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Abstract
The use of animal models in pre-clinical research has significantly broadened our understanding of the pathologies that 
underlie traumatic brain injury (TBI)-induced damage and deficits. However, despite numerous pre-clinical studies reporting 
the identification of promising neurotherapeutics, translation of these therapies to clinical application has so far eluded the 
TBI research field. A concerted effort to address this lack of translatability is long overdue. Given the inherent heterogene-
ity of TBI and the replication crisis that continues to plague biomedical research, this is a complex task that will require a 
multifaceted approach centered around rigor and reproducibility. Here, we discuss the role of three primary focus areas for 
better aligning pre-clinical research with clinical TBI management. These focus areas are (1) reporting and standardization 
of protocols, (2) replication of prior knowledge including the confirmation of expected pharmacodynamics, and (3) the broad 
application of open science through inter-center collaboration and data sharing. We further discuss current efforts that are 
establishing the core framework needed for successfully addressing the translatability crisis of TBI.

Keywords Traumatic brain injury · Animal models · Data sharing · Data science

Introduction

Traumatic brain injury (TBI) poses a significant global 
health problem with an estimated 50% of the world’s popu-
lation suffering a TBI over their lifespan [1]. This vast reach 
positions TBI as a leading cause of death and disability 
across all ages, countries, and socioeconomic classes. The 
resulting global economic burden from acute and chronic 
TBI care surpasses an estimated $400 billion USD annu-
ally [2]. Despite the immense toll of TBI-induced deaths 
and disabilities, the identification of effective therapeutics 
remains elusive. Numerous pre-clinical studies have reported 
beneficial pharmacotherapies in animal models; however, 
there has yet to be a successful clinical trial based on these 

reports [3–6]. Understanding why the TBI research field 
has struggled to translate findings from bench to bedside 
is imperative to advance clinical management of TBI and 
reduce its immeasurable societal burden.

Across biomedical research, the inability to replicate a 
large percentage of reported findings has come to the fore-
front of conversation [7]. The NIH and other funding agen-
cies have appropriately responded to these reports through 
numerous calls for increased rigor in animal research. Most 
recently, the NIH released the Jan 2023 Data Management 
and Sharing Policy focused on increasing reproducibility 
via mandated data sharing and transparency [8]. While the 
significance of this step cannot be overstated, there is a con-
siderable amount of collaborative work that must be done by 
the field to address translation in TBI research.

TBI presents a highly variable disease in the clinic in 
terms of injury severity, location, type of damage, and 
patient comorbidities [9, 10]. These countless confound-
ing factors make modeling the entirety of the clinical injury 
population in a single laboratory setting impossible. In an 
attempt to model relevant mechanisms of human TBI and 
quantify functional recovery, numerous models and end-
point metrics have been developed [11–13]. However, few 
attempts have been made to draw direct comparisons to the 
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human condition, protocol reporting and standardization 
remains insufficient, and there is a strong reporting bias in 
the literature that overvalues novel findings and undervalues 
negative results.

Successfully addressing the translational crisis will 
require targeted yet significant changes that span from daily 
laboratory practices to existential cultural adjustments to be 
adopted by the TBI research field. In the current manuscript, 
we explore ways that pre-clinical researchers can standard-
ize experimental protocols, confirm prior knowledge, and 
increase data transparency via more extensive community-
based collaboration efforts (Fig. 1). Furthermore, we discuss 
how adopting an open science culture will allow the TBI 
research field to overcome the statistical challenges inherent 
to animal research (i.e., limited sample size) while recogniz-
ing that this cultural adjustment will require incentives (e.g., 
citations and credit for data research products) to move away 
from the current “publish or perish” mindset [14–16].

Multifaceted Approach for Increasing Rigor 
and Reproducibility in Pre‑Clinical Research

Capturing Clinical Heterogeneity

Human TBI is a dynamic process that is challenging to accu-
rately recreate in non-human models [11, 12, 17]. There are 
several factors that contribute to this difficulty including 
the inherent complexity of the human brain relative to com-
monly used animal models, the heterogeneity of clinical 
TBI itself (e.g., severity, location, mechanism of injury), as 
well as the breadth of variability present within the patient 
population (e.g., age, sex, medical history). While it is 
unlikely that a single lab will be able to test therapeutics in 
a multitude of models or singlehandedly address a major-
ity of these concerns, standardizing surgical protocols and 
endpoint assessments could allow for the harmonization of 
datasets from multiple centers [13, 15, 18–20]. Not only 

Fig. 1  Schematic describing steps that must be addressed as a TBI 
research community to effectively address the translation crisis. 
While the current manuscript focuses on the pre-clinical, animal 

research field (indicated by shaded, grey box), it is important to 
remember that clinical changes must occur simultaneously if we wish 
to traverse the current hurdles that exist
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does this approach open the door for a broader investigation 
of therapeutic effectiveness across multiple types of TBI, 
but it will also greatly increase the statistical power of pre-
clinical TBI studies [14, 21].

Anatomical Considerations

A primary factor that makes modeling TBI difficult in the 
laboratory is the vast complexity of the human brain. The 
human brain is a large, gyrencephalic structure that consists 
of numerous interconnected regions, each of which contrib-
utes to multiple functional networks. Rodents, the animal 
model most commonly found in the pre-clinical TBI litera-
ture, have lissencephalic brains that lack the same folding 
structure found in humans [11, 12, 22]. While the two brains 
do have numerous analogous regions and networks that 
have been detailed, the lack of anatomical folding has clear 
implications for the biomechanics of injury. Furthermore, 
structures such as the hippocampus, which play a central 
role in many common laboratory assessments, are differ-
entially positioned in the rodent brain relative to the human 
[23–25]. This leads to difficulty in modeling human TBI 
given that applying the same mechanical insult to a large, 
gyrencephalic structure will lead to a different disturbance 
than would applying the same insult to a small, lissence-
phalic structure with dissimilar arrangement.

Although overcoming the anatomical differences between 
the two brains is challenging, increasing the rigor and stand-
ardization of data collection practices will allow the research 
field to reach the subject number necessary for the identifi-
cation of promising therapeutics and the application of more 
advanced analytics [19, 21, 26]. By standardizing practices, 
more confidence can be afforded to therapeutics that show 
benefit across multiple models of TBI or pathophysiologi-
cal endpoints. This would assist the field with identifying 
therapeutics worth elevating to the more resource demand-
ing gyrencephalic models such as micropigs [22].

Severity of TBI; Clinical vs Animal Model

At the time of clinical admission, TBI patients are typically 
characterized by injury severity using categorization scales 
such as the Glasgow Coma Scale (GCS). The GCS effec-
tively classifies injuries as [1] mild (GCS score of 13–15), 
[2] moderate (GCS score of 9–12), or [3] severe (GCS score 
of 3–8). The GCS also describes gross neurobehavioral out-
comes in terms of disability in categories that range from 
death to full recovery. However, it is unlikely that these wide 
sweeping classifications will be sufficient for the develop-
ment of personalized medicine [27]. Furthermore, accurately 
modeling something as diverse as a “mild,” “moderate,” or 

“severe” TBI in an animal model leaves significant room 
for interpretation and limits the feasibility of standardizing 
across centers while still capturing the whole of the clinical 
condition [11].

There is a large degree of mismatch between the clinical use 
of the terms mild, moderate, and severe and the pre-clinical  
where these terms lack any accepted field standard [12, 27]. 
Laboratories often rely on injury device parameters to cat-
egorize their injury severity which is in stark contrast to 
the symptomatic or more recent imaging-based approaches 
applied clinically [28–31]. This results in “severe” animal 
injuries where there is a great deal of tissue deformation 
and subsequent injury, yet the animals are still functionally 
adequate (e.g., walking, grooming, eating, and interacting 
with housing mates) 24–48 h after injury which does not 
accurately reflect the “severe” human TBI condition [11, 
32]. However, due to anatomical differences and device limi-
tations, these injuries are often the most severe that can be 
administered without leading to mortality [11]. This points 
to possible misalignment between the clinical and pre-clini-
cal use of the word “severe.” However, despite this misalign-
ment, the animal models may be capturing subgroups of 
patients that fall within the 90% of TBIs that are discharged 
as “mild” yet still have persisting, and often debilitating, 
symptomatic burdens 1-year post-injury [33].

