Title

Adolescent sedentary behavior and body composition in early adulthood: results from a cohort study

Permalink

https://escholarship.org/uc/item/73p893fs

Journal

Pediatric Research, 94(3)

ISSN

0031-3998

Authors

Hyde, Eric T
Gahagan, Sheila
Martinez, Suzanna M
et al.

Publication Date

2023-09-01
DOI
10.1038/s41390-023-02616-z

Peer reviewed

Adolescent sedentary behavior and body composition in early adulthood: results from a cohort study

Eric T. Hyde ${ }^{1}$, Sheila Gahagan ${ }^{2}$, Suzanna M. Martinez ${ }^{3}$, Patricia East ${ }^{4}$, David Wing ${ }^{5,6}$, Raquel Burrows ${ }^{7}$, Paulina Correa Burrows ${ }^{7}$, Cecilia Algarín ${ }^{7}$, Patricio Peirano ${ }^{7}$, Sussanne Reyes ${ }^{7}$, Estela Blanco ${ }^{8, \bowtie}$
${ }^{1}$ San Diego State University/University of California, San Diego, Joint Doctoral Program in Public Health (Epidemiology), San Diego, CA, USA.
${ }^{2}$ Academic General Pediatrics, Child Development, and Community Health, University of California, San Diego, San Diego, CA, USA.
${ }^{3}$ Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, USA.
${ }^{4}$ Department of Pediatrics, University of California, San Diego, San Diego, CA, USA.
${ }^{5}$ Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, San Diego, CA, USA.
${ }^{6}$ Exercise and Physical Activity Resource Center, University of California, San Diego, San Diego, CA, USA.
${ }^{7}$ Institute of Nutrition and Food Technology, University of Chile, Santiago, Chile.
${ }^{8}$ Centro de Investigación en Sociedad y Salud y Núcleo Milenio de Sociomedicina, Universidad Mayor, Santiago, Chile.

Abstract

BACKGROUND: This study investigates the cross-sectional and prospective associations between accelerometer-measured sedentary behavior and body composition from adolescence to early adulthood.

[^0]METHODS: Data from the Santiago Longitudinal Study were analyzed ($n=212$). Sedentary time was measured at age 16 years, and body composition (body mass index [BMI], waist circumference, waist-to-height ratio [WHtR], fat mass percentage, and lean mass percentage) was examined at both age 16 and 23 years. Adjusted linear regression models estimated associations between sedentary time, sedentary bout duration, and body composition, overall and by sex.

RESULTS: In all analyses, mean sedentary bout duration was not associated with body composition. In cross-sectional analyses, more sedentary time during adolescence was significantly associated with lower BMI, waist circumference, WHtR, fat mass percentage, and higher lean mass percentage ($p<0.05$). One standard deviation increase in daily sedentary time was prospectively associated with lower body mass index ($\beta=-1.22 \mathrm{~kg} / \mathrm{m}^{2}, 95 \% \mathrm{CI}:-2.02$, -0.42), waist circumference ($\beta=-2.39 \mathrm{~cm}, 95 \% \mathrm{CI}:-4.03,-0.75$), and $\mathrm{WHtR}(\beta=-0.014$, 95% CI: $-0.024,-0.004$). Sedentary time at 16 years was not associated with changes in body composition from 16 to 23 years.

CONCLUSIONS: Sedentary behavior in adolescence is not adversely associated with body composition profiles in early adulthood.

INTRODUCTION

Between 1975 and 2016, the worldwide prevalence of obesity among children and adolescents aged 5-19 years increased over fourfold, from about 4% to over 18%. 1 Understanding behaviors associated with unfavorable body composition (e.g., body mass index [BMI], waist circumference, excess adiposity) in adolescence and young adulthood is a critical public health concern. While physical activity has been shown to improve weight status in youth, the relation of sedentary behavior and body composition is less clear. ${ }^{2-5}$ Sedentary behavior is defined as low-energy-expenditure activities ≤ 1.5 metabolic equivalents in a sitting or reclining posture. ${ }^{6}$

Several studies have reported a significant association between self-reported screen time, a proxy for sedentary time, and unfavorable body composition in youth. ${ }^{3-5}$ However, results of studies relying on self-reported sedentary behaviors are prone to misclassification bias and are unable to accurately capture accumulated time spent in short lengths of time, or bouts, sedentary. ${ }^{7}$ Use of devices, including accelerometers, to measure sedentary behavior can help mitigate this bias. ${ }^{8}$ Even so, studies using accelerometer-measured sedentary behavior have reported limited evidence for an association with body composition in youth. ${ }^{9-11}$ A 2013 study found higher accelerometer-measured sedentary behavior was associated with greater increases in BMI between ages 9 and 15 years. ${ }^{12}$ However, two more recent studies reported that greater accelerometer-measured sedentary behavior was not prospectively associated with increased fat mass accrual during adolescence or early adulthood. ${ }^{13,14}$ Overall, the quality of evidence for an association between objectivelymeasured sedentary behavior and body composition is low. ${ }^{3,11}$ Many studies are crosssectional, rely on BMI as a proxy measure of body composition, and do not thoroughly examine the period from adolescence to early adulthood. ${ }^{11}$

While health behaviors begin developing during childhood, there are critical periods, such as during the transition from adolescence to early adulthood, when physical activity decreases
and sedentary behavior increases and these changes may differ by sex. ${ }^{15,16}$ An analysis of National Health and Nutrition Examination Survey data indicated that self-reported total sitting time increased from 7.0 to 8.2 h /day from 2007 to 2016 among U.S. adolescents (ages $12-19$ years). ${ }^{17}$ This increase stresses the importance of developing a better understanding of how sedentary behavior affects health outcomes.

