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ABSTRACT OF THE DISSERTATION

Supporting Software Developers with Activity Event Analyses and a Management Console
for Automation

By

Zhendong Wang

Doctor of Philosophy in Software Engineering

University of California, Irvine, 2023

Professor David F. Redmiles, Chair

By the late 80s, empirical research in various areas of Software Engineering has demonstrated

the crucial roles of expert developers in engineering productivity. With recent advances in

data digitization, computational power, and automated engineering processes, experts have

unprecedented opportunities to leverage their expertise and amplify their impact on the

outcomes of software projects. Recent research efforts are determined to identify, categorize

and measure these critical human resources to make software engineering processes more

efficient while also improving practitioners’ well-being simultaneously.

This dissertation advances our knowledge about the productivity factors relating to work-

flows of expert developer groups mainly in Open Source Software (OSS) and proposes a

novel management framework to address major usability, customizability, and extensibility

issues in applying small-scale automation. Through three main studies, this dissertation em-

ployed multiple methods to ensure its research resilience, including reviewing the literature,

mining software repositories, testing statistical hypotheses, interviewing prospective users,

and prototyping. In the first empirical study, I coherently grouped atomic platform event

logs into sensible developer effort trends and associated elite developers’ activities with the

outcomes of OSS projects and mainstream ecosystems. Its results suggested that as con-
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tributor communities evolve, increasing responsibility for non-coding tasks had a negative

association with the technical outcomes of OSS projects. The second study investigated how

practitioners automated the accumulating non-coding and repetitive tasks with small-scale

automation, SE bots. Through a tiered and mixed-method approach, this study system-

atically identified and categorized the state-of-the-art SE bots that are prevalent in OSS

practice from the top 1,000 popular repositories. Further, I leveraged semi-structured inter-

views with elite developers to confirm and refine their usability issues and expectations of

SE bots. The final study summarizes design guidelines and provides a prototype for a Bot

Management Console, which intends to address main usability issues when deploying and

applying SE bots from daily practice. The practical effectiveness of this console has been

validated by simulated deployments in real-world scenarios.

The main contributions of this dissertation include theoretical development on OSS litera-

ture, actionable recommendations for software practitioners, and practical implications on

bot design and implementations. The reported results also provide future research direc-

tions for improving expert developers’ well-being, engineering productivity, and ultimately

the sustainability of OSS communities.
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Chapter 1

Introduction

Empirical research has demonstrated the crucial roles of expert developers in engineering

software products for the past decades [49, 119, 139]. With advances in data digitization,

computational power, and engineering process, these experts have unprecedented access

to amplify their impact on software project outcomes and other peer practitioners in the

software industry [172, 173].

Compared to the conventional software development process, modern collaborative software

development paradigms, such as the Open Source Software (OSS) and Globally-distributed

Software Development (GSD) models, provide practitioners with the extensive availability

of manpower across the globe. However, these distributed models require building teams

virtually and establishing labor divisions with limited developer profile information in ad-

vance [37, 73, 118, 119]. This recurrent downside of these models is also the obstacle of

locating expertise in its essence [112]. Moreover, practical but oversimplified mechanisms

of task delegation and expertise location have overburdened groups of central individuals

as these problems escalate [112]. These risks foreshadow potential productivity loss, and

neglecting expert developers’ cumulative burden could sabotage their work experience sub-
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stantially.

Many recent research efforts seek to identify, categorize, measure, and support this critical

human resources [14, 151, 166, 172]. Substantial software engineering research designed and

developed novel tools and improved engineering processes to enhance experts’ Developer

Experience (DX), with the goals of improving productivity, satisfaction, engagement, and

retention [67]. While other studies made tremendous progress in this stream of research,

in this dissertation, I argue that incrementally enhancing the current practice of expert

software developers is a justifiable and effective way to improve their work experience [28, 67],

other than introducing novel technologies or adapting to advanced engineering processes

drastically.

Elite developers serve as the crucial pillars underpinning the sustainable maintenance of

OSS projects. However, as these projects and their contributor communities expand, the

augmented workload related to non-coding tasks exposes the risk of adversely affecting their

technical contributions. Thus, this dissertation proposes that the engineering workflow of

elite and expert software developers could be supported with an automation management

console that is capable of integrating current atomic automation features and controlling

excessive interruptions and noises. Further, the console should also provide extensibility

for features of social and technical values in the collaborative development process. To

summarize:

2



This thesis seeks to,

• expand our understanding of elite developers by examining how their activities

evolve and impact the technical outcomes of OSS projects;

• investigate the critical roles of SE bots in OSS projects and their influence on

the workflow of elite developers, and identify their usability challenges;

• propose an automation management console that integrates current atomic au-

tomation features and reduces noise to optimize workflow efficiency.

Therefore, the research agenda of this dissertation is as follows: 1) investigating the current

challenges of expert software developers empirically, especially ones regarding their techni-

cal and non-technical workflow; 2) unpacking and understanding their current practice for

addressing these challenges with small-scale automation, e.g., SE bots; 3) identifying limita-

tions of current SE bots, and prototyping demonstrations aiming for gradual improvements.

For investigating this overarching thesis statement, this dissertation employs multiple re-

search methods through three major studies. Primary research methods in this dissertation

include literature reviews, inferential statistics, qualitative inquiries, and user studies with

practitioners. The first empirical study aimed to comprehensively understand elite devel-

opers’ on-platform activity and their impact on OSS projects and ecosystems. As a mixed

methods research study, it leveraged enormous categories and amounts of software engi-

neering data, including raw platform log event, commit messages, issue/PR reports, and so

on. This study employed inferential statistics, e.g., ANOVA tests and panel regression, and

identified a predictive relationship between developers’ activity trends and project outcomes,

especially along with the community evolving. The second study sought to investigate ex-

pert developers’ workflows of non-coding activities with automation assistance. This study

employed a state-of-the-art bot classifier to identify an initial set of prevalent bot services on

3



GitHub, and further manually validated and identified additional bots through a multi-tier

identification process. By collecting the usage data and attributes of these bots, I was able

to compile a list of popular bot services on this platform. Moreover, I conduct interviews

with expert developers about their challenges of integrating bots into their workflow, and

their practical expectations of future SE bots. Finally, the last study summarizes the design

guidelines and requirements for a management console of SE bots. The console’s designs were

evaluated by simulated deployment, supported by OCD protocol of multi-agent simulation.

The findings of this dissertation have both practical and research value to the software engi-

neering community. By categorizing elite developers’ activities in OSS projects and broader

ecosystems, there was a significant trend of investing more time into non-coding activities as

the project developed and its community evolved over time, which had worsened the tech-

nical outcomes of OSS projects [171, 172]. Hence, the second study investigated the usage

of SE bots in OSS communities, as SE bots were one of the latest practical efforts for alle-

viating these supportive and organizational burdens. The empirical results suggested that

these SE bots have been widely adopted and become repositories’ “butlers” who performed

repetitive housekeeping tasks of these repositories [174]. Furthermore, through interview

studies, practitioners were expecting more technical and social values in future SE bots and

also expressed concerns about bots’ excessive notifications and difficulties in integrating their

functionalities. Therefore, in the third study, I designed and prototyped a Bot Management

Console that particularly aimed to solve the notification and functionalities integration prob-

lems of current SE bots. This last study summarized six major guidelines for designing SE

bot consoles from the above studies and SE bot literature, and further presented the designs

and implementations of this console. The console’s evaluation results suggested a substantial

improvement in the usability of bot services.

To briefly summarize, the main contributions of this dissertation include the following: first,

to empirically identify how expert and elite developers behave and influence software projects

4



and developer communities; second, to advance our knowledge of OSS developers’ usages,

challenges, and expectations of SE bots; and third, to propose an advanced automation

management console which assists elite developers by managing their bot-assisted workflow.

With such an advanced management console, this dissertation provides the potential to

improve developers’ well-being, i.e., “how healthy and happy they are, and how their OSS

work impacts it” [59]. Ultimately this work has the potential to improve the productivity

and sustainability of OSS communities.

1.1 Dissertation Outlines

This dissertation is organized as follows. The remainder of this first chapter offers an in-

depth literature review, encompassing the key foundations upon which this research is built:

the expertise of software developers, the evolution of OS communities, and the emerging role

of SE bots.

Chapter 2 presents empirical studies conducted within OSS projects and ecosystems. This

includes a detailed overview of the study design, a comprehensive presentation of the results,

and a discussion of their implications. The principal findings of this chapter have been

published in the Transactions on Software Engineering and Methodology (TOSEM) and in

the Proceedings of the 42nd International Conference on Software Engineering, Companion

Volume (ICSE 2020 Companion).

Chapter 3 begins by exploring the prevalence of SE bots in some of the most successful

repositories on GitHub. It then provides insights from interview studies conducted with

expert developers, focusing on their daily workflows, particularly regarding their interactions

with SE bots.

In Chapter 4, I introduce the design guidelines for a management console for SE bots. This

5



chapter features my designs and implementations of the console, complemented by a simu-

lation evaluation. The initial concept of the management console was first published in the

Proceedings of the 28th ACM Joint Meeting on European Software Engineering Conference

and Symposium on the Foundations of Software Engineering (ESEC/FSE 2020) Doctoral

Symposium. The bot usage study has also been featured in IEEE Software 2022 and in

the Proceedings of the 45th International Conference on Software Engineering, Companion

Volume, BotSE workshop (ICSE 2023 Companion).

Chapter 5 discusses the empirical findings and implications of three studies, and finally,

Chapter 6 concludes this dissertation with several major research directions for the future.

1.2 Expertise of Software Engineering

Software engineering is a human-centered activity that requires qualified practitioners with

proper expertise [25]. Effectively managing expertise in a software organization can benefit

a broad spectrum of its routine activities with improved productivity, such as workforce

hiring and training, maintaining project development, and coordinating among teammates

[14]. Furthermore, fostering an organization’s expertise network improves its technical and

social outcomes [186]. However, how to effectively locate expertise in the broad context of

software development remains a critical challenge in software engineering research and has

been an ongoing investigation.

Emerging software development paradigms such as large-scale GSD and the voluntary con-

tribution model in OSS development blur the boundaries of traditional software engineering

organizations. These advances result in more difficult challenges and higher demands for

locating expertise during software development [73, 124]. However, while the importance of

developer expertise has been unanimously acknowledged in the software engineering com-
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munity, we have not yet developed a comprehensive understanding of its characteristics.

Furthermore, it remains unclear how the state-of-the-art expertise location techniques uti-

lize these characteristics, along with the unprecedented amount of data preserved by modern

collaborative development tools [18, 42]. Lacking such knowledge impairs the ability of re-

searchers and practitioners to design, implement, and adopt effective expertise location tools.

For instance, prior studies have repeatedly reported that practitioners resort to simple ap-

proaches to locate expertise, such as asking the “broker” member of colleagues and applying

the “line-10” rules on the code artifact, rather than using sophisticated expertise locating

tools [112, 113, 185].

Every organization hopes to leverage its existing expertise resource collectively and effec-

tively, but this goal is often hard to reach, especially for large-scale organizations with

complex structures and a diverse pool of talents. For a software development organization,

failing to identify experts is a threat to overall productivity, potentially overburdening a few

central individuals [113]. Thus, identifying specific domain expertise from individual talent

within the organization is critical for its outcomes.

Throughout the past decades, various studies have researched how to identify expert be-

haviors and locate experts. As mentioned in earlier sections, Brooks argued that “good

designers” had a significant positive impact on the quality and productivity of software

products [25]. Moreover, these expert developers not only boost project outcomes but also

improve other team members’ performance. For example, Sonnentag found that the “excel-

lent” group of developers usually spends more effort in consultation meetings and supporting

other developers [151]. More recently, Petre and Van der Hoek summarized three key at-

tributes of expert developers in the modern age [128]. First, expert developers “know their

stuff.” Besides knowing the basic fundamentals, they usually develop a comprehensive un-

derstanding of their knowledge field, including awareness of what they do not know. Second,

they are normally social designers, bringing the best possible developers together. In the OSS

7



context, core developers usually can be found at the center of the project’s social network

according to Joblin et al [81]. Finally, Petre and Van der Hoek point out that expert de-

velopers practice the “designly” thinking, i.e., they have a unique mode of problem-solving,

such as focusing on the essence of the problem, proposing alternative solutions, and more.

This argument also aligns with earlier findings about the knowledge representations of expert

v.s. novice developers [114]. However, the expert characteristics summarized by the software

engineering literature are often intangible and hard to articulate or quantify.

1.3 OSS Development

Open source software (OSS) has become an engine for innovation and critical infrastructure

for modern software development [39]. OSS development is often supported by communities

formed from a loose collection of individuals. The contribution from these individual de-

velopers consists of various SE activities, such as coding, bug fixing, bug reporting, testing,

and documentation. All of these activities lead to the development and improvement of OSS

projects and collectively influence their outcomes.

1.3.1 Hierarchical OSS Community

OSS development has been a mainstream practice in building modern software systems [39].

Different from traditional software development paradigms, an OSS project is centralized

in its community, which produces collective public goods through collaboration among its

members [76]. Though the detailed governance and social practices may vary across different

projects [125], members of an OSS community usually have different roles, which entail

different responsibilities, permissions, and levels of contributions [17, 141]. Similar to other

hierarchical organizations, an OSS community follows an onion-shaped social structure [37]
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Figure 1.1: A synthesized and onion-shaped OSS development community structure sum-
marized by Crowston and Howison [37].

(see Figure 1.1).

There are several different definitions for each layer in this hierarchical community [37, 49,

79], but in general, there are five major types, radiating outward: from core developers

to the internal and external contributors, to issue reporters, and finally at the outmost

layer to peripheral members (note that terms may differ from study to study). Especially,

each member of a project may play several roles. Peripheral members of an OSS project

typically are users of the software artifacts and products who do not directly contribute to

the project other than sending user feedback or usage data. For most users of an OSS project,

a peripheral member is the starting point, unless they have achieved recognition in the same

software ecosystem and developer community [80]. If these peripheral members wished to

contribute to more critical tasks of the project, they usually have to undergo a socialization

process. In Ducheneaut’s case study, he unveils a socialization path of becoming a core

Python developer which started as a periphery user [49]. This path included socializing

with the current core development team and completing a series of development tasks that

increased in difficulty. After being socially recognized and technically acknowledged by

existing experts for a project, they joined the core team to become one of the core developers

and gain the privileges of this project (i.e., “tenured” in a repository). Further, they begin to
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hold administrative power in the project; for example, they were responsible for conducting

quality assessments on other external contributors’ technical submissions.

Expanding the socialization process to a larger community is becoming more common in

current development practices, particularly for large-scale projects. One way to describe

this approach is as an “ecosystem” umbrella, where software engineering and collaborative

techniques enable more projects to be developed in parallel with similar domain knowledge,

technical stacks, and community norms. Jergensen et al. discussed how recognized OSS

experts transfer their expertise and reputations to other similar OSS projects, highlighting

the evolution of this socialization process in modern OSS development [80]. In a case study

of Linux, one of the largest OSS ecosystems, Iannacci found that OSS users contribute to

different projects in various ways, with many developers moving from project to project like

“nomads” [77].

Although modern OSS are often developed by large communities, research indicates that

only a small portion of developers contribute to the majority of the codebase [37, 79, 96].

Understanding the activities of these “elite” or “core” developers is crucial for assessing

the health and sustainability of OSS communities. To this end, various methods have been

employed to analyze their contributions. In mature and stable OSS projects that follow the

“bazaar” style, as described in Raymond’s ideology [131], members have developed shared

authorities and privileges, as well as mechanisms for transferring them among each other.

As a result, a member’s status as an “elite” or “core” developer is dynamic [125].

1.3.2 Role-Based Relationships among Developers

Developers in a software project have complex relationships with each other, engaging in

various development activities. While “core vs. peripheral” is a dominant terminology used

in SE literature to characterize role-based developers’ relationships, other terminologies have
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been proposed. For example, when newcomers or outside developers join an existing project,

a mentor -newcomer relationship may be established for social and technical reasons [29, 43].

However, previous research suggests that mentorship activities face various barriers for both

mentors and newcomers, which may threaten project sustainability [11]. Additionally, un-

derstanding the contribution behaviors and impacts of internal and external contributors in

company-sponsored projects is critical. For instance, companies need to balance manage-

ment efforts and fast iteration of enhancements when receiving external help. As mentioned

earlier subsection, developers’ roles change over time, and role migrations are common [80].

A peripheral member may be promoted to a core member, and a newcomer may become

a mentor after their skills develop. However, such a growing process may take substantial

effort, as external members may need to undergo a time-consuming process to gain the roles

of internal members [47, 49]. Furthermore, role-based relationships are dynamic in nature,

as core members may lose their roles if they no longer actively contribute to the project [102].

Therefore, role-based relationships are dynamic in nature. Table 1.1 provides an overview

of studies investigating the relationships between developers, highlighting the complexity of

role-based relationships in software development projects.

Table 1.1: Comparisons between elite developers and other similar roles defined in the liter-
ature.

Role Complement
Role

Scope Role Definition

Core Peripheral Open source A small group of members who are mainly respon-
sible for overseeing and contributing to the project
[119].

Maintainer Contributor Open source Members who are responsible for a software mod-
ule, mainly in accepting contributed patches [49, 79,
189].

Internal External Company-
sponsored Open
source

Individuals who are members of the development
group; usually are listed as contributors on the
project homepage [47, 169].

Mentor Newcomer General software
development

Persons who train and help novice and inexperi-
enced developers (newcomers) for their onboarding.
[11, 29, 43].

Elite Non-elite Open source Developers who own administrative privileges in the
project [this study].

Influenced by the dynamics of development roles, OSS and its developer community have

been substantially evolving since the 2000s. The transparency afforded by online open source
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code hosting sites such as GitHub enables researchers and practitioners to closely observe

and review the dynamics of the projects, such as the evolution of software artifacts and

the trajectories of peripheral participants’ self-development [42, 49]. Meanwhile, supported

by version-control systems and logs from various communication channels, a tremendous

volume of social and technical latent data can be acquired [16]. Various empirical research

has been postulated to obtain valuable knowledge from these datasets for software design,

development, and quality assurance. Besides, activity data are critical in identifying role-

based relationships among developers.

To gain insights into the socio-technical processes of an open-source project and improve

them, it is crucial to obtain information about role-based relationships [81]. Such informa-

tion can be utilized to extract developers’ expertise [12, 120], model a project’s lifecycle

[82], or predict project outcomes [30, 166]. However, to achieve these utilities, it is neces-

sary to identify role-based relationships from multiple perspectives. Typically, researchers

rely on count-based measurement for technical contributions to identify role-based relation-

ships. This approach assumes that “core” developers perform more activities than others

do. However, this perspective may be insufficient for some scenarios. Recently, Joblin et al.

proposed a network-based perspective for identifying core and peripheral developers, which

captures structural roles within social and technical dependencies beyond counting technical

contributions. This approach suggests that researchers need to adopt fresh perspectives in

recognizing developers’ roles that fit their specific research scenarios.

1.3.3 Contributing Activities of OSS Developers

Several studies have investigated the activities and tasks of developers in software engineer-

ing research [37, 49, 189], providing critical insights into how project members collectively

deliver software systems in complex contexts. For example, Baltes and Diehl developed a
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conceptual theory to characterize the complex relationships among developers’ activities, the

formation of expertise, and performance by surveying 335 software developers and literature

on expertise and expert performance [12].

To derive actionable insights for software development, research efforts have attempted to

categorize diverse activities into a few high-level sense-making categories. Sonnentag con-

ducted an empirical study with software-company professionals to study their weekly ac-

tivities in software development [150]. Based on her observations and the grounded theory

process, she classified four broad types of activities in the professional lives of developers:

communicative, organizational, supportive, and typical. Her study is critical in identifying

and classifying the full spectrum of software engineers’ activities, which serves as theoretical

foundations for the analysis of our work. However, there is still a need to develop a mapping

between fine-grained raw events in open source development and these high-level categories.

With a baseline of activity categorization, studying developers’ workload becomes necessary

as performing technical and non-technical activities is not effortless. Zhou et al. highlighted

that the workload per maintainer varies according to modules, which forms different balances

to make these modules sustainable [189]. However, the workload per maintainer tends to

be stable along with the expansion of the ecosystem. Their results further revealed that

the workload among developers is highly unbalanced, with a small number of developers

often bearing a lot of workload increase. To reduce such a workload imbalance among

Linux kernel maintainers, researchers have proposed alternative workflows, for example, the

multiple-committer model [157].

Roles in open-source projects also determine members’ different activity focuses and work

efforts [92]. Nevertheless, in software engineering literature, the complex division of labor in

an open-source project has not been well studied, particularly with explicit consideration of

role-based relationships and different types of activities beyond technical contributions. Our

“elite vs. non-elite” terminology is designed to capture this often-neglected perspective, with
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the “elite” obtaining managerial responsibilities in an open-source project. This perspective,

combined with recognizing different types of activities, including both technical contributions

and non-technical efforts, can offer valuable insights regarding developer roles that may not

be captured by other existing perspectives and corresponding operationalizations.