Identifying subgroups of patients that will assist with bet-
tering translatability from animal models to the human con-
dition will likely require the application of analytical meth-
ods able to explore the multivariate and multimodal space 
generated by TBI datasets. One potential area for alignment 
is harnessing previous research that has highlighted patho-
physiological differences between animal models of TBI 
as well as a more thorough investigation of which model 
best captures clinical pathological subgroups. For example, 
extensive characterization of the controlled cortical impact 
(CCI) model of TBI has revealed identifiable pathological 
differences from other common models of TBI such as the 
fluid percussion injury (FPI) and penetrating ballistic-like 
brain injury (PBBI) in clinically relevant modalities [11, 
34, 35]. However, the application of methods able to iden-
tify subgroups and provide a multivariate description of the 
dataset such as unsupervised machine learning clustering or 
principal component analyses often requires subject num-
bers well beyond what is feasible for a single laboratory 
[14, 21, 36, 37]. The application of artificial intelligence 
and machine learning (AI/ML) has therefore been limited to 
use in the few large, animal TBI datasets that exist currently 
(e.g., Operation Brain Trauma Therapy) [15, 21]. This is one 
area where data sharing and harmonization efforts that can 
combine multiple data sources may greatly contribute to a 
successful bench-to-bedside translation.
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Future Considerations for Circumventing Differences

Enhancing translatability by considering pathobiologies 
as a potential area for bench-to-bedside alignment in TBI 
research presents unique challenges. The damage resulting 
from TBI typically occurs in two injury phases: primary and 
secondary injuries [38]. The primary injury encompasses 
the mechanical disruption at injury onset, while the second-
ary describes a series of pathobiological cascades initiated 
by the primary disruption. Researchers have identified sev-
eral mechanisms that contribute to the damage caused by 
the primary injury, including focal necrosis, vascular and 
blood–brain barrier rupture, edema, hemorrhage, mechani-
cal injury to neurons, axons, and glial cells, and the appear-
ance of damage-associated molecular patterns responsible 
for signaling the initiation of subsequent injury response 
mechanisms [38–40]. While the primary injury is typically 
transient and irreversible, the secondary injury can carry 
on for months to years from the point of initiation leading 
to further cell death and dysfunctions that may be sensi-
tive to therapeutic interventions. The secondary injury typi-
cally involves mechanisms such as inflammatory processes, 
excitotoxicity, oxidative stress, the generation of free radi-
cals, demyelination, autoimmunity, neurodegeneration, and 
multiple types of cell death [38, 39, 41–46]. This continued 
stream of damage leads to injury phenotypes that change and 
evolve with time both in terms of physical damage observed 
(e.g., changes in cerebral blood flow or consequences of 
homeostatic disturbance) and syndromic experience reported 
(e.g., neurological deficits, cognitive decline, motor impair-
ments, and/or chronic headache disorders) implying that suc-
cessful treatment will require a method for understanding the 
damage that has yet to occur in each individual [38, 47, 48].

Intuitively, the research field has designed their animal 
models of TBI around the physical observation that mechani-
cal insults often lead to human TBI. As discussed, this is 
wrought with biomechanical complications. However, the deep 
characterization of the commonly used TBI models may allow 
for alignment of the clinical population with animal models 
by investigating the secondary injury pathophysiologies that 
result from each type of injury. Albeit complex, predicting and 
grouping subjects by the current and ongoing pathophysiologi-
cal mechanisms rather than severity indices could allow for 
precision-based approaches in translational TBI.

With regard to translation, it is important to consider that 
the biological processes following trauma occur on vastly 
different timescales for a human than they do in commonly 
used rodent subjects. Agoston et al. (2019) performed a 
detailed examination of many classic TBI pathobiologies 
including cerebral glucose metabolism, inflammatory pro-
cesses, axonal integrity, and water homeostasis and found 
that there is not one “conversion rate” that can be applied 
to capture the differences that exist between species [49]. 

This group went on to suggest expanding the use of clini-
cally relevant outcome metrics (e.g., imaging, blood-based 
biomarkers) in animal studies, conducting more expansive 
longitudinal studies, and incorporating big data approaches 
able to better integrate and analyze large datasets [49].

Applying approaches fielded from big data analytics typi-
cally requires subject numbers much greater than is common 
in animal research. Achieving increased subject number is 
possible through the aggregation of multi-center datasets, 
and this approach will allow for the inclusion of multiple 
injury types, clinical covariates, and TBI severities [2, 16, 
18, 19, 21, 50, 51]. We envision multiple approaches for 
accomplishing the successful aggregation and harmoniza-
tion of multi-center datasets with both retrospective (i.e., 
previously collected or legacy datasets) and prospective (i.e., 
newly collected datasets) strategies being feasible.

The harmonization of legacy datasets presents the chal-
lenge of aligning data elements that were not necessarily col-
lected as part of the same study. One approach is to identify 
variables in each dataset that are [1] identical (e.g., GFAP 
collected 24 h post-injury), [2] similar with minor differ-
ences (e.g., Morris Watermaze conducted from days 10–14 
at one site but 14–19 at another), [3] conceptually similar 
(e.g., ambulation-based motor assessment but different task 
specifics), or [4] entirely unique to one site. Each level of 
harmonization similarity will require different considera-
tions and statistical approaches with the goal of removing 
the effect of site post-aggregation. While this approach is 
laden with imperfect alignment, it does provide the opportu-
nity to generate novel insights from completed experiments, 
thus increasing the return on investment from previous stud-
ies, including those that never reached publication due to 
negative results.

From a prospective stance, multicenter consortia and 
field-wide commitments can design the collection of new 
data in a way that promotes easier alignment across cent-
ers. Many ongoing efforts are focused on the design and 
reporting of standard operating procedures as well as the 
development of common data elements (CDEs) specifi-
cally for the pre-clinical TBI field [13, 20, 52]. Adoption of 
these approaches and reporting standards will generate large 
amounts of data able to be harmonized in a more compre-
hensive manner. Furthermore, consortium studies focused 
specifically on collecting data for eventual aggregation 
will make important contributions to our understanding of 
between center model and assessment differences.

Novel insights from the application of AI/ML to ana-
lyze large TBI datasets could assist the field with detailing 
multimodal profiles of TBI better able to align the damage 
observed in subgroups of patients with that seen following 
the utilization of specific animal models. This approach 
would greatly advance our ability to design precision medi-
cine-guided clinical trials that may have a better chance for 
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translation than the current studies which often rely on sever-
ity of symptoms for study enrollment rather than underlying 
mechanisms.

Standardization Across Centers

A primary focus for achieving the rigor and reproducibility 
necessary for improving confidence in pre-clinical TBI find-
ings must be establishing standards for all experimental pro-
cedures ranging from models and surgical decisions through 
to endpoint testing [11–13, 53, 54]. Standardization will be 
crucial for both the mitigation of experimental bias and the 
aggregation of multi-center datasets in such a way that will 
increase statistical power and allow for the application of 
powerful analytic tools.

Model Considerations and Surgical Parameters

One of the most critical parameters in conducting transla-
tional studies is to clarify the pathophysiology and treat-
ment of TBI using clinically relevant animal models [11, 
12, 35, 55]. Over the many years of TBI research, strategies 
for simulating the biomechanical, pathological, and behav-
ioral consequences of brain trauma using in vitro and in vivo 
models have been developed. These focal and more diffuse 
models of mild, moderate, and severe TBI have been evalu-
ated by the scientific field, used to clarify novel secondary 
injury mechanisms, and employed to test new therapeutic 
interventions including manipulating physiological vari-
ables and testing pharmacological agents or cell therapies 
[5, 17, 56–58]. Our scientific field has emphasized the need 
to standardize models while making them relevant to the het-
erogeneous TBI population [11, 12, 55]. Nevertheless, chal-
lenges still exist regarding the clinical relevance of the mod-
els and treatment approaches for protecting and repairing the 
nervous system after TBI. Furthermore, the reproducibility 
of injury models and outcome assessments post-injury have 
not been fully detailed. This level of standardization will 
be integral to the field’s ability to harmonize across data 
sources in such a way that site or experiment will not present 
as confounding factors.

