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A Wave-Induced Transport Process in Marine Sediments 

W. D. HARRISON 

Geophysical Institute, University of Alaska, Fairbanks, Alaska 99701 

D. MUSGRAVE AND W. S. REEBURGH 

Institute of Marine Science, University of Alaska, Fairbanks, Alaska 99701 

We show how surface wave action can increase the rate of transport of solutes into a sandy seabed by 
orders of magnitude via a mechanism known as mechanical dispersion. It is most effective for large 
sediment permeability and thickness, high surface wave amplitude, and shallow water. A method for 
setting up the appropriate transport equation, valid when dispersion is well developed, is given. Its 
dispersion term contains two mechanical dispersion parameters that can be estimated roughly from 
existing data when the sediments are well sorted. The dispersion can be inhomogeneous and anisotropic 
in homogeneous, isotropic sediments. The effect of surface wave action on transport into sediments on 
the eastern U.S. shelf is shown to be significant under certain conditions. The effect on thawing of subsea 
permafrost beneath Prudhoe Bay, Alaska, seems negligible. 

INTRODUCTION 

The mechanisms by which nutrients, pollutants, or solutes 
are transported into marine sediments are of interest for sev- 
eral reasons, the most obvious of which is their control on 
rates and depths of chemical or biological processes. The best 
understood and probably most common of the transport 
mechanisms is molecular diffusion along chemical gradients, 
and many chemical processes have been successfully analyzed 
in its context (Berner[1980-1 is a convenient reference). Bio- 
turbation is also known to be important in some situations. 
There is also a less studied class of physical rather than chemi- 
cal or biological transport mechanisms that involves bulk 
motion of the pore water in the sediments. When these mecha- 
nisms operate, they may be important because they are poten- 
tially so much faster than the others. In this paper one of these 
physical mechanisms, the enhancement of transport rates by 
wave-driven motion of the water in the sediments, is exam- 
ined. 

The wave-driven mechanism is but one member of a family 
of possible convective processes, and it is well to consider it in 
that context. For example, there are convective processes that 
may be loosely termed flushing, stirring, and floating, as well 
as others. In flushing, the pore water is continuously replaced 
by a current with time average unequal to zero, which is 
driven by motion of the overlying free water. This seems to 
occur in an intertidal and narrow subtidal strip [Riedl et al., 
1972]. In the stirring process addressed by this paper, the pore 
water is agitated by the motion in the overlying free water 
caused by surface waves, but the motion is periodic and the 
time average current is zero. In the floating process the pore 
water is floated out of the sediments due to larger density in 
the overlying free water. Examples in which floating seems to 
be important are given by Thorstenson and Mackenzie ['1974], 
who found seasonal sediment water composition changes in 
Harrington Sound, Bermuda, that were too large to be ex- 
plained by diffusion; Hesslein [1980], who found the entry of 
tritiated water into lake sediments to be much faster than 

diffusive; Harrison and Osterkarnp [1978-1, who found the rates 
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of thawing of subsea permafrost and the salinity profiles in the 
thawed layer to be characteristic of convective processes, and 
who used simple theory to show that a diffusive regime is 
often unstable to convection; and Musgrave and Reeburgh 
[1982], who find time-varying temperature fields in lake sedi- 
ments that cannot be described by a diffusive model. 

The wave-stirring processes considered here (not to be con- 
fused with the stirring of the sediment particles that occurs if 
they are resuspended) has already received some attention. 
Riedl et al. [1972] refer to it as subtidal pumping and discuss 
evidence for it based on the position of the redox boundary in 
marine sediments. They point out, by way of Darcy's law and 
in situ measurements of the pore water velocity field, that a 
great deal of mass can be transported into sandy sediments by 
wave-induced motion. Of course, a great deal of mass may 
also be transported out again because the motion is periodic, 
so their calculation, while suggestive, is not really a transport 
theory. Nevertheless, theory explored here supports their basic 
idea. 