1.3.4 OSS Ecosystems

The ecosystem model has been widely adopted in OSS development. It creates value by

integrating software projects related to a given domain and attracts many contributors, as

well as users, to maintain and enhance its community. Since the mid-2000s, researchers

have devoted substantial efforts to analyze and improve the ecosystem model from various

perspectives [80, 87, 165]. SE researchers have extensively analyzed OSS development pro-

cesses [142], evolution models [82, 161], and social structures [44, 49, 170]. All are considered

to be strongly correlated with the sustainability and outcome of OSS projects developed un-

der ecosystems. Schultis et al. conducted an empirical study to analyze the architecture

and collaboration process in two ecosystems [144]. They summarized their organizational

structures and collaboration processes into three models, and identify multiple architectural

challenges in the ecosystem. German et al. explored the contribution characteristics of the

R software ecosystem and their findings highlight that user-contributed packages have much

less source code and documentation and also receive less attention than core packages do [62].

Crowston et al. reviewed the literature on OSS development and summarize issues related

to processes, emerging states, and outputs of OSS ecosystems [39]. Moreover, as more OSS

projects are commercially involved, Zhang et al. found that though company contributors

engage in the open source ecosystem with various strategies, their participation has a positive

association with the ecosystem productivity [188].
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1.4 Small-Scale Automation for SE

1.4.1 Automated Workflow with SE Bots

With the increasing popularity of the software ecosystem paradigm and the complicity of

interactions between various stakeholders, there is a demand to automate or just semi-

automate various technical and social tasks in software development. In the past decade,

the emerging CI/CD model and the large-scale collaborative software development powered

by online social coding platforms have driven the rapid evolution of OSS development prac-

tices. The fast iterations drastically complicate the development process as projects evolve.

Therefore, practitioners resolve to exploit automation techniques that handle specific routine

development and social tasks, so they could focus on innovative activities.

These automation techniques, i.e., bots, may support developers through many service medi-

ums. Some bots have user profiles and are authorized as their projects’ contributors [180].

Besides these account-based bots, others may employ platform applications, user settings,

and various external services [103]. Practitioners often adopt desired bot services with trade-

offs between performance, privacy, and security.

The prevalence of automation technology in the form of SE bots has made them a cru-

cial component of daily engineering processes within many OSS organizations, serving as

the primary interface for human-AI interactions [103](see Figure 1.2). They serve as an

extension of the development team, i.e., repository butler, providing automated feedback

and monitoring of code quality, release management, and community engagement [97, 174].

With their ability to perform repetitive tasks and improve efficiency, SE bots have enabled

developers to focus on more creative and complex tasks. Overall, SE bots have significantly

impacted the way OSS organizations operate, making their daily engineering processes more

streamlined [51].
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Figure 1.2: The basic human-bot interaction workflow described by Liu et al. in their 2020
publication [103]
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1.4.2 Challenges and Opportunities of SE Bots

Despite the widespread adoption of SE bots in OSS, there are still challenges and limitations

that need to be addressed. Previous studies have employed various methods, such as surveys,

interviews, and empirical analyses, to identify these issues and propose solutions. Frist, one

major issue is the limited understanding of user needs and preferences, which has resulted

in significant usability problems [52, 103, 179]. Second, without clear standardization, prac-

titioners have difficulties trusting automated decision-making processes [27, 52]. Third, the

evolving nature of software technology poses challenges in maintaining and updating bots,

and they are often slow to keep up [51, 174]. To address these issues, several bot development

frameworks have been introduced with the aim of providing a standardized and transparent

bot creation process, including OpenBot, Probot, Octokit, and others. Additionally, Wessel

et al. have provided general guidelines for developing bots for GitHub, with a focus on

supporting social coding platforms [181].

Meanwhile, researchers have collected practitioners’ feedback for future improvement. For

instance, they find practitioners expect more smart features in bots’ communication and

functionality [180]. Erlenhov et al. also emphasize the importance of a bot being socially

competent and bringing technical value, especially when they are designed for smarter and

more complex tasks [51]. Liu et al.’s survey created seven principles for designing bots that

demonstrate the critical challenges in interactions [103].
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Chapter 2

Unveiling Elite Developers’ Activities

This chapter introduces two studies that intend to empirically investigate how expert de-

velopers act and make impacts on OSS projects and ecosystems. Particularly, these studies

leverage a notion of elite developers to represent these socially recognized experts in OSS

projects [49], and therefore they were identified by their permissions and privileges in their

software repositories and organizations. The first study investigates 20 large standalone OSS

projects, and the second study follows a similar methodology but extends the scope to five

major OSS ecosystems.

2.1 Elite Developers in OSS Projects

As mentioned earlier in the introduction, OSS has become an engine for innovation and

critical infrastructure for modern software development [39]. Its development is supported

by communities formed from a loose collection of individuals. The contribution from these

individual developers consists of various software engineering activities, such as coding, bug

fixing, bug reporting, testing, and documentation. All of these activities lead to the devel-
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opment and improvement of OSS projects and fundamentally influence their outcomes.

Software developers maintain diverse activity profiles, including implementing new features,

documenting changes and design, analyzing requirements, and fixing bugs [96]. Contributing

source code is only one type of the activities pursued by an elite developer. Prior studies

typically provide insight into one such specific non-coding activity, e.g., peer review [133]

or committing code [41]. Most fall short of providing an integrated, holistic view of all of

the developers’ activities and the distribution of efforts on these activities. These studies

provide guidance to software developers on improving some software engineering tasks, such

as assigning bug reports [70, 147] and estimating cost [6]; however, we cannot fully realize the

activity data to inform better decision-making and ultimately better project output without

a comprehensive study of the diverse range of developer activities including their typical

technical and also non-technical activities. Because the full range of these activities influences

the software systems being developed, holistically understanding the elite developers’ diverse

activities beyond coding draws the most critical development expertise from the community.

This leads to the first research question:

RQ2.1 What do elite developers do in addition to contributing typical technical code in OSS

projects?

Since software engineering is a human-centered activity [57], effectively managing its human

resources may significantly enhance project productivity and collaboration quality. How-

ever, it is not clear what kind of tasks they focus on in the development of OSS projects.

Understanding the dynamic evolution of elite developers’ effort distributions across differ-

ent activity categories and over the life cycle of OSS projects has many important practical

implications. For example, it can guide junior developers on how to adjust their effort dis-

tributions during their tenure in a project; and also can assist resource management. This

gives rise to the second research question:
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RQ2.2 How does an OSS project’s elite developers’ effort distribution evolve along with the

growth of the project?

Given that OSS projects are developed by elite developers as well as many external contrib-

utors, elite developers’ activities, especially those beyond technical contributions, such as

communicating with bug reporters, documenting project changes, and assigning tasks and

labeling issues may fundamentally influence the outcome of the entire team. Because suc-

cessful software engineering activities require qualified developers with the proper expertise

to complete the task efficiently and effectively, understanding these impacts are critical for

developers to oversee the project and assure productivity and product quality. Thus, we

have our third research question:

RQ2.3 What is the relationship between an OSS project’s elite developers’ effort distribution

and the project’s productivity and quality outcomes?

To answer the above research questions, this chapter conducts an empirical study using

fine-grained event data from 20 large OSS projects hosted on GitHub consisting of both

company-sponsored and non-company-sponsored projects. To better utilize the activity data

to draw insights about the elite developers, this study first maps them from raw atomic events

to sense-making high-level categories. These categories are: communicative, organizational,

supportive, and typical. Their detailed definitions and mapping protocols are introduced in

Section 2.1.1. This study then uses multiple techniques to model and analyze the data.

This study reveals three main findings. First, elite developers participate in a variety of ac-

tivities, of which coding only accounts for a small proportion. Second, with the progress of

the project, elite developers tend to be increasingly involved in more non-technical activities,

while decreasing their coding and other technical activities. Third, elite developers’ effort

distributions exhibit complex relationships with project productivity and quality. For both
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project productivity indicators (that is, the number of new commits and average bug cycle

time in each project-month), the results suggest that project productivity has negative cor-

relations with non-technical (communicative, organizational, and supportive) activities. For

one project quality indicator (number of new bugs in each project-month), the results also

show that project quality has negative correlations with efforts in non-technical activities;

however, for the other project quality indicator (bug fix rate in each project-month), the

results suggest that project quality has positive correlations with supportive activities.

2.1.1 Empirical Study Design on Prevalent OSS Projects

To answer the three research questions presented, I conduct an empirical study on 20 selected

large-scale OSS projects. This section introduces the design of the study.

Table 2.1: Sampled projects and their description.

Project Description

Aframe Web framework for virtual reality applications
Alamofire Swift library for HTTP networking
ExoPlayer* Media player for Android
Finagle* Extensible RPC system for JVM
Fresco* Android library for images
Guava* Set of various Java libraries
Immutable-js* JavaScript library for immutable data structure
Jest* JavaScript testing framework
Marko* JavaScript library for building UI
Moya Swift network framework
Nightmare* Browser automation library
Rclone Program to sync files
React* JavaScript library for building UI
Recharts JavaScript chart library
Sqlitebrowser Visual UI for databases in SQLite
Stf Smart device testing framework
Tensorflow* Library for numerical computation
Tesseract Text recognition (OCR) engine
Tidb* Distributed database system
ZeroNet Decentralizes websites to be resistant to censorship

*: Projects sponsored by companies.
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Targeted Projects

This study selected 20 open source projects hosting their repositories on GitHub as the tar-

gets of the study. Table 2.1 lists them with short descriptions. The selection of the targeted

projects is based on four considerations. First, the selected projects are all projects with

established administration structures (i.e., they have a formal project management commit-

tee and solicit contributions through the pull-request model), and must be large enough

and have traceable records of continuous contributions from a set of contributors (at least

100 pull-requests and 50 contributors historically). Second, the selected projects represent

a diverse sample of projects in terms of application domains, such as a testing framework

(jest), a popular deep-learning library (Tensorflow), a multi-media player (ExoPlayer), a

web-development framework (React), and a database (Tidb). Third, our sample includes a

subset of company-sponsored (n = 11) projects, which reflects the trend of the increasing

involvement of companies in open source development [169]. Last, the sampled projects

should maintain relatively long traceable records on GitHub, which allows us to study the

longitudinal dynamics while maintaining data consistency.

Data Preparations

The current version of the GitHub API only allows us to retrieve 300 events or events from

up to the past 90 days, whichever is met first1. Therefore, in order to extract event data from

an extended range of projects’ life-cycle, we employ the GitHubArchive public data dump

on Google Cloud. We also employ Google BigQuery to extract the monthly event log for

each sampled repository from January 2015 to October 2018. Additionally, for repositories

that started or were made public during the year 2015, we store data files starting from the

project creation month. Figure 2.1 provides an overview of the data collection and cleaning

1GitHub Event API: https://developer.github.com/v3/activity/events/
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process.

Event JSON

Issue/Commit
JSON

201501: [#Elt, #Com, #Org, #Sup, #Typ]
201502: [#Elt, #Com, #Org, #Sup, #Typ]
201503: [#Elt, #Com, #Org, #Sup, #Typ]
. . .
. . .
. . .
201810: [#Elt, #Com, #Org, #Sup, #Typ]

reponame_elite/all.json:

GHArchive

Query

GitHub API

Request

Clean 
Redundency

Map 
Categories

Figure 2.1: Data collection and cleanup process.

For each month, GHArchive provides most of the activity events such as push, open issue,

open pull-request, Gollum (editing wiki), and comment for project repositories. This study

uses SQL-like queries (designed by BigQuery) to search for projects and save the results into

tables of the personal Google Cloud database. Further, the query scripts exported tables

as JSON files to the cloud storage and may download to a local computer for later analy-

ses. In total, this data set comprises 5.60 GB of 900,862 events (communicative: 238,986;

organizational: 42,317; supportive: 514,957; and typical: 104,602) for these 20 repositories.

However, several types of events associated with issues could not be recorded using the

above method, e.g., assigning a “won’t fix” label to an issue by a project administrator or

delegating a developer to investigate a newly posted bug. To fix this problem, we resort to

a customized Python script via the request2 library to request events from the GitHub

API, and then to download the issue event logs for every issue that has been reported in each

repository. Thus, we collect precise project management information, such as who has the

administrative privilege on a repository and oversees the progress of the project. To more

2Simplified HTTP request client for Python: https://github.com/request/request
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easily search for commits by date and author, and derive necessary metrics for the later

data analysis on the project productivity, we also download the commit logs of all sampled

projects. In total, 1.81 GB of data on issue events and commit logs were collected.

Finally, some Python scripts were created to merge event data based on event ID and commit

SHA and clean the redundant data that were recorded on both data sources. By using two

data sources, there are some categories of events that were kept recorded on each data source,

such as close issue and reopen issue. Because the GHArchive project employs the GitHub

event API to archive activities on a daily basis, this study keeps events from the GitHub

Issue API which were real-time archives. Then I convert event logs into a monthly list based

on the number of events that occurred in each major category.

Event Categories and Mapping

Although the event log data faithfully records developers’ activities, there is still a need to

recode the data unit categories that are easier for humans to interpret and conduct further

analyses. Particularly, the percentage of types for a developer group should be able to reflect

the trend of effort allocation and suggest their focused roles.

Collecting low-level activities from self-reported and observed data in the field, inductively

mapping these activities onto broad categories, and systematically extracting behavior pat-

terns and analyzing work effort allocation is common practice to establish the activity profile

of a certain group [24, 150, 151, 184]. One prior field interview study focuses on the daily

activities category of professional software developers, which were summarized based on sub-

jects’ reported activities [24]. Since this study is particularly interested in investigating the

overall activity profile of elite developers, I choose to follow an established category system

that reflects the daily activity, instead of another low-level task-based category system that

focuses on coding activities.

24



Communi-
cative

Edit com-
ment

Edit Event

Comment
on commit
or issue

IssueComment

Event

ContentReference

Event

CommitComment

Event

Organi-
zational

Member
Management

Team Event

Member Event

Organization

Event

OrgBlock

Event

Manage code
reviewer

ReviewRequested

Event

ReviewDismissed

Event

Assign
someone to
issue or PR

IssueAssign

Event

Typical

Pull Request

PullReuqestReview

Comment

Event

PullRequestReview

Event

PullRequest

Event

Commit
source code

Commit Event

Suppor-
tive

Maintenance

Checks

CheckSuite

Event

CheckRun

Event

Milestone

ProjectCard

Event

ProjectColumn

Event

Project

Event

(De)milestone

Event

Issue and PR

IssueDuplicate

Event

IssueRename

Event

Merge Event

Issue(Un)Lock

Event

Issue Event

Branch

Push Event

Delete Event

Create Event

Document

Release

Event

(Un)label

Event

Gollum Event

Figure 2.2: The taxonomy of GitHub event types.

25



This study reuses an activity categorizing system created by Sonnentag [150] to further

investigate the contribution of elite developers, as well as the relationships between their

effort distribution and project outcomes for open source projects. This study summarizes

and categorizes professional software developers’ daily activities into four major categories:

communication, organization, support, and typical. In their study, the research subjects were

developers in private companies; to adapt these definitions to OSS development, we slightly

modify the definition and operationalization of each category as follows:

Communicative: In the conventional co-located software development team, communica-

tive activities usually refer to formal and informal meetings and consultations [150]. However,

under the setting of distributed software development, which open source projects usually

employ, each project applies various communication channels, including mailing lists, instant

messaging, and online discussion boards [16]. Moreover, some projects such as Tensorflow ap-

ply additional broadcast channels, such as a blog, website, and YouTube channel. Therefore,

similar to other empirical studies with OSS developers, we are not able to collect communica-

tive activities of all channels. For example, private instant messages are often unavailable.

However, as GitHub is the major platform for developers to exchange ideas, by extracting

communicative event logs from GitHub, we can capture all public communicative traces

that happened on this platform by each contributor.

The definition of communicative activities is public and visible communication through com-

menting features supported by the platform on issues, commit, and project milestones.

Organizational: In previous field studies, organizational activities are categorized as del-

egating tasks among the development team and other project organizations in professional

software development. Similarly, under the open source development settings, representative

activities of this type are assigning and unassigning tasks to a developer, such as assigning

someone with a GitHub issue or reviewing a pull request.
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The definition of organizational activities is managing the project community and delegat-

ing tasks, including code reviewing, debugging, and user support to internal and external

contributors through the features supported by the platform.

Supportive: Supportive activities are critical to OSS development and mainly refer to

other non-coding activities in collaboration. It includes documentation work such as writing

documentation/wiki-page and categorizing issues by adding labels to them. Further, sup-

portive also includes maintenance work, for example, managing development branches and

releasing or archiving code versions.

The definition of supportive activities is non-coding activities in the collaborative open source

development that are performed through techniques supported by the platform, including doc-

umentation, versioning control, and development branch management.

Typical: Typical activities in software development are coding, testing, debugging, and

reviewing on an individual basis. Thus, under the setting open source platform, we only

include commit activity under this category. In addition, we count the event actor as the

commit author rather than the committer, since the author is the original developer who

wrote the code.

The definition of typical activities is conventional code-writing task finished at the individual

level, and counted as submitted code reviews, commits, and pull requests.

Mapping raw events to the above categories: Then I apply the closed card sorting

method to place 35 raw GitHub events into the above four major categories. With the

help of other two software engineering researchers, we performed card sorting. Among three

researchers, the card sorting yields 0.92 average joint probability of agreement; it achieves

82.8% relative observed agreement and reaches Fleiss’ κ = 0.77. All these metrics indicate

satisfying inter-rater reliability, and all differences among card sorters are discussed and

resolved. The final mapping is shown in Figure 2.2.
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Figure 2.3: PullRequestReview Events: The overall code review in highlighted part
A triggers PullRequestReview and specifically to a unified diff in part B triggers
PullRequestReviewComment Event.

In the aforementioned card sorting and disagreement-resolving process, the context of a

specific type of event in making classification decisions was heavily considered rather than

solely relying on its literal name. For example, there are three major events on GitHub

contains the keyword comment in their event names: CommitComment, IssueComment and

PullRequestReviewComment. The first two are quite straightforward. According to their

definitions on GitHub, CommitComment and IssueComment are almost always used for

communication purposes3, thus we classify them as communicative activities. They almost

never lead to direct changes to a project’s code base. However, the event PullRequestReview-

Comment is not that straightforward. Commenting on a PullRequestReview seems to be for

communication purposes, however, it directly relates to technical contributions and deter-

mines whether such contributions should be accepted. In GitHub’s pull-request model, a

3According to Chris Wanstrath, a founder of GitHub, these two “commenting” features were
designed to replace the email chains for communicating commit/issue, see: https://github.blog/

2008-04-10-commit-comments/.
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pull request initiates a code review process. In such a process, a PullRequestReviewComment

refers to submitting a comment on a pull request’s unified diff (review to a specific diff, see

the comment B in Figure 2.3 as an example). It often directly results in merging or closing

the pull request to which the comment pertains. Thus, similar to its closely related event

PullRequestReview (see the review A in Figure 2.3 as an example), it shall be classified as a

type of typical technical work.

By mapping the low-level raw GitHub events into these four categories, we can reason

developers’ activities at the level that makes sense to understand them as real work practices

and human efforts in organizational settings [126], instead of losing in millions of atomic

events which are not considered as integrated work practices. This study argues that such

a categorizing system precisely and comprehensively reflects the general work practices of

professional software developers. The categorization system is mainly inherited from the

literature of empirical field observations and interviews with a large number of software

development projects and hundreds of professional developers [24, 150]. Although this study

focuses on OSS developers, the types of their routine work practices at the individual level

in software development would be unlikely to go beyond the in-house software development,

while the way of organizing such practices may be different at the collective level [36, 66, 137,

168]. Doing so enables us to better study the dynamics of elite developers’ work practices

and their impacts, thus deriving meaningful findings and implications.

Collecting Project Outcomes Data: Productivity and Quality

Since one of our research goals is to investigate the impact of elite developers’ activity on

project outcomes (RQ2.3), project outcomes data is also collected. This study considers and

models two perspectives of project outcomes: productivity and quality, which are viewed

as the most important [166]. Each of them has two indicators as proxies, and they are

introduced as follows.
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For productivity, the first indicator is that the number of a project’s new commits in a

project-month4. Thus, for project i in month m, this study uses NewCim to denote it. In

many studies focusing on the OSS development and community, the number of commits is

considered as the productivity metric [163, 164, 166]. This study first adopts this widely

used productivity indicator for simplicity. Note that this study counts the commits from all

contributors rather than from elite developers only because it intends to measure the impact

on the productivity of the whole project team. The second indicator is the average cycle time

of a project’s closed bugs in a project-month. Similarly, for project i in month m, this study

uses BCTim to denote it. Such an indicator has been used to measure project productivity

in many prior studies, especially for collaboratively software development [89].