Our objective was to examine prospective associations between accelerometer-measured sedentary behavior (i.e., daily sedentary time and mean sedentary bout duration) and body composition measures (i.e., BMI, waist circumference, waist-to-height ratio [WHtR], fat mass percentage, and lean mass percentage) from adolescence to early adulthood. We studied participants of a Chilean birth cohort followed from infancy to young adulthood, the Santiago Longitudinal Study (SLS) and hypothesized that more sedentary behavior in adolescence would be associated with higher BMI, waist circumference, WHtR, and fat mass percentage at both adolescence and in early adulthood.

METHODS

Study design

Participants were part of an infancy iron deficiency anemia prevention trial and follow-up study in Santiago, Chile. ${ }^{18}$ During 1991-1996, healthy infants from uncomplicated singleton vaginal births at term were recruited at 6 months of age. Inclusion criteria included no iron deficiency anemia, birth weight $\geq 3 \mathrm{~kg}$, and residence in one of four low- to middlesocioeconomic neighborhoods in Santiago, Chile. A total of 1657 infants participated in the trial in which they were randomly assigned to receive either iron supplementation (low or high supplementation) or usual nutrition (no iron supplementation) between ages 6 and 12 months. The cohort was followed up several times in childhood (5 and 10 years), adolescence (16 years), and young adulthood (23 years). For this study, we used data collected when participants were 16 and 23 years between 2008-2012 ${ }^{19}$ and 2015-2018, ${ }^{20}$ respectively. At the 16-year follow-up, 679 participants were invited to take part in a study that measured cardiovascular risks and body composition (i.e., individuals from two of the three randomly assigned iron supplementation groups at infancy). Of this group, a convenience sub-sample of 350 adolescents were invited to wear an accelerometer to measure physical activity. Among 313 participants who had usable accelerometry data at age 16 years, 212 also provided cardiometabolic data at age 23 years. These 212 individuals comprise this study's analytic sample. Included and excluded participants were similar across demographic and lifestyle characteristics at age 16 years (e.g., sex, socioeconomic status, diet, alcohol consumption, maternal education, and parental history of cardiovascular disease). They differed in that the 212 studied here were less likely to have smoked during the previous 30 days than those excluded (Supplementary Table 1). A post hoc analysis was conducted for power estimation. With a significance criterion of $a=0.05$ and sample $=212$, power ranged from 60 to 80% for the anthropometric measures and under 6% for both fat and lean mass percentage.

All participants provided written informed consent at the time of accelerometer and cardiometabolic data collection at ages 16 and 23 years. Adolescents' mothers provided written informed consent for the adolescent cardiovascular study. The study was approved
by the institutional review boards of the University of California, San Diego, the University of Michigan, and the University of Chile Institute of Nutrition and Food Technology (INTA).

Sedentary behaviors: independent variables

Adolescents were scheduled for a half-day assessment at INTA. A week before evaluation, study personnel met with each participant to explain research procedures, including placement of the ActiGraph GT3X + (ActiGraph, Pensacola, FL) hip-worn accelerometer. Participants were instructed to wear the accelerometer during waking hours on an elastic band worn on top of clothing and to remove the device for showering, swimming, and sleeping. Using ActiLife software (version 6.5.3; ActiGraph, Pensacola, FL), devices were initialized to record activity at a sampling rate of 30 Hz and downloaded using a 15 s epoch. Data were cleaned and processed to ensure that devices were worn for $\geq 10 \mathrm{~h} /$ day for ≥ 5 days or $\geq 3000 \mathrm{~min}$ during a 4-day period using the Choi algorithm. ${ }^{21}$ At least one of the included days was a weekend day. Evenson cut points were applied to classify the time spent sedentary ($0-25$ counts $/ 15 \mathrm{~s}$) and in moderate-to-vigorous intensity physical activity (574-10,000 counts/ 15 s). ${ }^{22}$ Average daily sedentary time was calculated by summing the total amount of sedentary time during the measurement period divided by the number of days measured. A sedentary bout was defined as a stretch of sedentary time lasting at least 30 min with 1 min of "drop" time allowed. Average length of sedentary bouts was calculated by summing all sedentary bout durations during the measurement period divided by the total number of bouts.

