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Some G protein-coupled receptors (GPCRs), in addition to
activating heterotrimeric G proteins in the plasma membrane,
appear to elicit a “second wave” of G protein activation after
ligand-induced internalization. We briefly summarize evidence
supporting this view and then discuss what is presently known
about the functional significance of GPCR-G protein activation
in endosomes. Endosomal activation can shape the cellular
response temporally by prolonging its overall duration, and may
shape the response spatially by moving the location of intracel-
lular second messenger production relative to effectors.

It has been more than 20 years since regulated endocytosis of
GPCRs3 through ligand-dependent concentration in coated
pits was established (1, 2). Much has been learned since that
time about the large number of GPCRs that engage this cellular
regulatory mechanism, its biochemical underpinnings, and
later events determining receptor-specific trafficking itinerar-
ies. However, our understanding of how endocytosis impacts
canonical G protein-dependent signaling has remained un-
changed. Fundamental to this paradigm is the belief that recep-
tor-mediated activation of cognate heterotrimeric G proteins is
restricted to the plasma membrane, and that internalized
receptors are effectively silent with regard to this transduction
mechanism.

Evidence accumulated over the past several years is begin-
ning to challenge this view. Here we summarize data support-
ing an alternative hypothesis, that endosomes represent
dynamic sites of GPCR-G protein activation. We then focus on
what is beginning to be learned about the functional signifi-
cance of the endosome signal, limiting scope to the relatively

few GPCRs for which relevant data are presently available.
When one considers this limitation, together with the remark-
able diversity of membrane trafficking properties that distin-
guish even very similar GPCR homologs (e.g. Ref. 3) and splice
variants (e.g. Ref. 4), it seems likely that much more remains to
be learned.

Pathways and Mechanisms of GPCR Endocytic
Trafficking

Detailed investigations of several GPCR family members
have provided a reasonably clear outline of major events in the
regulated endocytic trafficking of receptors (Fig. 1A). Binding
of an agonist ligand present in the extracellular milieu pro-
motes GPCR-dependent activation of cognate heterotrimeric
G proteins associated with the inner leaflet of the plasma mem-
brane. Ligand-activated receptors are preferred substrates for
phosphorylation by GPCR kinases (GRKs). Phosphorylation on
multiple residues in a specific phospho-acceptor sequence
favors the subsequent interaction of receptors with �-arrestins
(or “non-visual” arrestins) by a mechanism involving confor-
mational change in both the receptor and arrestin (5– 8). GRK-
arrestin engagement contributes to shutting off the receptor’s
enzymatic activity as a guanine nucleotide exchange factor
(GEF), preventing subsequent activation of G proteins and con-
tributing to functional desensitization of cellular ligand respon-
siveness. �-Arrestins have multiple additional functions (9),
including binding to lipid and protein components of coated
pits (also called clathrin-coated pits). In this way, �-arrestins
act as endocytic adaptor proteins promoting GPCR concentra-
tion in clathrin-coated pits, which subsequently internalize by
dynamin-dependent membrane scission and are delivered to
endosomes (5, 10).

In endosomes, GPCRs engage additional molecular sorting
machineries that determine receptor-specific downstream traf-
ficking itinerary. Three “core” sorting machineries have been
identified so far.

The first core sorting machinery is the ubiquitin-ESCRT
machinery, so named for a multi-protein “endosome sorting
complex required for transport” (ESCRT) (11) that is conserved
in yeast and animal cells as well as (at least in part) in protists
and plants (12). This machinery recognizes a wide range of
membrane proteins in the endosome limiting membrane
according to the presence of covalently attached ubiquitin,
mediating transfer to vesicles formed within the endosome
lumen (13, 14).

The second core sorting machinery is the GASP machinery,
so named for a putative “GPCR-associated sorting protein”
(GASP) that binds various GPCR cytoplasmic tails without
requiring ubiquitination (15). GASP connects to several endo-
some-associating proteins, including components of the
ESCRT (16 –18). GASP itself appears restricted to mammals,
but its interaction partners are more widely distributed. This
machinery is thought to reduce the lateral mobility of selected
receptors in the endosome limiting membrane, thereby kineti-
cally restricting receptor access to relatively short-lived mem-
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brane tubules that emanate from endosomes and mediate
“bulk” membrane export and recycling (19).