Following the conventions in prior literature [86, 130, 166], this study first operationalizes

the code quality by the number of bugs found during a project-month. This study simply

uses NewBim to denote it. On GitHub, the issue can be of various types, e.g., discussion,

new feature requests, improvement requests, and so on. To categorize these issues, software

developers often employ keywords or labels to tag them. However, because tagging is often

project-specific, we adopt Vasilescu et al.’s method to distinguish bug issues from other issue

types in this study [166]. Following this prior study, this study sets up a list of bug-related

keywords, including defect, error, bug, issue, mistake, incorrect, fault, and flaw, and then

searches for these words in both the issue tags and issue titles. If any tags or title of an issue

contains at least one keyword, then the issue would be identified as a bug issue. Similarly, as

the productivity data, this study computes the number of new bug issues in every project-

month. In addition to counting the newly found bugs in each project-month, our study also

includes a second quality indicator: Monthly Bug Fix Rate (BFRim), which is defined as:

BFRim =
No. of F ixed Bugs

No. of Found Bugs
, for project i in month m.

4To simply the following discussion, this study employs the term “project-month” to denote a given
month in a project.
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The Bug Fix Rate is one of the key metrics related to the defect removal process [48, 176]. In

fact, it partially represents the effectiveness of the quality assurance process by characterizing

the birth (finding a new bug) to death (fixing a bug) process of defect removal [100]. If

BFRim < 1, it indicates that the project’s quality risk is accumulating.

Identifying Elite Developers

Following the method used in Hanisch et al.’s study [71], I leverage GitHub’s repository

permission mechanism to identify elite developers. Attaining the status of elite developer

in a project means that a developer has obtained the write permission for an organization’s

repository. By gaining this level of permission, the developer can perform many tasks on a

repository without requesting, for example: directly pushing commits to a repository; creat-

ing and editing releases; and merging pull requests. In addition, with the write permission

of the repository, the developer can perform several types of administrative work and orga-

nizational tasks, such as submitting code reviews that affect a pull request’s mergeability,

applying labels to tasks and milestones to the repository, and marking an issue as a duplicate,

which loses the issue’s public attention.

Since GitHub does not allow anyone other than the repository owners to access the list of

members obtaining specific permissions, this study applies a permissions check mechanism

to determine the elites: when a developer in the repository performs a task that requires

the write permission, we tag this developer with “elite-ship” of the repository. According to

observation on this data set, I also found that some projects’ elite developers might also suffer

a survival issue [102], thus this study sets a 90-day5 as the length of the “elite-ship”, and use

this time-window to filter developers who were inactive. During this three-month period, if

5Literature on survival analysis of open source developer usually use 30 days or 90 days as a time window
[102]. When we examined the raw data, we found that 30 days are too short, while 90 days are a moderate
time interval to avoid rushing a decisions on determining whether someone had gained or lost the elite
identity.
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this developer performs any task that also requires write permission, her “elite-ship” would

be renewed for another three months, starting from the month when she performed the task.

Compared with other elite-developer-identification methods based on metrics or networks

[81], this method has several advantages. First, this method takes a dynamic view of the

elite developer status in the open source community where developers have very high mo-

bility in terms of entering and leaving6. Secondly, this method reflects the socialization

process of gaining power and status in a community [49]. Thirdly, this method respects the

fact that some developers may be nominated as elite developers before making substantial

contributions, particularly in recent company-sponsored projects [169]. Lastly, this method

avoids dealing with the marginal cases resulting from the intentionally set threshold, e.g.,

an 1
3
cut-off [40].

Data Analysis

Table 2.2 presents the mapping between RQs and corresponding main data-analysis meth-

ods. This sub-section will introduce them in detail.

Table 2.2: Research questions and corresponding data analysis methods for project study.

RQs Data Analysis Methods

RQ2.1 Descriptive statistics
RQ2.2 Descriptive statistics, one-way ANOVA
RQ2.3 Project-specific fixed effects Panel Regressions

(LSDV estimator with Diagnostics)

For RQ2.1 and RQ2.2, we only need to apply simple statistical methods to answer them.

Answering RQ2.3 requires establishing correlations between effort allocations and project

outcomes. This study applies panel regressions, which is a type of econometric technique, to

build linear models. Because our data is panel data in its nature: cross-sectional (multiple

6For company-sponsored projects, the mobility may also result from organizational and individual career
changes.

32



projects), longitudinal (multiple time window for a specific project), ordinary multivariate

regressions such as OLS can not deal with such type of data [183]. Moreover, panel re-

gressions provide another benefit. They already deal with commercial, social, and technical

confounding factors implicitly and inherently. For example, project-specific factors (e.g.,

project domain, etc.) are treated as unobserved time-invariant in regressions. Therefore, the

independent variables’ effects could be precisely estimated without worrying about potential

interactions and selective biases7 with many confounding factors when we do not aim for

causality (see Wooldridge [183]: Chapter 7, pp. 256; Chapter 14).

All statistical analyses in this dissertation are performed with R 3.4.1 [129], and its associ-

ated packages for macOS High Sierra (version 10.13.1). We follow the ASA’s principles to

present and interpret statistical significance [175].

Answering RQ2.1 does not require complicated analysis techniques. We use descriptive

statistics to derive results and findings for this research question. Note that we code the

raw GitHub activities into four broad activity categories (communicative, organizational,

supportive, and typical) according to [150] (described in Section 2.1.1). Doing so helps us to

derive meaningful insights instead of fragile, overly detailed information in the raw activities.

For all sampled projects, we calculate the total of elite developers’ activities over the four

broad categories. Thus, we have a 4-tuple for each project as follows:

< Com,Org, Sup, Typ >

We also compute the percentage of elite developers’ activities over the entire project’s activ-

ities.

To answer RQ2.2, we first group the activities according to the month of their occurrences.

7When there are many commercial, social, and technical confounding factors that cannot be enumerated
in statistic analyses, selecting a subset of them would result in selective biases.
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Then, similarly, for a project i in each month m, we can calculate a similar 4-tuple:

< Comim, Orgim, Supim, T ypim >

where i ∈ {1, ..., i, ..., 20}, and m ∈ {1, ...,m, ..., 36}.

Since the different projects have different numbers of elite developers, cross-project compar-

isons require us to average the project-level data to the individual level. We simply calculate

the average activities per developer over the four categories. Then, we can calculate the in-

dividualized monthly growth rates of activities in each category for each project. Given that

there are 20 projects, for each category we have 20 growth rates. We use one-way ANOVA

to see if there is any difference across the four categories regarding the growth rates.

Answering RQ2.1 and RQ2.2 provides the data we need to answer RQ2.3. Before discussing

the analysis methods, we first examine the data. We want to investigate the correlations

between a project’s elite developers’ effort distributions and project outcomes. The inde-

pendent variables are the effort distributions over the four categories of activities, which can

be easily extracted from the collected data. The dependent variables are four indicators of

project outcomes (productivity: NewCim, BCTim; quality: NewBim, BFRim), which are

adapted from the prior software engineering literature. Given that we have broken a project’s

data into months when answering RQ2.2 and using “month” as the analysis unit, we have

one data case for each project i at each month m. Therefore, we have 720 (20 projects × 36

months) data cases, in total. Each data case is in the following form:

< NewCim, BCTim, NewBim, BFRim, S comim, S orgim, S supim, S typim >

where i ∈ {1, ..., i, ..., 20}, and m ∈ {1, ...,m, ..., 36}.

The S − Comim represents the share of communicative activities in all four categories of
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activities per elite developer for project i in month m. Similar denotations apply to the

other three. Note that,

S comim + S orgim + S supim + S typim = 1 (2.1)

Answering RQ2.3 is identifying the relationships between these four independent variables

and four dependent variables NewCim, BugCim, NewBim, and BFRim. A natural solution

is performing regression analysis. Our data is panel data (cross-sectional: from 20 projects;

longitudinal: 36 months per project). Thus, simple OLS multivariate linear regression is not

a proper technique because we cannot assume there is no difference among the 20 projects

and 36 data points.

As we mentioned before, to correctly identify the relationships, we employ panel regression

methods to deal with the panel data [183]. Intuitively, each project has its own characteris-

tics, so this study uses the project-specific fixed effects models.

NewCim = β1 × S comim + β2 × S orgim + β3 × S supim + αi + uit (2.2)

BCTim = β1 × S comim + β2 × S orgim + β3 × S supim + αi + uit (2.3)

NewBim = β1 × S comim + β2 × S orgim + β3 × S supim + αi + uit (2.4)

BFRim = β1 × S comim + β2 × S orgim + β3 × S supim + αi + uit (2.5)

Note that they do not include S typim into Regression Equations (2.2)–(2.5). The reason is

straightforward: the sum of S typim and the other three is always “1” according to Eq. 2.1.

Thus, it is perfectly correlated with the other three. Including it will lead to a significant

multicollinearity problem.
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Figure 2.4: Elite developers’ effort allocations in each category.

For each dependent variable, the least-squares dummy variables (LSDV) estimate the pa-

rameters in the project-specific fixed effects models. After finishing the model estimation, I

perform a series of regression diagnostics for examining the time-specific effects and empiri-

cally justifying the use of fixed effects models. These regression diagnostics include time-fixed

effects testing, F-test (pFtest), Hausman Test (pHtest), Heteroskedasticity testing, and so

on. Given that our sampled projects consist of 11 company-sponsored projects and 9 non-

company-sponsored ones, it is natural to investigate if effort distributions’ impacts on project

outcomes are sensitive to these project characteristics. Therefore, we perform the same re-

gression analyses for the two sub-samples. The results are reported accordingly. All the

panel regressions, if not otherwise stated, are performed with R’s plm package [35].

2.1.2 Results and Findings

This section reports the results and findings on three RQs respectively.
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Elite Developers’ Activities in Standalone Projects

Table 2.3: Descriptive statistics on activity amount for each sampled project.

Project
Com. Org. Sup. Typ.

Total Elite% Total Elite% Total Elite% Total Elite%

Aframe 4908 0.46 455 0.99 19400 0.85 5180 0.72
Alamofire 5967 0.18 1773 1.00 11906 0.61 1465 0.62
Exoplayer 9293 0.32 2293 1.00 22197 0.71 5361 0.87
finagle 2488 0.30 46 0.93 2947 0.46 2753 0.49
fresco 5283 0.29 290 1.00 10481 0.64 1923 0.77
guava 3161 0.29 664 0.99 7724 0.71 2239 0.53
immutable-js 2909 0.15 28 0.75 5869 0.59 1057 0.52
jest 19073 0.36 1025 0.99 39995 0.66 5015 0.43
marko 1937 0.38 403 0.95 5525 0.79 2956 0.93
Moya 5376 0.43 416 0.61 22808 0.42 2860 0.73
nightmare 3105 0.14 24 1.00 4963 0.48 892 0.50
rclone 7475 0.23 182 1.00 15243 0.66 2781 0.80
react 35086 0.37 3730 1.00 83036 0.74 9640 0.59
recharts 3199 0.15 54 0.85 4980 0.41 1396 0.66
splitebrowser 6129 0.42 493 1.00 11589 0.70 1751 0.84
stf 1694 0.33 25 0.64 2672 0.55 837 0.69
tensorflow 97940 0.48 28236 0.92 183485 0.75 43029 0.50
tesseract 4870 0.35 116 1.00 9805 0.59 2512 0.55
tidb 16240 0.80 1944 0.98 45451 0.91 8305 0.89
ZeroNet 2853 0.27 120 1.00 4881 0.56 2650 0.79

Mean 11949.30 0.34 2115.85 0.93 25747.85 0.64 5230.10 0.67

Table 2.3 provides the basic descriptive statistics of the activities in each project according

to their categories. Except for the communicative activities, elite developers perform over

50% of the activities for those in all three of the remaining categories. For each project, our

results have confirmed the finding from other studies on the core or elite developers of open

source communities, e.g., [49, 119, 170], and elite developers in the community contributed

most of the source-code submission. In our sample, 67 percent of typical development tasks

are performed by a project’s elite developers.

In addition to elites’ code submissions, we also found empirical evidence that elite developers

are also responsible for most other types of events. Besides organizational events (according

to our definitions, most organizational events automatically require the write permission),

elite developers perform over 60% of supportive activities and even created 34% of commu-

nicative activities. See Figure 2.4 for the percentage distribution of elites’ contributions,

where error stands for standard errors of the mean (SEMs).
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Moreover, the average numbers of activities performed by an elite developer in a project-

month are much higher in all categories when compared to a non-elite developer (see Fig.

2.5). There are orders of magnitude differences between them. On average, an elite developer

performs 7 times more communication activities, 145 times more organizational activities,

22 times more supportive activities, and 22 times more typical activities than a non-elite

developer per month. Thus, on an individual basis, we argue that elite developers may have

major impacts on projects based on their activity amount.
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Figure 2.5: Comparison of an individual elite and non-elite developer’s average activity
amount during a project-month.

Based on the events in each category, we can answer RQ1 as follows:

On GitHub, elite developers have contributed to the project in various ways in ad-

dition to performing over 60% of the code contributions. They need to manage the

community by delegating tasks to other developers with special expertise, managing

parallel development among contributors, creating documentation for the project, and

also participating in discussions with teammates, external developers, and peripheral

users.
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The Evolution of Elite Developers’ Activities

Individual Activities of Elite: There are increasing trends in communicative, support-

ive, and organizational events for each elite developer group in our sample. Take the most

complex project in the project sample, Tensorflow, as an example. The red lines in Figure

2.6 describe the changes in the average activities of this project’s elite developers. Though

supportive events change dramatically because of the period of software patches and releases,

it still exhibits a growing pattern in the long run. The increase of organizational events may

be due to the scale increase of the team (the number of active elite developers has increased

from 29 to 270 for Tensorflow). However, we found the amounts of typical technical activ-

ities by elite developers (on average) are stable after the initial project release phase, even

for fast-growing projects such as Tensorflow.

In contrast, such increasing trends do not exist for the non-elite. For example, the blue lines

in Figure 2.6 represent average activities’ changing trends for Tensorflow’s non-elite devel-

opers. It is easy to find some decreasing trends on communicative and supportive activities,

which display opposite trends compared to the elite developers’ averages. Additionally, the

trend of non-elite developers’ typical technical activities is similar (stable after the initial

bursts). However, their initial bursts happened after the elites. This study excludes the

changes in non-elite developers’ organizational activities since the non-elite do not have the

privileges to perform nearly any of the activities in this category.

To verify whether this effort distribution shifts of elite developers are common in our sampled

projects, we may test the differences in growth rates of activity categories as the next research

question purposed.

Comparing growth rates of the four types of activities: As mentioned in Section

2.1.1, the average monthly growth rates of activities per elite developer can be calculated
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Figure 2.6: Trends of individual developer’s activities in the four activity categories of
Tensorflow.

over the communicative, supportive, and typical activities8 for each project. Thus, we have

20 growth rates for these three categories of activities. We then perform the one-way ANOVA

to test if there is any difference in growth rates.

The results shows significant differences (F(2,57) = 8.452, p < 0.001). The post hoc analyses

were performed by Tukey’s HSD test to identify the differences between the three categories.

The results indicate the growth rates of typical activities are significantly lower than the

growth rates of the other two (Typical vs. Communicative: p = 0.002, Typical vs. Sup-

8For organizational activities, many months do not record such a type of activities, especially in less
popular projects. This prohibits us from calculating the growth rate.
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portive: p = 0.002). Moreover, elite developers’ typical activities even decrease over time

(average growth rate = −1.63%). Though this number seems relatively small, it actually

means an elite developer only performs half of the technical work they used to 36 months

ago. Meanwhile, their communicative and supportive work doubled in the same period.

This study does not perform the same ANOVA procedures on the non-elite data for cross-

group comparisons (i.e., elite vs. non-elite) due to practical constraints. In many months, the

non-elite activity counts are 0. Thus, calculating growth rates would lead to many “division

by zero” problems. However, qualitatively, we could not observe any significant increases in

the three types of non-technical activities over time, while the numbers of non-elites technical

activities in each project-month do increase over time.

Based on the result of the one-way ANOVA test and Tukey’s HSD test, we can answer RQ2.2

as follows:

With the progress of the project, an elite developer tends to put more effort into com-

municative and supportive activities, while significantly reducing her involvement in

typical development activities.

Elite Developers’ Activity Impact on Project Outcomes

Findings of RQ2.3 can be presented with a series of regression models (Table 2.4 and 2.5)

characterizing relationships between the shares of activities in the three categories and the

product productivity and quality indicators. These models are developed using the econo-

metrics techniques discussed in Section 2.1.1. This study also performs regression diagnostics

to empirically examine the justification of using fixed effects models in model development.

For all 12 models, fixed effects models are better choices than pooled OLS and random

models.
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Regression results of project productivity: Table 2.4 summarizes the results of the

regression models for the two project productivity indicators: the number of new commits

of project i in month m (NewCim), and the average bug cycle time of project i in month

m (BCTim). Models P1 and P2 use the data of all 20 sampled projects, thus representing

whole-sample regression results. Models P3 and P4 use the data of 9 non-company-sponsored

projects, while models P5 and P6 use the data of 11 company-sponsored projects. Thus,

models P3–P6 represent sub-sample regression results. Below we describe what these models

indicate.

Project productivity—whole sample regression results: In Model P1, two indepen-

dent variables (S comim, S supim) are significant; and both have negative regression coeffi-

cients (−155.96, −138.21). This implies negative correlations between the effort of elite

developers in communicative and supportive activities and the number of new commits in

each project-month. A possible interpretation of the results is that when elite developers

invest more effort into non-technical activities, such as communicative and supportive ones,

they might leave less time to continue their contribution to the code base; thus, the project

may have fewer new commits, i.e., productivity loss.

In Model P2, for which the dependent variable is BCTim, two independent variables (S orgim,

S supim) are significant. S orgim has a negative regression coefficient (−148.61), while

S supim has a positive coefficient (473.60). First, there are negative correlations be-

tween elite developers’ efforts in organizational activities and average bug cycle time in each

project-month, and positive correlations between elite developers’ efforts in supportive

activities and average bug cycle time in each project-month. Second, given that the activi-

ties of managing bug fixes and code reviews are in the “organizational” category (see Figure

2.2), more elite efforts in this category might help to shorten the bug cycle time. Third,

similar to the results and interpretation for Model P1, performing more supportive activities

may occupy elite developers’ time on fixing bugs and thus lead to longer bug cycle time
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(productivity loss). Since S supim’s effect is much stronger than S orgim’s and its shares are

often much more than S orgim’s (Avg.: 0.61 vs. 0.03), we could expect an overall effect of

longer bug cycle time, i.e., productivity loss.

Project productivity—sub-sample regression results: The regression results in Mod-

els P3-P6 are similar to those in Models P1 and P2 with some minor differences. Let us first

have a look at the regression models based on non-company-sponsor projects’ data (Models

P3 and P4). In Model P3, S orgim becomes a significant variable, indicating that performing

more organizational activities is also negatively correlated with the number of new commits

in each project-month (productivity loss). In Model P4, the correlations between efforts on

each category and the average bug cycle time in each project-month (BCTim) are the same.

For the regression models based on company-sponsor projects’ data (Models P5 and P6),

correlations in Model P5 are as same as those in Model P1. However, in Model P6, S orgim

is no longer significant. A possible explanation may be that: company-sponsored projects

often have established routine bug-fixing processes, and hence elite developers’ mediation in

this process is not as important.

In addition, the adjusted R2s of Models P5 and P6 are higher than Models P3 and P4.

Particularly, Model P5’s is over 20% higher than Model P3’s. These differences indicate that

models built around the elite developers’ activities explain larger proportions of variances of

the data from company-sponsored projects than that of the data from non-company-sponsor

projects.

Regression results of project quality: Table 2.5 summarizes the results of the regression

models for the two project productivity indicators: the number of new bugs of project i in

month m (NewCim), and the big fixed rate of project i in month m (BFRim). Similarly,

Models Q1 and Q2 use the data of all 20 sampled projects, thus representing whole-sample

regression results. Models Q3 and Q4 use the data of 9 non-company-sponsored projects,

while models Q5 and Q6 use the data of 11 company-sponsored projects. Thus, models
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Q3-Q6 represent sub-sample regression results.

Project quality—whole sample regression results: In Model Q1, the quality indicator

is NewCim. There are two significant independent variables (S orgim, S supim); both have

positive regression coefficients (50.13, 18.31). This indicates positive correlations between the

effort elite developers dedicate to organizational and supportive activities and the number of

new bugs found in each project-month. The interpretation of the results shall be similar to

the above. We suspect that as the community grows, doing non-technical work for supporting

other community developers and users may make the elite spend less time working on code.

Meanwhile, the project may receive a large number of suggested changes and patches from

non-elite developers, but their code may contain more bugs, i.e., quality loss.

In Model Q2, the quality indicator is BFRim. Two independent variables are significant

(S comim, S supim). S comim’s coefficient is negative, signifying negative correlations be-

tween the effort elite developers put into communicative activities and each month’s bug fix

rate. Meanwhile, S supim’s coefficient is positive, indicating positive correlations between

the elite’s efforts in supportive activities and each month’s bug fix rate. Interpreting such cor-

relations may be a bit tricky. For the negative correlations between S comim and BFRim, we

can interpret them in a way similar to the previous ones. The positive correlations between

S supim and BFRim may suggest that: by putting more efforts into supportive activities,

elite developers help to make the defect removal process more effective.