Anthropometry: dependent variables

Body composition measures were taken at both age 16 and 23 years. During the half-day evaluation, body mass (kg), height (cm), and waist circumference (cm) were measured twice by a trained physician at INTA, and an additional measurement was taken if the difference between the first two exceeded 0.3 kg for weight, 0.5 cm for height, or 1.0 cm for waist circumference and averages across the 3 measurements were computed. BMI (kg/m ${ }^{2}$) was calculated from body weight and height measures, and waist circumference was measured with non-elastic flexible tape at the high point of the iliac crest around the abdomen and recorded to the nearest 0.1 cm . WHtR was calculated as waist circumference (cm) divided by height (cm), where the standard is that an individual's waist circumference should be less than half their height (i.e., $\mathrm{WHtR}<0.5$) to reduce increased risk of morbidity. ${ }^{23}$ Dual-energy X-ray absorptiometry (Lunar DPX-LIQ model [Lunar Corp., Madison, WI] and Lunar iDXA Encore 2001 software [Version 13.60.033 Copyright © 1998-2010]) was used to estimate fat mass percentage and lean mass percentage.

Demographic and lifestyle characteristics: covariates

The following variables were examined as covariates. Biological sex was categorized as male or female. Socioeconomic status was assessed using the Graffar Index, ${ }^{24}$ which is a sum of 10 indices such as parental education, employment, family composition, and housing characteristics, which are summed to create a scale (range $=10-60$), with higher values indicating more socioeconomic disadvantage. Dietary nutritional quality was assessed using the Intake Habits Survey, ${ }^{25}$ where higher scores reflect better nutritional quality (range $=0-$ 10). Participants were asked "Have you ever smoked cigarettes?" and "Have you ever drunk
alcohol?" Those who reported any prior use were asked a series of follow-up questions about frequency and quantity of use. Cigarette use during the past 30 days at age 16 years was dichotomized as yes or no, and the number of days participants reported drinking alcohol over the past 30 days at age 16 years was recorded as a continuous variable. Total years of maternal education and parental history of cardiovascular disease (e.g., diabetes, high cholesterol, hypertension and/or heart attack before age 60 years) were self-reported (yes/no) by mothers. Last, daily minutes of moderate-to-vigorous physical activity (MVPA) were included as a covariate to isolate the independent effect of sedentary behavior on body composition. Due to little variation in age at baseline (mean $(\mathrm{SD})=16.8(0.26)$ years), it was not included as a covariate.

Statistical analysis

For descriptive purposes, means and standard deviations of baseline characteristics are shown by sex and tertiles of average daily sedentary time. Body composition metrics at age 16 and 23, and 7 -year changes are presented by sex, and paired t tests were used to test for significant changes over time. Multivariable adjusted linear regression models were used to examine the associations between daily sedentary time and mean sedentary bout duration with each body composition metric. All analyses were performed in the overall sample and by sex due to sex-based differences in body composition measures at both study timepoints. Both average daily sedentary time and mean sedentary bout duration were analyzed continuously per standard deviation increments. Cross-sectional associations between sedentary behavior and body composition at age 16 years were conducted, followed by the longitudinal associations between sedentary behavior at age 16 years and body composition at age 23 years. Lastly, longitudinal associations between sedentary behavior at age 16 and change in body composition from age 16 to 23 years (e.g., BMI at age 16 years subtracted from BMI at age 23 years) was examined. Models were adjusted for sex (overall models only), socioeconomic status, dietary nutritional quality, maternal education, past 30-day alcohol use, past 30-day cigarette use, parental history of cardiovascular disease, and average minutes of daily MVPA. Models examining longitudinal changes in body composition further adjusted for the same body composition measure at age 16 years (i.e., models for change in BMI adjusted for BMI at age 16 years). Results from unadjusted models are included in supplementary materials. Although the focus of this analysis was sedentary time, we also conducted a sensitivity analysis testing whether average minutes of daily MVPA was associated with body composition at 16 years. Multiple imputation using chained equations with predictive mean matching was used to account for missing covariate data. Variables with missing values included maternal education (10.8\%), past 30-day cigarette use (6.6\%), past 30-day alcohol use (5.2\%), and parental history of cardiovascular disease (5.2\%). All analyses were conducted in SAS ${ }^{\circledR}$ Studio (v3.8, SAS Institute Inc., Cary, NC).

RESULTS

Descriptive statistics for demographic and lifestyle characteristics stratified by tertile of average daily sedentary time are shown in Table 1. The average daily sedentary time for the total sample was $608.0 \mathrm{~min} /$ day (standard deviation [SD] $=86.5 \mathrm{~min} /$ day $)$. Female
participants averaged $617.4 \mathrm{~min} /$ day $(\mathrm{SD}=85.0)$, and males averaged $598.7 \mathrm{~min} /$ day (SD $=87.5$) of sedentary time. Mean sedentary bout duration was $44.3 \mathrm{~min}(\mathrm{SD}=7.7)$ overall, $44.4 \mathrm{~min}(\mathrm{SD}=7.5)$ for males, and $44.2 \mathrm{~min}(\mathrm{SD}=7.8)$ for females (data not shown). The proportion of participants who were female was higher as tertile of sedentary time increased. Rates of smoking in the past 30 days and average daily MVPA decreased with increasing tertile of sedentary time. All other covariates were similar across tertiles of sedentary time.

