, which are related in the fq}lowing vays: .

) = o)) = alam) + g lagdn(x)

'ra(xl,xz,x3) = n3(xl,x2,;3) + "1(x1)"2(x2’x59 + nl(xz)nz(xl}x3)

CRINCE R RN R IRENINCR

\

or in general:

Tn(xl’ !'... xn)' = nn(xl’ vee xn) + Z ni(Xil.xia’ ...)nJ(le'xJZ"

part,

(B=25)

\

000)0.._ h
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) !‘g‘

,1

where the sum l§: is taken over all poasible partitions of the indices .

part.

1, ***, n into distinct classes 11' 12, f % Jl, Ja,v"‘; 't'va

.. the generation functionals (vith - T B_l)

Defining

T{a} = E: (al)” J(dx coe dx 8(x)) eee u(x )t e f;', #n) (B=26a)
n=0 . T L
and .

E{a) Ejz: (nl?-%j’dxl vee dxna(xl)_"; o(xn)nn(xlﬂ;"°, xn). s (B=26b)

n=l . ' fy

~ we obtain from the totality of Eqs. (B-25), the resulti?g

Hilbert space .was the one gppropriate to the description of non-interacting‘

: denotes the helicity state and the mass and spln of the particle as well

,0

'~.\as internal quantum numbers
.operator higp)_ h.function‘

_. annihilation operator b.*(p)

T{a} = exp

E{d}) .

Our preceeding discussion was limited to the case in which the

\

neutral scalar bosons., These ideas can be edsily generalized for a Hilbert

space A for an arbitrary number of different kinds of'elementary

particles satisfylng Bose or Fermi statistics and with arbitrarily

5

A\and - b.(g) , we associate obJects

Bi (p) -and 8 (p) respectively,

', each boson plane~-wave creation operator . a (R)’ vhere the index i

1(22' With each fermion creation and

et

'f annihilation and creation operators and with all other other

BJ (p) 8 (g) , but commute with son operatcrs and c-numbers.

Then

- complicated internal degrees of freedom. The rule is to associate with

3
'

which anticommute with all fermion C

) .
(B=27)"

.
LY

N

a function o QP) and for each annihilatioqu__'

R A - oy

e e Gl

st e T S

g —
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we generalize the "dot" notation in the following way: ¢

".

-

ok

a'af EZ:J’dBBGi(B)Bif(E) + Z fd328J(£)be(£) S \
) | -
afra =) [ preip) o ) o gy (5-5)
i y _ .

Similarly we generalize the ‘n operation as follows: the linear mapping

‘N' of the set of all formal power-series functionals of the a (p) , -

: “;(2,)’ SJ(R)’ 8;(2) onto\the set of all formal power series of

annihilation and creation opeyrators acting on 7‘7“.' is..defined by:

H
-

n@w = . ' ' (B-12a")
"n! (clP;_ + CZPZ). = cl’n"{Pl) + cé'[l'{?z)‘ . . . | (B=12b')

) k L. ‘ \m n . )
T af e T ef @My T oy (el ] I 8, (g9 )
71'( rel if e 8T | Lem ot usl U N
. o \\ : :
k Y L | . o f n -
sl T st i e, gl T, 0]

- r=) s=1 t=1 us=l

I (B=12¢"')

AR

-

Application of the commutation and anticommutation relations then gives

the result, that, for any operator Q ,

.

or equivalently, - . "

t, t,. t, ' -
Q = W'{e"u-i .'u(vacle“ 8Qe® alva.c) : , - (B=-13")



\ ’ &llle

! «©

Q "_n' Z (m!n!)-l(vacl[-a"'-a.,'[a"'.a’an]m'vac)~ . (B=1T')

. m,n=0

In Eqs. (B-13') and {B-17') the order of the products is significant
due to the presence of the fermions., Again we emphasize the motivation

for this development: the totality of relationships among plane-wave

matfix elements of an operator in W‘-' can be concigely sumarized in

terms of the generating functional
t, t,
Q{a*;a} = '(vaclea ®Qe® "%|vac) B

The, operator itself can be recovered from the generating functional

through Eq. (B=13'). . o
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C. LSZ Formalism o,

We reviéw briéfly in this Appendix the main features of a.£heory
of interactions first formulated by Leﬂﬁann, Symanzik, and Zimmermann,
. and popularly known.ss the LSZ formalism.lo In particular, we wish to
consider the relationship'between the S matri# and the t=functions,

defined by
T(xg, **y x ) = (vaclT(¢(xl) oeo ¢(xn)}IVac) ... (C-1)