Since S comim’s share are only about a quarter of S supim’s (Avg.: 0.16 vs. 0.61) and its

negative coefficient is just twice of S supim’s (-2.24 vs. 1.12), we could expect an overall on

average effect of higher bug fix rate (quality gain).

Project quality—sub-sample regression results: Again, the whole-sample data set

was split into two sub-sample data sets according to whether a project is sponsored by a

commercial company, and then developed regression models respectively. Models Q3 and
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Figure 2.7: Changes of time-related effects in the regression models.
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Q4 are based on non-company-sponsored projects’ data. In Model Q3, only S supim is

significant. Efforts on organizational activities are not negatively correlated with the number

of new bugs in each project-month. Model Q4 is similar to Model Q2. In general, the effects

in Models Q5 and Q6 are quite similar to those in Models Q1 and Q2.

Time-related effects: To further explore the time-related effects, we perform time-fixed

effects testing for the four whole-sample models (Models P1, P2 in Table 2.4; and Models

Q1, Q2 in Table 2.5).

For Model P1, where the number of new commits in each project-month is the dependent

variable, the time-fixed effects model is significant (F (38, 662) = 1.59, p = 0.02). However,

the effects are less significant (adjusted R2 = 0.01). Further examination of the time-fixed

effects shows that the time-related effects are positive and exhibit an increasing trend (Fig.

2.7(a)). This indicates that the number of new commits is less associated with elite developer

activities in the later phases of the project. However, for Model P2, where the bug cycle

time in each project-month is the dependent variable, the time-fixed effects model is not

significant (F (38, 662) = 1.80, p < 0.01). The effects are very small (adjusted R2 = 0.01).

The time-related effects do not have significant patterns (Figure 2.7(b)).

For Model Q1, where the number of new bugs in each project-month is the dependent

variable, the time-fixed effects model is significant (F (38, 662) = 3.29, p < 0.001). The

results are similar to the first one (Fig. 2.7(a)). The time-related effects are positive and

increasing in general (Fig. 2.7(c)), indicating the impact of elite developers’ activities on

the number of the new bugs reported is shrinking over time. For Model P2, where the bug

fix rate in each project-month is the dependent variable, the time-fixed effects model is not

significant (F (38, 662) = 1.07, p = 0.36). No meaningful effect could be detected (adjusted

R2 = 0.00). The time-related effects may be irrelevant to this quality indicator (Fig. 2.7(d)).

The above analyses reveal that, although the time-related effects are significant, the project-
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specific fixed effects models are much stronger than the time-related effects for all dependent

variables.

Based on the above results, we can answer RQ2.3 as follows:
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Elite developers’ effort distributions have significant correlations with project out-

comes.

1. Project Productivity: (a) Efforts on communicative and supportive activities

are negatively correlated with the project productivity in terms of the number

of new commits in each project-month (productivity loss); (b) Efforts on organi-

zational activities are positively correlated with project productivity in terms of

the average bug cycle time in each project-month; however, efforts on supportive

activities have much stronger negative effects. The overall effects are negative

(productivity loss).

2. Project Quality: (a) Efforts on organizational and supportive activities are

positively correlated with the number of newly-found bugs in each project-month

(quality loss); (b) Efforts on communicative activities are negatively correlated

with the bug fix rate in each project-month; however, efforts on supportive ac-

tivities have positive effects. Combining them together, the overall effects are

likely to be positive (quality gain).

3. Except for the bug fix rate, time effect analyses show that the impacts ex-

hibit some decreasing trends with the progress of the project, which may result

from the increasing proportion of non-elite developers’ contributions in the latter

stages of the project.

4. In general, compared with the company-sponsored projects, effort distribu-

tion correlations with project outcomes are less significant for non-company-

sponsored projects.
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2.2 Elite Developers in OSS Ecosystems

Though the first empirical study investigates how elite developers act and impact several

standalone OSS projects, more OSS projects succeed as a part of multiple interrelated

projects in an ecosystem [60]. An OSS ecosystem refers to a collection of OSS projects

that are designed, developed, and evolved in a common platform [22, 106]. For example,

the Hadoop ecosystem consists of over 100 projects [95]. The ecosystem model blurs the

traditional boundaries between development entities by providing a framework that enables

different actors, e.g., commercial stakeholders, voluntary contributors, and end-users, to

work interdependently [72, 78, 109]. We have witnessed many successes of OSS ecosystems,

to name a few, Android, Hadoop, Node.js, R, etc., which have received much attention from

academia and industry; research into it started flourishing since the mid-2000s [109].

An OSS ecosystem is indeed a socio-technical system where humans, technologies, and arti-

facts interact consistently to produce complex social dynamics [73, 140]. Social ecology the-

orists often argue that while members’ activities shape the many aspects (e.g., cultures and

outcomes) of the ecosystem they belong to, the ecosystem also influences and (re)constructs

its members’ behaviors [54, 153, 154]. For instance, how they allocate their efforts between

technical and non-technical activities [44]. Such ecosystem-specific activity patterns would

in turn influence projects’ outcomes.

However, individual-level activities within and across OSS ecosystems have not yet been well

investigated. Even for a few studies considering developers’ perceptions and behaviors in an

ecosystem [134], their inquiries are still centralized on the perceptions and behaviors triggered

by changes of artifacts (e.g., source code) but neglect various activities beyond technical

contributions. Understanding individual-level activities in a full spectrum of contributions

and their relationships with project outcomes have particular importance in open source

development [9], particularly at the ecosystem level. Such understanding would inform
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the design of effective and efficient work practices, management mechanisms, and tools to

improve the overall performance of OSS projects and the ecosystems they belong to [9, 61,

145].

Among all contributors, some privileged developers have been consistently recognized as

the most important project personnel in SE literature due to their significant contribu-

tions [37, 39, 119]. The study in the prior section conceptualizes a group as “elite developers”

who hold project management privileges and extensive access to the artifact repository and

investigate the relationships between their activities and project outcomes. Further, here I

extend its standalone project angle by considering the practice within OSS ecosystems. Using

developers’ ecosystem-wide activity data, the current study seeks to develop an empirical un-

derstanding of their various contributing activities and the impacts of their effort allocations

over these activities on technical outcomes, with a particular emphasis on cross-ecosystem

similarities and differences. Thus, we ask the following two research questions:

RQ2.4 Are there any differences regarding the elite developers’ activity profiles across the

five targeted OSS ecosystems? If so, what are they?

RQ2.5 What are the relationships between elite developers’ effort allocations on different

activities and project outcomes in the five target OSS ecosystems (productivity and quality)?

Are there any differences regarding such relationships?

To answer the above research questions, this study selected five open source ecosystems

(Amazon AWS, Eclipse, npm/Node.js, Firefox Add-ons, and Python Data Science). Each

ecosystem has a unique position on the spectrum of software systems. This study samples a

number of software development projects in each ecosystem and then compiles a data set of

65 projects hosted on GitHub that contains all detailed atomic activity data from January

2016 to December 2018. Based on prior studies [150, 172], we classify these fine-grained

raw activities into four categories: communicative, organizational, supportive, and typical.
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This study empirically characterizes and compares elite developers’ activity profiles across

sampled ecosystems. By re-building a series of econometric models, I further explore the

relationships between elite developers’ effort allocations and project outcomes in these five

ecosystems. The study results describe such relationships and reveal that these relationships

vary across ecosystems in terms of effect and strength.

2.2.1 Empirical Study Design on Major OSS Ecosystems

This study extends the prior study and also reuses its methodology including the event-

category mapping, and productivity and quality proxies. This section briefly introduces the

entire research method and explains the target ecosystem selection and project sampling

process.

Target Ecosystems and Projects

This study selects five major OSS ecosystems that have been widely studied in the software

engineering literature as the targets of the study [7, 107, 127, 160]. They are Amazon AWS,

Eclipse, npm/Node.js, Firefox Add-ons, and Python Data Science. These ecosystems and

projects were selected for the following two considerations.

First, this study targets ecosystems representing a wide range of domains of software systems

because prior literature suggests that investigating software development practices across do-

mains should improve our understanding of the board spectrum of OSS development [167].

Thus, the selected five ecosystems intend to satisfy this requirement: Amazon AWS rep-

resents systems for cloud computing infrastructures. Eclipse is a collection of productivity

tools for software developers. Firefox Add-ons represent the increasingly popular trend of

customizing browsers. npm/Node.js aims to build scalable, dynamic network applications. It

53



Table 2.6: List of sampled OSS ecosystems and projects.

Ecosystem Description No. Projects

Amazon
AWS

A framework provides cloud
computing abstraction, in-
frastructure, and tools.

17 amazon-ecs-agent, amazon-ecs-cli, aws-cli, aws-fpga, aws-lambda-
dotnet, aws-parallelcluster, aws-sdk-cpp, aws-sdk-go, aws-sdk-java,
aws-sdk-java-v2, aws-sdk-js, aws-sdk-net, aws-sdk-php, aws-sdk-ruby,
chalice, sagemaker-python-sdk

Eclipse An IDE supporting multiple
programming languages and
plugins.

14 californium, che, buildship, eclipse-collections, eclipse.jdt.ls, golo-
lang, jetty.project, mosquitto, omr, paho.mqtt.c, paho.mqtt.golang,
paho.mqtt.java, paho.mqtt.javascript, paho.mqtt.python

Firefox
Add-ons

A collection of Firefox add-
ons and components.

8 activity-stream, addons-frontend, addons-linter, fxa, geckodriver,
multi-account-containers, normandy, python mozetl

npm/Node A server-side JavaScript
framework and its package
manager.

12 docker-node, http-parser, llnode, marky-markdown, nan, node,
node-addon-api, node-chakracore, node-gyp, node-semver, node-tar,
readable-stream

Python
DataSci

A collection of data science
projects for Python.

14 bokeh, glow, keras, matplotlib, nltk, numpy, pandas, pytorch, scikit-
learn, scipy, statsmodels, text, sympy, vision, xgboost

popularizes the server-side JavaScript environment and brings a significant web development

paradigm shift in the last ten years. Firefox Add-ons and npm/Node.js projects are usually

lightweight and deployed in the form of source code. Python Data Science is a collection of

mainstream productivity tools for data scientists. Second, these ecosystems should have a

substantial amount of active software development and OSS projects hosting on GitHub. In

addition to enabling us to collect data conveniently, it helps to improve the study’s internal

validity of the study. Since all projects are using the same terminology when referring to

their members’ activities, the potential misinterpretations and mismatches of the activities

and events could be minimized.

This study samples a number of projects from each ecosystem through a purposive sampling

process [53]. These projects are selected based on project status, contribution model, and

data availability. First, selected projects must be active projects using the pull request model

to solicit contributions. Second, there must be a substantial amount of project activities from

2016 to 2018 for each sampled project. Therefore, we require all selected projects to have

at least 100 issues, 50 pull requests and 100 commits to ensuring that the project is active

during the sampled period. Third, in order to avoid misleading event data, we only include

software development repositories and exclude ones identified as experimental, web, academic
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or storage (classification by Kalliamvakou et al. [83]). Fourth, to ensure data consistency, we

exclude all projects using non-GitHub issue trackers. To verify the above requirements, we

manually examine every selected repository. Such criteria guarantee that we can retrieve a

sufficient amount of elite members’ activities for analysis in each repository. Finally, there are

65 projects in the sample after applying all the above criteria from the five chosen ecosystems

(See Table 2.6).

Data Collection and Preparation

Figure 2.8 presents the entire process of data collection and preparation. The process consists

of two major steps: first, collecting data from online databases and repositories; second, cod-

ing and modeling the data to compile the data sets for answering the two research questions

of this section.

This study’s data collection methods and its data cleaning and preparation procedure are

similar to the previous study on standalone projects. Therefore, please refer to the prior

Section 2.1.1 for details of data collection, event mapping, and pre-processing.

Data Analysis

Table 2.7 presents the mappings between the RQs of this study and corresponding analysis

methods. This section introduces them in detail.

Table 2.7: Research questions and corresponding data analysis methods for ecosystem study.

RQs Data Analysis Methods

RQ2.4 Descriptive statistics, one-way ANOVA
RQ2.5 Panel Regressions (Fixed effects or random ef-

fects to be determined empirically)

Analysis methods for RQ1. Answering RQ2.4 does not require complicated analysis,
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Figure 2.8: Data collection and preparation process.
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and is similar to RQ2.1 and RQ2.2. First, this study uses descriptive statistics to describe

elite developers’ activities over the four activity categories according to their ecosystems.

I also append information about the number of elite members every month in the scale of

an OSS ecosystem. Then we calculate the average number of activities performed by an

elite member in a project-month and its standard deviations on each category for every

ecosystem. For each ecosystem, this study presents also the total activities (performed by

both elite and non-elite) in each category and plots the proportions of elite developers’

activities. Finally, one-way ANOVA was conducted to test whether there were significant

differences between ecosystems regarding elite developers’ proportion of activities. When a

test’s result was significant, post hoc analysis was performed to investigate what contributed

to the differences.

Analysis Methods for RQ2.5. Answering RQ2.5 requires identifying relationships between

elite developers’ effort allocations and project outcomes. Our dataset of 6-tuples includes

measures of project outcomes and effort allocations. One of the most suitable choices is

building regression models where project outcomes are dependent variables, and effort allo-

cations are independent variables. However, note that the data set is unbalanced panel data

(cross-sectional: from 65 projects belonging to 5 ecosystems; longitudinal: 13-36 months).

Thus, to correctly identify the relationships, this study also uses panel regressions to model

the data [183]. As one of the advanced econometrics techniques, panel regression models and

isolates the effects from confounding factors implicitly and inherently, for instance, project-

specific factors (domain, etc.) are treated as unobserved time-invariant in regressions. Thus,

the three independent variables’ effects could be precisely estimated without worrying about

potential interactions and selective biases with these confounding factors [183].

Given that this study also intends to compare the differences across ecosystems, it builds

models for each ecosystem separately. Note that the sum of the four independent variables is

always “1” in each data case, therefore, this study only uses the first three of them (including
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P comim, P orgim, and P supim) to avoid multicollinearity in regression models. Moreover,

to avoid potential model misspecification, for each data sample, this study builds both

fixed and random effects models when estimating the correlations between elite developers’

activity profiles and project outcomes and then evaluates them empirically through model

diagnostics [138]. Therefore, this study built 24 models for 12 regression tasks (2 project

outcomes × 6 data samples [5 ecosystems + all ecosystems] = 12 regression tasks). Then,

after developing all models, we performed model diagnostics (Hausman specification test) to

empirically examine which type of models are better for each specific regression task. Section

2.2.2 only reports the better-fitting model for each task only (see Table 2.9).

2.2.2 Results and Findings

Elite Developers’ Activity Profiles in Five Ecosystems

Table 2.8 presents descriptive statistics for elite developers’ activities in the five ecosystems.

Column 4, Avg.Person-Month, lists the average number of actions an elite developer performs

in a month with standard deviations in Column 4. Among all ecosystems, the elite from the

Python Data Science ecosystem work a little bit “harder” than those from other ecosystems:

they perform more activities on average, particularly on the communicative (24.54) and sup-

portive (55.23) tasks. The elite from the Firefox Add-ons ecosystem tops on organizational

activities (4.83) while their peers from the Amazon AWS ecosystem are the champions in

typical activities (8.47).

Figure 2.9 displays the proportions that the elite’s activities account for (of all activities)

in the five ecosystems grouped by the activity types. This figure does not include the pro-

portions of organizational activities since most organizational activities required permissions

that non-elites do not have. The elites from the Firefox Add-ons ecosystem had the highest

proportions across all categories. The non-elites from this ecosystem are not quite active.
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Table 2.8: Descriptive statistics for elite developers’ activities.

Ecosystem Activity N Avg.Person-Month Std.(σ)

Amazon Com 19407 6.89 7.13
AWS Org 7164 1.85 2.71

Sup 50213 17.86 17.72
Typ 19561 8.47 11.49

Eclipse Com 46007 9.01 8.98
Org 23620 3.10 5.21
Sup 104428 20.91 24.55
Typ 21406 7.54 10.58

Firefox Com 32478 9.41 7.56
Add-ons Org 20100 4.83 6.12

Sup 101727 26.97 25.98
Typ 22318 7.85 6.84

npm/Node.js Com 157099 10.88 19.18
Org 6796 0.78 1.60
Sup 128804 12.28 17.88
Typ 15421 3.45 7.85

Python Com 160031 24.54 28.29
Data Science Org 24434 0.83 1.80

Sup 289178 55.23 91.61
Typ 53041 0.93 14.64

Since Figure 2.9 suggests there are some visible differences across different ecosystems, this

study further explores these differences using the one-way between-subjects ANOVA test.

Three ANOVA tests were performed for each type of activity. For each ecosystem, a list

of numbers represents the proportions of elite developers’ activities of all projects in this

ecosystem, one per project. Each test was based on the comparison of five lists of propor-

tions. Thus, an ANOVA test compares the effect of the ecosystem (Independent Variable)

on the elite’s proportion of activity for each ecosystem on one of the three types of activity

(Dependent Variable). All three ANOVA tests show significant effects of IV on DV at the

significant level of 0.05: (1) communicative activities, F4,60 = 5.22, p < 0.01; (2) supportive

activities, F4,60 = 3.21, p < 0.05; (3) typical activities, F4,60 = 5.22, p < 0.001.
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Figure 2.9: The proportions of elite developers’ activities.

Then post hoc comparisons were performed by using the Tukey HSD test to examine which

pairs contribute to the differences across ecosystems identified in the above ANOVA tests.

For communicative activities, the results suggested four pairs with significant differences,

which were: (Firefox Add-ons vs. Amazon AWS: ∆ = 0.30, p < 0.001), (Firefox Add-ons vs.

Eclipse: ∆ = 0.24, p < 0.05) (Firefox Add-ons vs. npm/Node.js, ∆ = 0.30, p < 0.01) and

(Firefox Add-ons vs. Python Data Science: ∆ = 0.24, p < 0.05). For supportive activities,

there is one pair with significant differences, which is (Firefox Add-ons vs. npm/Node.js:

∆ = 0.18, p < 0.01). For typical activities, there are four pairs with significant differences,

which are (Amazon AWS vs. npm/Node.js: ∆ = 0.22, p < 0.01), (Amazon AWS vs. Python

Data Science, ∆ = 0.24, p < 0.001), (Firefox Add-ons vs. npm/Node.js, ∆ = 0.27, p <

0.01), and (Firefox Add-ons vs. Python Data Science, ∆ = 0.29, p < 0.001).

Answers to RQ2.4. Based on the above discussions, RQ2.4 can be answered as follows:
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For all ecosystems, elite developers consistently perform substantial proportions of ac-

tivities in all three activity categories. However, there are significant differences across

ecosystems in each activity category. Particularly, the elites’ performance from the

Firefox Add-ons ecosystem accounts for higher proportions of activities than the elites

from other ecosystems on all types of activities, and Amazon AWS ’s elite developers’

proportion on typical activities are significantly higher than npm/Node.js ’ and Python

Data Science’s elite developers.

The Relationships between Effort Allocations and Project Outcomes

This section first summarizes multiple panel regression models assessing the relationships

between elite developers’ effort allocations and project outcomes. Then, it also highlights

the similarities and differences in the relationships across the sampled ecosystems.

Results by ecosystem. Table 2.9.a–e summarize panel regression models. Each of these

sub-tables corresponds to a targeted ecosystem. Presented models are selected by the Haus-

man specification test, and the letters “F” (Fixed Effects) and “R” (Random Effects) in the

parentheses next to model names indicate the type of models. The panel regression results

of the whole sample that contains data cases from all ecosystems attach at the end in Ta-

ble 2.9.f. For each model, result tables also append the coefficients (including std err.) of

independent variables, as well as model attributes Adj. R2, F with df . Last but not least,

these results employ Cohen’s f 2 as the indicator of the effect size: 0.02, 0.15, and 0.35 as the

thresholds of small, medium, and strong effects according to conventional effect levels [32].

For projects in the ecosystem of Amazon AWS, their elite developers’ efforts in communica-

tive (β = −120.56, p < 0.001) and supportive (β = −91.71, p < 0.001) activities signifi-

cantly predict the project productivity in terms of the number of new commits every month.

Its regression model (a.Model 1) explains that there is 18% of variance (Adj. R2 = 0.18,
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Table 2.9: Panel regression results.