Body composition metrics and changes in metrics by sex and age are shown in Table 2. At age 16 years, more than half of males (59.8%) and females (59.1%) were normal weight; however, this decreased in both males and females at age 23 years (males: 36.4%; females: 43.8%). In terms of changes over time, BMI increased between ages 16 and 23 years similarly in both males $\left(3.1 \mathrm{~kg} / \mathrm{m}^{2}\right)$ and females $\left(2.7 \mathrm{~kg} / \mathrm{m}^{2}\right)$. However, waist circumference increased in males (4.7 cm [$\mathrm{SD}=7.0]$) but decreased in females ($2.2 \mathrm{~cm}[\mathrm{SD}=7.5]$). In addition, males had a more pronounced increase in fat mass percentage and decrease in lean mass than females did from age 16 to 23 years. All changes in body composition metrics from age 16 to 23 years were statistically significant ($p<0.01$).

Mean sedentary bout duration was not associated with body composition metrics in male or female participants in any analyses (all p values >0.05). Overall, more sedentary time was cross-sectionally associated with lower BMI, waist circumference, WHtR, fat mass percentage, and higher lean mass percentage (Table 3). Among males, one standard deviation more daily sedentary time was associated with $-1.02 \mathrm{~kg} / \mathrm{m}^{2}(95 \%$ confidence interval (CI): $-1.83,-0.20$) in BMI, $-2.30 \mathrm{~cm}(95 \% \mathrm{CI}:-4.43,-0.16)$ in waist circumference, and -0.014 ($95 \% \mathrm{CI}:-0.027,-0.002$) in WHtR. Among females, one standard deviation more sedentary time was associated with $-1.14 \mathrm{~kg} / \mathrm{m}^{2}(95 \% \mathrm{CI}:-2.19$, -0.09) in BMI. Supplementary Table 2 shows the results of unadjusted cross-sectional associations between sedentary behavior (time and bout duration) and body composition.

Prospective associations between sedentary time at age 16 years and body composition at age 23 years are shown in Table 4 . Overall, associations between sedentary time at 16 years and BMI, waist circumference, and WHtR at age 23 years were statistically significant ($p<0.05$), although associations were significant only for females in stratified analyses. Among females, one standard deviation more sedentary time at age 16 was associated with $-1.67 \mathrm{~kg} / \mathrm{m}^{2}(95 \% \mathrm{CI}:-3.00,-0.35)$ in BMI and $-3.15 \mathrm{~cm}(95 \% \mathrm{CI}:-5.86,-0.44)$ in waist circumference. Last, sedentary time at age 16 years was not significantly associated with changes in any body composition metrics between ages 16 and 23 years (Table 5). Unadjusted prospective associations between sedentary behavior and body composition can be seen in Supplementary Tables 3 and 4.

In the sensitivity analysis (Supplementary Table 5), we observed that cross-sectional associations between daily MVPA and markers of body composition were in the expected direction (i.e., higher MVPA associated with decreased BMI, waist circumference, WHtR, fat mass percentage and increased lean mass percentage), with statistically significant results for fat and lean mass percent in both the overall sample and in males only.

DISCUSSION

In this study of 212 Chilean participants, more sedentary time during adolescence was not significantly associated with less favorable body composition measures at adolescence and early adulthood. Prospectively, more sedentary time was significantly associated with lower BMI, waist circumference, and WHtR at age 23 years. However, the observed statistically significant effect sizes were generally small and not likely to be clinically relevant. To our knowledge, this is the first study to assess the association between accelerometer-estimated sedentary time and body composition during the transition from adolescence to early adulthood. Our findings were mostly contrary to our hypothesized association of increased sedentary time and less favorable body composition, which is sometimes seen in adults. ${ }^{26,27}$

While previous studies provide evidence of a significant positive association between sedentary behavior and increased risk of chronic disease in adults, associations between objectively measured sedentary behavior and body composition are less well-understood especially among adolescents and young adults. ${ }^{2-5,26-29}$ A 2016 systematic review identified 10 longitudinal studies of accelerometer-measured sedentary behavior and adiposity in adolescents and reported primarily null findings. ${ }^{3}$ Another systematic review identified 13 studies and came to similar conclusions of finding no association in both youth and adolescents and high risk of bias in the included studies. ${ }^{11}$ Our results add to the small but growing body of literature indicating no adverse association between device-measured sedentary time and body composition in adolescence and early adulthood. ${ }^{3,11-14}$

There are several possible explanations for our unexpected finding of more sedentary time being prospectively associated with more favorable body composition profiles. First, the hypothesized positive associations between sedentary time and body composition may have occurred during an earlier period, such as the transition between childhood and adolescence, ${ }^{15}$ and therefore the effects had already occurred before our observation period. Second, in our sample of Chilean adolescents aged 16 years at baseline, we observed an average daily sedentary time of $608 \mathrm{~min} /$ day or 10.1 hours/day). A study using 20032004 National Health and Nutrition Examination Survey accelerometry data found US youth ages 16-19 years spent approximately 8 h /day in sedentary time. ${ }^{30}$ The relatively higher amount of sedentary time observed in our study may have led to a "ceiling effect" on the observed associations with most body composition indicators. Last, the observed significant associations may be due in part to other factors that were not measured in our study, including sleep and energy balance, which are known to be associated with body composition. ${ }^{4,31-33}$ Future studies may consider examining different transition periods, including samples with greater diversity in distributions of sedentary time and body composition metrics, and including measures of sleep and energy intake to further our understanding of the relation between sedentary time and body composition.