Physiological Factors and Anesthesia

An important difference to highlight between animal models 
of TBI and the human condition is that, when using animal 
models, there is the need to include a variety of drugs and 
anesthetics in the established protocol to limit discomfort. 
Currently, a variety of sedatives, analgesics, and neuromus-
cular agents are used commonly in the laboratory to pro-
duce sedation and limit pain during surgical procedures and 
other necessary steps [12, 13]. Depending on the dose and 
routes of administration, drugs can have various effects on 

normal brain function and on systemic physiological vari-
ables such as blood gases, pH, systemic blood pressure, and 
temperature [59]. Although these anesthetics produce the 
desired effects under standardized protocols, they do alter 
the physiological state of the brain and therefore may alter 
the cerebral response to trauma relative to the clinical set-
tings where patients are not under the influence of anesthesia 
at the time of injury.

To help standardize models and improve successful trans-
lation, the field has therefore emphasized the importance 
of including important details regarding the steps associ-
ated with the production of TBI that may vary between 
laboratories and models [13, 15, 60]. These details include 
the type of anesthesia used, the dosing of each pharmaco-
therapy, and the time frame of anesthesia relative to TBI 
surgery. Previous research has investigated the CNS and 
systemic impacts of peri-TBI anesthesia and established 
many of the current recommendations that are found in the 
literature today [61–65]. For example, isoflurane, a com-
monly used inhaled anesthetic, has been found to provide 
both histological and functional benefits following TBI in 
the rat model relative to other anesthetics such as fentanyl, 
diazepine, and ketamine [61, 63, 64]. These observations are 
thought to be due to the differential effects that each drug 
therapy exerts to either mitigate or exacerbate the secondary 
injury mechanisms that occur in the acute setting following 
primary insult. When comparing results in the literature or 
harmonizing data across centers, it is crucial to know how 
sedation and pain were managed throughout the entirety of 
the experiment.

It is important to note that, while human TBI patients are 
not typically under the influence of anesthesia at the time of 
injury, some are placed under anesthesia or sedation upon 
arrival to the clinic during the development and resolution 
of symptomatic emergencies [66, 67]. These cases, however, 
are typically more severe in nature than the animal models 
where subjects regain functionality within minutes after sur-
gery. Acknowledging how this time difference of anesthetic 
exposure as well as the severity of injury impacts the ongo-
ing secondary cascades is a vital piece of information for 
translating model observations to clinical suggestion.

Despite not being anesthetized in the same way as an ani-
mal subject, other neuroactive substances such as ethanol, 
caffeine or stimulants, and anti-histamines or allergy medica-
tions are commonly onboard at the time of human TBI. These 
substances have been found to alter the emergent pathologies 
following TBI and are known to interact with some adminis-
tered therapeutics [68–75]. However, despite being common 
in clinical setting at the time of injury and persisting into the 
acute injury phase, these substances are rarely included in 
animal models of TBI investigating potential pharmacothera-
pies. A more thorough investigation of how commonly used 
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substances impact therapeutic intervention is an area where 
the field could make great strides.

Confirming Pharmacokinetics of Therapeutic 
Interventions

Although impactful research has been accomplished by 
clarifying the pathophysiology of TBI-induced secondary 
injury, pharmacologic interventions in preclinical modes 
have not translated well to humans [4, 76, 77]. Therapeutic 
responses following TBI are influenced by patient charac-
teristics (e.g., age, sex, and genetics), co-morbidities, and 
other factors [77–79]. When a drug treatment is not shown 
to improve clinical outcomes, researchers may speculate 
about the strength of the preclinical findings or the clini-
cal protocol [12, 77]. However, the pharmacokinetic and 
pharmacodynamic properties of the compound, as well as 
issues concerning optimal dose, therapeutic window, and 
successful target engagement are important factors that need 
to be investigated if the field wishes to increase the chance 
for a successful translation [77, 80, 81]. Specifically, the 
blood–brain barrier (BBB) controls the influx and efflux 
of nutrients and waste products and isolates the brain from 
compounds in the blood. Thus, the ability of a drug to show 
benefit in the lab and be able to treat human TBI would 
require the compound to successfully cross the BBB in both 
species and interact with its therapeutic target to impact 
pathological mechanisms [82, 83]. Furthermore, understand-
ing how optimal dose, drug metabolism, and target engage-
ment differ between animal models and human patients is 
not well understood for many pharmacotherapies tested in 
the TBI literature. To enhance scientific rigor and the poten-
tial for successful translation, these factors need to be more 
fully interrogated and reported for the pharmacotherapies 
tested [2, 20, 84].

Open Science and Data Transparency

Open science in the context of TBI animal research refers to 
the practice of making scientific data, publications, and other 
research outputs openly available to the research community 
following study completion. While current guidelines that 
focus primarily on sharing the data that contributed to find-
ings in published manuscripts will help address reproduc-
ibility, reporting “dark data” and negative findings will also 
be of the utmost importance. Having a deeper knowledge 
of the experiments that have already been attempted will 
save valuable resources by avoiding unnecessary repeats. 
Furthermore, having access to all data collected will advance 
our ability to harmonize large datasets ready for secondary 
analyses. This may result in novel findings, thus increasing 
the return on investment for that particular dataset for both 
the funder and the researcher. That is, datasets that are pub-
lished and subsequently used for secondary analyses will 
become citable research products just like manuscripts and 
be added to a researcher’s list of concrete contributions they 
have made to the research field. This approach to dataset 
citation could begin to address the issues that arise from 
the “publish or perish” mindset by creating an avenue that 
allows scientists to receive credit for experiments that did 
not go through the publication pipeline.

In order to for data sharing to reach its full potential, there 
needs to be principles in place that protect scientists from 
having their data used inappropriately. The TBI research 
field should adopt and adhere to a strict set of guidelines 
agreed upon by the community. FAIR (Findable, Accessible, 
Interoperable, and Reusable) data principles are one set of 
guidelines that could be employed to help TBI research move 
towards open science in a responsible and rigorous manner 
(Fig. 2). The FAIR data principles provide a framework for 
ensuring that data generated in biomedical research is usable 
and valuable to other biomedical researchers interested in 

Fig. 2  Graphical summary describing the FAIR data principles as they apply to TBI research
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using the data for either reproducing results or performing 
secondary analyses [50, 51, 53, 60]. By making data find-
able, accessible, interoperable, and reusable, researchers can 
maximize the impact of their work and facilitate data sharing 
and reuse, which can help to accelerate research progress.

Specifically, making data findable (F) involves assign-
ing persistent and unique identifiers to datasets (i.e., one 
ID per subject in the dataset), using standardized metadata, 
and ensuring that data is indexed and discoverable through 
common search engines. The Open Data Commons for TBI 
(ODC-TBI) is a data management and sharing platform (fur-
ther described in the “Efforts to address the translatability 
crisis” section) that addresses this first point by assigning 
unique digital object identifies (DOIs) to each published 
dataset that are searchable in any browser identical to how 
published journal articles can be found and referenced [15]. 
Furthermore, metadata, in this use case, refers to detailed 
descriptions about a dataset’s creation and content. Meta-
data should provide information about who collected the 
data, when the data was collected, the experimental design 
that generated the dataset including the instruments used, as 
well as the structure and format of the data. This information 
helps to ensure that the dataset can be used appropriately and 
correctly interpreted by others.