The third core sorting machinery is the actin-sorting nexin
27-retromer tubule (ASRT) machinery, so named for three of
its essential components but also associated with additional
proteins (20, 21). This machinery is conserved in animals, and
part (e.g. retromer subunits) but not all (e.g. sorting nexin 27) of
it is found in yeast as well as in protists and plants (22). The
ASRT machinery recognizes GPCRs (as well as a variety of
other membrane proteins (21)) based on recognition of a C-ter-
minal PDZ motif, driving selective exit from endosomes via a
specialized population of membrane tubules for subsequent
delivery either back to the plasma membrane (recycling path-
way) or back to the Golgi apparatus (retrograde transport)
(23, 24).

GPCR interaction with each of these core machineries is reg-
ulated by post-translational modification (25–28) as well as by
non-covalent interactions with various (possibly many) other
proteins including G proteins (e.g. Ref. 16) and arrestins (e.g.
Refs. 29 –31). The net result is that discrete “involute,” “hold,”
and “recycle” operations are executed at the endosome limiting
membrane in a receptor-specific manner, subject to physiolog-

ical control through post-translational modification and non-
covalent interactions, with each operation representing an ele-
mental instruction in a conserved cellular program that flexibly
and specifically determines receptor post-endocytic fate.

GPCR delivery to lysosomes (directed by engagement of
ubiquitin-ESCRT and/or GASP machineries) promotes prote-
olysis and long-term down-regulation of cellular ligand respon-
siveness. Receptor recycling to the plasma membrane (directed
by engagement of the ASRT machinery) promotes nondestruc-
tive return of internalized receptors to the plasma membrane,
sustaining cellular ligand responsiveness in the prolonged pres-
ence of ligand or promoting the efficient recovery of respon-
siveness (resensitization) after ligand-induced desensitization.

The ability of endocytic membrane trafficking to adjust cel-
lular GPCR responsiveness after prolonged or repeated activa-
tion is well established. What is new, and still controversial, is
the idea that the endocytic network also contributes to the
ligand-dependent signaling response itself by generating a dis-
crete phase of GPCR and G protein activation in endosomes
(Fig. 1B).

A Historical Bias against GPCR-G Protein Activation in
Endosomes

The hypothesis that signaling can be initiated from endo-
somes long precedes even the recognition of regulated endocy-
tosis of GPCRs (reviewed in Ref. 32). Over the ensuing years,
GPCR endocytosis has been implicated in a wide variety of G
protein-independent signaling mechanisms (reviewed in Ref.
33). However, GPCR signaling through activation of heterotri-
meric G proteins was generally thought, or assumed, not to
occur in endosomes. Fully tracing the historical development of
this view is beyond the present scope. Here we briefly discuss
three of the main current reservations, based on studies of the
�2 adrenergic receptor (�2AR).

First, it is often assumed that internalized GPCRs are unable
to couple to G proteins because they are highly phosphorylated
in endosomes. Although phosphorylated �2ARs indeed exist in
both the plasma membrane and the endosomes of agonist-ex-
posed cells (34, 35), �2AR phosphorylation and dephosphory-
lation occur dynamically. Indeed, in early experiments using
whole-cell metabolic labeling with [32P]orthophosphate com-
bined with subcellular fractionation, �2ARs present in a light
membrane fraction (likely endosomes) were found to be under-
phosphorylated relative to a faster-pelleting (likely plasma
membrane) fraction (35). More recent data, derived from anal-
ysis of the native phosphorylation status of �2ARs isolated from
intact cells by mass spectrometry, revealed a remarkable degree
of heterogeneity in receptor phosphorylation states under all
conditions tested (36). Indeed, even in cells exposed to a satu-
rating concentration of a full agonist ligand that drives maximal
internalization, a considerable signal was detected correspond-
ing to receptors fully unphosphorylated in the critical GRK
acceptor sequence (26, 36, 37). Accordingly, there is presently
no compelling evidence for extensive inactivation of the inter-
nalized �2AR pool by phosphorylation.

Second, experimental manipulations reducing receptor engage-
ment with the GRK-arrestin system, such as mutation of essential
phosphorylation sites in the cytoplasmic acceptor sequence (37) or

FIGURE 1. GPCR endocytic trafficking relative to G protein-mediated sig-
nal initiation. A, main steps of ligand-dependent activation of heterotrimeric
G proteins, endocytosis and post-endocytic sorting of GPCRs in mammalian
cells. PM, plasma membrane; �-Arr, �-arrestin; Ub, ubiquitin. B, the new ele-
ment in this model is the existence of a discrete phase of GPCR-G protein
activation in endosomes.
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depletion of relevant GRKs or arrestins (38), reduce �2AR inter-
nalization but increase overall cytoplasmic cAMP accumulation.
At first glance, this appears inconsistent with a significant endo-
some signal. A caveat is that such manipulations, by blocking the
desensitization machinery, not only reduce endocytosis but aber-
rantly increase G protein activation in the plasma membrane.
Indeed, as discussed further below, inhibiting endocytosis using
more specific manipulations actually reduces net cAMP accumu-
lation (39).