Our study has several limitations. The prohibitive administrative costs and participant burden associated with accelerometry meant we were unable to assess all participants at 16 and 23 years, which contributed to our limited sample size. Sample size was determined by these factors and not by a power analysis performed a priori, and the limited sample size may have decreased our ability to detect some differences particularly for fat and lean

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

ACKNOWLEDGEMENTS

The authors have immense gratitude for the volunteers who took part in the Santiago Longitudinal Study. In addition, we thank Dr. Erin Delker for her assistance with the data analysis performed in this study.

FUNDING
This work was funded by the National Heart, Lung, and Blood Institute (T32HL079891, R01HL088530, 1K01HL129087-01A1) and the National Institute of Child Health and Human Development (R01HD33487, R03HD097295). E.B. acknowledges ANID - MILENIO - NCS2021_013. The funders had no role in the design, conduct, analysis, and decision to publish results from this study.

DATA AVAILABILITY

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

REFERENCES

1. Abarca-Gómez L et al. Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet 390, 2627-2642 (2017). [PubMed: 29029897]
2. 2018 Physical Activity Guidelines Advisory Committee. 2018 Physical Activity Guidelines Advisory Committee Scientific Report (U.S. Department of Health and Human Services, 2018).
3. Carson V et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth: an update. Appl. Physiol. Nutr. Metab 41(Suppl. 3), S240-S265 (2016). [PubMed: 27306432]
4. Biddle SJH, Bengoechea EG \& Wiesner G Sedentary behaviour and adiposity in youth: a systematic review of reviews and analysis of causality. Int. J. Behav. Nutr. Phys. Act 14, 43 (2017). [PubMed: 28351363]
5. Barnett TA et al. Sedentary behaviors in today's youth: approaches to the prevention and management of childhood obesity: a Scientific Statement from the American Heart Association. Circulation 138, e142-e159 (2018). [PubMed: 30354382]
6. Tremblay MS et al. Sedentary Behavior Research Network (SBRN) - Terminology Consensus Project process and outcome. Int. J. Behav. Nutr. Phys. Act 14, 75 (2017). [PubMed: 28599680]
7. Chastin SFM et al. Systematic comparative validation of self-report measures of sedentary time against an objective measure of postural sitting (activPAL). Int.J. Behav. Nutr. Phys. Act 15, 21 (2018). [PubMed: 29482617]
8. Lee IM \& Shiroma EJ Using accelerometers to measure physical activity in large-scale epidemiological studies: issues and challenges. Br. J. Sports Med 48, 197-201 (2014). [PubMed: 24297837]
9. Young DR et al. Sedentary behavior and cardiovascular morbidity and mortality: a Science Advisory from the American Heart Association. Circulation 134, e262-e279 (2016). [PubMed: 27528691]
10. Gibbs BB et al. Definition, measurement, and health risks associated with sedentary behavior. Med. Sci. Sports Exerc 47, 1295-1300 (2015). [PubMed: 25222816]
11. Cliff DP et al. Objectively measured sedentary behaviour and health and development in children and adolescents: systematic review and meta-analysis. Obes. Rev 17, 330-344 (2016). [PubMed: 26914664]
12. Mitchell JA et al. Time spent in sedentary behavior and changes in childhood BMI: a longitudinal study from ages 9 to 15 years. Int. J. Obes 37, 54-60 (2013).
13. Mcconnell-nzunga J et al. A 4-yr mixed longitudinal study of health behaviors and fat mass accrual during adolescence and early adulthood. Med. Sci. Sports Exerc 54, 2178-2187 (2022). [PubMed: 35868009]
14. Janz KF et al. Physical activity, not sedentary time, predicts dual-energy X-ray absorptiometrymeasured adiposity age 5 to 19 years. Med. Sci. Sports Exerc 49, 2071-2077 (2017). [PubMed: 28915225]
15. Gropper H et al. The impact of life events and transitions on physical activity: a scoping review. PLoS ONE 15, e0234794 (2020). [PubMed: 32569282]
16. Hochberg ZE \& Konner M Emerging adulthood, a pre-adult life-history stage. Front. Endocrinol 10, 918 (2020).
17. Yang L et al. Trends in sedentary behavior among the US population, 2001-2016. JAMA 321, 1587-1597 (2019). [PubMed: 31012934]
18. Lozoff B et al. Behavioral and developmental effects of preventing iron-deficiency anemia in healthy full-term infants. Pediatrics 112, 846-854 (2003). [PubMed: 14523176]
19. Burrows R et al. High cardiometabolic risk in healthy Chilean adolescents: associations with anthropometric, biological and lifestyle factors. Public Health Nutr. 19, 486-493 (2016). [PubMed: 25990645]
20. Correa-Burrows P et al. Resolving early obesity leads to a cardiometabolic profile within normal ranges at 23 years old in a two-decade prospective follow-up study. Sci. Rep 11, 18927 (2021). [PubMed: 34556688]
21. Choi L et al. Assessment of Wear/Nonwear Time Classification Algorithms for Triaxial accelerometer. Med. Sci. Sports Exerc 44, 2009-2016 (2012). [PubMed: 22525772]
22. Evenson KR et al. Calibration of two objective measures of physical activity for children. J. Sports Sci 26, 1557-1565 (2008). [PubMed: 18949660]
23. McCarthy HD \& Ashwell M A study of central fatness using waist-to-height ratios in UK children and adolescents over two decades supports the simple message-'keep your waist circumference to less than half your height'. Int. J. Obes 30, 988-992 (2006).
24. Méndez H \& de Méndez C Estratificación social y biología humana. Arch. Venez. Puer Ped 49, 93-102 (1986).
25. Burrows AR et al. Dietary intake and physical activity in school age children. Rev. Med. Chil 136, 53-63 (2008). [PubMed: 18483654]
26. Barone Gibbs B et al. Sedentary time, physical activity, and adiposity: cross-sectional and longitudinal associations in CARDIA. Am. J. Prev. Med 53, 764-771 (2017). [PubMed: 29032856]
27. Campbell SDI et al. Sedentary behavior and body weight and composition in adults: a systematic review and meta-analysis of prospective studies. Sports Med. 48, 585-595 (2018). [PubMed: 29189928]
28. Ferrari GLM et al. Sedentary behavior, physical activity and body composition in adults. Rev. Assoc. Med. Bras 66, 314-320 (2020). [PubMed: 32520151]
29. Silva B. G. Cd et al. Associations of physical activity and sedentary time with body composition in Brazilian young adults. Sci. Rep 9, 5444 (2019). [PubMed: 30931983]
30. Matthews CE et al. Amount of time spent in sedentary behaviors in the United States, 2003-2004. Am. J. Epidemiol 167, 875-881 (2008). [PubMed: 18303006]
31. Jurado-Fasoli L et al. Association between sleep quality and body composition in sedentary middle-aged adults. Medicine 54, 91 (2018).
32. Park HK, Kim J \& Shim YS Association between sleep duration and body composition in girls ten to eighteen years of age: a population-based study. Child Obes. 16, 281-290 (2020). [PubMed: 32181679]
33. Micklesfield LK et al. Adolescent physical activity, sedentary behavior and sleep in relation to body composition at age 18 years in urban South Africa, Birth-to-Twenty+ Cohort. BMC Pediatr. 21, 30 (2021). [PubMed: 33430834]
34. U.S. Department of Health and Human Services. Physical Activity Guidelines for Americans 2nd edn (U.S. Department of Health and Human Services, 2018).