Once located, making data accessible (A) implies that 
data are available in familiar file formats and that appropri-
ate data access policies are in place. Regarding TBI research, 
this means that data should be made available in common 
file types (e.g.,.csv) that can be opened by any spreadsheet 
software (e.g., Excel). Furthermore, data access policies 
should be strictly enforced to ensure that the use and reuse 
of datasets is acknowledged, and citations are attributed to 
the scientists who generated the data.

Making data interoperable (I) involves using standardized 
terminologies, providing clear and consistent data defini-
tions, and ensuring that data is easily integrated with other 
data sources. Current efforts in the TBI research field to 
establish pre-clinical CDEs and ontologies (see PRECISE-
TBI in the “Efforts to address the translatability crisis” sec-
tion) will greatly advance the harmonizability of datasets 
collected at different centers as well as provide a way to 
quickly query repositories to find datasets that align with 
a desired research question (e.g., datasets containing: rat, 
CCI, water maze). This could allow for the quick identifi-
cation of experiments that have been completed regardless 
of whether those variables were included in a publication 
and potentially save valuable resources from being spent on 
repeated experiments.

An important distinction to make is that, for this goal to 
become a reality, both published data and “dark data” will 

need to be shared. “Dark data” refers to negative results or 
variables that remain unpublished following the completion 
of a study (e.g., reported water maze latency but swim speed, 
distance, etc. remained unpublished or “dark”) rather than 
data that a researcher intends to use in a manuscript [16]. 
Furthermore, the investigator should have full control over 
when a dataset is published (often following publication 
of the primary results) rather than providing full access to 
information about ongoing research.

Finally, making data reusable (R) involves ensuring that 
data is well-documented, providing clear and concise data 
descriptions, and ensuring that data can be easily understood 
and used by others. Overall, FAIR data standards are critical 
for ensuring that research data is usable, valuable, and acces-
sible to the whole of the TBI research community, which can 
ultimately help to accelerate the pace of TBI research and 
improve outcomes.

TBI researchers can best implement FAIR data standards 
by following a few key principles:

1. Plan for “FAIRness” from the outset of the research pro-
ject. This involves planning how data will be collected, 
recorded, stored, and shared throughout the project. The 
NIH provides a list of accepted repositories with the 
ODC-TBI (odc-tbi.org) being both domain-specific for 
pre-clinical TBI research and FAIR compliant. Becom-
ing familiar with the dataset format, variable require-
ments (e.g., subject ID, species, sex), and metadata 
expectations for the chosen repository at the beginning 
of a project will save significant time and limit the 
chance for human recall error when it comes time to 
make the data available to others.

2. Use standard data formats and metadata to ensure that 
data can be easily understood by others. This includes 
using standardized nomenclature, ontologies, and adher-
ing to the application of accepted CDEs. Furthermore, 
data dictionaries, which define the variables in a dataset 
(i.e., typically the column headers) including units of 
measurement and other necessary information for how 
each variable in the raw dataset was collected, should be 
created alongside the data collection templates used for 
any given study (Fig. 3).

3. When data collection begins, researchers should assign 
persistent and unique identifiers to their datasets, sam-
ples, and other resources to ensure that they can be eas-
ily found and accessed. That is, each subject should have 
a unique ID name or number that refers only to data for 
that subject and is never repeated.
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Efforts to Address the Translatability Crisis

Moody Project for Translational TBI Research

Funded by the Moody Endowment, the Moody Project for 
Translational TBI Research brought together a large num-
ber of experts in pre-clinical TBI research with the goal of 
better characterizing acute and chronic TBI animal models 
and testing therapeutics across multiple types of injuries 
and model systems [11, 15, 85]. In an effort to develop a 
standardized set of guidelines for the pre-clinical testing 
of therapeutics, the Moody Project hosted a symposium to 
discuss experimental models, endpoint selection, data ana-
lytics, and the dissemination of findings. The guidelines 
from this symposium were released with the intent of pro-
viding a framework of considerations for TBI pre-clinical 
researchers that would assist with translating findings from 
bench to bedside.

Recommendations from this symposium focused pri-
marily on addressing the replication crisis and the hetero-
geneity of TBI. Specifically, investigators highlighted the 
urgent need to publish sufficiently detailed descriptions 
of the study design and experimental protocols including 
how species-dependent pharmacokinetics and timing of 
behavioral testing were factored into the operating proce-
dures. Furthermore, standardizing surgical parameters and 
outcome metrics across centers would be a necessary step 
towards attaining evidence that a therapeutic may be broadly 
applicable to multiple types of injuries and injury severities. 
Lastly, symposium participants also promoted the idea of 
disseminating negative results noting that this would reduce 
the unnecessary costs of duplicating experiments.

Operation Brain Trauma Therapy (OBTT)

OBTT is a multi-center, pre-clinical drug and biomarker 
screening consortium for TBI which has established a 
framework for successfully conducting multi-center, animal 
research through carefully designed standards for the design 

and conduct of research [20, 22, 34, 57, 86, 87]. Utilizing 
this multicenter framework, OBTT has successfully screened 
numerous therapies across multiple injury types (e.g., focal, 
diffuse, penetrating) and animal models (i.e., rodents and 
micropigs). The screening battery was comprised of an 
extensive list of endpoints standardized across centers and 
designed to capture multiple aspects of the pathophysiology 
following TBI.

OBTT is quite mature in its publication pipeline with the 
primary data from multiple therapies, numerous synopsis 
and overview papers, biomarker-specific investigations, and 
secondary analyses already published [19, 21, 85–91]. In 
these currently published studies, three sites were tasked 
with testing the same therapeutics across different models of 
TBI. The University of Pittsburgh used the controlled corti-
cal impact (CCI) model representing a focal type injury, the 
University of Miami used the fluid percussion injury (FPI) 
model representing a diffuse-focal type injury, and Wal-
ter Reed Army Institute for Research used the penetrating 
ballistic-like brain injury (PBBI) model representing a pen-
etration type injury. OBTT screened therapies for beneficial 
effects across neuromotor behavioral assessments, cognition 
tests, histological measures, and blood-based biomarkers.

Therapies were scored for their effectiveness using a 
weighted statistical matrix that awarded points for beneficial 
findings and subtracted points for adverse [34, 55, 57]. Of 
all therapies tested thus far, levetiracetam (Keppra) demon-
strated benefit across multiple rodent models without any 
findings characterized as adverse. This treatment was ele-
vated to the micropig for screening, and future therapies that 
show similar promise may also follow this track [19, 22, 87].

The structured design of OBTT is also ideal for the 
aggregation and harmonization of some endpoints in its 
datasets. The resulting aggregated dataset would consist of 
over 1000 research subjects, a subject number not typically 
feasible in animal research. Due to this power, a portion of 
these data have been harmonized and analyzed using AI/
ML methods that are typically reserved for datasets larger 
than your average animal study [19, 21]. These approaches 

Fig. 3  Example of the type of information that could be listed in a 
data dictionary and shared as part of a dataset’s metadata. This struc-
ture allows other users to quickly understand what the variables in a 

dataset are and how they were collected. Further, the “required” col-
umn could refer to the minimal, required elements required by a cho-
sen repository or set by the community for data sharing
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have proven successful in their ability to both confirm earlier 
findings and generate novel insights regarding the therapeu-
tics tested. Harmonization strategies like the one employed 
in the secondary analysis papers of OBTT serve as a guide 
for how the TBI animal research field can begin aggregat-
ing datasets suitable for the more extensive application of 
powerful analytical techniques. Furthermore, OBTT has also 
acknowledged in multiple papers the importance of data 
transparency and plan to release the study data following 
the publication of the primary findings from all therapies.

Translational Outcomes Project in Neurotrauma 
(TOP‑NT)

TOP-NT is an NINDS-funded initiative for a multisite 
consortium tasked with the development and validation of 
biomarkers for neurotrauma which have direct clinical cor-
relates [52]. Developing, validating, and standardizing the 
data generating and reporting process for multiple clinically 
relevant metrics will assist with addressing the translation 
crisis by more closely aligning clinical TBI management 
with pre-clinical animal testing. Furthermore, testing injury 
models and endpoints across multiple centers will either 
confirm the reproducibility of standardized protocols or 
uncover challenges that need further consideration.