Third, endosome acidification has been proposed to pre-
clude significant ligand-GPCR binding. A caveat to this belief is
that the moderate acidity of early endocytic vesicles (pH �6.5)
is in a range compatible with high-affinity binding and ligand-
dependent activation of �2ARs in vitro (40), and titratable res-
idue(s) in the �2AR may themselves modulate receptor activity
(41).

Evidence for a Non-canonical Mechanism of G Protein
Activation in Endosomes

To our knowledge, the first positive evidence suggesting that
G protein-linked signaling occurs from endosomes emerged
through study of the mating response initiated by activation of
the Ste2p GPCR in yeast. A screen of yeast knock-out strains
identified a set of endosomal proteins supporting a late compo-
nent of the mating response. Here it was concluded that a dis-
crete signaling complex, including the G protein � subunit
Gpa1 but devoid of conventional �� subunits, mediates this
later signaling phase through Gpa1 activation in the endosome
or vacuole membrane (42).

Early suggestions of endosomal G protein activation in mam-
malian cells emerged through investigation of the prolonged
cellular effects of an anti-inflammatory drug on sphingosine-1
phosphate receptors (43), as well as the sustained actions of
certain polypeptide ligands on receptors for thyroid-stimulat-
ing hormone (44) and parathyroid hormone (45). In these stud-
ies, G protein-linked signaling from endosomes appeared to be
substantially delayed relative to the acute (presumably plasma
membrane-derived) component, and it was poorly or slowly
reversed after ligand removal from the culture medium.
Together, these results support the occurrence of G protein
activation from endosomes through a mechanism different
from that occurring in the plasma membrane.

Explicit evidence for a distinct mechanism of sustained G
protein activation in mammalian cells emerged from study of
parathyroid hormone receptor signaling, in which a complex
containing the GPCR together with arrestin and G protein ��
subunits was identified (46). More recently, a similar complex
has been linked to a sustained component of cAMP generation
by vasopressin 2 receptors (47).

The sustained cAMP response that is ascribed to endosomal
G protein activation also appears different in how it is turned
off. Inactivation has been proposed to occur by receptor bind-
ing to the retromer complex, an essential component of the
ASRT machinery discussed above in the context of GPCR
endocytic sorting, perhaps via the retromer subunit VPS26 that
is similar in tertiary structure to conventional arrestins (47, 48).

Early Evidence for Canonical GPCR-G Protein Activation
in Endosomes

A study of mammalian D1 dopamine receptors provided
early evidence suggesting a rapid and reversible form of G pro-
tein activation in endosomes (49). Endocytic inhibitors reduced
the magnitude of Gs-dependent cAMP accumulation elicited
by receptor agonists in transfected fibroblastic cells and pri-
mary neuronal cultures. In both cell types, the cAMP response
was rapid, and it reversed within minutes after agonist removal.
Endocytic blockade also reduced a cAMP-dependent electro-
physiological response elicited by endogenous D1 receptor acti-
vation in brain slices. Again this effect was acute and rapidly
reversible (49).

Direct Detection of GPCR and G Protein Activation in
Endosomes Using Conformational Biosensors

A fundamental problem in interpreting all of the studies
summarized above was their reliance on temporal correlation,
together with possible complications of off-target or pleiotro-
pic effects of endocytic inhibitors. Direct evidence for GPCR or
G protein activation in endosomes was lacking, and alternative
interpretations could not be ruled out (e.g. see discussions in
Refs. 48 and 49).

Independent and arguably direct evidence emerged from
experiments in which single-domain antibody fragments
(nanobodies), developed initially as tools for structural investi-
gations (50), were repurposed to function as genetically
encoded “conformational biosensors” of discrete GPCR and G
protein activation states in living cells (Fig. 2, A–C) (39).

The first conformational biosensor was developed from a
nanobody raised against purified �2ARs bound to an irreversi-
ble agonist. This nanobody, Nb80, appears to bind activated
receptors selectively because it mimics the cognate G protein
(Gs) � subunit in its nucleotide-free form (51, 52). The same
nanobody, when present at a much lower concentration than in
structural studies, can effectively detect the activated receptor
conformation without forcing activation in the absence of ago-
nist. By fusing Nb80 to the green fluorescent protein (Nb80-
GFP), and expressing it as a genetically encoded intrabody at a
suitably low concentration in the cytoplasm, ligand-dependent
and reversible conformational activation of the �2AR was suc-
cessfully detected in living cells (39) (Fig. 2B).