IMPACT:

- Little is known about the effect of device-measured sedentary behavior on body composition during the transition from adolescence to early adulthood.
- Among participants in the Santiago Longitudinal Study, more accelerometermeasured sedentary time during adolescence was associated with lower BMI, waist circumference, and waist-to-height ratio in early adulthood though point estimates were generally small in magnitude.
- Sedentary behavior in adolescence was not detrimentally associated with healthy body composition profiles in early adulthood. Public health interventions aimed at reducing obesity rates could consider other behaviors, such as physical activity and healthy diet, instead of sitting time.
Author Manuscript
Table 1.
Demographic and lifestyle characteristics of participants at age 16 by tertile of average daily sedentary time, $N=212$.

Characteristic	Overall	Average daily sedentary time		
		T1	T2	T3
		415-567 min/day	568-642 min/day	643-818 min/day
Average daily sedentary time, min/day, 16 y	608.0 (86.5)	511.3 (38.1)	604.8 (22.8)	703.6 (41.0)
Female	105 (49.5\%)	29 (41.4\%)	35 (50.7\%)	41 (56.2\%)
Socioeconomic status ${ }^{\text {a }}$	26.6 (6.5)	27.2 (6.8)	27.0 (6.4)	25.8 (6.3)
Dietary nutritional quality ${ }^{b}$, 16 y	5.4 (1.3)	5.3 (1.3)	5.4 (1.4)	5.7 (1.3)
Number of days drank alcohol in the past 30 days, 16 y	0.9 (2.2)	1.2 (2.2)	0.7 (2.1)	0.7 (2.2)
Smoked any cigarettes in the past 30 days, 16 y	24 (11.3\%)	13 (18.6\%)	9 (13.0\%)	2 (2.7\%)
Maternal education, years	10.1 (3.0)	9.8 (2.9)	10.1 (3.3)	10.3 (2.8)
Parental history of cardiovascular disease ${ }^{\text {c }}, 16 \mathrm{y}$	115 (54.3\%)	38 (54.3\%)	36 (52.2\%)	41 (56.2\%)
Average daily MVPA, min/day, 16 y	51.0 (24.8)	62.1 (29.5)	49.7 (21.2)	41.6 (18.3)