The conventiondl time-ordering symbol is defined by Eq. (III-29),

The operator #(x) is a scalar field which satisfies the condition

of microcausality and the "asymptotic condition,f i.é.,_ . "
UM, (M,2) = PMx + 2)  (ce2)
(#(x),#(y)] =0 ~when (x-y)®<0 , - . (c-3)
Ln (ol%(x) vy = <oled v (C-)
X _+Fo
o out

{
where ¢ and ¢ ére any two normalizable state vectors and the ¢a

notation will be defined below. Equation (G<h), the asymptotic condition,

introduces the in- and out-fields, which satisfy

Kx¢in (J!) = (3‘13u +.-m2)¢inr (x) = 0 " . : (Ca5)

out out )

6, (x), #, ] = ialx-y) . (c-6)
 out out -

Thus ¢in(x) s B_,(x) are free-field operators and can be expanded

out
in terms of'plane-wave annihilation and creation operatofs in the usual'wai:
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(x) = (2n)'3/2J(d p[2u(p)] -1/2 ain (géeip.x + ?infkéée-?p.x}

out . -out , out “(¢-T)

where the operators 1n(p)' a, (p) sa.tisfy the usual commutation

relations, Eq; (II-1), as do a’ (p) ,

out (p) Furthermore, we

out
o introduce a complete, orthonorma.l set of solutions of the Klein-Gordon

fequation, fa(x).

| Kxfa(x) a 0 _", . R o K i(c-@) '

13

e - e af, (x) ‘. af (x)
-iffa(xz) '_afB*(x)d35‘ _-i[, fa(x) —e o £ '(x) i 43’{'

?’-‘o"‘ BT ax, !
Yttt x) = 1w oxny (c-10)
a ' ‘ S S :
The operators #%(x) are défined by Co
¢“(xo) = éiJ[fa(x) d ¢(x)d3§, .« - (C-11)

Because thé in- and out-fields satisfy the Klein-Gordon equation,:¢gh

and ¢g“£ are time=independent, Furthermore, because of translational :

" invariance, _§¢°'(xot-)‘|vac> is time-independent, so that '
. o o -
Binlvae) = 80 lvac) e oo (ca2)

" 'The S inatrix in this formalismis the.unitéry operqtorf which maps oute
’ éta'.t‘gs'; into inf-states . | o '

W) = St e
" From the asymptotic condition, Eq. (c-h). follows the eo-called

: 'reduct:ion. formulae:

'7—' e

- ——
s
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) . .- T
[ . : . 4!

[ST{¢(x ) e Blx )}, af (k)] 1(zu)'3’2(ew(k)1‘f;2

‘/-d ze'ik zK ST{¢(x1) i03-¢(xn)¢&z)}"' ’ | ?;k%fv?: (dflha)

IST{¢<x1) s Blx Ve, (k)] = -i<zn)-%/2[2w;5)1*1/2 o
. | B .
x fdhzeik zK ST{ﬂ(x ) o e ¢(X )¢(Z)} N . L (cdlhb)

: | ) R 5
From these reduction formulae we will obtain an expression for the

' acattering functional. FOr cohvenience,'let us define

‘ qfﬁ+)5¥) = (2n) 3/?]rd p{2m(p)] 1’2a(p) o ) (o)
) = Wweom L (s

Then, we introduce a linear napping %f[, completely analogous to that

” ‘defined in Appendix B, Eqs. (3-12), which mapa a(p) into “1n(2)

and a (p) 1nto a (p). Thus, for example, we have f;"

¢1n(x) 7?«»(1>) . ff_ U ea6)

’ft-iWe emphasize that this mapping unambiguoualy defines a normal-ordering. '

l.'{,sting the reduction formula, Eq._ C-lhb), we havejif; i

. ,\’_.

'\."_'-
e \ SR

':f[a*ﬁa;;s¢{¢(xi){=é:'¢(g5)11:;g _fé xqﬁ"(x>x srfﬂ(x ) ke ¢<x >¢<x)}

S, . e F . _;’t -.1‘ . .
Lo . a E R S . ,D . ,l-. I K N Lo )
A L A O N
“.;., . . T, KN . T s \c. R . .
.. L
2 N .4:‘\v



. employing the dot notation introduced in Eq. (B-5). ingthevfollowing”

'- reault e could have used out operators Just as well. By iteration, fj"

G 1t follovs tha.t S o o ff]?"‘

i - . L RN N e e T \
H N . . e . : L A T Y,
. 2 , . ' ) R 3 - L .

'[?‘-,1.',3.51,. = i"f d"xl <1"xn QS-_)(M’,.“,' q’(‘)(~xh} i - R

.

i '
bherei't']n is the rgpeated_comﬁutator introduced in Appendix By hikewise,‘f
~ using Eq. (C-lba), we obtain . ETTE D N N .