(a) Amazon AWS
(Pro. = 17, Obs. = 515, T = 13–36)

Model 1 (R) Model 2 (R)
Commit (Cim) Bug (Bim)

Intercept 117.29*** 4.36***
(9.09) (1.09)

S comim −120.56*** −1.82
(14.17) (1.85)

S orgim −29.13 6.06*
(18.14) (2.37)

S supim −91.71*** 0.78
(10.15) (1.32)

Adjusted R2 0.18 0.02
Cohen’s f2 0.22 0.02
F 114.74*** 8.98*
df (3) (3)

(b) Eclipse
(Pro. = 14, Obs. = 460, T = 23–36)

Model 1 (F) Model 2 (R)
Commit (Cim) Bug (Bim)

Intercept −.− 2.57
(−.−) (9.36)

S comim −92.41*** −10.64
(18.37) (8.03)

S orgim −74.12 116.67***
(38.30) (16.71)

S supim −79.56*** 14.12
(17.77) (7.77)

Adjusted R2 0.03 0.13
Cohen’s f2 0.03 0.15
F 10.33*** 64.72***
df (3, 443) (3)

(c) npm/Node.js
(Pro. = 12, Obs. = 359, T = 21–36)

Model 1 (R) Model 2 (R)
Commit (Cim) Bug (Bim)

Intercept 140.37** 6.45
(47.73) (8.09)

S comim −102.60** 0.52
(27.63) (3.89)

S orgim 117.08 8.82
(66.96) (9.43)

S supim −83.80*** 2.41
(31.20) (4.39)

Adjusted R2 0.06 −0.01
Cohen’s f2 0.06 0.00
F 26.66*** 1.15
df (3) (3)

(d) Firefox Add-ons
(Pro. = 8, Obs. = 260, T = 21–36)

Model 1 (F) Model 2 (R)
Commit (Cim) Bug (Bim)

Intercept −.− −5.91
(−.−) (7.63)

S comim −40.45 2.57
(71.63) (12.49)

S orgim 143.31 24.92
(80.35) (14.64)

S supim −75.04 25.81**
(54.72) (9.11)

Adjusted R2 0.00 0.03
Cohen’s f2 0.00 0.03
F 2.94 10.98*
df (3, 249) (3)

(e) Python Data Sci.
(Pro. = 14, Obs. = 474, T = 24–36)

Model 1 (R) Model 2 (F)
Commit (Cim) Bug (Bim)

Intercept 416.817*** −.−
(58.70) (−.−)

S comim −288.35*** 23.91*
(66.46) (10.77)

S orgim −13.32 208.71***
(126.10) (20.40)

S supim −328.21*** 8.17
(59.94) (9.71)

Adjusted R2 0.06 0.18
Cohen’s f2 0.06 0.22
F 33.07*** 39.32***
df (3) (3, 457)

(f) All Ecosystems
(Pro. = 65, Obs. = 2068, T = 13–36)

Model 1 (R) Model 2 (F)
Commit (Cim) Bug (Bim)

Intercept 166.63*** −.−
(16.41) (−.−)

S comim −115.10*** 1.04
(13.99) (3.24)

S orgim 10.09 56.35***
(25.54) (5.90)

S supim −113.19*** 8.37**
(13.19) (3.05)

Adjusted R2 0.04 0.02
Cohen’s f2 0.04 0.02
F 95.96*** 33.47***
df (3) (3, 2000)

(F): Fixed effects model, (R): Random effects model; p < 0.05, **: p < 0.01, ***: p < 0.001
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F3 = 114.74, p < 0.001) with a medium effect (Cohen’s f 2 = 0.22). The regression coef-

ficients are both negative, which indicates that their project’s productivity has a negative

association with more effort into communicative and supportive activities by their elite de-

velopers. On the other hand, there are few significant predictive relationships between a

project’s quality and effort developers’ effort allocation. Only the efforts allocated to orga-

nizational activities are significant (β = 6.06, p < 0.05), and the model (a.Model 2) only

explains 2% of variances (Adj. R2 = 0.02, F3 = 8.98, p < 0.05) with a small (almost not

significant) effect (Cohen’s f 2 = 0.02). Hence, Amazon AWS’ project quality cannot be

significantly predicted by elite developers’ effort allocations.

For the second ecosystem—Eclipse, its elite developers’ efforts in communicative (β =

−92.41, p < 0.001) and supportive (β = −79.56, p < 0.001) activities can significantly

predict the project productivity. However, the effect size is at a small scale. The regression

model (b.Model 1) explains 3% of variance (Adj. R2 = 0.03, F3,443 = 10.33, p < 0.001),

with a small effect (Cohen’s f 2 = 0.03). Hence, Eclipse’s project productivity has a nega-

tive association with more efforts into communicative and supportive activities by their elite

members with a small effect size. Moreover, for their projects’ quality, the efforts in organi-

zational activities are significant (β = 6.06, p < 0.05), and the model (b.Model 2) explains

a substantial amount of variances (Adj. R2 = 0.13, F3 = 64.72, p < 0.001). The results

indicate that Eclipse projects’ quality has a negative association with their elite developers’

increasing effort into organizational activities. There is no significant predictive relationship

found with other types of activities.

In the third ecosystem—npm/Node.js, elite developers’ effort allocations show similar effects

on project productivity as the previous two. The increasing efforts in communicative (β =

−102.60, p < 0.01) and supportive (β = −83.80, p < 0.001) activities has a negative

correlation with project productivity. The regression model (c.Model 1) explains 6% of

variance (Adj. R2 = 0.06, F3 = 26.66, p < 0.001), with a small-level effect size (Cohen’s
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f 2 = 0.06). Nevertheless, in this ecosystem, there is no activity type that could significantly

predict its project quality. The project quality model even records a negative adjusted

R2. Therefore, there is no significant predictive relationship between the allocations of elite

developers’ activities and npm/Node.js’ project quality.

For the fourth ecosystem—Firefox Add-ons, its elite developers’ effort allocations do not have

a significant predictive relationship with the project productivity. None of its Independent

Variables shows significance, and the model’s adjusted R2 is 0 (d.Model 1). For project

quality, efforts in supportive activities show a significant correlation (β = 25.81, p < 0.01),

but its model (d.Model 2) only can explain 3% of variance (Adj. R2 = 0.06, F3 = 26.66,

p < 0.001) with a small level effect (Cohen’s f 2 = 0.03). Therefore, although efforts of

supportive activities from elite developers in Firefox Add-ons have negative associations

with their project quality, its effect size is at a small level.

Activity and effort trends of the last ecosystem—Python Data Science’s elite developers

significantly predicted both their project productivity and quality. For productivity, it is

similar to the other previous ecosystems: efforts in communicative (β = −288.358, p <

0.001) and supportive (β = −328.21, p < 0.001) activities significantly predicted project

productivity. Its model (e.Model 1) explains 6% of variance (Adj. R2 = 0.06, F3 = 33.07, p <

0.001) with a small level effect size (Cohen’s f 2 = 0.06). Given the negative coefficients, the

result suggests that the Python Data Science project’s productivity is negatively correlated

with elite developers’ efforts in communicative and supportive activities. In addition, their

efforts in communicative (β = 23.91, p < 0.05) and organizational (β = 208.71, p < 0.001)

activities significantly predict their project quality. The model (e.Model 2) can explain

18% of variance (Adj. R2 = 0.18, F3,457 = 39.32, p < 0.001) with medium effects (Cohen’s

f 2 = 0.22). Since these models’ coefficients are both positive, this ecosystem’s project quality

has negative associations with elite developers’ efforts in communicative and organizational

activities in Python Data Science.
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Figure 2.10: The pairwise similarities and differences between the relationships represented
by the regression models.

Finding Summary: Similarity and Difference

According to the above results, there exist mixed relationships between effort allocations

and project outcomes across target ecosystems. To clearly organize and summarize findings

in an easy-to-interpret manner, here defines similar effects for two ecosystems (A and B

with effect sizes of fA and fB) if (1) the significant Independent Variables are the same; (2)

the coefficients of the significant variables have the same plus or minus signs; and (3) the

differences of their models’ effective size are within the range of 0.02, i.e., |fA − fB| ≤ 0.02.

If (1) and (2) were satisfied but (3) was not, here further defines “similar effects but much

stronger” if the difference of effect size is greater than 0.06, i.e., |fA−fB| > 0.06; and “similar

effects but stronger” if 0.02 < |fA − fB| ≤ 0.06. The definitions of “similar effects but much

weaker” and “similar effects but weaker” are vice versa. If either (1) or (2) was not satisfied,

A and B’s relationships were “different effects”. Following these defined notions, figure 2.10

summarizes these results for improved readability. The figure’s top-right part describes the

project productivity; the bottom left is about the project quality. The comparisons are from

row to column.
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There are some patterns that can be found in Figure 2.10. First, the relationships are con-

sistent for project productivity especially the direction of the correlation, though they vary

in degrees of effect sizes. Second, these relationships are completely diverse and ecosystem-

specific for project quality. Third, elite developers’ effort allocations in Firefox-Addons could

not predict either project outcome indicator.

Answers to RQ2.5. Based on the above summary, RQ2.5 can be answered as follows:

Elite developers’ effort allocations can significantly predict project outcomes for most

of the targeted ecosystems. However, these relationships of project quality vary across

different ecosystems:

1. Project Productivity: Efforts in communicative and supportive activities are

generally negatively associated with the project productivity for all ecosystems

except Firefox Add-ons. However, there are differences regarding the strengths

of the effects.

2. Project Quality: The relationships are diverse. For Amazon AWS,

npm/Node.js, and Firefox Add-ons, the effects are minimal. For Eclipse and

Python Data Science, efforts in organizational activities significantly predict

project quality; efforts in communicative activities are significant for Python

Data Science but not for Eclipse.
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Chapter 3

Small-scale Automation for Software

Development

Open Source Software (OSS) projects are increasingly complex in scale, requiring practition-

ers’ efforts in many tedious housekeeping tasks. Often, practitioners leverage software agents

(aka bots) to automate their routine workflows and maintain their projects’ efficiency and

effectiveness. Relatedly, many OSS stakeholders, including practitioners and researchers,

have invested significant resources to improve state-of-the-art bot techniques, resulting in

numerous bots covering every aspect of modern software development practices, including

technical and social aspects. Given this advance in practice, I seek to empirically identify

how OSS projects adopt bot services from diverse selections. This empirical research ex-

amines bot applications in the most popular OSS repositories on GitHub and a follow-up

interviewing study describes how bots integrate into developers’ workflow.
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3.1 The Usage of SE Bots on GitHub

Nowadays, mainstream Open Source Software (OSS) development often involves a huge

base of contributors, users, and other stakeholders, which is afforded by various online social

coding platforms, e.g., GitHub [64]. At the same time, the fast ongoing penetration of the

CI/CD model poses urgent demands on rapid iterations. Facing the increasing pressures

from managing a large number of contributors and their contributions, and the ever-faster

pace in CI/CD, some small-scale automation techniques have found their way into OSS

projects’ engineering practices.

Software agents for Software Engineering (SE) tasks, i.e., devbots, SE bots, or just bots for

short, are precisely such automation techniques that have the potential to automate many

aspects in the process of building software. Various bots have been postulated for improving

developers’ workflow with better productivity and work-life balance [116]. Many of these

software agents and bots are able to automate repetitive and routine tasks, such as managing

Issues and Pull Requests, building, and executing test suites, and so on [103, 180]. Thus,

they could often substitute for human labor, and developers may focus on more innovative

and technical tasks. While these bots have saved substantial human efforts, they also have

exhibited substantial limitations, for instance, not being designed for smart tasks and lacking

interactivity or being disruptive during human-bot communication [51, 103].

Bots will inevitably be adopted by more OSS projects and also more closed-source commercial

projects in the foreseeable future. Since the continuous development of automated software

engineering and thanks to the continuous efforts of practitioners and researchers, the current

bot market offers a wide range of software engineering services for OSS maintainers to shop

around [97]. However, we know little about how practitioners select, adopt, and deploy these

bots, especially among the most popular and socially successful OSS repositories. Without

this stream of knowledge, we are not able to precisely identify the challenges of applying
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these bots, and ultimately optimize the workflow with bots. In this study, I start to bridge

the gap by empirically examining the bots adopted by popular OSS projects on GitHub,

the largest online social coding platform. The main research question that I intend to answer

is,

RQ3.1 What is the usage of small-scale automation, aka bot, in popular OSS development

repositories?

For this research question, I combined prior automated bot detection systems, validation

through manual identifications, and bot data extraction. The study described in this chap-

ter leverages an existing text-based method of automatic bot identification, which has been

proven effective with GitHub data. Moreover, the other two researchers and I created a

protocol for manually validating detection results, and identifying additional bots in OSS

repositories with a multi-tier identification process [15]. For all identified bots, we extracted

their information particularly on functionality, availability and deployment costs, etc. Ad-

ditionally, this chapter includes a compiled list of bots that have been used in these 1,000

popular projects.

Analyses of these bot services show a remarkable adoption rate (61%) among popular

GitHub OSS projects compared with prior studies [180]. However, the application sce-

narios of these bots are still limited: many of them are combinations of simple automation

features triggered by specific project events and perform designated tasks through a rule-

based mechanism. In addition, over 69% of bots remain private, without transparently

sharing their implementation, nor becoming accessible outside projects or the organizational

ecosystem.
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3.1.1 Bot Identification Study Design

This study extracted activity traces of bot accounts and apps from GitHub repositories and

identified the bots through existing automatic bot detection, and validate its results through

manual review. First, to accelerate the process of automatically identifying bot activities

from GitHub repositories, this study employs BoDeGHa, a machine learning classifier

using language patterns and features of comments to detect bot activities [65]. Second,

for data reliability, the other two researchers and I manually examined the automatically

classified bot services by creating and following a manual identification protocol and further

reviewed their activities. The overall research process can be described in Figure 3.1.

Sampled Repositories

The sampling process of target repositories is based on three considerations. The first con-

sideration is the number of GitHub star as an indicator of popularity and also associated

with stages of project evolution [21]. Sampling from most starred repositories further helps

to avoid many perils in mining repositories, e.g., projects that received minimal community

participation [83]. Second, similar reasoning as previous OSS studies in Chapter 2, I ensured

that the sample only includes software development projects using the Pull Request model,

which excluded repositories of storage, knowledge sharing, and other non-SE use. This con-

sideration also promises that the automatic classifier may process substantial bot activities

for identification. Finally, the sample size was set at 1,000, which is due to 1) a long tail

distribution of contributing activities across GitHub repositories, i.e., only a marginal pro-

portion of repositories is receiving active contributions; and 2) the cost of manual project

selection, and later bot identification and functionality reviews.

Based on the above considerations, the complete list of sample repositories is included at

https://tinyurl.com/33392bp3.
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Automatic Bot Identification Process

Mainly to identify machine-generated traces from countless social and technical activity

events in OSS repositories, I first applied a pre-trained machine learning (ML) classifier,

BoDeGHa, to shorten a list of suspicious event actors exerting machine behaviors [65].

This machine learning classifier mainly applies the main rationale that the comments of a

bot have fewer patterns and are more repetitive than humans since their responses are event-

triggered with pre-programmed rule-based designs. Therefore, the classifier’s model applies

language features such as text distance, text patterns, pattern inequalities, and the number

of comments. By applying this pre-trained classifier, I was able to select an initial list of bot

actors.

This classifier collected comment data and executed its classification in November 2021. To

automate the process, a set of Python scripts looped through all sampled repositories, and

they follow the default setting of this classifier by collecting 6 months of repository comments.

Its results were exported and stored in local cvs files.

Although this classifier provided an initial list of bots, there are some limitations while

examining the results. First, the classifier cannot handle comments from humans by using

other languages. Secondly, many bots cannot be found in repository comments alone. For

instance, several bots post an issue or pull request in the repository by reminding contributors

of security updates. Finally, prior research suggests that bot or machine-generated content

identification requires a multi-tier process to achieve optimal reliability [15].

Multi-Tier Manual Bot Identification Process

This study aims to provide improved bot identification results based on binary classifications

in social or social-technical platforms, and therefore, as prior research suggested, several types
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of supporting data are necessary for more accurate results [15, 85]. As recommended in these

studies, a bot can be more accurately identified through a multi-tier identification process,

typically including examining its “social network” of its following and follower relationships,

its comment and other generated text, account metadata, and activity patterns.

This study employs a three-tier identification based on GitHub data, including repository

comment text, account meta-data, and event patterns of its timeline activities. Particularly,

many bot-based event actors on GitHub do not have a “social” network as other social media

platforms, and moreover, the social network features in GitHub are not as significantly

changing user behaviors as they were on other social platforms. Furthermore, the chance

of a GitHub user who is a real human but not having any followers or following anyone,

is significantly higher than other social-native platforms, e.g., Twitter and Facebook, due

to GitHub’s technical nature [42]. Therefore, this study argues that social network is not

a reliable tier of data for bot identification, and applying this data tier would neglect the

characteristics of this social-technical platform. However, other generic data tiers still apply

for the context of GitHub.

The remainder of this section introduces how the above multi-tier classification gets oper-

ationalized and provides a protocol for replicating this process among our research team.

The other two researchers and I followed this protocol to validate automated results and

identify additional bots. Given a target repository, there are several features to manually

spot applications of bot services, including repository readme, Commit list, Issue list, Pull

Request list, and Release list, as bots usually provide services for these tasks.

The first screening overall is to examine the repository readmes under a target

repository root directory, including manually reviewing the content of readme.md and

contributing.md files. According to our observation, substantial well-maintained and pop-

ular repositories provide these statements of whether the repository has employed any bots

in their established workflow, for instance:
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...for this repository, the contributing.md file demonstrates that

a CLA bot would interact with the incoming Pull Requester to collect

signatures.

In this case, its contributors have clearly indicated that this repository employs a CLA bot

to solicit signatures from external contributions. Moreover, contributors often provide in-

formation about other bot applications such as Issue/Pull Request formatting, contribution

acknowledgment, and so on.

Since bots are triggered by certain repository events, checking the most critical OSS develop-

ment events and their repository event actors leads researchers to find bot services under this

mechanism. GitHub’s event timeline of Issue, Pull Request, Commit, and Release provides

researchers access to identify bot services. Without spending too much effort on historical

events, I focused on recent ones which also reflects whether the repository is running these

bot services now. Particularly for each type of event,

• Commit: Review the latest 20 Commits, and verify whether each Commit event actor,

including the commenter of each commit, is a bot service.

• Issue: Review the latest 10 open and 10 closed Issues in the Issue management system.

Verify if each Issue event actor and Issue commenter is a bot service.

• Pull Request: Review the latest 10 open and 10 closed Pull Requests in the Pull

Request management system. Verify if each Pull Request event actor and commenter

is a bot service.

From the above locations, when we found an event actor that was suspiciously repeating

activity patterns or demonstrated that the content was automatically generated, we applied
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this multi-tier identification by first reviewing its account metadata such as GitHub profile

or GitHub Marketplace/App listings, and examining its naming and description; second,

reviewing the content of this GitHub account’s recent comments and activities; finally,

for accounts that did not display their recent contributions, collected their activity records

through GitHub API.

Additionally, here are several extra indicators that help to confirm whether an event actor

is a bot:

• Being listed in GitHub Apps, Marketplace, and Actions.

• Having a bot tag next to the actor name.

• Having keywords in its description and name that indicates bots.

For instance, we can determine if there is a description claiming that this is a bot for

some repository, a demonstration of the comment or description is “automatically gener-

ated,” or bot account name keywords include bot, ci, cla, auto, logic, code, io,

and assist [65]. However, we were additionally careful to determine when found any other

human-like behaviors in its profile, such as following other accounts and displaying personal

email addresses.

Another researcher and I discussed and generated the above protocol for examining and

identifying bot services, and then tested this protocol on a random sub-sample of 100 reposi-

tories. This initial test achieved an inter-rater reliability of Cohen’s κ = 0.65, which suggests

a substantial agreement. Differences in identification were resolved during a discussion ses-

sion and led to an update of this protocol. Finally, three researchers followed the updated

protocol for identifying and labeling bots in the entire sample.

For each of the accounts that have been identified as a bot, we record the following content,

including:
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• Bot account name: the profile, app, or service names of the event actor

• Service Medium: whether the bot is found in GitHub (private) App or it has a

profile

• Availability: whether the bot service is available to the public or private organization,

free or commercialized.

• Functionality Notes: Notes about performed tasks of the bot, for example, the

committed code is for updating dependencies according to its commit message, the

issue closes due to staling for too long, the Pull Request is automatically generated to

merge code from the testing branch, and label the issue due to no one is investigating

(an untriaged label).

• URLs: important and related URLs to the account profile page or GitHub App.

• Open-sourced: whether there is any indication that the bot is transparently open-

sourced, from its profile and App page.

Several sets of bot accounts/actors provided the same service as one application or em-

ployed different actor names between various bot versions. For example, codecov-io and

codecov-commenter worked together for posting results and feedback about test cases execu-

tion; and dependabot-preview, dependabot, and dependabot-io are mainly the same bot

in different historical versions according to its documentation. To avoid repetitive counting,

we decided to merge these bot sets into one bot service.

3.1.2 The State-of-the-Art of SE Bots on GitHub

Among the 1,000 sampled repositories, BoDeGHa identified bot activities in 462 repositories.