THEORY 

Background 

When groundwater moves through an aquifer, it is known 
that any chemical concentration gradients in it are smeared 
out at a rate which greatly exceeds that predicted on the basis 
of molecular diffusion. Experiment and theory indicate that 
the effect is strongly velocity dependent. The basic reasons for 
the phenomenon are fairly well understood. The most impor- 
tant is that fluctuations in the directions of the streamlines, 
with respect to the direction of mean flow, occur on the scale 
of the sediment grain size. A similar dispersive phenomenon 
should be caused in subsea sediments by pore water motion 
that is driven by surface waves. 

In this section we shall adapt conventional theory, normally 
used in ground water or reservoir applications, to the wave 
problem, in which the pore water motion is periodic. Near 
shore the wave-induced motion may have a component which 
is not periodic and which will also contribute to transport and 
dispersion, but that effect is not treated here. We shall assume 
the simplest possible version of the conventional theory (see 
Fried and Cornbarnous [1971] for a review), although the 
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question of the best formulation is still open (Smith and 
Schwartz [1980], for example). A more important point dis- 
cussed later is the limit of applicability of the conventional 
theory to periodic motion. 

It is intuitively reasonable, and it is borne out by laboratory 
experiment, that at low pore water velocity any possible effects 
of mechanical dispersion will be overwhelmed by molecular 
diffusion. But there exists a reasonably well defined velocity 
above which mechanical dispersion begins to become impor- 
tant. This is the velocity at which the efficiencies of convective 
and diffusive transport are equal, on a distance scale equal to 
the pore size, which can be crudely represented by the grain 
size d of the sediments. Stated more formal!y, dispersion be- 
comes significant for velocity v, such that the Peclet number 
Pe, defined by 

vd 
Pe - (1) 

becomes greater than unity. Here %, is the molecular diffusi- 
vity of the solute of interest in free water. When Pe > 1 in a 
field situation, dispersion can be estimated from suitable pa- 
rameters measured as functions of v in the laboratory. 

It is unlikely that a large Peclet number is a sufficient cri- 
terion for the importance of mechanical dispersion in our par- 
ticular problem of periodic motion, in which we take v in (1) 
to be the velocity amplitude. If the scale of motion of a pore 
water parcel during a wave period does not exceed the pore 
(or grain) size, it is unlikely that much dispersion will occur 
regardless of the Peclet number [see Raats and Scooter, 1968]. 
A related, but less physically significant problem from the 
point of view of dispersion, is that Darcy's law, which we will 
use to calculate the pore water velocity field, may be 
questioned under this circumstance. As the scale of motion 
increases, and finally greatly exceeds the pore (or grain) size, it 
seems likely that the conditions of the conventional theory are 
approached, and that presently available experimentally mea- 
sured values of the dispersion parameters can be applied to 
the periodic motion problem to give rough results. 

Transport Equation 

As the basis of the simplest theory, we adopt the following 
transport equation for the concentration S of the material of 
interest in the pore water: 

•S 

V.(K. VS)- v. VS- qS-•= 0 (2) 
t is time, v is the wave-induced pore water velocity field, q is a 
constant sink strength factor, and K is the mechanical disper- 
sion tensor; v. VS is the convective term, and qS is a reaction 
term appropriate for simple first-order processes. This particu- 
lar form of the reaction term is adopted as a convenient exam- 
ple; most of the subsequent discussion of the nature of the 
mechanical dispersion term is independent of it. 

Even in homogeneous isotropic sediments, the mechanical 
dispersion in (2) must be represented by a tensor • because of 
anisotropy due to a particular direction of the pore water 
velocity vector v. Experiment shows that in isotropic sedi- 
ments the dispersion tensor can be represented by 

•' = 0 •cr 0 (3) 
0 0 •r 

which holds only in a coordinate system oriented with its first 
axis parallel to the pore water velocity vector v. Along this 
axis the dispersion coefficient has the value •cL (L stands for 
longitudinal). Dispersion also occurs perpendicular to v; it is 
isotropic in this plane in the sense that it can be represented 
by the single coefficient •cr (T stands for transverse). •% and 
are found to depend upon velocity magnitude v, and both 
approach the familiar molecular diffusivity •c when the Peclet 
number Pe << 1 (equation (1)). For Pe >> 1, •cL > •cr, usually by 
an order of magnitude, so that the dispersion is indeed aniso- 
tropic. 