Laboratories at the University of California, Los Angeles 
(UCLA), Georgetown University, Uniformed Services Uni-
versity, the University of Florida, and Johns Hopkins Univer-
sity serve as the key data collection centers in the TOP-NT 
consortium. Across these sites, neuroimaging, blood-based 
biomarkers, and behavioral assessments are assessed for 
their reproducibility and utility for serving as part of multi-
modal, cross-domain biomarker profiles. Histology is used 
to better understand the pathophysiological mechanisms 
that underlie observed biomarker profiles at specific time 
points. The University of California, San Francisco (UCSF) 
serves as the data management, harmonization, and analyti-
cal center for the entirety of the TOP-NT initiative, and data 
are deposited in an NIH-approved specialist repository for 
preclinical data management and sharing [8, 15].

The first publications describing the data generated by 
the initial phase of TOP-NT have recently been published 
with several others in preparation [15]. The initiative requires 
FAIR (findable, accessible, interoperable, reusable) data 
sharing, reflecting early adoption of the policies that are 
now enforced for all NIH-funded researchers through the 
2023 NIH Data Management and Sharing Policy [50, 53, 
92]. That is, adhering to FAIR data standards and the full 
transparency of all collected data even if not all variables are 
discussed in the manuscript. All TOP-NT datasets will be 
available for other domain experts to analyze through dataset 
publication. For example, the first few datasets (N = 1200) 

have been published and made available through the open 
data commons for TBI (odc-tbi.org) [93]. It is estimated that 
TOP-NT will release public datasets for thousands of more 
subjects in the next 2 years, enabling individual subject data 
meta-analysis across several models in animals that mirrors 
the scale of clinical individual participant data meta-analysis, 
a tool for accumulating high-grade evidence [94].

PRE‑Clinical Interagency reSearch 
resourcE‑TraumaticBrain Injury (PRECISE‑TBI)

PRECISE-TBI is an interagency consortium developed by 
the Department of Veterans Affairs (VA), NIH, and the 
Department of Defense (DoD). The mission of this con-
sortium is to accelerate the development of therapies for 
TBI and bridging the translational gap. This will be done by 
establishing methods in sharing data to improve rigor, repro-
ducibility, and collaboration in the pre-clinical TBI field. 
Several resources will be developed including a TBI model 
catalog, blast TBI modeling standards, data sharing stand-
ards, common data elements (CDEs), and an injury sever-
ity index. Additional information from PRECISE-TBI will 
provide educational and outreach and knowledge resources 
to TBI investigators. PRECISE-TBI will also aid investiga-
tors who use this service for their compliance with the new 
federal data sharing policies.

Open Data Commons for TBI (ODC‑TBI)

ODC-TBI is a community-governed repository to manage, 
share, and publish research data for the preclinical TBI field 
(odc-tbi.org). ODC-TBI aims to promote transparency, rigor, 
and reproducibility in TBI research by providing a secure, 
cloud-based platform for the storage and publication of pre-
clinical datasets in a way that fully adheres to the NIH data 
sharing requirements released in January 2023. ODC-TBI is 
the first NIH-endorsed specialist repository for preclinical 
TBI and, for this reason, has been adopted by TOP-NT and 
PRECISE-TBI as their central data sharing platform [8, 15]. 
In addition, portions of the Moody Project data have been 
uploaded to the platform [95].

ODC-TBI was conceptualized to be a collaborative effort 
that would create a community-based repository for TBI 
basic research. Currently, the repository is populated with 
101 datasets from 60 labs containing basic science and de-
identified human datasets which have been aggregated and 
harmonized to make them broadly interpretable and cross-
compatible [96].

ODC-TBI also serves as a powerful data management 
tool for promoting rigor in lab data management protocols. 
Researchers can upload data into a private space and only 
grant access to their trusted lab members. This provides labs 
with a way to track datasets from each of their studies in a 
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version-controlled manner to ensure consistency. That is, 
version-controlled datasets help groups quickly understand 
which version of the dataset is the most updated or has been 
used to generate specific findings. Furthermore, each PI can 
generate multiple, private spaces to support ongoing col-
laborations that may focus on a select few datasets, thus 
avoiding compromising the security of other projects when 
granting private space access to external collaborators.

Importantly, when publishing datasets, the ODC-TBI ena-
bles the issuing of digital object identifiers (DOIs). DOIs 
allow the dataset to be published and citable each time 
it is used. This implies that researchers will be acknowl-
edged much like a citation of their other published research 
products.

Conclusion

At this point in time, the TBI research field has ultimately 
failed to translate findings from pre-clinical animal studies 
to clinical application. This is especially true for the identi-
fication of effective pharmacotherapies. An effort to address 
this crisis in translation will require significant changes to 
be adopted by both the pre-clinical and clinical sides of TBI 
research (Fig. 3). In the current manuscript, we focused spe-
cifically on the pre-clinical realm and explored numerous 
avenues that must be addressed as a unified community and 
implemented as procedural changes. These include standard-
izing experimental protocols, confirming prior knowledge, 
and increasing data transparency via more extensive commu-
nity-based collaboration efforts. We also strongly encourage 
the adoption of an open science culture guided by FAIR data 
principles. The adoption of this cultural shift will ultimately 
give rise to a more collaborative, transparent, and effective 
research ecosystem that will help researchers maximize the 
impact of their work, accelerate the pace of research, limit 
the chance of sinking resources into studies that have already 
been conducted, and advance our understanding of TBI.

Declarations 

Conflict of Interest None.

References

 1. Maas AIR, Menon DK, Adelson PD, Andelic N, Bell MJ, Belli 
A, et al. Traumatic brain injury: integrated approaches to improve 
prevention, clinical care, and research. The Lancet Neurology. 
2017;16(12):987–1048.

 2. Maas AIR, Menon DK, Manley GT, Abrams M, Åkerlund C, 
Andelic N, et  al. Traumatic brain injury: progress and chal-
lenges in prevention, clinical care, and research. Lancet Neurol. 
2022;21(11):1004–60.

 3. Stein DG. Embracing failure: what the phase III progester-
one studies can teach about TBI clinical trials. Brain Inj. 
2015;29(11):1259–72.

 4. Maas AIR, Marmarou A, Murray GD, Steyerberg EW. Clinical 
trials in traumatic brain injury: current problems and future solu-
tions. Acta Neurochir Suppl. 2004;89:113–8.

 5. Agoston DV, Risling M, Bellander BM. Bench-to-bedside and 
bedside back to the bench; coordinating clinical and experimental 
traumatic brain injury studies. Front Neurol. 2012;2(3):3.

 6. Menon DK. Unique challenges in clinical trials in traumatic brain 
injury. Crit Care Med. 2009;37(1 Suppl):S129-135.

 7. Rajtmajer SM, Errington TM, Hillary FG. How failure to falsify 
in high-volume science contributes to the replication crisis. Elife. 
2022;8(11): e78830.

 8. Data Management & Sharing Policy Overview | Data Sharing [Inter-
net]. [cited 2023 Mar 28]. Available from: https:// shari ng. nih. gov/ 
data- manag ement- and- shari ng- policy/ about- data- manag ement- and- 
shari ng- polic ies/ data- manag ement- and- shari ng- policy- overv iew.

 9. Kline AE, Leary JB, Radabaugh HL, Cheng JP, Bondi CO. Com-
bination therapies for neurobehavioral and cognitive recovery 
after experimental traumatic brain injury: is more better? Progress 
Neurobiol. 2016;142.

 10. Nortje J, Menon DK. Traumatic brain injury: physiology, mecha-
nisms, and outcome. Curr Opin Neurol. 2004;17(6):711–8.