Following the steps described in Section 3.1.1, this multi-tier manual identification process
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Figure 3.2: Frequency of bot function combinations and overall bot function frequency (in
sampled projects)

found additional repositories apply more bots, i.e., 613 sampled repositories have employed

201 distinctive bot services. Three of found bots were reported as deprecated or had stopped

services. Particularly, all results of this study are included in a data set of

• A list of popular software development repositories that have employed bots in the

CI/CD practice;

• Descriptions of bot accounts, apps, and services employed by these repositories.

According to this data set, this study has found a significant number (61%) of popular

repositories in this sample have applied bots in assisting their daily activities. In the following

sections, I will introduce the found bots’ functionalities, their combinations, and the most

popular bots in the sample.

Bot Function Categories and Combinations

In addition, based on our collected data on bot functionalities, there are six main categories

of bots’ functions that substantially overlapped with a prior study [180]. However, many

bots found in this study provide combinations of functions, and I will explain them later in

the section. Let us first look at the major function categories below.
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• CI Tasks Assistance: the service automates the various task for CI/CD, includ-

ing managing branches and releases (release-drafter, semantic-release-bot),

pushing commits and merging approved/passed pull requests (bors, lgtm-com, and

repo-ranger), and automating building, testing, and deployment (vercel, buildbot,

and bors).

• Issue and PR Management: the service automates the management of Issue and

Pull Request tracking systems, including labeling issues and pull requests, and cleaning

inactive/invalid ones (mary-poppins, carsonbot, support), and requesting or for-

matting issue and pull request content with checklists (issue-check, request-info,

vue-bot).

• Code Review Assistance: the services provide assistance in the code re-

view process, including performing static and dynamic analyses (sourcery-ai,

sourcelevel-bot, codecov), summarizing changeset and visualizing difference

(changeset-bot, ecma262-compare-bot, sizebot), and assigning code reviewer

(googlebot, pullapprove, vscode-triage-bot).

• Dependency and Security: the service periodically checks and ensures that the

repository’s dependency is update-to-date, and also detects and reports security issues

(dependabot, depfu, renovate).

• Developer and User Community Support: the service assists the manage-

ment of the community through collecting contributor license agreements (CLA),

acknowledging contributors (allcontributors), managing contributor permissions

(meeseeksdev), and auto-commenting for welcoming or feedback (MIRAI-bot,

welcome).

• Documentation Generation: the service assists generating end-user and developer

documentation (decdocs-bot, weekly-digest, rc-publisher).
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These application scenarios and functions of adopted bot services are similar to prior re-

search [156, 180], but we adopt a coarse-grained classification for the convenience of iden-

tifying multi-functioning bots (i.e., butler bots in this study). According to the list of

combinations (see the lower left corner in Figure 3.2), the most prevalent functions are au-

tomating CI tasks and community management, and the least occurring one is Issue and

PR management. Five bot services cannot be included in any of the above function cate-

gories. Combinations of functions are less prevalent according to the number of distinctive

bot services. The most prevalent combination is able to support CI and Code Review tasks

simultaneously.

Many bots have specialized in multiple tasks and become a butler for the repository, and

therefore the combinations of bot functions have a wide range of variety. For example,

repokitteh performs multiple tasks, including checking the format of the pull request,

automating tests on the pull request, assigning users to issue and labeling issues, and

also merging pull requests that passed the auto-tests. Some organizations even have cus-

tomized their private butler bot overseeing their CI/CD practices, e.g., Googlebot and

facebook-github-bot in Table 3.1. Due to repository customization, various bots emerged

with a unique combination of functionalities (see the upper corner in Figure 3.2).

SE Bot Services in Most Popular Repositories

In this section of findings, I list the most prevalent bot services based on appearance in the

number of projects in Table 3.1, and the most frequently appeared one is the dependabot

which periodically checks the dependence of the source codes for a repository, and issues a

Pull Request when the imported packages are out-of-date. Renovate, ranks at 6th in this

list, also provides the same set of services as dependabot. The second most appeared bot is

the stale bot, which set up timers for Issue and Pull Requests that are no longer active. It

reminds developers to take action with these open Issues or Pull Requests after a customized
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time. codecov (3rd), coveralls (9th), and vercel (10th) are all CI assistants. These

bots help to automate building, testing, and presenting the results of changes and tests.

Googlebot (4th) and facebook-github-bot (7th) are two ecosystem-specific bots, which

are meant to service like repository butlers based on the standards of their organizational

ecosystem. These two bots provide a range of assembled and customized functions. For

instance, Googlebot has more emphasis on triaging Pull Requests and Issues, while the

facebook-github-bot mainly focuses on CI tasks. Finally, CLAassistant (5th) is an open-

source-specific bot, which collects external contributors’ signatures on the contributor license

agreement of the repository.

There are a few common patterns for the above services. Noticeably, all these popular

services provide a native setup option with GitHub Apps, and may additionally provide

services through GitHub Actions except the facebook-github-bot only employing an au-

thorized account. Moreover, Pull Request comment is the main communication channel for

all popular bots, besides the Stale bot which is also specialized in Issues. Further, these

services provide a free installment option to the public, though two services (Googlebot and

facebook-github-bot) are only available to their organizational ecosystems.

3.1.3 Finding Summary

This study provided a list of repositories that have employed bot assistance in their CI/CD

practice, described their adopted bot services and identified the most popular bots among

these repositories. According to this bot identification study, bot services on GitHub pro-

vide a wide range of functionalities with distinct combinations according to their repository

focuses. Moreover, the most widely adopted bots are equipped with easy installation, assisted

Pull-Request-related tasks, and are customized in supporting their ecosystems.
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3.2 Bot-Assisted Workflows for Individual Practition-

ers

With the development of automation technologies, software production urged itself to also

keep up with the progression of automation. Many automation services have gradually

made up each aspect of the daily practice of software development, and with a unified goal

to enhance our productivity [59, 180]. For instance, these automation services help set up

CI/CD pipelines, enable bot-assisted workflows, and more recently, pair up with the AI

programming assistant in low-level source code production, etc [135]. These services have

significant impacts on improving software developers’ work-life balance and also enhancing

engineering productivity.

While each above domain exerts its unique importance in automating software engineering,

bots have become ubiquitous in practice and assisted various perspectives of our daily soft-

ware engineering tasks, including technical and non-technical ones. Moreover, my previous

studies described in Chapter 2 have demonstrated the substantial role of non-technical tasks

in developing software and maintaining OSS projects, and particularly how these tasks are

associated with productivity and other technical outcomes [172]. Therefore, it is necessary

for us to provide an in-depth view of how the latest SE bot assisted these dimensions of

software engineering activities, and further, we may utilize and improve the designs of these

SE bots.

Built upon other research and practice efforts in SE bots, this study particularly aims to

reveal a full picture of the current bot-assisted workflow according to the perceptions of

software developers themselves. Thus, we may understand practitioners’ experience of using

SE bots and expectations of bot development. As described in the previous section of this

chapter, bots have been widely employed in assisting OSS development, especially for most

socially successful and contribution-intense projects. While there are many bots deployed
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in practice and numerous other choices on the shelf, we know little about how developers

integrate these bots into their daily workflow and how they perceive the values that are

brought by these SE bots. Therefore, I intend to answer the following research questions

about their novel workflow with bot assistance,

RQ3.2: How do developers integrate bot services into their daily workflow of developing

software?

and further, identify current challenges and provide further guidance on bot development,

RQ3.3: What are the challenges and expectations of the current SE bot from the perspective

of expert developers?

To answer these two research questions, I employed a purposive sampling process to solicit

participants and conducted semi-structured interviews when collecting developer feedback.

Email invitations, flyers, or broadcast messages at organizations’ public channels were deliv-

ered to prospective participants respectively. According to their completion of intent forms,

a purposive sampling process based on repository popularity and bot deployment was ap-

plied when selecting participants from various repositories. Then developers’ feedback was

collected through a semi-structured interview process with 10 pre-defined questions under

three main question sections. I analyzed their feedback through an open coding procedure

by annotating raw interview transcripts and conducted thematic analyses to extract mean-

ingful and in-depth findings. This study was categorized as exempted according to UCI’s

IRB office.

The findings of this study suggest that software engineering (SE) bots have been immensely

helpful to elite developers in both technical and non-technical activities. Nevertheless, par-

ticipants reported that there is still room for improvement in terms of usability. The study
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therefore offers recommendations on how to allocate limited engineering and research re-

sources to improve, with a focus on enhancing developers’ workflows. Furthermore, the

study highlights the potential for future SE bots to better support elite developers in man-

aging their increasing workload resulting from rising demands.

3.2.1 Research Methods

Participant Solicitation and Sampling

Two streams of participant solicitations happen simultaneously with OSS developers and

company-employed developers.

For recruiting OSS developers, this study reuses sampled repositories in the first study of

this chapter. Based on a similar reason as I mentioned in Section 3.1.1, i.e., using GitHub

stars as an indicator while sampling repositories ensure the activity level, I reuse the sample

of top 1,000 starred repositories which can also cross-validate the prior data mining study.

From this repository sample, my prior bot identification results in Section 3.1.2 verified a

list of repositories with bot activities (from May to November 2021). Then I solicited elite

developers of these repositories who were able to perform all types of activities and made

decisions of deploying bots, and I identified elite developers on these repositories based on the

history of critical issue activities, including merging, assigning, unassigning, etc. When elite

developers were found, direct email invitations were sent to them individually. Prospective

participants may sign up through intent forms created via Google Forms1.

For recruiting developers who are mainly employed by software development companies, the

first author leverages his personal professional network and reaches out to several organiza-

tions, including two large global software corporations and two mid-size software companies

1Google Forms: https://www.google.com/forms/about/
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based in North America. When given permission, a soliciting message or flyer was posted

in the organization’s non-work related slack channel, and participants may sign up through

the intent form (the entire intent form can be found in Appendix A.2).

Interview Study Design

To explore participant thoughts, feelings, and beliefs about SE bot and delve deeply into

their daily workflow, this study employed semi-structured interviews [84]. There are three

major sections in the interview to answer the two main research questions. The first section

aims to understand the developers’ routine workflow, and how the bot partially assisted

their work. The second section explores their feelings about the current bots and their

beliefs toward future bots. The last section was mainly about the logistics including signing

up for receiving early publications and participating in follow-up studies.

Interview studies lasted between 25 to 40 minutes, and most completed around 25 minutes as

estimated. All interviews were conducted online via the Zoom video conferencing software2,

due to the impact of the COVID-19 pandemic during 2021 and 2022. Participant information

of this study can be found in Table 3.2. Particularly, participants from open-source projects

were ones with write access to the repository, and participants who mainly contributed to

commercial and closed-source projects were repository admins or technical leads. Intervie-

wees were welcome to decline to answer any questions that they felt uncomfortable with,

and they might exit the interview study at any point. Additionally, the interview protocol

is attached in Appendix A.3.

All interviews were recorded through the built-in recording function provided by Zoom after

obtaining participant consent. Moreover, the recordings were automatically transcribed

in YuJa3 video editing software, and manually corrected based on auto-generation results.

2Zoom: https://zoom.us/
3Yuja: https://www.yuja.com/capabilities/video-editor/
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Table 3.2: Demographic details of interview participants

ID Gender Country Most Recent Job Role Organization/Project Type

P1 Male Canada Software Engineer Commercial Open Source*
P2 Male Canada Support Engineer Commercial Open Source
P3 Male USA Software Engineer Commercial Software
P4 Female USA Data Engineer Commercial Software
P5 Male USA Sr. Software Engineer Commercial Software and Open Source
P6 Male USA Research Engineer Open Source
P7 Male USA Sr. Software Engineer Commercial Software

*: Commercial Open Source specifically refers to projects which aims at profiting and
open-sourced their code.

After interviews were finished and transcripts corrected, two researchers used qualitative

analysis, the coding technique, to iteratively identify common themes that emerged across

the interviews and create a team codebook [108]. The coding schema was validated on one

participant’s transcript, and its coding achieved substantial agreement (Cohen’s κ = 0.66).

I first discuss these themes in the following sub-section.

3.2.2 Interview Findings

Overall Workflow and Notification

Interview results have shown that automation has a critical influence on the daily workflow

of these developers. With the increasing integration of technical SE bots in the repository,

automation has penetrated many aspects of the engineering process including test executions,

deployment, and other development pipeline stages. There are two main approaches of SE

bots integrating into a repository’s workflow and maintenance: proactive and reactive.

Reactive bots are ones enhancing and assisting human tasks, let us use the pull request

workflow as an example. Pull request is a widely-accepted basic unit of open-source technical

contribution. For a well-maintained and automation-assisted OSS repository, initiating a
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pull request requires following a pre-defined format by filling in several fields. When external

contributors submitted the pull requests, two automation services may intervene: pull request

formatting and CLA collectors. Pull request formatting checks whether the target pull

request follows a certain format, and the Contributor License Agreement (CLA) bot asks

for contributors’ signatures on the agreement such as releasing intellectual properties if they

have not yet (P1 and P2). Particularly, there are repositories that enable visualization or

text-based summary to assist by leaving bot-generated comments below that pull request

(P3). If these checks pass, the pull request proceeds to build and test. SE bots such as

codecov and coverall (see Table 3.1) build and generate a test report as additional review

information assisted the code review process. Meanwhile, some repository leverage a pull

request triage bot to label and assign the code reviewers for the convenience of backlog

management (P6). Finally, deployment previews provided by bots such as netlify4 and

Travis5 assisted code reviewers to assess the quality of the implementation in the pull

requests (P1). Other assistive bots also proactively help developers’ daily workflow, including

auto-generating release drafts based on pull requests and commit messages, and welcoming

first-time contributors for submitting issues, etc.

Proactive bots monitor the artifacts of repositories, update resources from internet, and

remind or provide actionable measures to correct unwanted human behaviors. One of the

most popular SE bots of this category is depandabot. The depandabot received positive

feedback from developers (P1, P3, and P5) as it “provides significant technical values.” The

mechanism of depandabot is to scan source code headers and package dependencies in the

repository, and when there is a critical release or update of these packages the depandabot

initiates a pull request to update the source code. Though sometimes the bot was “un-

necessarily sensitive,” this feature helps developers to maintain the repository dependencies

up-to-date and mitigate security concerns. Another active example is the stale bot (P1,

4netlify: https://www.netlify.com/
5Travis: https://www.travis-ci.com/
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P3, and P4). This bot monitors all repository issues and pull requests, and when these items

have not received any actions (including comments and events) for a certain period of time,

the bot labels them and/or comments with a “stale” indicator so that reminds developers

to take actions with inactive backlog items or requests. This bot and its similar alternatives

(marypoppins bot, etc) helped developers to manage repository backlogs, especially with

a growing community (P2). Other proactive bots were also mentioned in developers’ daily

workflow, for instance, activity summary (P7) and community acknowledgment (P2 and P5).

Besides their bot-assisted workflow, another finding worth noting is that developers often rely

on GitHub’s notification system to keep up with the latest of their artifact and contribu-

tor/user community. As elite developers of a repository, they receive all types of notifications

by default: for example, being assigned to an issue or pull request, opening a pull request,

issue, or created a team discussion post, commenting on any of these threads, subscrib-

ing to a thread, changing the state of a thread (issue events) and finally having username

@mentioned6. These notifications provide comprehensive views about the technical and so-

cial updates of a repository. In addition to a variety of updates, elite developers heavily relied

on notifications to provide timely support to the community. Quick responses on threads

to their contributor and user community are regarded as an important trait to maintain a

positive relationship with their users (P1 and P5), and also enhance developer reputation

and publicity. For instance, P2 commented on supporting their community, “you often [need

to] go to Slack channel and Google Groups, and that’s like a really active community. So

you’re the person in a way going through the best you can and interacting with commu-

nity members.” Similarly, as a founder of their software project and pushing this project

into its commercial path, P1 mentioned, “INSERT A QUOTE HERE.” While all OSS

participants are full-time employees somewhere other than their OSS projects, sometimes

they do not have full effort in planning and managing their projects. Therefore, community

6About notifications: https://docs.github.com/en/account-and-profile/

managing-subscriptions-and-notifications-on-github/setting-up-notifications/

about-notifications
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requests have been a mixed blessing to the projects: on one hand, developers have a backlog

from the community to work on (P1, P5); and on the other hand, they might feel stressed

when the latest requests come in (P1, P2, and P5). As a result, checking notifications has a

high priority in developers’ workflow, but checking notifications sometimes can be a stressful

experience.

Benefits of SE Bots

The benefits of using SE bots are tri-fold. First of all, SE bots provide substantial technical

values according to many of the participants (P1, P2, P3, P5, and P7). As mentioned above,

SE bots automated many aspects of their workflows in proactive and reactive ways. These

bots active in the CI/CD process have saved human efforts of building and testing, and pro-

vide additional information to assess the code review process. “...One, two, three...I guess

we now have four checks in CI now, [and ] I don’t think I would remember to run them all

every time [not if the bot would run them for me](P5).” As this participant commented, the

automated workflow helped remind or directly executed checks for developers in this ever

fast pacing development. These tasks help developers, in their words, “provided technical

values (P5)” to their daily development workflow, i.e., significantly improve their produc-

tivity working with the CI/CD pipeline and enhance merged codebase quality via various

automated quality assurance measures.

The second benefit of SE bots is that they assisted in providing in-time support for the

community. As I reported in Chapter 2, elite developers often have to spend considerable

effort to support and organize their community, especially when the community grows over

time. While elite developers underwent these increasing supportive and organizational re-

sponsibilities, they have been provided with automation support for these related tasks, e.g.,

verifying whether the contributor has signed CLA, welcoming them as first-time contribu-

tors, and requesting contributors to follow contributing guidelines and repository code of
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conduct, etc. These types of bot assistance serve as a buffer between developers’ community

support work and other activities. With this automated in-time help from SE bots, elite

developers will not have to always monitor community updates and focus on their creative

work or other things in life. For instance, P1 commented, “...not having to watch my phone’s

notification would feel good.”

Finally, while automation helps developers with many aspects of software development, these

SE bots also help developers to focus on creative tasks or other things in their lives. As men-

tioned above, automation assistance helps developers alleviate their mental load of various

engineering tasks. Particularly, OSS elite developers often worry about various responsibil-

ities for their projects, “...[contributing to OSS] not like what I work during the daytime, I

need to take care of everything in this project. (P5)”

Challenges and Expectations of SE Bots

Confirming with prior SE bots studies [103, 180], the two substantial challenges of using

SE bots were excessive notifications and limited interactivity, mentioned by elite developer

participants.

First, elite developers have complained that SE bots have produced additional notifications,

especially proactive bots during irregular development times. Different from reactive bots

giving immediate feedback during work sessions of CI/CD pipelines, proactive bots such as

stale and weekly-digest might post new threads beyond core development hours. Many

elite developers such as P1 and P5 in this study employ a phone App to keep monitoring

the repository. However, additional notifications either from bots or other spam may annoy

and stress developers.

The second major challenge is the interactivity of SE bots. In the previous study of this

chapter, I mentioned that popular SE bots employ rule-based design, and as a consequence,
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they would make pre-defined reactions to certain repository events or thread content. These

restricted ways of interaction can be effective and direct with experienced developers who

required additional information in CI/CD pipelines, “I think the bots that we’ve used haven’t

been interactive. I think they’ve all just been kind of dump[ing ] a lot of information (P3).”

Although developers have to extract useful information from what bots provided, its infor-

mation has significant value to their technical practice. Nevertheless, lacking interactivity

can be troublesome when working with novices and users from communities. For instance,

as a community support engineer, P2 commented due to lacking interactivity, “...we want to

make sure the community knows what’s going on about the project, or how they felt about it.

And I have to do it manually, there [were] no quick automated ways.” Compared with more

technical CI/CD bots, community support bots require certain conversational capabilities

to provide contributor guidelines and collect feedback.

Based on elite developers’ experience with SE bots, they talked freely about their expecta-

tions of the functional and non-functional features of future bots. First of all, elite developers

re-emphasized the importance of providing technical values as current SE bots did. For in-

stance, P2 directly commented that current automation features can be integrated, “improve

the functionality you want to see, and sum up to the current bot.” Particularly, participants

asked for more technical functions including programming language support for code cover-

age (P3), Issue-Pullrequest linkage (P2), and JIRA issue tracking integration (P4), etc.

The last item on the wish list was following the OSS spirit when developing these bots, “...if

you[r project is ] free and you don’t have to pay. I think the payment model is, you have to

pay if you want your repo to be private. (P3)” Moreover, as another participant said, two

large-scale organizations that he involved choose to withhold the implementation details of

their SE bots, which was due to security and privacy reasons. Therefore, he had wished that

there would be open-source reproduced versions of these bots, “I do tend to feel like [their

bots ] are really high-quality and they could do a lot of different things, so it’d be cool to see
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that being reproduced open-source more and more. (P2)”

Answers to RQs

According to my analyses of the first section of the interview, we can answer the first RQ3.2

about the developer’s bot-assisted workflow as follows:

Elite developers have substantial integration of SE bots into their daily development

workflow. Particularly, SE bots assist developers through proactive and reactive ap-

proaches and automate various aspects of their work.