In the present problem of periodic wave-induced motion, 
the direction of the velocity vector v changes in space and 
time, so equation (3) does not hold in a fixed coordinate 
system. x in a fixed system can be found by using the usual 
rules for tensor transformation under a specified coordinate 
system rotation angle, which is the angle 0 made by v with 
respect to the sea bed; 0 is a function of space and time. The 
fixed Cartesian coordinates are taken to be (x, y, z), where x 
and z are in the seabed surface, respectively parallel and per- 
pendicular to the direction of wave propagation, and y is 
down. The rotation occurs about the z axis, and 0 is taken to 
be positive in the clockwise direction. After x in the fixed 
system is worked out, the first (dispersive) term in (2) can be 
evaluated 

+ •xx /• cos 20 •xx-/• sin 20 

+• -flsin20•-flcos20 (4) 
where • is the mean dispersion coe•cient, or effective diffu- 
sivity, given by 

• = • (5a) 
2 

and 

fl = •% - •cr (5b) 
2 

Note that when Pe (( 1, •-* •c and/•-* 0 because both •c L and 
•cr-* •c, the molecular diffusivity. 

Pore Water Velocity Field 

We now consider the pore water velocity field v, which can 
be calculated from Darcy's law and incompressibility, using 
the pressure variations induced by surface waves as the seabed 
boundary condition. The special case of homogeneous iso- 
tropic sediments of infinite depth (depth greater than the 
surface wavelength) and of a single driving wavelength is con- 
sidered first; how the transport behaves under different con- 
ditions is discussed later. By using the simplest version of 
Darcy's law and the coordinate system of the last section, the 
velocity field is 

v,, = ue -by cos (hx - cot) (6a) 

vy = -ue -ay sin (hx - cot) (6b) 
v• = 0 (6c) 

Here t is time, h and co are, respectively, the wave number and 
angular frequency of the surface wave, and u is a velocity 
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amplitude given by 
kha 

u - (7) 
cosh hD 

where a is the wave amplitude, D is the water depth, and k is 
the quotient of hydraulic conductivity and porosity, a more 
convenient parameter in our applications than the hydraulic 
conductivity itself. The factor a/cosh hD is the amplitude (ex- 
pressed as a head) of the seabed pressure variation, estimated 
from linear wave theory [Lamb, 1945]. By the same theory co 
and h are related by 

co = (gh tanh hD) •/2 (8) 

where g is the gravitational acceleration. Pore water motion is 
significant only if the wavelength exceeds the water depth, 
because only then is the sea bed pressure variation significant. 

Equation (6) is basically the velocity field as first calculated 
by Putnam [1949]. It does not take into account the deforma- 
bility of the sediments, compressibility of the pore water, per- 
turbation of the overlying free water by the pore water 
motion, or inertial effects. Starting from (6) and a complete 
statement of Darcy's law including inertial terms, one can 
easily show that these terms are negligible as long as (cok)/g 
and (a(hk)2)/g << 1, which is true in all of the problems dis- 
cussed here. The unimportance of inertial effects was noted by 
Reid and Kajiura [1957], who also showed that the pertur- 
bation of the overlying free water by the pore water motion is 
small. The other effects are discussed by Yamamoto et al. 
[1978]. Since none of the effects appears to add anything 
essential in our particular application, we have used the sim- 
plest treatment. 