Data are presented as mean (SD) for continuous variables and frequency (proportion) for categorical variables. Sixteen years represent variables assessed at 16-year follow-up. All other variables were measured at trial baseline (i.e., infancy).
MVPA moderate-to-vigorous physical activity.
${ }^{a}$ Socioeconomic status measured with the Graffar Index, with higher scores indicating greater disadvantage.
${ }^{b}$ Dietary nutritional quality questionnaire on a 10 -point scale, with higher scores indicating better nutritional quality.
${ }^{c}$ Parent-reported history of diabetes, high cholesterol, hypertension, or heart attack before age 60 years.
Id!̣っsnuew 」Oułn \forall

Body composition metric ${ }^{a}$	Males ($N=107$)				Females ($N=105$)			
	16 years	23 years	Change	$p \text { value }{ }^{b}$	16 years	23 years	Change	$p \text { value }{ }^{b}$
BMI, $\mathrm{kg} / \mathrm{m}^{2}$	23.8 (4.3)	26.9 (4.8)	3.1 (2.6)	<0.001	24.4 (4.9)	27.1 (6.2)	2.7 (3.0)	<0.001
BMI category, n (\%)								
Normal	64 (59.8\%)	39 (36.4\%)			62 (59.1\%)	46 (43.8\%)		
Overweight	29 (27.1\%)	41 (38.3\%)			24 (22.9\%)	30 (28.6\%)		
Obese	14 (13.1\%)	27 (25.2\%)			19 (18.1\%)	29 (27.6\%)		
Waist circumference, cm	81.7 (11.0)	86.4 (10.1)	4.7 (7.0)	<0.001	81.7 (12.5)	79.5 (12.5)	2.2 (7.5)	0.003
Waist-to-height ratio	0.48 (0.06)	0.50 (0.06)	0.02 (0.04)	<0.001	0.51 (0.08)	0.49 (0.08)	0.02 (0.05)	<0.001
Fat mass percentage	23.0 (8.5)	31.0 (7.1)	8.0 (6.4)	<0.001	36.7 (7.0)	42.2 (7.0)	5.4 (4.5)	<0.001
Lean mass percentage	74.1 (8.7)	66.6 (6.8)	7.4 (6.3)	<0.001	59.8 (6.9)	55.6 (6.8)	4.1 (4.6)	<0.001
$B M I$ body mass index.								
${ }^{a}$ Mean (SD) are presented unle b p value from a paired t test for	sotherwise changes in b	ecified. dy compositio	metric from	$16 \text { to } 23$				

Table 3.
Cross-sectional associations between sedentary behavior and body composition at age 16 years, overall and by sex

	Body mass index	Waist circumference	Waist-to-height ratio	Fat mass percentage	Lean mass percentage
	β (95\% CI)				
Overall ($N=212$)					
Sedentary time ${ }^{\text {a }}$	$-1.07(-1.72,-0.41) *$	$-2.23(-3.92,-0.54)^{*}$	$-0.01(-0.02,-<0.01) *$	$-1.11(-2.21,-0.01)^{*}$	1.18 (0.07, 2.29)*

$\begin{array}{lllllll}\text { Bout duration } b & -0.29(-0.91,0.33) & -0.97(-2.56,0.62) & -0.01(-0.02,<0.01) & -0.66(-1.69,0.38) & 0.68(-0.37,1.72)\end{array}$
Males ($N=107$)

Sedentary time a	$-1.02(-1.83,-0.20)^{*}$	$-2.30(-4.43,-0.16)^{*}$	$-0.01(-0.03,-<0.01)^{*}$	$-1.37(-2.98,0.24)$	$1.48(-0.17,3.12)$
Bout duration b	$-0.32(-1.19,0.54)$	$-1.02(-3.29,1.25)$	$-0.01(-0.02,0.01)$	$-1.09(-2.82,0.65)$	$1.13(-0.66,2.91)$
Females $(N=105)$					
Sedentary time a	$-1.14(-2.19,-0.09)^{*}$	$-2.36(-5.04,0.33)$	$-0.01(-0.03,0.01)$	$-1.11(-2.55,0.33)$	$1.15(-0.27,2.56)$
Bout duration b	$-0.39(-1.30,0.52)$	$-1.01(-3.33,1.30)$	$-0.01(-0.02,0.01)$	$-0.52(-1.76,0.72)$	$0.54(-0.68,1.76)$

Models adjusted for sex, socioeconomic status, nutritional quality, maternal education, alcohol use in past 30 days, cigarette use in past 30 days, parental history of cardiovascular disease, and average daily moderate-to-vigorous physical activity. Sex is not included as a covariate in sex-stratified models. Regression coefficients are non-standardized.
${ }^{a}$ Per one-standard deviation increment ($86.5 \mathrm{~min} /$ day) in daily average total sedentary time.
${ }^{b}$ Per one-standard deviation increment $(7.7 \mathrm{~min})$ in mean sedentary bout duration. * $p<0.05$.
Table 4.
Prospective associations between sedentary behavior at age 16 years and body composition at age 23 years, overall and by sex.

| | Body mass index | Waist circumference | Waist-to-height ratio | Fat mass percentage |
| :--- | :--- | :--- | :--- | :--- | Lean mass percentage.