As answering the first question helps us understand elite developers’ bot-assisted workflow,

these developers have expressed their experience while having these bots automating their

workflow in the following interview sections. The question RQ3.3 can be answered with

analyses of the latter two sections of interviews,

Elite developers have acknowledged that SE bots provided substantial technical value

in their engineering workflow, support for their community, and concentration on

other tasks. However, interactivity and additional notifications have been two major

challenges to elite developers while using bots. For their expectations of future SE

bots, elite developers have emphasized their wishes for simplicity in design and use,

technical values of automating mechanical tasks, and OSS spirits.
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Chapter 4

Bot Management Console

In the final study of this dissertation, I introduce a management console for bots and small-

scale automation functions for GitHub based software development. The proposed proto-

type aims to resolve or at least alleviate many limitations of SE bots, and follow the implica-

tions discussed in previous studies (see findings of above Section 3.1.2 and 3.2). This console

will support developers in customizing detailed configurations while integrating automation

into their workflow. This section includes a list of design requirements and specifications

derived from the results of the previous two studies and current SE bot literature. Finally,

this section provides a detailed evaluation plan for the proposed console through .

4.1 Management Console for SE Bots

The practice of software engineering evolves at an unprecedented pace nowadays, and

it has become more reliably automated with the latest technologies proliferating. For

instance, AI-powered applications of pair-programming assistance (e.g., copilot) and on-

demand knowledge inquiry (e.g., ChatGPT), and infrastructure advances such as employing
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CI/CD pipelines and SE bots, all these technologies accelerate and enhance our process of

crafting modern software artifacts at every level of scale.

As these technologies have penetrated into many organizations’ daily engineering processes,

SE bots, aka devbots or just bots for short, have been the central interface of human-AI

interactions [103]. SE-bot-assisted engineering workflows could significantly simplify devel-

opment steps, create buffers of context switching, reduce human efforts by automating task

execution and delegation, etc [180]. However, prior research and my previous chapters of

studies have indicated that there were several critical drawbacks of SE bots in the current

software engineering practice. With these obstacles hanging in there, developers, especially

elite developers in the OSS projects, have to bear many usability issues, namely excessive

notifications and interrupts [156], opaque processes of (re-)implementing SE bots in silos, and

non-customize-able automation combinations [174]. Although developers have integrated a

lot of SE bots for their engineering work, these above issues have been reported to affect

bots’ usability and extensibility repeatedly [103, 156, 174, 180].

Building upon existing work, software engineering researchers have postulated many solu-

tions to improve current SE bots, but their work often focuses on improving single SE bots

or enhancing some key aspects of bot-human interactions [181]. Therefore, this chapter of

this dissertation mainly tries to answer the research question,

RQ4.1 How to design and evaluate a bot framework that supports assembling current au-

tomation features and provides management customization?

To answer this overall research question, I proposed a novel solution by implementing a bot

management console with an overall goal to alleviate these issues of SE bots. First, by sum-

marizing prior findings of SE bot issues and my study results in previous chapters, I solicited

design guidelines for integrating bot services under a management framework. Moreover,
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based on my empirical findings from popular OSS repositories and results of interview stud-

ies with elite developers, secondly, I derive a set of design specifications for implementing

this bot management console prototype. Finally, this prototype was evaluated through a

simulated deployment in an agent-based model. The evaluation tested the effectiveness of

reducing noises generated by proactive repository monitoring from these SE bots.

Following this proposal and design specifications, this study implemented a prototype of a

bot management console with Python-based data processing services and a ReactJS web

application. The high-level architecture of this management console largely follows a classic

event-subscriber structure [115]. When presenting this management console prototype, I

introduce its three main views including automation selection, control panel, and activity

summary, and present their use case scenarios respectively. To test its implementation and

effectiveness towards major repositories, I simulated deployment on several Python OSS

projects of mainstream data science frameworks based on these projects’ longitudinal event

data (sampled and collected in Chapter 2). Based on the longitudinal event data from five

major Python data science projects, my preliminary evaluation results have shown positive

results: the management console could moderate the flow of notifications by triaging them to

both noticing mechanisms according to the automation’s workflow integration mechanism.

This chapter’s organization is as the followings. I first present the design guidelines of a bot

management console based on prior literature and my previous studies. Then I will illustrate

the design specifications including the principal use case scenarios of this console. Finally, to

validate its mechanism for reducing bot interruptions, the following section introduces the

evaluation based on simulated deployment.
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4.2 Design Rationales

4.2.1 Design Guidelines and Requirements

The overall goal of this prototype is to design an infrastructure foundation across different

types of SE bots with a central level of control that oversees notifications, activities, and

functionalities of bots. To provide comprehensive design guidelines for such a list, this study

employs three major sources to elicit the design guidelines [26, p. 2], evidence from empirical

studies (Chapter 2 and Chapter 3), predictions from existing theories (existing literature of

bots), and evidence gathered through engineering experience (Section 3.2).

For clarity, Table 4.1 illustrates the evidence base which supports these design guidelines

(DG). The column on design guidelines illustrates the content of a specific guide for im-

plementing a managerial infrastructure for bots. The Empirical Evidence column includes

results of answering empirical investigation questions RQ2.1, RQ2.2, RQ2.3, RQ2.4, and

RQ2.5. Engineering Experience can be evident by interview study in the second part of

Chapter 3, which includes answering RQ3.2 and RQ3.3. Finally, existing theories and litera-

ture support can be found at various scientific venues including CSCW, CHI, IEEE Software,

BotSE workshops, etc. Particularly, the publications were screened at the BotSE research

repository [3]. These six main design guidelines provide cornerstones for us to design, pro-

totype, and implement an infrastructure foundation for future SE bots.

In order to follow the above guidelines into action, this section also proceeds to derive a set of

specific and actionable design requirements for managing and controlling various automation

features. To satisfy most design guidelines above, the main idea behind prototyping a man-

agement console is to create an infrastructure console that orderly provides event subscrip-

tion services, is compatible with various SE bots with control, and oversees bot and human

activities. Its deployment has been decided on GitHub, the leading OSS code-hosting plat-
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Table 4.1: Design guidelines of bot management systems

ID Design Guideline
Empirical
Evidence

Engineering
Experience

Literature
Evidence

DG1
Provide a series of stable and robust automation
assistance with routine and repetitive tasks and support
developers’ daily workflow.

RQ2.1, RQ3.1 RQ3.2 [156, 180]

DG2
Enable customization for a butler bot, so its
behaviors can accordingly fit the project and ecosystem
norms.

RQ2.3, RQ2.4,
RQ3.1

RQ3.3 -

DG3
View and control access permissions, and update
dependencies in time for security.

RQ3.1 RQ3.3 [103, 180, 181]

DG4
Minimize identifiable information exposure in
data pipelines for privacy concerns.

- RQ3.3 -

DG5
Give simple and effective feedback during
interactions with developers and provide controls
over the types and frequencies of notifications.

- RQ3.2, RQ3.3 [103, 181]

DG6
Promote automation component reuse and
transparency.

RQ3.1 RQ3.3 [97, 103, 180]

form, and the native development environment for many existing SE bots [44, 103, 174, 180].

Especially, this prototype should support various mechanisms of bots relying on subscrib-

ing to different repository events, which groups data on commit, issue, pull-requests, and

atomic repository events. Therefore, to derive these design guidelines into implementation

specifications, this prototype requires the following requirements while implementing this

prototype:

• Leverage a web framework for creating the interface of a management console,

which employs a simple but effective UX design (DG5).

• Employ existing frameworks for powering bot-human interaction interface, whose

framework is compatible with many prevalent automation features (DG1, DG3).

• Collect developer activity data at GitHub Event Timeline API and GHArchive

data set with a controlled data pipeline. Also, integrate with the GitHub environ-

ment and subscribe to its webhook event system (DG4, DG6).

• Enable browsing and selecting automation functions from a catalog, and enable
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customization for a repository butler (DG2).

• Control access permissions and notifications in a unified channel (DG3).

4.2.2 Architecture Decisions

Thus, supporting the implementation of a bot management console requires several “satel-

lite” architectural components, as indicated in Figure 4.1. The high-level goal of this archi-

tecture is to remain compatible with most existing GitHub SE bots with rule-based design

(see Chapter 3), and also provides support for future bots powered by AI and machine learn-

ing. Thus, its overall architecture follows an extensible event architecture [158, p. 556] with

an event bus, GitHub Timeline, provided by GitHub [55, p. 55]. The bot management

console is the main component coordinating other components of the overall design. Its

user settings are saved in the configuration storage. An event actor is a unified agent

that interacts with the GitHub event timeline for all automation features. A history data

collector retrieves users’ data from the GHArchive dataset and code repository for some

bot features such as code reviewer recommendations. Finally, the event subscriber listens

to the GitHub event timeline in real-time, particularly for some reactive SE bots’ activities.

Bot Management Console

The console itself conducts four main functionalities. First of all, it helps developers to set

up bots and automation features that they wish to deploy on their repositories. By con-

necting to external automation and bot catalog, developers are allowed to integrate bots

from one particular entry. The second functionality is to manage authentication through a

central portal. The management console is responsible to manage various bots’ authenti-
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cation in one secured portal by overseeing personal access tokens. Similarly, the repository

access function should also distinguish access tokens for various repositories, and so that the

console and its bots can operate on repositories with secured channels. Finally, to improve

the transparency of bot activities, the console visualizes statistics of bots and human activ-

ities, including notifications, repository events, and automated flows [139]. Therefore, the

prototype may serve as an enhancement of what the original “GitHub insights” provided,

with a concentration on SE bots activities.

Configuration Storage

The configuration storage component has straightforward purposes as it stores three streams

of data, permission settings, bot selection and configuration, and notification and communi-

cations settings. Permission settings include the level of permission given and restricted for

each employed across various repositories. Bot selections and configurations are local settings

for a single bot, which are often stored in the forms of json and yml according to the target

bot’s preference. Notification and communication settings are the major configurations of

the notification control function provided by the bot management console.

Event Actor

The event actor is the only medium for posting various bot responses on GitHub’s event

timeline. This component collects automation services’ responses from the target bot man-

agement console and merges all action requests through its secured data pipeline. By apply-

ing this single channel of post actions, the system avoids multiple event subscribers conflicting

and overloading the code hosting platform. In addition, it can work with event timelines by

sending repository updates in a batch. For instance, multiple bots may check a pull-request

including the PR changeset, test execution, and deployment preview, etc. By leveraging an
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event actor, developers who subscribe to all repository events could only be notified once

instead of several times.

History Data Collector

For many bots requiring historical event data, the History Data Collector helps to crawl data

from longitudinal event databases such as GH Archive. For supporting the extensibility of

future SE bots and providing more advanced functions such as AI and machine learning based

recommendations, historical event data significantly enhances the precision of predictions

and increases the accessibility to meaningful features [8, 34]. This component is designed

to increase the extensibility and compatibility of future bots powered by AI and machine

learning techniques.

Event Subscriber

The event subscriber is a real-time event listener who monitors updates of repositories, and

therefore other automation services may act their functionalities based on its data feed.

Similar to the event actor, having a single event subscriber instead of multiple bots working

in parallel aims to alleviate major risks of conflicts and data server overload.

External Data Sources

There are three major external data sources integrated with the bot management console.

The first, and most substantial one is the GitHub Event Timeline1. This timeline handles

major data IOs for SE bots and updates repository content. The second is the historical

event database provided by GH Archive2. In addition to the analysis from Google BigQuery,

1Timeline events: https://docs.github.com/en/rest/issues/timeline?apiVersion=2022-11-28
2GH Archive: https://www.gharchive.org/
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GH Archive provided a complete database of software engineering data within the platform

of GitHub, which breaks the storing limit of GitHub timeline. Finally, the source code

versioning control data from git systems complemented the above two data sources when

there is a request for data feed at the source code level.
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Configurations

Setup/customize 
the bot 
framework

Receive selected 
assistance at 
GitHub

● Bot setup: select desired automations and complete initial 
setup
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Figure 4.1: Architecture of proposed bot management console framework

4.3 Principle Use Cases

As I reported in Chapter 3, SE bots are becoming multi-tasking repository butlers. With

the current practice, some “re-implementing the wheel” often happens when developers were

crafting their customized housekeepers by assembling desired functionalities and selecting

interaction mechanisms [174]. Therefore, the goal of the first principle use case is to create

a pipeline for automating the bot creation and deployment process.

101



Figure 4.2: User Interface for automation selection

Automation Browser

The user activates the console application, either by clicking on the application icon in the

GitHub interface or its web application portal. Upon opening, the first tab that the user

sees is the Automation Browse. This tab should be designed with clear labeling and intuitive

navigation.

Overview of Automation Browser: The Automation Browser is a library or repository of vari-

ous software engineering bots (see Figure 4.2). These bots are automated tools or scripts that

perform specific tasks related to software development, such as code testing, bug tracking,

performance monitoring, and more.

Browsing Available Bots: The user can scroll through the list of available bots. Each bot

is accompanied by a brief description of its functions, typical use cases, and any requirements

or dependencies.

Bot Details: By clicking on a bot, the user can see more detailed information, including

comprehensive documentation, user reviews, and a link to the bot’s source code or project

page. This allows users to make informed decisions about whether the bot will be useful for
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Figure 4.3: UI for controlling notification and access permission

their specific needs.

Installing and Configuring Bots: If the user decides to use a bot, they can click on an

”Install” button. This will guide the user through the installation process, including any

necessary configuration settings. Some bots may also offer a ”Test Run” option, allowing

users to see the bot in action before fully installing it.

Support and Updates: The Automation Browser also provides support resources for each

bot, such as tutorials, FAQs, and contact information for the bot’s developers. Additionally,

the Automation Browser keeps track of updates to the bots, notifying users when an update

is available.

Closing the Automation Browser: Once the user is finished exploring the Automation

Browser, they can close the tab or navigate to other sections of the console application.

Their selections and settings in the Automation Browser will be saved for future sessions.

Control Notification and Permission

Accessing the Console: The user, typically a project manager or developer, opens the

bot management console. This could be via a web interface, a desktop application, or a

103



command-line tool, depending on the specific implementation.

Navigating to Bot Management: The user navigates to the section of the console ded-

icated to bot management. This could be labeled ”Bot Management,” ”Automation,” or

similar.

Selecting a Bot: The user selects a bot from the list of bots currently installed and being

used in their software project. Each bot should have a clear name and brief description to

help the user make their selection.

Accessing Notification Settings: Once a bot is selected, the user can access the bot’s set-

tings. Among these settings, there should be a section specifically for managing notifications.

The user navigates to this “Notification Settings” section.

Customizing Notifications: In the Notification Settings, the user can customize when

and how they receive notifications from the bot. For example, they might choose to receive

an email whenever the bot identifies a new bug, or they might configure the bot to only send

notifications for high-priority events. The user can also choose which team members receive

notifications, depending on their roles and responsibilities.

Managing Bot Permissions: In addition to managing notifications, the user can also

control the bot’s permissions in this settings section. For example, they might allow the

bot to create new issues in their project management tool, or restrict it to only reading and

commenting on existing issues. They could also control which parts of their codebase the

bot has access to.

Saving Settings: After making changes to the notification settings or bot permissions, the

user saves their changes. The console should confirm that the changes have been saved, and

the new settings should take effect immediately.

Returning to Bot Management: Once they are finished managing the bot’s notifications
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and permissions, the user can return to the main bot management page, close the console,

or navigate to another section of the console.

Repository Activity

Opening the Console: The user, likely a project manager or software developer, opens the

bot management console. The console could be accessed through a web interface, a desktop

application, or even a command-line tool, depending on the specific implementation.

Navigating to the Repository Monitoring Section: The user navigates to the section

of the console designed for repository monitoring.

Selecting a Repository: The user selects a repository from a list of repositories that are

currently being monitored. Each repository should have a clear name and a brief description

to help guide the user’s selection.

Viewing Activity Feed: Once a repository is selected, the user is presented with an activity

feed. This feed displays recent actions and changes in the repository, such as new commits,

pull requests, issues, and comments. The feed is typically organized in reverse chronological

order, with the most recent activity at the top.

Filtering and Searching Activity: The user can filter or search the activity feed to

find specific events. Filters might include date ranges, types of activity (e.g., commits, pull

requests), or specific users. A search bar can also help the user find activity related to specific

keywords or phrases.

Interacting with Activity: Depending on the console’s capabilities, the user might be

able to interact with the activity directly from the feed. For example, they could click on a

commit to view its details, respond to a comment, or merge a pull request.
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Exiting the Repository Monitoring Section: After they’ve finished monitoring the

repository activity, the user can navigate to another section of the console, return to the

main page, or close the console. Any filters or notification settings should be saved for the

next time the user accesses the repository monitoring section.

The design guidelines, architectural decisions, and principal use cases presented in the above

sections directly address the posedRQ4.1. The meticulously crafted design guidelines provide

a detailed roadmap, steering the conceptualization and development of solutions to our

research problem. Concurrently, the architectural decisions, informed by rigorous empirical

studies and theoretical development, ensure the robustness and adaptability of our solutions,

considering both current requirements and potential future expansions. The principal use

cases, on the other hand, serve as practical illustrations of how these solutions operate in

real-world scenarios. They not only validate the effectiveness of our proposed solutions in

context but also elucidate their potential impact and value for end-users. Collectively, we

may answer this RQ with the following:

Following the design guidelines based upon empirical results and theories in the lit-

erature, a management console for software engineering automation can leverage an

event-subscriber style of architecture, which supports major use cases including au-

tomation browser, notification and permission summary, and activity visualization.

4.4 Evaluation though Simulated Bot Deployment

Employing SE bots in real-time OSS production or experimenting with OSS maintaining

teams can be exceptionally expensive [50, 90]. Therefore, we take an approach of agent-

based simulation to study this complex OSS software environment which is composed of

multiple agents, including various levels of contributors and SE bots [23, 117, 149]. This
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simulation study is advised by ODD (Overview, Design concepts, and Details) protocol,

which summarizes how the simulation will be conducted for this agent-based models [69].

The overall research questions of this evaluation study are:

RQ4.2 How do different combinations of SE bots influence repository activities and notifica-

tion responses in an OSS project?

Due to the event-based triggering mechanism, one of the primary concerns of bot usability

is that bots disruptively abuse notifications of a repository [103, 180]. This effect usually

escalates when the repository has employed multiple bots or receives increasing external

contributions. Since there was no perfect real-world example of adopting several target bots

on one single project, this part of the evaluation is based on empirical data and a rule-based

simulation to compare project-generated notifications with or without a control mechanism.

Therefore, the second research question of this simulation study is,

RQ4.3 What is the effectiveness of various notification management strategies in mitigating

interruptions among elite developers?

This evaluation leverages combinations of three open-source bots and simulates how they

would produce notifications (see Figure 4.4 for a high-level overview of the model). In the

first phase, I extract the atomic operating mechanism of each bot. For example, based on

the default setting of Stale, this atomic bot would label an Issue after 60 days of inactivity,

if the issue was not a pinned or security Issue, and also close the Issue for another seven

days without activity. This study extracts these reactive rules that how bots work with

repository events based on their shared source code. In the second phase, we collect target

repositories’ event data, and based on simulated notification trends based on their reactive

rules, simulate how many bot-generated events would be. A summary for calculating each

type of repository event and further notifications are illustrated below.
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Artifact of Code Host
● Commits
● Issues
● Pull Requests
● Contributors

Elite
Developers

Non-elite 
Contributors

SE Bots

Notifications
● Issue notifications
● PR notifications
● Comments 

notifications

 
Contributors

 
SE Bots

Representation &
Simulation

Figure 4.4: The agent-based system described in this simulation study. The lower part of the
figure presents the real-world interactions between actors and the code host environment,
and the upper part is the representation and simulation of notifications produced by this
agent-based model. In addition, solid lines represent interactions with the environment, and
the dashed lines represent communications between agents.
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4.4.1 ODD Protocol

ODD (Overview, Design concepts, and Details) protocol is a standardized method to de-

scribe individual-based and agent-based models, especially in the field of ecological model-

ing [68, 69]. Its structured approach ensures that every important aspect of the model is

comprehensively and consistently described, enhancing the study’s transparency and inter-

pretability. Utilizing the ODD protocol facilitates the understanding of the model by the

research team themselves and other software engineering researchers, which is critical to

the validation, replication, and extension of the model. Furthermore, by standardizing the

description of agent-based models, the ODD protocol allows for more effective comparison

and synthesis of different models, promoting knowledge accumulation and theoretical devel-

opment in the field: the simulation application in Software Engineering. Particularly in this

study, we follow Grimm et al.’s 2010 updated definition of ODD protocol to describe all

essential elements for conducting bot deployment simulation. The following of this section

describe the essential elements of this model, and Figure 4.4 provides an overview of the

model representation.