 11. DeWitt DS, Hawkins BE, Dixon CE, Kochanek PM, Armstead W, 
Bass CR, et al. Pre-clinical testing of therapies for traumatic brain 
injury. J Neurotrauma. 2018;35(23):2737–54.

 12. Smith DH, Kochanek PM, Rosi S, Meyer R, Ferland-Beckham C, 
Prager EM, et al. Roadmap for advancing pre-clinical science in 
traumatic brain injury. J Neurotrauma. 2021;38(23):3204–21.

 13. Laplaca MC, Huie JR, Alam HB, Bachstetter AD, Bayir H, 
Bellgowan PF, et al. Pre-Clinical common data elements for 
traumatic brain injury research: progress and use cases. J Neu-
rotrauma. 2021;38(10):1399–410.

 14. Huie JR, Almeida CA, Ferguson AR. Neurotrauma as a big-data 
problem. Curr Opin Neurol. 2018;31(6):702–8.

 15. Chou A, Torres-Espín A, Huie JR, Krukowski K, Lee S, Nolan 
A, et al. Empowering data sharing and analytics through the 
Open Data Commons for traumatic brain injury research. Neu-
rotrauma Rep. 2022;3(1):139–57.

 16. Ferguson AR, Nielson JL, Cragin MH, Bandrowski AE, Martone 
ME. Big data from small data: data-sharing in the “long tail” of 
neuroscience. Nat Neurosci. 2014;17(11):1442–7.

 17. Saatman KE, Duhaime AC, Bullock R, Maas AIR, Valadka A, 
Manley GT. Classification of traumatic brain injury for targeted 
therapies. J Neurotrauma. 2008;25(7):719–38.

 18. Agoston DV, Langford D. Big data in traumatic brain injury; 
promise and challenges. Concussion. 2017;2(4):CNC44.

 19. Radabaugh H, Bonnell J, Schwartz O, Sarkar D, Dietrich WD, 
Bramlett HM. Use of machine learning to re-assess patterns of 
multivariate functional recovery after fluid percussion injury: oper-
ation brain trauma therapy. J Neurotrauma. 2021;38(12):1670–8.

 20. Kochanek PM, Dixon CE, Mondello S, Wang KKK, Lafrenaye 
A, Bramlett HM, et al. Multi-center pre-clinical consortia to 
enhance translation of therapies and biomarkers for traumatic 
brain injury: operation brain trauma therapy and beyond. Front 
Neurol. 2018;0(AUG):640.

 21. Radabaugh HL, Bonnell J, Dietrich WD, Bramlett HM, 
Schwartz O, Sarkar D. Development and evaluation of machine 
learning models for recovery prediction after treatment for trau-
matic brain injury. In: Proceedings of the Annual International 
Conference of the IEEE Engineering in Medicine and Biology 
Society, EMBS. Institute of Electrical and Electronics Engi-
neers Inc. 2020: p. 2416–20.

 22. Lafrenaye A, Mondello S, Povlishock J, Gorse K, Walker S, 
Hayes R, et al. Operation brain trauma therapy: an exploratory 

https://sharing.nih.gov/data-management-and-sharing-policy/about-data-management-and-sharing-policies/data-management-and-sharing-policy-overview
https://sharing.nih.gov/data-management-and-sharing-policy/about-data-management-and-sharing-policies/data-management-and-sharing-policy-overview
https://sharing.nih.gov/data-management-and-sharing-policy/about-data-management-and-sharing-policies/data-management-and-sharing-policy-overview


1443Increasing Rigor of Preclinical Research to Maximize Opportunities for Translation  

1 3

study of levetiracetam treatment following mild traumatic brain 
injury in the micro pig. Front Neurol. 2021;13(11):1796.

 23. Tessereau C, O’Dea R, Coombes S, Bast T. Reinforcement 
learning approaches to hippocampus-dependent flexible spatial 
navigation. Brain Neurosci Adv. 2021;5:2398212820975634.

 24. Pitts MW. Barnes maze procedure for spatial learning and mem-
ory in mice. Bio Protoc. 2018;8(5): e2744.

 25. Radabaugh HL, LaPorte MJ, Greene AM, Bondi CO, Lajud N, 
Radabaugh HL, et al. Refining environmental enrichment to 
advance rehabilitation based research after experimental trau-
matic brain injury. Exp Neurol. 2017;1(294):12–8.

 26. Nielson JL, Paquette J, Liu AW, Guandique CF, Tovar CA, Inoue 
T, et al. Topological data analysis for discovery in preclinical spinal 
cord injury and traumatic brain injury. Nat Commun. 2015;6.

 27. Berwick D, Bowman K, Matney C, editors. Traumatic brain 
injury: a roadmap for accelerating progress [internet]. Wash-
ington, D.C.: National Academies Press; 2022 [cited 2023 Mar 
28]. Available from: https:// www. nap. edu/ catal og/ 25394.

 28. Yuh EL, Jain S, Sun X, Pisica D, Harris MH, Taylor SR, et al. 
Pathological computed tomography features associated with 
adverse outcomes after mild traumatic brain injury: a TRACK-
TBI study with external validation in CENTER-TBI. JAMA 
Neurol. 2021;78(9):1137–48.

 29. Njoku I, Radabaugh HL, Nicholas MA, Kutash LA, O’Neil DA, 
Marshall IP, et al. Chronic treatment with galantamine rescues 
reversal learning in an attentional set-shifting test after experi-
mental brain trauma. Exp Neurol. 2019;1(315):32–41.

 30. Bondi CO, Cheng JP, Tennant HM, Monaco CM, Kline AE. 
Old dog, new tricks: the attentional set-shifting test as a novel 
cognitive behavioral task after controlled cortical impact injury. 
J Neurotrauma. 2014;31(10):926–37.

 31. Radabaugh HL, Carlson LJ, O’Neil DA, LaPorte MJ, Monaco 
CM, Cheng JP, et al. Abbreviated environmental enrichment 
confers neurobehavioral, cognitive, and histological benefits in 
brain-injured female rats. Exp Neurol. 2016;286:61–8.

 32. Rau CS, Kuo PJ, Chien PC, Huang CY, Hsieh HY, Hsieh CH. 
Mortality prediction in patients with isolated moderate and severe 
traumatic brain injury using machine learning models. Kou YR, 
editor. PLOS ONE. 2018;13(11):e0207192.

 33. Machamer J, Temkin N, Dikmen S, Nelson LD, Barber J, Hwang 
P, et al. Symptom frequency and persistence in the first year after 
traumatic brain injury: a TRACK-TBI study. J Neurotrauma. 
2022;39(5–6):358–70.

 34. Kochanek PM, Bramlett HM, Dixon CE, Dietrich WD, Mondello 
S, Wang KKW, et al. Operation brain trauma therapy: 2016 update. 
Mil Med. 2018;183:303–12.

 35. Bondi CO, Semple BD, Noble-Haeusslein LJ, Osier ND, Carlson 
SW, Dixon CE, et al. Found in translation: understanding the biol-
ogy and behavior of experimental traumatic brain injury. Neurosci 
Biobehav Rev. 2015;58:123–46.

 36. Jolliffe I. Principal component analysis. In: Lovric M, editor. 
International encyclopedia of statistical science [internet]. Berlin, 
Heidelberg: Springer; 2011 [cited 2023 Jan 16]. p. 1094–6. Avail-
able from: https:// doi. org/ 10. 1007/ 978-3- 642- 04898-2_ 455.

 37. Nielson JL, Cooper SR, Yue JK, Sorani MD, Inoue T, Yuh EL, 
et al. Uncovering precision phenotype-biomarker associations in 
traumatic brain injury using topological data analysis. PloS one 
[Internet]. 2017 Mar 1 [cited 2022 Feb 8];12(3). Available from: 
https:// pubmed. ncbi. nlm. nih. gov/ 28257 413/.