Three properties of the velocity field defined by (6) are of 
particular interest: 

1. The scale of motion of a water parcel: under the good 
assumption that the scale of motion is much less than 1/h (the 
wavelength divided by 2n), it is easily shown that a pore water 
parcel moves in a circle with diameter given by 

2u 
dia = -- e -by (9) 

The ratio of this to the grain size d, which we call the orbit 
number (Or), is 

2u 

Or = •-• e -by (10) 
2. Velocity magnitude: the magnitude v of v is given by 

v - ue -• (11) 

which depends on depth below seabed y only. 
3. Velocity direction:the velocity vector v makes an angle 

0 with the x axis given by 

0 = hx - cot (12) 

if 0 is measured in the clockwise direction. This direction for 0 

is consistent with that used in equation (4). 
The convective term in (2) can be written in terms of this 

velocity field from (6). It becomes 

v' X7S = ue -• cos 0 •xx- sin 0 (13) 
Simplification of the Transport Equation 

Substitution of (4) and (13) for •7. (K. •7S) and v. •7S in (2) 
results in a transport equation that is too complicated to be of 

much use, especially since by equation (12) 0 is a function of 
both x and t. However, surface waves are a relatively high 
frequency phenomenon, while the response of the con- 
centration S is relatively sluggish. This suggests that the trans- 
port equation should be averaged over a wave period. If the 
change in S during the wave period is indeed negligible, this 
gets rid of all the 0-dependent terms, at least in the case under 
consideration in which the pressure variation at the seabed is 
dominated by a single wavelength. The transport equation 
would then take the simple form 

•xx • •xx + •yy • + •C T •z • -- q S -- • _• O (14) 
A more rigorous justification for dropping the 0-dependent 

terms is given in the appendix, where an example of special 
interest is considered: the steady state case applying for long 
wavelength, and S constant at the seabed. It is described by 

• (d2S/dy 2) - qS = 0 (15) 

which has the solution 

S=Soexp(-t•t•/eyl (16) 
where So is the concentration at the seabed. In this solution a 
measure of how far the seabed concentration penetrates the 
sediments before it is consumed by the sinks is the "penetra- 
tion depth," defined by 

penetration depth = (17) 

Equations (15) and (16) apply when this depth is much less 
than the wavelength. The flux of S into the seabed (per area of 
pore space) is 

dS I - m• •yy y=o 
The ratio of the penetration depth to that of the purely mol- 
ecular case (• = •), and the similar ratio for the seabed flux of 
S, are the same and are given by 

penetration and flux ratios = (18) 

This quantity is of interest because it is a useful indicator of 
the enhancement of the reaction rate over the purely molecu- 
lar situation. 

Dependence of the Transport Equation 
on the Velocity Field 

The equation (14) version of the transport contains the as- 
sumption of the particular velocity field defined by (6), which 
is appropriate for thick, homogeneous isotropic sediment and 
a single driving wavelength. It is easy to see what would 
happen if the requirement of thick sediment were relaxed. 
Consider the opposite case in which the sediment thickness is 
much less than the wavelength, and the sediment is underlain 
by an impermeable boundary. Then it is straightforward to 
show from Darcy's law that the pore water parcel orbits are 
not circles but straight lines oriented parallel to the seabed, 
along which oscillatory motion takes place. The angle 0 defin- 
ing the direction of the motion is therefore constant and zero, 
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which allows (4) to be simplified to 

Since 0 = 0, no rotation is necessary, and this form of the 
dispersive term is obvious from (3). If, as before, the convective 
terms are neglected, the transport equation (2) becomes 

•2S 

+ - qs - - o 
This thin sediment case implies a considerably slower verti- 

cal (y direction) transport into the seabed than does the thick 
sediment case described by equation (14), because for Pe >> 1, 
•r is about an order of magnitude less than •%, or roughly 5 
times less than • by equation (5a). However, the applicability 
of the values of •L and •r as usually measured is doubtful, just 
as in the case Or << 1 for circular motion. In the general finite 
sediment thickness case the orbits are ellipses and both diam- 
eters should be much greater than grain size for the measured 
values to apply. 