G Teaal ) e B(x )] = 1[ AU

L
R E 'Y (U TC T SRR TOW Y1 3) B
".e ,Coﬁbining Eqgs. (c-18) and (c~19)' ve finally obtain};"’j kA.:fm;¥\ fa

ff(C+i9j'f

R R e T T
JE AN CUTNCI S T ] Ly e

V:-'.:‘r.«_.Q_;ii,mmfd"xlf d"x d"vl d Y, q‘ )(x ) XL ‘P(*)(x W( )(y ) q’( )(Y )

'7?'Kx.Ky "f;“& S?F?(*;?"

ve take a (-P) 1and a(p) to be in Operators, although for the fina.l TR

xoky e k. g xy) s (a0 L (o o




o Furthermore, the right-hand side of Eq. (c-22) is manifestly Lorentz

" 1is shown in Sections III and IV that thia operator ‘alao satisfies the
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1
£
1
i

. T t ,
) F{af;u] : ™ a{vacle“ *8ge% 8 |vac> nl 1 + Z i ‘(mlnl) .
E ‘ : m=2 n=2 g L

x (vac|[-ava’,la¥ 0,80 ] lm> =’ 1 +Z (n n)'l n ‘a"x e a0

Ed

v (P(xl) PP q’(xn)le see Kx-n.‘.('xl,’ 00’0’ xn). .

'Thus, vith the functional formulation we obtain in a direct way the

E» . o :

. =%

oft-quoted resu1t°

.d S .I + §f (n!)Hl nJ[d x, oo d % 9?(¢(x ) ves qﬁx ))K iisf- K*n
' .o

g, ~“-"n,’ o o (c-22)

n=2

" Since ssst =g ,‘Yl(qﬂxl).f"'qun)) may be taken as the normal-ordered_ix’
' “product of either the in-fields or the out-fields.
We now inquire vhether the operator given by Eq. (C-22) satisfies ™

vf the requirements for an . S operator given in Section II. That this

‘; operator is unitary follows: from an identity satiafied by the T-functions.Bq

i invariant. Finally, because of the asymptotic condition ‘and translational “T
)'?invariance, this S operator has the action of the identity on the vacuum .

. 'and one-particle subspaces¢ Thus the operator given by Eq. (0-22) is a
".suitable candidate for the S operator in’ these respecta.j In fact, it
= first and second cluater properties.;ifﬁ‘{’a;ff;'.a*f Qf'

- r M
‘v ’ S '

o
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D. A Theorem on Connected Functionals

o 'f; B " Before proceeding to the theorem on connected fénctionals which
o is aecessary in Sectjion III, Part I, we briefly review the properties
of the hermitian phase matrix of LSZ I]}.2h If the S matrix is
séecified by distributioné ’ﬁn(pl, cee, pn)’ symmetric in the n

" four-vector variables, in the following way

s = espltn) , - (o)
/ z (mlnl) 1fd3 " oese d3 "d3pl" v d‘?n'a (,P ") cee g (p n)
. .m:() n=0 g .
- . | m : 11n .  . i,
xalp ) o algy W T 120@ 172 0L (2ugp, 11722
’ ’ ' - i=1 r ‘ J=1 - K

n »- L eve '". | LX) [
X Gh EZ: pi - §' J ~hm*n(-pl ’ ’ -pm ' P’y ’ pn')
| B R | | (D-2)

then thé geheral propertieé of the S matrix have the following representa=

tibn in the E;:

(1) Unitarity: S;(pl, vee, pn) = B;*(upl,"'°; -pn) . (Df3§)

(2) Lorentz invariances %ﬁ(pl, ;*-,ﬂpn).?fin(Mpi, ey ﬁpn). (D=3Db)

(3) 1Invariance of the vacuum:.rio = hl(p) =0, - " (D=3c)

(k) Invariance'of one-particle states: }K2(p1?p2) =0 . ...(D-3d)
- _ In addition to these S-matrix propérties, which we have discussediin _
v " ~ Section II, Lehmann, Symenzik and Zimmermann add: TPC inveriance,

2

‘which requires that;the'"ﬁn ' be real; the finiteness of scattering

and reaction cross-sections and their gehgralization in multiparticlel

e i o o

e i e L S Rl

IS OO U —
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(e 5 function

- u118e
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processes, which requires that the “h, ~contain no fo gimensional

' ‘§=functions; and that the"'”\lfn mdet be continuous func%ione of their
© invariant var@abiee. o | ,
'Usipg the theorem of this appendix,vit is shown 1n“Sectioe IiI
" that the prescription that the;JK . contaiﬁ no'fogr-dimeeaional
p d-functions gives the cluater decomposition.' The theorem ia.thiss

.\ If E {a ,a} is the connected part of the functional

1-
Lt B a °*°a a® .
En{u*;c[ e e %% Lvacle® #n"e*’® [vac)

then the relationship between thevtwo sets of functionals is given vy

' the following equation betﬁeen formal power.series

Z (11—.) (nx)‘lr. o' -a} = exp|: Z (1) (a)™'E_ °{a sad| . (D=5)

n=0 L n=l ﬁ ‘
.