 38. Werner C, Engelhard K. Pathophysiology of traumatic brain 
injury. Br J Anaesth. 2007;99(1):4–9.

 39. Jarrahi A, Braun M, Ahluwalia M, Gupta RV, Wilson M, Munie 
S, et al. Revisiting traumatic brain injury: from molecular mecha-
nisms to therapeutic interventions. Biomedicines. 2020;8(10):389.

 40. Povlishock JT, Kontos HA. Continuing axonal and vascular 
change following experimental brain trauma. Cent Nerv Syst 
Trauma. 1985;2(4):285–98.

 41. Nilsson P, Hillered L, Pontén U, Ungerstedt U. Changes in cortical 
extracellular levels of energy-related metabolites and amino acids 
following concussive brain injury in rats. J Cereb Blood Flow 
Metab. 1990;10(5):631–7.

 42. Morganti-Kossmann MC, Rancan M, Otto VI, Stahel PF, Kossmann 
T. Role of cerebral inflammation after traumatic brain injury: a 
revisited concept. Shock. 2001;16(3):165–77.

 43. Javidi E, Magnus T. Autoimmunity after ischemic stroke and brain 
injury. Front Immunol. 2019;10:686.

 44. Kerr N, Lee SW, Perez-Barcena J, Crespi C, Ibañez J, Bullock 
MR, et al. Inflammasome proteins as biomarkers of traumatic 
brain injury. PLoS ONE. 2018;13(12): e0210128.

 45. Dietrich WD, Bramlett HM. Hyperthermia and central nervous 
system injury. Prog Brain Res. 2007;162:201–17.

 46. Lee SW, de Rivero Vaccari JP, Truettner JS, Dietrich WD, Keane 
RW. The role of microglial inflammasome activation in pyroptotic 
cell death following penetrating traumatic brain injury. J Neuro-
inflammation. 2019;16(1):27.

 47. Mckee AC, Daneshvar DH. The neuropathology of traumatic brain 
injury. Handb Clin Neurol. 2015;127:45–66.

 48. Bramlett HM, Dietrich WD. Long-term consequences of traumatic 
brain injury: current status of potential mechanisms of injury and 
neurological outcomes. J Neurotrauma. 2015;32(23):1834–48.

 49. Agoston DV, Vink R, Helmy A, Risling M, Nelson D, Prins M. 
How to translate time: the temporal aspects of rodent and human 
pathobiological processes in traumatic brain injury. J Neuro-
trauma. 2019;36(11):1724–37.

 50. Huie JR, Chou A, Torres-Espin A, Nielson JL, Yuh EL, Gardner 
RC, et al. FAIR data reuse in traumatic brain injury: exploring 
inflammation and age as moderators of recovery in the TRACK-
TBI pilot. Front Neurol. 2021;3(12): 768735.

 51. Almeida CA, Torres-Espin A, Huie JR, Sun D, Noble-Haeusslein 
LJ, Young W, et al. Excavating FAIR data: the case of the Multi-
center Animal Spinal Cord Injury Study (MASCIS), blood pres-
sure, and neuro-recovery. Neuroinformatics. 2021.

 52. Translational Outcomes Project in Neurotrauma (TOP-NT) (UG3/
UH3) - Federal Grant [Internet]. [cited 2023 Mar 28]. Available 
from: https:// www. feder algra nts. com/ Trans latio nal- Outco mes- 
Proje ct- in- Neuro trauma- TOP- NT- UG3- UH3- 64887. html.

 53. Abrams MB, Bjaalie JG, Das S, Egan GF, Ghosh SS, Goscinski 
WJ, et al. A standards organization for open and FAIR neuro-
science: the international neuroinformatics coordinating facility. 
Neuroinformatics. 2022;20(1):25–36.

 54. Tortella FC. Challenging the paradigms of experimental TBI 
models: from preclinical to clinical practice. Methods Mol Biol. 
2016;1462:735–40.

 55. Kochanek PM, Jackson TC, Jha RM, Clark RSB, Okonkwo 
DO, Bayır H, et al. Paths to successful translation of new thera-
pies for severe traumatic brain injury in the golden age of trau-
matic brain injury research: a Pittsburgh vision. J Neurotrauma. 
2020;37(22):2353–71.

 56. Agoston DV, Elsayed M. Serum-based protein biomarkers in blast-
induced traumatic brain injury spectrum disorder. Front Neurol. 
2012;3:107.

 57. Kochanek PM, Bramlett H, Dietrich WD, Dixon CE, Hayes RL, 
Povlishock J, et al. A novel multicenter preclinical drug screening 
and biomarker consortium for experimental traumatic brain injury: 
operation brain trauma therapy. J Trauma. 2011;71(1 Suppl):S15-24.

 58. Loane DJ, Faden AI. Neuroprotection for traumatic brain injury: 
translational challenges and emerging therapeutic strategies. 
Trends Pharmacol Sci. 2010;31(12):596–604.

https://www.nap.edu/catalog/25394
https://doi.org/10.1007/978-3-642-04898-2_455
https://pubmed.ncbi.nlm.nih.gov/28257413/
https://www.federalgrants.com/Translational-Outcomes-Project-in-Neurotrauma-TOP-NT-UG3-UH3-64887.html
https://www.federalgrants.com/Translational-Outcomes-Project-in-Neurotrauma-TOP-NT-UG3-UH3-64887.html


1444 H. L. Radabaugh et al.

1 3

 59. Oddo M, Crippa IA, Mehta S, Menon D, Payen JF, Taccone FS, 
et al. Optimizing sedation in patients with acute brain injury. Crit 
Care. 2016;20(1):128.

 60. Fouad K, Bixby JL, Callahan A, Grethe JS, Jakeman LB, Lemmon 
VP, et al. FAIR SCI ahead: the evolution of the open data com-
mons for pre-clinical spinal cord injury research. J Neurotrauma. 
2020;37(6):831–8.

 61. Statler KD, Alexander H, Vagni V, Holubkov R, Dixon CE, 
Clark RSB, et al. Isoflurane exerts neuroprotective actions at 
or near the time of severe traumatic brain injury. Brain Res. 
2006;1076(1):216–24.

 62. Statler KD, Jenkins LW, Dixon CE, Clark RS, Marion DW, 
Kochanek PM. The simple model versus the super model: trans-
lating experimental traumatic brain injury research to the bedside. 
J Neurotrauma. 2001;18(11):1195–206.

 63. Rowe RK, Harrison JL, Thomas TC, Pauly JR, Adelson PD, Lifshitz 
J. Using anesthetics and analgesics in experimental traumatic brain 
injury. Lab Anim (NY). 2013;42(8):286–91.

 64. Statler KD, Kochanek PM, Dixon CE, Alexander HL, Warner 
DS, Clark RS, et al. Isoflurane improves long-term neurologic 
outcome versus fentanyl after traumatic brain injury in rats. J Neu-
rotrauma. 2000;17(12):1179–89.

 65. Tecoult E, Mesenge H, Stutzmann AM, Plotkine M, Wahl F. Influ-
ence of anesthesia protocol in experimental traumatic brain injury. 
J Neurosurg Anesthesiol. 2000;12(3):255–61.

 66. Kayambankadzanja RK, Samwel R, Baker T. Pragmatic sedation 
strategies to prevent secondary brain injury in low-resource set-
tings. Anaesthesia. 2022;77(S1):43–8.

 67. Wiles MD. Management of traumatic brain injury: a narrative 
review of current evidence. Anaesthesia. 2022;77(S1):102–12.

 68. Al Moutaery K, Al Deeb S, Ahmad Khan H, Tariq M. Caffeine 
impairs short-term neurological outcome after concussive head 
injury in rats. Neurosurgery. 2003;53(3):704–11; discussion 
711–712.

 69. Li W, Dai S, An J, Li P, Chen X, Xiong R, et al. Chronic but 
not acute treatment with caffeine attenuates traumatic brain 
injury in the mouse cortical impact model. Neuroscience. 
2008;151(4):1198–207.