This discussion of the shallow sediment limit points the way 
to the more general case. Only for thick sediments and a 
single driving wavelength will the orbits be circular, and the 
dispersive isotropy in the vertical (x-y) plane evident in equa- 
tion (14) exist. Assuming, as discussed earlier, that it is valid to 
average over a wave period, the more general form of disper- 
sive term (equation (4)) can be written 

V ß (K: ß VS) --- •x Kx•xx -{-•yy K),•FF 

where the four effective diffusivities are defined by the wave 
period averages 

cos 20) 

% = (•-/• cos 20) 

sin 20) 

APPLICATION 

Behavior of the Peclet and Orbit Numbers 
and the Dispersion Parameters 

As a first step in applying the theory to a problem of in- 
terest, the Peclet number Pe, and orbit-to-grain-size ratio Or 
should be investigated. As defined by equations (1) and (10), 
both of these quantities involve the grain size, which implicitly 
assumes that the sediments are well sorted. This is not neces- 

sary for mechanical dispersion to occur nor for most of the 
previous theory to hold, but it is a useful limit to consider 
because the limitations on what can be predicted with avail- 
able dispersion parameter data are more obvious. To express 
Pe and Or explicitly in terms of grain size, an expression 
relating the hydraulic conductivity to porosity ratio k to grain 
size d is needed. We use 

k = cd 2 (19) 

where c is a constant equal to 1.84 x 10 '• (m s)- 1 for a poros- 
ity of 0.4 [Krumbein and Monk, 1942]. This value for c holds 

at 20øC; it is about half as large at 0øC. In two of the follow- 
ing examples, k is specified but sorting is not complete. Then 
an effective grain size, designated by deœ , defined by 

de./- '-- (20) 

is used in the theory to obtain order of magnitude results. 
With the help of equations (7), (8), (11), and (19), equations (1) 
and (10) give 

cd 3 ha 
Pe = •' e -by • (21) 

•cf cosh hD 
ha 

Or = 2cd. e -• (22) 
(gh tanh hD) •/2 cosh hD 

which apply for thick sediments, the simplest situation. These 
are written as a product of two factors, the first representing 
the sediments, and the second representing the water depth D 
and sea state• as defined by the wave number h and amplitude 
a. Note the different dependence on grain size d. For a given 
wave period, the square root factor in (22) is given, being the 
angular frequency co. Pe and Or then have the same depen- 
dence on h and D. Near the seabed (y = 0) their maxima occur 
at D = 0 if the wave amplitude is also given. Therefore me- 
chanical dispersion should be most strongly developed near 
shore, because it should vary monotonically with both Pe and 
Or. 

When applicable to periodic motion, numerical values of 
the dispersion parameters can be obtained from graphical rep- 
resentations of experimental data; those summarized by Fried 
and Combarnous [1971] are used in the following examples. 
When Pe >> 1, the longitudinal dispersion coefficient 0%) is 
given approximately by 1.8yd. For Pe >> 1, the transverse coef- 
ficient K t is typically 10 times smaller. The mean value of the 
two, •, is then 

• • vd Pe >> 1 (23) 

which is a rough but simple and useful result. As a short cut to 
evaluating • in this limit if Pe has already been evaluated from 
equation (21), notice from equation (1) that • is the same as 
•csPe, where •cs is the free water molecular diffusivity. How- 
ever, •c• cancels (see equation (21)), so • is independent of it 
when Pe >> 1. In the following examples we are more interest- 
ed in the ratio •/•c, where •c is the porous medium molecular 
diffusivity; • does depend on •t. For the experimental data 
used, • = 0.67 •t; the numerical factor depends on the struc- 
ture or 'formation factor' of the porous medium. In the follow- 
ing examples we use a value for •f of 1.5 x 10 -9 m 2 s -•, 
which applies to NaC1 at 25øC. An easily shown consequence 
of (23) is that • < d 3 when Pe >> 1, showing the sensitivity of 
effective diffusivity to grain size. But we expect this relation- 
ship (as well as equation (23)) to hold only if Or >> 1 as well. 

Example 1' Coarse Sand and Shallow Rough Water 
We first consider an extreme case which should favor wave- 

induced transport' thick sediments relative to the wavelength, 
large grain size d, shallow water depth D and high wave am- 
plitude a. Suppose d = 2 mm, D = 5 m, wavelength = 50 m, 
and a = 0.5 m. By equations (21) and (22), Pe = 5.1 x 103 and 
Or = 9. Or is probably large enough that the large dispersion 
implied by the large Pe indeed occurs, and that the experi- 
mental value of • given by equation (23) is at least roughly 
applicable. Then •/• = 7.6 x 103 and (•/•)1/2 = 87. In this ex- 
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ample the effective diffusivity • is increased almost 4 orders of 
magnitude over its molecular value •c by the wave-induced 
motion. The penetration depth and seabed flux of S, 
by equation (18), are increased almost 2 orders of magnitude. 