Live-cell fluorescence imaging of Nb80-GFP localization
revealed an interesting series of events. Agonist (isoproterenol)
addition to cells first promoted Nb80-GFP recruitment to the
plasma membrane, then �2ARs clustered in coated pits appar-
ently devoid of associated Nb80-GFP, and then Nb80-GFP was
recruited to endosomes. Endosome recruitment of Nb80-GFP
was visible several minutes after recruitment to the plasma
membrane and occurred as a discrete second phase, after the
delivery of receptors to endosomes devoid of bound nanobody
(39).

Another biosensor was then generated, this one based on a
distinct nanobody (Nb37) recognizing a helical region of the Gs
� subunit that is not exposed in nucleotide-bound conforma-
tions, but which becomes mobile and exposed when the nucle-
otide binding pocket is empty (39). This is characteristic of �
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subunit present in the canonical agonist-GPCR-G protein ter-
nary complex, which is thought to represent the key catalytic
intermediate in G protein activation (53).

Fusing Nb37 to the green fluorescent protein (Nb37-GFP)
created another useful conformational biosensor (Fig. 2C).
When expressed at a suitably low level, Nb37-GFP localized
diffusely in the cytoplasm in the absence of �2AR agonist. Ago-
nist application initiated two phases of Nb37-GFP recruitment,
first to the plasma membrane and then to endosomes �1 min
after receptor arrival. Both recruitment phases of Nb37-GFP,
like those of Nb80-GFP, reversed rapidly and completely after
agonist removal. Further, they were correlated with time-re-
solved components of �2AR-mediated cAMP accumulation,
with the second phase selectively sensitive to endocytic inhibi-
tors (39).

Accordingly, it is now reasonably clear that activated GPCRs,
and conformational activation of cognate G proteins, can

indeed occur in endosomes (Fig. 1B). For catecholamine
receptors, this is rapid and reversible, as in the plasma mem-
brane. Further, although some GPCRs associate with arres-
tins in endosomes, D1 dopamine receptors and �2ARs do so
weakly or not at all (54). Moreover, nanobody-based biosen-
sors suggest that similar protein conformational states
accompany �2AR and Gs activation in endosomes and the
plasma membrane. The simplest interpretation of these
findings, taken together, is that some GPCRs can activate G
proteins in endosomes by a similar (or the same) mechanism
as in the plasma membrane.

Evidence for Temporal and Spatial Consequences of
Endosomal GPCR-G Protein Activation

If endosomes are indeed sites of bona fide GPCR-G pro-
tein activation, what is the functional significance of the
endosome signal? This is a fascinating question that is only

FIGURE 2. New genetically encoded tools for probing and manipulating spatiotemporal signaling in living cells. A, diagram depicting the canonical
scheme of GPCR-mediated activation of adenylyl cyclase. Steps 2 and 3 are the key steps of receptor and G protein activation probed by the biosensors. B, design
of Nb80-GFP. C, design of Nb37-GFP. D, design of bPAC-PM for optogenetic activation of adenylyl cyclase activity on the plasma membrane (PM). E, design of
bPAC-Endosome for optogenetic activation of adenylyl cyclase activity on the endosome limiting membrane.
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beginning to be addressed. Evidence available so far supports
two main effects.

First, endosome-based activation confers temporal control
on the cellular response. GPCR-G protein activation in endo-
somes has been observed consistently to extend the duration of
the response and, in some studies, has been reported to sustain
the response after ligand removal. The downstream manifesta-
tions of these temporal effects remain largely unexplored but,
considering how many physiological processes depend on sig-
nal timing, they are likely widespread (e.g. Refs. 44, 45, 55, and
56). Temporal effects may also be important to mediate the
therapeutic or toxic actions of drugs, particularly high-affinity
compounds that remain associated with target GPCRs for long
periods of time (e.g. Ref. 43).

Second, emerging evidence suggests that endosome-based
activation can confer a discrete type of spatial control on the
cellular response. Endocytic inhibitors were found to reduce
the magnitude of �2AR-elicited induction of a large reper-
toire of cAMP-dependent genes, including for example
PCK1, the gene encoding phosphoenolpyruvate carboxyki-
nase 1 that determines the rate of gluconeogenesis. This
effect did not correlate with changes in the overall level of
cytoplasmic cAMP accumulation and was associated with
reduced phosphorylation of the cAMP-response element-
binding protein (CREB) that drives overall cAMP-dependent
transcriptional induction. Together, these results suggest
that GPCR-G protein activation in endosomes confers a dis-
crete type of spatial control over the specificity of down-
stream signaling, likely by increasing the efficiency of cAMP-
dependent phosphorylation of CREB through physical
proximity (57).

