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Reduced Modeling of Strongly Stratified Turbulence

Greg Chini

Department of Mechanical Engineering & Program in Integrated Applied Mathematics
University of New Hampshire, Durham, NH, USA 03824

Strongly stratified turbulent shear flows are of fundamental importance owing to their widespread occur-
rence and their impact on diabatic mixing. Stable stratification in high Reynolds number (Re) flows drives
anisotropization of motions having horizontal scales L larger than the Ozmidov scale lO ≡

√
ε/N3 (where

ε is the energy dissipation rate and N is the Brunt frequency), below which buoyancy forces are negligible.
The mechanisms by which energy is transferred from these large-scale quasi-horizontal (quasi-2D) ‘pancake’
modes to smaller scales and the associated interplay between anisotropic and isotropic dynamics remain ill
understood. DNS is particularly challenging owing to the extreme range of spatiotemporal scales that must
be resolved. Indeed, in terms of the Froude number Fr ≡ U/(NL) (' 10−3 in geophysical flows), where U
is a characteristic large-scale horizontal velocity, the ratio lO/L = O(Fr3/2)� 1 [1,2].

Here, we exploit the limit Fr → 0 and the corresponding strong anisotropy exhibited by the large-scale
motions to derive a reduced PDE model of stratified turbulence. We employ multiple-scale asymptotics [3]
by considering a distinguished limit in which the buoyancy Reynolds number R ≡ Fr2Re, a measure of
the level of turbulence within the pancakes, is fixed and the aspect-ratio of the large-scale flow is O(Fr) as
Fr → 0, implying the relevant vertical length scale h = O(U /N ) [4]. All flow variables are allowed to depend
on fast and slow horizontal and temporal coordinates (χ,τ) and (x,t), respectively, as well as on a single
vertical coordinate z. Each generic field φ is then decomposed into a fast (χ,τ) mean and a fluctuation:

φ(x, z, t)→ φ(χ,x, z, τ, t) = φ(x, z, t) + φ′(χ,x, z, τ, t), where φ′ ≡ 0.

Introducing ε ≡
√
Fr, the following asymptotic expansions are posited for the various fields:

[u, b, p] ∼ [u0, b0, p0] + ε[u1, b1, p1] + ε2[u2, b2, p2] + . . ., W∼ε−1W−1 +W0 + εW1 + . . .

The crucial prescription is that the vertical velocity W (normalized by hU/L) is no larger than O(ε−1)
on fine horizontal scales. This re-scaling ensures a consistent dominant balance among the feedback of the
fluctuations on the mean fields through the vertical Reynolds stress divergence ∂z(W ′u′); the mean tendency
∂tu; and mean vertical diffusion R−1∂2zu. It can then be deduced that the fluctuating horizontal velocity,
buoyancy, and pressure fields arise at O(ε), a key simplification. Substituting these expansions into the
Boussinesq equations, collecting terms order by order in ε, and eliminating secular growth terms yields a
closed, coupled system of PDEs for the leading-order (omitting subscripts) mean and fluctuation fields:(

∂t + u · ∇x +W∂z
)
u + ∂z

(
W ′u′

)
= −∇xp +

1

R
∂2zu, (1)

0 = −∂zp + b, (2)(
∂t + u · ∇x +W∂z

)
b + ∂z

(
W ′b′

)
=

1

PrR
∂2zb, (3)

∇x · u + ∂zW = 0; (4)

(∂τ + u · ∇χ)u′ + W ′∂zu = −∇χp
′ +

Fr

R
(
∇2

χ + ∂2z
)
u′, (5)

(∂τ + u · ∇χ)W ′ = −∂zp′ + b′ +
Fr

R
(
∇2

χ + ∂2z
)
W ′, (6)

(∂τ + u · ∇χ) b′ + W ′∂zb =
Fr

PrR
(
∇2

χ + ∂2z
)
b′, (7)

∇χ · u′ + ∂zW
′ = 0. (8)

The mean system (1)–(4) is recognizable as the ‘hydrostatic primitive equations’ augmented with the
vertical divergence of Reynolds stresses and buoyancy fluxes arising from the isotropic, non-hydrostatic
fluctuation dynamics. Crucially, the usual closure difficulties associated with Reynolds averaging are cir-
cumvented here by exploiting the scale separation that emerges as Fr → 0 and by setting the dimensional
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Figure 1: 2D response to sinusoidal forcing f̄x=(m2/R) sin (mz), where m = 3, R = 200, Fr = 0.02.
Upper: Linear stability results. Lower: Snapshot of a time-integration of the reduced system.

amplitude of the fluctuating velocity components to be O(
√
FrU). This scaling is compatible with the

assertion in Riley & Lindborg [2] that the leading spectral contribution to the mean square vertical velocity
in stratified turbulence arises at small scales and has a magnitude O(FrU2). To illustrate the properties of
the reduced equations, a 2D flow driven by a vertically-varying sinusoidal body force [(m2/R) sin (mz)] in
the presence of a linear ambient buoyancy profile bL(z) = z is considered. In the absence of instabilities, this
force would drive a laminar shear flow uL(z) = sin (mz), but as shown in Fig. 1 this laminar mean state is
linearly unstable to χ-varying perturbations for a range of physically-relevant values of the parameters (m,
R, Fr). Consequently, an initial-value computation of the reduced equations shows sustained non-trivial
nonlinear dynamics, in which the fluctuation fields drive the mean horizontal flow away from uL(z) and
the mean buoyancy profile develops a staircase-like structure with internal mixed layers (see Fig. 1). These
emergent well-mixed regions can be shown to have a thickness on the order of the Ozmidov scale.

It is instructive to note that the fluctuation system is quasi-linear (QL) about the local mean fields,
suggesting that the 2nd-order cumulant expansion approach used, e.g., by Tobias & Marston [5] for reduced
modeling of other anisotropic geophysical flows may be asymptotically justified for strongly stratified tur-
bulence. By retaining multiple horizontal and temporal scales, the multiscale reduced system (1)–(8) in
fact extends the traditional QL reduction by allowing for slow spatiotemporal evolution of the large-scale
fields in accord with their own fully nonlinear dynamics. This generalization of the QL approximation has
inspired the so-called GQL formalism, which recently has been shown to be significantly more accurate than
QL schemes [6]. To capture certain nonlinear fluctuation/fluctuation interactions, which can attain leading-
order significance within regions in which vertical spatial gradients are amplified (e.g. critical layers, see
Fig. 1), the multiple-scales analysis can be complemented with a matched asymptotic analysis, yielding a
novel multiscale formulation that goes beyond the traditional or even generalized QL approximation.

References
[1] G. Brethouwer et al. (2007), J. Fluid Mech. 585: 343–368.
[2] J.J. Riley & E. Lindborg (2012), Recent Progress in Stratified Turbulence, CUP, pp. 269–317.
[3] K. Julien & E. Knobloch (2007), J. Math. Physics 48: 065405.
[4] P. Billant & J.M. Chomaz (2001), Phys. Fluids 13: 1645.
[5] S. Tobias & B. Marston (2013), Phys. Rev. Lett. 101: 104502.
[6] B. Marston, G. Chini & S. Tobias (2016), Phys. Rev. Lett., submitted.