Example 2: Shelf Area of the Eastern United States 

We next consider the shelf area of the eastern U.S., which is 
of interest because Riedl et al. [1972] considered the effect of 
wave-induced processes there. A basic problem, as we have 
seen, is the sensitivity of mechanical dispersion to sediment 
permeability distribution from the seabed to sediment depths 
on the order of a wavelength. Since the permeability profile is 
unknown, we use the seabed value, 20 darcies typically I-Riedl 
et al., 1972], and assume that it applies at depth. After conver- 
sion to the hydraulic conductivity to porosity ratio k (as- 
suming a porosity of 0.4), 20 darcies gives an effective grain 
size d of 0.16 mm by equation (20). A wave period of 7 s and 
amplitude of 0.75 m seem fairly representative for the shelf. 
We calculate the dispersion for a water depth of 10 m, which 
gives a wavelength of 60 m from equation (8). Equations (21) 
and (22) give values for Pe and Or of 2.5 and 0.32. The me- 
chanical dispersion enhancement factor •/tc for the diffusivity, 
and the factor (•/tc) •/2 for the penetration depth and flux as 
estimated from available dispersion data, are 2.3 and 1.5, re- 
spectively. 

These factors are likely to be upper limits because the per- 
meability may decrease with depth, and because Or < 1. It 
therefore seems that mechanical dispersion is usually not well 
developed on the eastern U.S. shelf. However, we note that a 
doubling of grain size and of wave amplitude would make 
Or > 1 and Pe • 40, suggesting that mechanical dispersion 
can be well developed under favorable conditions. 

Example 3: Prudhoe Bay, Alaska 

We next consider the case of Prudhoe Bay, Alaska, which 
was the origin of our interest in wave-induced transport pro- 
cesses. Much of the shelf of arctic Alaska is underlain by 
subsea permafrost, which is thawing at a rate that is probably 
controlled to a large extent by the rate of salt transport into 
the seabed. Gravity-driven convection of the pore water in the 
thawed layer underlying the seabed is an obvious candidate 
for the principal salt transport mechanism occurring in near- 
shore areas at Prudhoe Bay [Harrison and Osterkamp, 1978], 
and it is of interest to see whether wave-induced transport 
could operate as well. The measured values of k are usually in 
the range 0.8 x 10-7 to 8 x 10-7 m s-•. By using the upper 
limit, the effective grain size des is 9.3 x 10-3 mm by equation 
(20). Taking depth D as 3 m, wavelength as 50 m (about the 
same as the thawed sediment thickness), and amplitude a as 
0.5 m, one finds that Pe=3 x 10 -'•, and Or=2x 10 -2 . 
Therefore wave-induced salt transport does not seem to be a 
factor in permafrost thawing at Prudhoe Bay. 

DISCUSSION 

The following factors favor wave-driven mechanical disper- 
sion: large grain size or high permeability, large sediment 
thickness, large wave amplitude, and shallow water. Disper- 
sion should occur for insoluble suspended material as well as 
for solutes. In homogeneous isotropic sediments, mechanical 
dispersion is inhomogeneous in the sense that the dispersion 
coefficients are usually spatially variable, and anisotropic in 