 70. Sanjakdar SS, Flerlage WJ, Kang HS, Napier DA, Dougherty JR, 
Mountney A, et al. Differential effects of caffeine on motor and 
cognitive outcomes of penetrating ballistic-like brain injury. Mil 
Med. 2019;184(Suppl 1):291–300.

 71. Lusardi TA, Lytle NK, Gebril HM, Boison D. Effects of preinjury 
and postinjury exposure to caffeine in a rat model of traumatic 
brain injury. J Caffeine Adenosine Res. 2020;10(1):12–24.

 72. Katada R, Nishitani Y, Honmou O, Okazaki S, Houkin K, Matsumoto 
H. Prior ethanol injection promotes brain edema after traumatic brain 
injury. J Neurotrauma. 2009;26(11):2015–25.

 73. Zink BJ, Walsh RF, Feustel PJ. Effects of ethanol in traumatic 
brain injury. J Neurotrauma. 1993;10(3):275–86.

 74. Abdul-Muneer PM, Saikia BB, Bhowmick S. Synergistic effect of 
mild traumatic brain injury and alcohol aggravates neuroinflam-
mation, amyloidogenesis, tau pathology, neurodegeneration, and 
blood-brain barrier alterations: impact on psychological stress. 
Exp Neurol. 2022;358: 114222.

 75. Pan W, Cao Z, Liu D, Jiao Y. Protective effect of diphenhydramine 
against traumatic brain injury in rats via modulation of oxidative 
stress and inflammation. Pharmacology. 2020;105(1–2):47–53.

 76. Marklund N, Hillered L. Animal modelling of traumatic brain 
injury in preclinical drug development: where do we go from 
here? Br J Pharmacol. 2011;164(4):1207–29.

 77. Poloyac SM, Bertz RJ, McDermott LA, Marathe P. Pharmaco-
logical optimization for successful traumatic brain injury drug 
development. J Neurotrauma. 2020;37(22):2435–44.

 78. Adams SM, Conley YP, Wagner AK, Jha RM, Clark RS, Poloyac 
SM, et  al. The pharmacogenomics of severe traumatic brain 
injury. Pharmacogenomics. 2017;18(15):1413–25.

 79. Bennett ER, Reuter-Rice K, Laskowitz DT. Genetic influences in 
traumatic brain injury. In: Laskowitz D, Grant G, editors. Trans-
lational research in traumatic brain injury [Internet]. Boca Raton 
(FL): CRC Press/Taylor and Francis Group; 2016 [cited 2023 
Mar 28]. Front Neurosci. Available from: http:// www. ncbi. nlm. 
nih. gov/ books/ NBK32 6717/.

 80. Hutson PH, Clark JA, Cross AJ. CNS target identification and 
validation: avoiding the valley of death or naive optimism? Annu 
Rev Pharmacol Toxicol. 2017;6(57):171–87.

 81. Finkbeiner S. Bridging the valley of death of therapeutics for neu-
rodegeneration. Nat Med. 2010;16(11):1227–32.

 82. Löscher W, Potschka H. Role of drug efflux transporters in the 
brain for drug disposition and treatment of brain diseases. Prog 
Neurobiol. 2005;76(1):22–76.

 83. Kaya M, Ahishali B. Basic physiology of the blood-brain bar-
rier in health and disease: a brief overview. Tissue Barriers. 
9(1):1840913.

 84. Maas AI, Steyerberg EW, Murray GD, Bullock R, Baethmann 
A, Marshall LF, et al. Why have recent trials of neuroprotec-
tive agents in head injury failed to show convincing efficacy? A 
pragmatic analysis and theoretical considerations. Neurosurgery. 
1999;44(6):1286–98.

 85. Hawkins BE, Huie JR, Almeida C, Chen J, Ferguson AR. Data 
dissemination: shortening the long tail of traumatic brain injury 
dark data. J Neurotrauma. 2020;37(22):2414–23.

 86. Bramlett HM, Dietrich WD, Dixon CE, Shear DA, Schmid 
KE, Mondello S, et al. Erythropoietin treatment in traumatic 
brain injury: operation brain trauma therapy. J Neurotrauma. 
2016;33(6):538–52.

 87. Browning M, Shear DA, Bramlett HM, Dixon CE, Mondello 
S, Schmid KE, et  al. Levetiracetam treatment in traumatic 
brain injury: operation brain trauma therapy. J Neurotrauma. 
2016;33(6):581–94.

 88. Mondello S, Shear DA, Bramlett HM, Dixon CE, Schmid KE, 
Dietrich WD, et al. Insight into pre-clinical models of traumatic 
brain injury using circulating brain damage biomarkers: operation 
brain trauma therapy. J Neurotrauma. 2016;33(6):595–605.

 89. Kochanek P, Dietrich WD, Shear DA, Bramlett HM, Mondello 
S, Lafrenaye A, et al. Exploring additional approaches to ther-
apy ranking in operation brain trauma therapy. J Neurotrauma. 
2019;36:DB9.

 90. Mountney A, Bramlett HM, Dixon CE, Mondello S, Dietrich 
WD, Wang KKW, et  al. Simvastatin treatment in traumatic 
brain injury: operation brain trauma therapy. J Neurotrauma. 
2016;33(6):567–80.

 91. Shear DA, Dixon CE, Bramlett HM, Mondello S, Dietrich WD, 
Deng-Bryant Y, et  al. Nicotinamide treatment in traumatic 
brain injury: operation brain trauma therapy. J Neurotrauma. 
2016;33(6):523–37.

 92. Wilkinson MD, Dumontier M, Aalbersberg IjJ, Appleton G, Axton 
M, Baak A, et al. The FAIR Guiding Principles for scientific data 
management and stewardship. Sci Data. 2016;3(1):160018.

 93. Chou A, Lee S, Krukowski K, Guglielmetti C, Nolan A, Hawkins 
BE, Chaumeil MM, Beattie MS, Bresnahan JC, Rosi S, Ferguson 
AR. Aggregated animal subject metadata from 11 UCSF preclinical 
TBI publications and 1 ODC-TBI published dataset.

 94. Tudur Smith C, Marcucci M, Nolan SJ, Iorio A, Sudell M, Riley 
R, et al. Individual participant data meta‐analyses compared with 
meta‐analyses based on aggregate data. Cochrane Database Syst 
Rev. 2016;2016(9):MR000007.

http://www.ncbi.nlm.nih.gov/books/NBK326717/
http://www.ncbi.nlm.nih.gov/books/NBK326717/


1445Increasing Rigor of Preclinical Research to Maximize Opportunities for Translation  

1 3

 95. Sowers JL, Sowers ML, Zhang K, Hawkins BE. Traumatic brain 
injury induces region-specific glutamate metabolism changes as 
measured by multiple mass spectrometry methods. Open Data 
Commons for Traumatic Brain Injury. 2021.

 96. odc-tbi | Welcome... [Internet]. [cited 2023 Mar 28]. Available 
from: https:// odc- tbi. org/.

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds 
exclusive rights to this article under a publishing agreement with the 
author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of 
such publishing agreement and applicable law.

https://odc-tbi.org/

	Increasing Rigor of Preclinical Research to Maximize Opportunities for Translation
	Abstract
	Introduction
	Multifaceted Approach for Increasing Rigor and Reproducibility in Pre-Clinical Research
	Capturing Clinical Heterogeneity
	Anatomical Considerations
	Severity of TBI; Clinical vs Animal Model
	Future Considerations for Circumventing Differences
	Standardization Across Centers
	Model Considerations and Surgical Parameters
	Physiological Factors and Anesthesia
	Confirming Pharmacokinetics of Therapeutic Interventions
	Open Science and Data Transparency

	Efforts to Address the Translatability Crisis
	Moody Project for Translational TBI Research
	Operation Brain Trauma Therapy (OBTT)
	Translational Outcomes Project in Neurotrauma (TOP-NT)
	PRE-Clinical Interagency reSearch resourcE-TraumaticBrain Injury (PRECISE-TBI)
	Open Data Commons for TBI (ODC-TBI)

	Conclusion
	References