- . . ) . : 3 L
’ : . . - .

' 1.. . '. ..“'\ . ‘
. The proof is as follows: We define generating functions for

these functiona.ls, '\ .

A

Bs) = Yo a?mngtete) o, T K (0-6)

- b e -

E6) = ) (18) (nn'ln ahad T e
= S VA

and 1ntroduce & new set of functionals by means of the generating =

' ,»f*ﬂ

=O

’ , ) (D=k) :.

R W
A .

f e s
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‘Explicitly, we have Y
. Enc{a+; al = _n!":E:. (-1)5*%(1 - 1)('
. A= '
. ' v
. -1 -] Sm
R l ! \ )
o Yoo }" H ()" 1 (m) D, (o' W™ g
sl=0 sn=0 m=1 4 ) )
£ g = : .
m .
Ims=n T
m "
.\»

_ nn{q"‘;g = ni Z Z [ s, 1) E ta’sab] ™. "+ (p-10)

o
.

L

IT,Z En{0+;a}‘; Ert&f;a}En-r{&fia +'{Er{u+;°} .

n n n

slco snao' m=} ) = !

Ims=n
. n

It is advantageous to use here the functional pfb&uct-bracketlf

‘\
i

Thus, with the definition, Eq. (D=l), we have,

introduced in Appendix B,

4

En-r;“+5°}}.‘x - (D-11)

E Now, as a cbnsequence of the’ les of functional differentiation. the

following results holds, for the connected functionals CZI,

0y
% t
Wt
-
N
.
b

3

*

!

Pl
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l""%‘
m 8 m - ) )..,;
” i ) i . “"I
111 tap ®xy =0 1 '+ XY o
‘ i=1 i=l . .
AN _
’ 5 n m 8
- i
+ ) see z H v .
v=0  v=01=1 \ 1 c.
[ . tvi #0

whrre the subscript

" n
c

n-ll ‘n

denotes the connected part of the functional.
Applying this result to the expansion of Eq. (D-10), we obtain
- (o, _}Dr{n r,Dl} .
: r
r=l '

B

. H
(D-IB)Q
Before we can apply this result to the proof, we need the
following lemma ‘ o . E o N <
v e e ‘
A vy, oC c ' iy :
Dv+1 = Z ( )Drnv-ﬂ-l ' . - (D-1k)
r { y . .
{ r=0 . Lt , R
This follows simply by differentiating both sides of the defining
relation, Eq. (D-8), with respect to t' o .f:?;f‘_a: .
9_2{."'_.). = D(t) ;‘Ei_ : (D=15)
and equating coefficients of like powers of t . g . L ‘-;S
g We wish to show that E = D for alli We proceed ' :""i‘@.
inductively. Since El is connected, El = El fs Dl Ij_Now esgume e
v o P
m'=-Dm for m Then, from Eg. (D-ll) .

»
-t
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o E, ® EE + ,{f“in:’El} el (D=16)

n+l "nl |

+

. v .Using Eq. (D-13), one obtains
. L - ‘ ' n=1
- . . c -] . ;
- WS AR AR Z ‘
) . . ol r.,

n

¢
r{Dn r’El }c ¢
|

"But : ot

1§ E.°) =(E E } =fg° '

n-r*l1l ‘¢ n-r’ 1l'c Nerd+l ! .’
80 Phat
n : . . ‘ | 

n . . |
, o L .
Ea® Z r ) DrEn-;«v-l = D ¢ ) oo
. - r=0 ' : o

. Hence, E = D for all positive integers, and Eqs (D<5) IOIiows'from ‘
the definition, Eq. (D-B). : "b. O _ )
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. ~ scattering theory with the Coulomb interaction has been given
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11.

L2,

U 13.

S lbi y

Analogous discussions of this example from the standpoint of the so=-
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' FIGURE CAPTIONS Y

A Fig. 1 "Diagiam cprregponding to the cluster amplitu&é‘ Amn .
‘Fig. 2 ;"The foﬁr diagrams contributiné to the matrix eleﬁent that
| describeévfoqr incident and five'outgoihg particleﬁ.
Fige 3 Pictgrial repregéntation of the second cluster propeftyo
It is not to be underétood.as a Feynman diagram; or aﬁy
other diagranm we dipcuaa: It:is included ﬁgreiy to
. serve as a visual aid to the diécussion-in;éectioﬁ IV,‘ 
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(a)

(b) )
| (d) |
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Fig, 2
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