the sense that a single scalar dispersion coefficient can be 
defined only in special cases. A necessary condition for signifi- 
cant mechanical dispersion is that the Peclet number on the 
scale of the grain size be greater than 1. But the pore water 
motion is periodic, and the Peclet number defined here in 
terms of the velocity amplitude may exceed 1 even when the 
scale of water motion is less than the grain size; in this case we 
expect mechanical dispersion to be small. When the scale of 
motion in both horizontal and vertical directions considerably 
exceeds the grain size, the approach used here is probably 
fairly good. Basically the approach has been to paramaterize 
the dispersion term in the transport equation by two parame- 
ters, the longitudinal and transverse coefficients of dispersion, 
which may be estimated roughly from existing data. As the 
scale of motion decreases, not only the existing data, but also 
this simple paramaterization may be inappropriate. Ulti- 
mately, the best paramaterization of the transport equation, 
and the numerical values in it, are matters to be settled by 
experiment. Our simple approach has at least indicated some 
of the basic properties of wave-driven dispersion, such as its 
anisotropy and dependence on sea state, and allowed rough 
numerical estimates of its effect in limiting cases. 

It is possible to imagine situations in which wave-driven 
dispersion is not important, even when implied by these con- 
siderations. A condition that favors it, large sediment per- 
meability, also favors Rayleigh instability to gravity-driven 
convection. For example, in the case of heavy, salty free water 
overlying lighter, fresher pore water, the transport of salt into 
the sediments may take place, not primarily by wave action, 
but by a larger scale gravity-driven sinking of the heavy water 
into, and floating of the lighter water out of, the sediments. 
When the density difference is reversed, or when it does not 
exist and the transport of a trace material is of interest, wave 
action may be important. 

There is another aspect of the relationship between gravity 
and wave-driven pore water motion that is interesting. One 
might think that the agitation by wave action would help to 
destabilize the pore water in situations tending to gravi- 
tational instability, and to favor the onset of gravity-driven 
convection. But the opposite may be true, because the wave 
action may give rise to a large effective diffusivity, which tends 
to stabilize a system against convection. 

APPENDIX 

A complete form for the transport equation, obtained by 
substituting equations (4) and (13) in (2), is easily simplified for 
an illustrative special case. Suppose the wavelength is much 
larger than all the other length scales, including the penetra- 
tion depth, so that h--• 0. Then 0 becomes dependent on t only 
(equation (12)), and • and fi become constant. Then none of 
the coefficients in equations (4) and (13) or in the resulting 
transport equation, depends upon x. If there is no x or z 
dependence in the initial or boundary conditions, all the de- 
rivatives with respect to x and z vanish, and we are left with 

c•2S c•S c•2S c•S 
• •- qS- - fi cos 2cot •- u sin cot = 0 •y2 '• •y2 •yy 

A solution is 

S = So exp - y - F• sin 2cot- I•2 cos cot (24) 
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where 

F a - 2rote 

Sufficient conditions for this to reduce to the solution of equa- 
tion (15)are Fx << 1 and 1' 2 << 1. 

The origin of the F x sin 2rot term in equation (24) is me- 
chanical dispersion, and the condition F x << 1 has a simple 
meaning. For Pe << 1, /• = 0 (see the discussion of equations 
(5a) and (5b) and Fx is automatically zero, as it should be 
because of its mechanical dispersion origin. For larger Pe, 
/•/0• •< 1, so the condition F x << 1 implies that q/(2ro) << 1. Since 
q-x is a time constant reflecting the time required for the sinks 
to consume the concentration S if, for example, the seabed 
supply were turned off, this condition is the statement that this 
time constant be much larger than the wave period. This con- 
dition is probably always satisfied in practice. The origin of 
the F2 cos rot term in equation (24) is convection, and the 
condition 1' 2 << 1 also has a simple meaning. Since u/ro is the 
pore water orbit radius (equation (9)), and (0•/q) x/2 is the pene- 
tration depth (equation (17)), this condition is the statement 
that the former be much smaller than the latter. This seems 

reasonable, because of the convection origin of the F2 term. 
This condition is also probably always satisfied in practice. 

There are two other ways of looking at the conditions Fx << 
1 and F 2 << 1. First, since the angular frequency ro occurs in 
the denominators of both conditions, they are satisfied for 
high frequency. Second, since the sink strength q occurs in the 
numerators of both, they are satisfied for small sink strength. 
Evidently, the sinks must not be too greedy if their effect on 
concentration is to be described by a simple differential equa- 
tion. 
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