An Optogenetic Strategy to Selectively Probe Spatial
Effects of the Endosome Signal

Definitively testing the “spatial encoding” hypothesis was not
possible using only endocytic blockade, for similar reasons that
this approach was limited for initially detecting GPCR-G pro-
tein activation in endosomes. In addition, because endocytic
inhibitors inherently alter temporal properties of the cellular
signal, a primary spatial effect of endocytic blockade is difficult
to resolve from secondary consequences of altering the signal in
time. Thus an orthogonal approach was developed to test spa-
tial effects directly.

To do so, a bacteria-derived photoactivated adenylyl cyclase
(bPAC) (58) was engineered to localize either to the plasma
membrane (Fig. 2D) or to the endosomes (Fig. 2E) using estab-
lished targeting sequences. Under illumination conditions
adjusted to produce similar elevations of overall cytoplasmic
cAMP concentration from each location, recombinant adenylyl
cyclase activated on endosomes was found to induce cAMP-de-
pendent transcription much more efficiently than adenylyl
cyclase activated on the plasma membrane. However, when
cells were exposed to rolipram, a chemical inhibitor of phos-
phodiesterase-4 enzymes concentrated in the peripheral cyto-
plasm and associated with the plasma membrane (59), adenylyl
cyclase localized to the plasma membrane strongly induced
transcription (57).

These findings provide independent and arguably direct
support for the hypothesis that cAMP generated from endo-
somes indeed confers a discrete spatial effect on the down-
stream cellular response. In essence, receptor-containing
endosomes appear to function as flexible signal delivery
vehicles that move the site of intracellular second messenger
production in proximity to a relevant effector (such as
CREB), with local phosphodiesterase activity setting the dis-
tance scale over which effective signal transduction can
occur (Fig. 3).

Conclusion and Future Perspectives

There is now reasonably strong evidence indicating that
some GPCRs, in addition to initiating ligand-dependent signal
transduction by coupling to heterotrimeric G proteins in the
plasma membrane, can also activate cognate G proteins after
endocytosis. GPCR and G protein activation in endosomes
appears, at first glance, to contradict long-held ideas regarding
the cellular basis of GPCR desensitization. However, this
emerging view is compatible with previous understanding if
one recognizes selective downstream effector coupling of the
endosome-derived signal.

Many interesting questions are posed by these develop-
ments. First, the overall functional significance of endosomal
GPCR-G protein activation remains a critical question that
has been only partially addressed, and very little is known
about it in native cell types or tissues. Second, the range of G
protein-linked transduction machinery that can be engaged
from endosomes is presently unknown. In particular, the
identity and subcellular distribution of specific adenylyl
cyclase(s) responsible for the endocytosis-dependent signal-
ing effects discussed in the present review remain undefined.
Another open question is whether more than one mecha-
nism of GPCR-G protein activation operates in endosomes.
The present data support the existence of two mechanisms,
differing in kinetics and reversibility, and mediated through
the formation of biochemically distinct signaling complexes
on the endosome limiting membrane. Do discrete mecha-
nisms of G protein activation operate from the same or dif-
ferent endosomes, and are their functions redundant or dis-
tinct? Another fascinating question, which is only beginning
to be explored, is how particular mechanism(s) of endo-
some-based signaling are terminated. Considering the long-
recognized importance of GPCR-G protein signal termina-
tion at the plasma membrane (7, 8), this would seem a critical
future direction. Yet another interesting direction is toward inves-
tigating broader implications of endomembrane G protein activa-
tion, such as its recently proposed role in homeostatic control of
the biosynthetic pathway by the seven-transmembrane KDEL
cargo receptor through receptor-mediated activation of Gs in the
Golgi apparatus (60).

The present review has focused specifically on GPCR signal-
ing via heterotrimeric G proteins. As noted briefly above, there
is also considerable previous evidence suggesting that endo-
somes support various G protein-independent transduction
mechanisms, particularly those initiated by GPCRs that (unlike
D1 dopamine receptors and �2ARs) strongly associate with
arrestins after internalization (reviewed in Refs. 9 and 33). It
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appears, indeed, that much remains to be learned about how
the endocytic network impacts cellular signaling mediated by
the large and diverse GPCR family.
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signal is delayed and, for some GPCRs, sustained relative to the plasma membrane signal.
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