Overall ($N=212$)

| Sedentary time | $-1.22(-2.02,-0.42)^{*}$ | $-2.39(-4.03,-0.75)^{*}$ | $-0.01(-0.02,-<0.01)^{*}$ | $-0.82(-1.84,0.21)$ | $0.75(-0.25,1.74)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Bout duration b	$-0.40(-1.16,0.34)$	$-0.87(-2.42,0.67)$	$-<0.01(-0.01,0.01)$	$-0.70(-1.65,0.26)$	$0.70(-0.22,1.63)$

Males ($N=107$)

Sedentary time a	$-0.75(-1.68,0.18)$	$-1.71(-3.71,0.29)$	$-0.01(-0.02,<0.01)$	$-0.53(-1.94,0.89)$	$0.53(-0.83,1.88)$

| Bout duration b | $-0.40(-1.37,0.57)$ | $-0.97(-3.03,1.10)$ | $-0.01(-0.02,0.01)$ | $-1.07(-2.53,0.39)$ | $1.05(-0.35,2.44)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | | | | | | |
| ---: | :--- | :--- | :--- | :--- | :--- | :--- |
| Sedentary time | | | | |$\quad-1.67(-3.00,-0.35)^{*} \quad-3.15(-5.86,-0.44)^{*} \quad-0.02(-0.03,<0.01) \quad-1.26(-2.75,0.23) \quad 1.17(-0.29,2.62)$

| Bout duration b | $-0.59(-1.74,0.57)$ | $-1.02(-3.39,1.34)$ | $-0.01(-0.02,0.01)$ | $-0.74(-2.02,0.55)$ | $0.79(-0.46,2.04)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | sadized $a_{\text {Per }}$ (andard deviation increment ($86.5 \mathrm{~min} /$ day) in daily average total sedentary time

${ }^{b_{\text {Per one-standard deviation increment }}(7.7 \mathrm{~min}) \text { in mean sedentary bout duration. }}$ * $p<0.05$.
Table 5.
Prospective associations between sedentary behavior at age 16 years and changes in body composition from age 16 to 23 years, overall and by sex.

	Body mass index	Waist circumference	Waist-to-height ratio	Fat mass percentage	Lean mass percentage
	$\boldsymbol{\beta} \mathbf{(9 5 \%} \mathbf{C I})$	$\boldsymbol{\beta}(\mathbf{9 5 \%} \mathbf{C I})$			
Overall $(N=212)$					
Sedentary time a	$-0.11(-0.53,0.31)$	$-0.67(-1.67,0.34)$	$-<0.01(-0.01,<0.01)$	$-0.06(-0.77,0.65)$	$-0.01(-0.71,0.68)$

Bout duration b	$-0.10(-0.48,0.27)$	$-0.12(-1.04,0.80)$	$-<0.01(-0.01,0.01)$	$-0.25(-0.91,0.40)$	$0.27(-0.37,0.91)$

Males ($N=107$)

Males $(N=107)$					
Sedentary time a	$0.21(-0.33,0.76)$	$-0.09(-1.43,1.25)$	$-<0.01(-0.01,0.01)$	$0.26(-0.82,1.35)$	$-0.28(-1.31,0.74)$

Bout duration b	$-0.10(-0.65,0.44)$	$-0.25(-1.60,1.09)$	$-<0.01(-0.01,0.01)$	$-0.45(-1.56,0.65)$	$0.44(-0.60,1.48)$

Females $(N=105)$

Sedentary time a	$-0.41(-1.05,0.24)$	$-1.17(-2.69,0.36)$	$-0.01(-0.02,<0.01)$	$-0.33(-1.23,0.57)$	$0.24(-0.67,1.14)$

$\begin{array}{llllll}\text { Bout duration } b & -0.15(-0.69,0.40) & -0.16(-1.46,1.15) & -<0.01(-0.01,0.01) & -0.30(-1.07,0.46) & 0.36(-0.41,1.12)\end{array}$
Models adjusted for body composition measure at age 16 sex, socioeconomic status, nutritional quality, maternal education, alcohol use in past 30 days, cigarette use in past 30 days, parental history of cardiovascular disease, and average daily moderate-to-vigorous physical activity. Sex is not included as a covariate in sex-stratified models. Regression coefficients are non-standardized.
${ }^{a}$ Per one-standard deviation increment ($86.5 \mathrm{~min} /$ day) in daily average total sedentary time.
${ }^{b}$ Per one-standard deviation increment (7.7 min) in mean sedentary bout duration.

[^0]: Reprints and permission information is available at http://www.nature.com/reprints
 ${ }^{\boxtimes}$ Correspondence and requests for materials should be addressed to Estela Blanco. estela.blanco@umayor.cl. AUTHOR CONTRIBUTIONS
 E.T.H., S.G., S.M.M., P.E., and E.B. contributed to the conception and design of the study. E.T.H. led the drafting of the manuscript. E.B. and R.B. led the data acquisition, and D.W. led the cleaning of the accelerometer data. P.C.B., C.A., P.P., and S.R. provided expert technical assistance on the Santiago Longitudinal Study. E.B. and S.G. supervised the project. All co-authors participated in the review and writing of the final version of the manuscript and gave final approval of this version to be published. COMPETING INTERESTS
 The authors declare no competing interests.