Purpose

The main purpose of this simulation is to evaluate the performance of combinations of SE

bots in terms of interrupts and provide useful insights into how the bot might perform

in different scenarios. The use of empirical data from developer activities and rule-based

implementation can also add credibility to the simulation results, as it helps ensure that the

simulation is grounded in real-world data.
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Entities, State Variables, and Scales

Similar to other ecological models, the main entities of this model include agents/individuals,

spatial units, environments, and collectives.

Agents/individuals: main agents of this model include developers and bots. Particularly,

developers include non-elite developers who do not have administrative privileges and elite

developers who perform all sorts of maintaining activities (see Collectives later). SE bots

were major ones described in earlier sections of Chapter 3.

Spatial units: since the majority of the observation and simulation happen online, the

spatial units are not limited to the physical space but should be categorized as repositories.

In this model, we leverage the six repositories of the large Data Science framework/package of

Python. The target repositories include five Python Data Science projects, including, Keras,

Matplotlib, nltk, numpy and pandas, the most active repositories/projects from Chapter 2.

These repositories share a similar development environment supported by Python packages,

and therefore align with each other in terms of development practice. Particularly, selecting

these sample repositories from the same ecosystem for this simulation study is crucial to

maintaining consistency and comparability in the analysis. The characteristics and behaviors

of repositories can vary significantly across different ecosystems due to differences in language

conventions, development practices, community norms, and platform features. By focusing

on repositories within the same ecosystem, we control for these ecosystem-level factors,

allowing us to more accurately isolate the effects of the variables we’re interested in studying.

This also enhances the external validity of our simulation study, as the findings will be more

generalizable to other repositories within the same ecosystem. Lastly, using repositories from

the same ecosystem simplifies the data collection and analysis processes, as the repositories

will have similar structures and contributing practice. Additionally, some developer agents

have contributed activities across multiple projects.
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Environment: the target environment of this model is the GitHub code hosting environ-

ment, where artifacts and contributing activities are open to public users.

Collectives: there are two main collectives of each repository’s developer community: elite

developers and non-elite community contributors. Elite developers are the ones who have full

write access to the repository, so they are able to perform all major repository maintenance

activities. Non-elite community contributors may contribute by following the repository’s

contributing guidelines, but their work requires an extensive evaluation of the internal team.

Process Overview and Scheduling

The overall process follows the description of the GitHub event system and developers’

reported workflow in Chapter 3. Elite and non-elite developers’ behaviors were observed

based on the empirical GitHub event data from January 1st, 2022, to December 30th, 2022.

Depending on which type of bot it was, the produced notification follows a proactive or

reactive workflow (see Section 3.2.2).

Besides developer workflow, the main three SE bots agents deployed in this system are the

following:

• Stale: stale3 is an issue management bot that reminds developers to take action

towards inactive issues and pull requests, and therefore maintain an organized issue

repository. By analyzing its documentation, (default settings) the stale bot’s behavior

process and schedule can be summarized as the following pseudocode in Algorithm 1.

• Welcome: welcome4 (or new-issue-welcome) is a simple community management

bot that welcomes and acknowledges first-time contributors to a repository. welcome

helps post a welcome message with required information about contributing to this

3probot/stale: https://github.com/probot/stale
4welcome: https://github.com/behaviorbot/new-issue-welcome
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Algorithm 1 Stale Bot Behavior

1: procedure ProcessIssuesAndPRs
2: for each Issue and PR in the Repository do
3: if isLabeled(Issue or PR, staleLabel) then
4: if isClosed(Issue or PR) or isLocked(Issue or PR) then
5: continue
6: end if
7: if hasRecentInteraction(Issue or PR) then
8: removeLabel(Issue or PR, staleLabel)
9: else
10: close(Issue or PR)
11: end if
12: else
13: if isStale(Issue or PR) and not isExempt(Issue or PR) then
14: addLabel(Issue or PR, staleLabel)
15: postComment(Issue or PR, staleMessage)
16: end if
17: end if
18: end for
19: end procedure

repository, and its behaviors can be summarized with the following pseudo-code in

Algorithm 2.

Algorithm 2 Welcome Bot Behavior

1: procedure WelcomeNewContributors
2: for each NewEvent in the Repository do
3: if isNewUser(NewEvent.user) then
4: if isIssue(NewEvent) then
5: postComment(NewEvent, welcomeMessageIssue)
6: else if isPullRequest(NewEvent) then
7: postComment(NewEvent, welcomeMessagePR)
8: end if
9: end if
10: end for
11: end procedure

• Coveralls: coveralls5 is a set of functions that help report the test coverage of the

project. This service has a variety of support in its back-end with various program-

5coveralls: https://coveralls.io/
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ming languages and test execution mechanisms. However, its front-end services can be

described in the following pseudo-code in Algorithm 3.

Algorithm 3 Coveralls Bot Behavior

1: procedure ProcessCoverageReport
2: for each NewCommit in the Repository do
3: report = runCoverageCheck(NewCommit)
4: if isNewPullRequest(NewCommit) then
5: postCoverageComment(NewCommit, report)
6: end if
7: if coverageDecreased(report) then
8: postCoverageAlert(NewCommit, report)
9: end if
10: end for
11: end procedure

For the simplicity of simulation model design, we only adopt and keep the default settings

for these bots, e.g., the expiration time of an issue or pull request remains unchanged over

the entire simulation period.

Design Concepts

This model has made the following major assumptions when simulating notifications of var-

ious combinations of bots. First, activities performed by humans would not change signifi-

cantly after the bot adoption, in terms of adjusting behaviors, i.e., we can still rely on existing

empirical data as an observation of software engineering activities. Second, this evaluation

assumes that each developer employs the default settings of getting GitHub notifications6,

i.e., the developer receives notifications about any events on watched repository, teams, and

conversations7. We may estimate the overall notification intensity based on repository events

since we cannot replicate a precise number of notifications received by each developer. Fi-

6GitHub notification configuration: https://tinyurl.com/yc43cbmh
7Conversation on GitHub refers to comments on Issues and Pull Requests that the developer is partici-

pating in or watching, Pull Request reviews, and Pull Request pushes.
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nally, for an atomic bot, this evaluation assumes bot adoption only associates with particular

activities as an intervention, and they remain default settings without customization, e.g.,

an Issue-related bot would only influence Issue events.

Particularly, for a repository repo, there are n issues, m pull requests, and l commits created

within a given period of time. Let us denote arbitrary issue as i, pull request as j, and

commit as k. Assuming elite developers of this repo subscribe to all repository notifications

according to the default setting, the number of all generated notifications Nrepo equals the

sum of notifications from issues, pull requests, and comments, i.e.,

Nrepo = Nissue +Npullrequest +Ncomment (4.1)

and specifically, notifications from issues and pull requests are mainly based on their creation

and events that happened,

Nissue =
n∑

i=1

Eventi + n

Npullrequest =
m∑
j=1

Eventj +m

Ncomment =
n∑

i=1

Commenti +
m∑
j=1

Commentj +
l∑

k=1

Commentk

(4.2)

Notification Summary Mechanism

The ”Notification Summary” approach is designed to manage and streamline bot notifica-

tions, thereby reducing disruptions to developers. This approach operates on the principle

of aggregation and time-bound delivery, aiming to mitigate the impact of non-urgent notifi-

cations on a developer’s workflow.
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In this method, instead of delivering notifications as soon as they are triggered, the system

collects and stores non-urgent bot notifications over a specified period of time. These could

be notifications related to minor updates, non-critical system information, or changes that

do not require immediate attention or action from the developers.

Once the pre-determined period elapses, the system generates a summary of all collected

notifications and sends it to the developers. This could be arranged in a digest format,

categorizing notifications based on their types, priority levels, or associated tasks, to facilitate

easy review and action from the developer’s side.

By consolidating multiple notifications into a single summary report, this approach sub-

stantially reduces the frequency of interruptions, allowing developers to focus more on their

primary tasks. Moreover, by providing a comprehensive overview of all non-urgent noti-

fications at once, it allows developers to understand the broader context and make more

informed decisions about their subsequent tasks.

Overall, the Notification Summary approach represents a significant advancement in bot no-

tification management, balancing the need for developers to stay informed with the necessity

of maintaining an efficient and interruption-free development environment.

4.4.2 Analysis Methods

The final phase of this evaluation leverages hypothesis tests with one-way ANOVA to com-

pare the number of notifications with different bot combinations and notifications control

settings.

This simulation study intends to evaluate whether notification control settings may effec-

tively reduce the number of notifications when a repository adopts a combination of bots.

Therefore, it tests whether this management console may improve elite and expert develop-
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ers’ experience with bot notifications.

4.4.3 Evaluation Results

In this evaluation study, we utilize an agent-based model to simulate the complex dynamics

of five software development projects. Our simulation environment is populated by au-

tonomous agents, each representing a developer or a software bot, who interact with each

other and with the project’s artifact such as the codebase. These agents have diverse behav-

iors mirroring the heterogeneity observed in real-world development teams, i.e., empirical

OSS software engineering data. By running the simulation under various conditions and pa-

rameters, i.e., the number and combination of SE deployments, we can investigate how these

factors influence project notifications. This agent-based approach offers a powerful tool for

understanding and managing the intricate, dynamic processes involved in OSS development.

We first conducted an Augmented Dickey-Fuller test to test for stationarity in our time

series data. The test statistic was -2.86, with 1 lag used based on the Schwarz Information

Criterion, and 1825 total observations (five projects in one year). The critical values for the

test statistic at the 1%, 5%, and 10% levels are -3.50, -2.89, and -2.58, respectively. Because

the test statistic is more negative than the critical value at the 5% level, we can reject the

null hypothesis of the presence of a unit root at the 5% level. Thus, we conclude that our

time series is stationary.

We conducted a one-way ANOVA to compare the effect of bot deployment on three different

groups: control, sending by hourly batch, and sending by daily batch. The results showed a

significant effect of treatment on the outcome, F(4,1820) = 5.43, p = .01. Post hoc comparisons

using the Tukey HSD test indicated that the mean score for group control (M = 5.2, SD =

1.3) was significantly different than group daily batch (M = 3.1, SD = 0.9). However, the

group daily batch (M = 4.7, SD = 1.1) did not significantly differ from the group hourly
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batch.

In this section, we describe developer activities and SE bot’s reactions with an ODD protocol

to build an agent-based model, and therefore, we could simulate several bot activities based

on empirical data. By comparing the number of simulated notifications, we can answer

RQ4.2 and RQ4.3 with the following:

Answers to RQ4.2: In addressing the research question, we employed an agent-based

model to simulate the impact of deploying SE bots on Python data science projects.

Our findings indicate that the introduction of these bots significantly amplified the

repository activities executed autonomously. As a consequence, the number of reposi-

tory notifications for its watchers, such as elite developers, could experiencee a marked

increase.

Answers to RQ4.3: Based on the one-way ANOVA test, we were able to reject the

null hypothesis. Consequently, a significant difference was identified between scenar-

ios with and without notification controls, highlighting the impact of these controls

provided by the management console. However, when considering the varying lengths

for notification batches, our data did not reveal any significant differences, as evidenced

by the results of the Tukey HSD Test. This suggests that the duration of notification

batches may not be a substantial factor influencing the observed phenomena.
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Figure 4.5: Notifications generated from comments for five sampled repositories
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Figure 4.6: Notifications generated from issue and pull request for five sampled repositories
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Figure 4.7: Repository notification from comments with three combinations of bot deployed
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Chapter 5

Discussion

5.1 Empirical Studies on Elite Developers

This section discusses the findings of the previous two empirical studies with elite developers

in OSS communities. Based on analysis methods of research questions, this section first

presents in-depth discussions of descriptive ones including RQ2.1, RQ2.2, and RQ2.4, and

second, inferential ones including RQ2.3 and RQ2.5. Finally, this section presents their

research and design implications.

5.1.1 Contribution Activity and Trend of Elite Developers

First of all, my findings on elite developers’ activities confirm their crucial roles in OSS

development. As the result of RQ2.1 shows, elite developers have engaged in the majority of

the projects’ activities, although they only account for a small proportion of contributors in

the larger community. Except for communicative activities, elite developers contributed to

over 50% of activities in all the other three categories. The results confirm prior literature
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dating back to the early 2000s [39, 119, 189]. We can conclude that OSS projects are still

largely driven by a small number of elite and expert members even after over 20 years of

evolution. While high concentrations may ensure bottom-line project outcomes, I argue

that such a situation is not optimal for the long-term health and sustainably of an OSS

project [38]. Engaging the non-elite users’ participation through mechanism and technology

innovation has remained a critical challenge [152]. To sum up, the results of RQ2.1 confirm

and extend the findings in the prior study focused on developers’ workload [189]. From the

role-specific perspective (elite vs. non-elite), this work reveals that the imbalance of workload

does not only exist in technical contributions but also happens in non-technical activities,

where situations can be even worse.

Secondly, the results of RQ2.2 show that in most of the sampled projects elite develop-

ers performed different activities as projects grew. The activity shifting indicates the elite

developers’ role transitions with the growth of the project and the community. Organiza-

tional behavior theorists often argue that such transitions may be risky and troublesome

for both individuals and organizations [10, 121]. For example, a developer, while initiating

the project, was heavily involved in contributions to source code artifacts. By contributing

to these technical activities, they intend to build their technical competencies and estab-

lish their community reputation. However, as the project and community grew, they found

themselves having to shift their focus to supporting and communicating with novice contrib-

utors and users. Moreover, imposing additional burdens on management since the project

community expanded is often less effective without necessary training and self-motivation.

Although developers vary in their personal perceptions about how they would develop their

competencies [93], technical reputations and development may not always be the solo pur-

suit of having an OSS-related career. However, at least in the software engineering research

community to date (except reflected in a few very recent studies, e.g. in [159]), this issue

has not received sufficient attention. Future research is necessary to thoroughly investigate

and address the issues related to role transitions in OSS communities, especially unintended
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ones.

Finally, RQ2.4’s findings convey another essential message about elite developers that there

are substantial differences among ecosystems regarding the proportion of activities done by

the elite developers. This message suggests that the elites behave in different patterns be-

tween various ecosystems, and I argue that their activity profiles are associated with the

nature of the ecosystem. One example is the Python Data Science ecosystem. In this

ecosystem, elite developers spend most of their efforts in communicative and supportive ac-

tivities (see Table 2.8). This fits its nature as a multidisciplinary ecosystem, which consists of

mathematicians, machine learning researchers, and software engineers [127]. Even effectively

organizing and supporting their collaboration could cost much effort according to the team

science literature [56, 122]. Moreover, this RQ’s results also suggest that elite developers

from the Firefox Add-ons ecosystem account for a significantly higher proportion of all ac-

tivity categories. Given that most add-on projects are small and easy ones, without a large

contributor base, they often have a hard time attracting and retaining other contributors

from their community.

5.1.2 Impact on OSS Communities and Artifacts

The findings of RQ2.3 reveal relationships between elite developers’ effort distributions and

project outcomes. In general, there are negative associations between non-coding activities

and technical project outcomes. For three out of four project outcome indicators (NewCim,

BCTim, and NewBim), these results suggest that the trend of increasing efforts into com-

municative, organizational, and supportive work is negatively correlated with the project

outcomes. Here I argue that the negative associations were due to the increasing involvement

of non-elite community contributors and the focus shifts of elite developers. Typically, as a

project’s community grows, external non-elite developers may contribute to the project in
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various ways, including suggesting features, reporting bugs, or submitting their own patches

[39, 82]. Since non-elite developers often do not have a comparable level of technical exper-

tise or familiarity with the project code base, their code could be more buggy, thus may lead

to lower software quality [2]. Their contribution requires vast attention and support from

the elite group, which inevitably reduces direct elite group effort on typical development.

However, for the last project outcome indicator (BFRim), our results show that the elite’s

efforts in supportive work have positive correlations with project quality. My explanation is

that the efforts in supportive activities help to maintain a good defect removal process, and

thus improve the bug fix rate in each project-month.

RQ2.3’s findings, if put together, describe a dilemma that elite developers gradually have

to face in OSS communities: With the growth of their projects and contributor community,

they have to spend more time on non-technical tasks, which forces them to reduce their

efforts on technical contributions or devote more overall time into maintaining their OSS

projects. Since their technical activities still account for a majority of the project’s typical

development work (see Table 2.3), the project could experience productivity and quality

loss. Yet, non-technical work has its own value by helping maintain expected practices of a

project’s engineering processes (e.g., defect removal process) and pay off with quality gains.

Another finding worth noting is the difference between non-company-sponsored and

company-sponsored projects. Particularly, RQ2.3’s results indicate that company-sponsored

projects tend to be more influenced by their elite developers’ effort distributions. This is

not surprising since maintaining these projects often relies on a small number of full-time

employees acting as their elite developers, and this finding also empirically confirms other

early qualitative studies, e.g., [169]. Findings of this study support that the involvement of

industrial companies including economic incentives, compensations, supports, and potential

career development opportunities could have led to higher motivations of community contrib-

utors in these company-sponsored projects [99, 111]. Moreover, GitHub recently provides a
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“sponsors” feature to financially support OSS developers; we may expect increased influence

on conventional OSS projects, which are largely based on voluntary contribution [99].

The findings of RQ2.5 highlight two major points for discussion. First, for most sampled

ecosystems, the trend of elite developers’ activity can also predict project outcomes quantita-

tively at the ecosystem level. Findings of target ecosystems suggest that there are significant

associations between ecosystem-wide productivity loss and increasing efforts of elite devel-

opers in non-coding activity (including communicative and supportive). Second, regarding

project quality, an observed pattern among ecosystems is that efforts in organizational ac-

tivities are positively associated with identified bugs, i.e., negatively associated with project

quality.

Regarding ecosystem-level productivity, the relationships are consistent with slight varia-

tions, with the exception of the Firefox Add-ons ecosystem. In particular, the effects are

much stronger for the Amazon AWS ecosystem (medium), followed by npm/Node.js and

Python Data Science (small), then by Eclipse (barely small), and finally Firefox Add-ons

(not significant). I argue that this phenomenon results from technical platforms’ barrier and

contributor base of their programming language among these ecosystems. Most of Python

Data Science projects are written in Python. Even for ones that have a considerable por-

tion of C/C++ files, e.g., SciPy and NumPy, Python still accounts for over 50% of its code

base. All npm/Node.js projects are mostly written in JavaScript. Many studies have consis-

tently concluded that Python and JavaScript are two accessible programming languages for

novice developers to learn and excel with compared to C/C++ and Java [91, 110, 123, 148].

When elite developers were unavailable or distracted from devoting themselves to typical

coding tasks, a larger base of community contributors could fill this gap without concerns

about technical obstacles introduced by the platform’s main programming language. In

contrast, most AWS projects are written in C/C++, and thus these less popular program-

ming languages resulted in a smaller community of OSS contributor base, and a hard time

125



ramping up with technical tasks while worrying about the language’s low-level technicalities

and optimizations. Furthermore, most AWS projects focus on system-level programming

for ultra-large distributed systems rather than application-level programming, sometimes

even requiring certain levels of hardware knowledge. Thus, its own elite developers’ effort

allocations have a more significant effect in the AWS ecosystem. Finally, developers in the

Eclipse ecosystem are more homogeneous, most being professional software developers, as a

major difference compared to many other OSS ecosystems [13]. Thus, the knowledge gap in

technical expertise between elite developers and non-elite community contributors assume

to be smaller than in other ecosystems.

Regarding ecosystem-level quality, the predictive relationships are diverse and less signifi-

cant. However, a notable exception is the Python Data Science ecosystem, in which the

elites’ efforts in organizational activities exhibit a strong effect size on quality metrics. I

argue that this observation resulted from interdisciplinary team formation as mentioned

before, i.e., teams consisting of developers, mathematicians, machine learning researchers,

etc. Thus, coordinating and supporting its developer community, for instance assigning

code review tasks to ones with adequate expertise, become critical and challenging. Thus,

while performing these related organizational activities, elite developers fulfill their roles as

knowledge brokers in these interdisciplinary teams [5, 58, 75].

5.1.3 Practical Implications

These two studies found and confirmed that imbalances of workload are prevalent in OSS

communities, and have led to heavy burdens on a few central individuals such as elite devel-

opers [189]. First, in addition to the unbalanced technical workload identified in prior studies,

my studies further found that situations are even worse for non-technical workloads (com-

municative, organizational, and supportive). The imbalances of non-technical workload can
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result in a huge order of magnitude (see Section 2.1.2 and 2.2.2). By examining the projects

in these samples, I found the expansion of the elite developer group has failed to keep up

with the pace of project and community growth, which cannot be spontaneously fixed in the

evolution of projects. The slow expansion of the elite developer group reflects a conservative

approach when guaranteeing members permission to perform administrative tasks. While

OSS ideology is fairly progressive, its management structure is pre-industrial, i.e., only a

few central individuals share of the authority and power in the community [33, 146, 168].

Improving community governance by decentralizing such authority and power, particularly

related to routine work and repetitive tasks, could be a possible advance. This possible

advance would not only alleviate elite developers’ heavy burdens but also provide extra

incentives for others in communities to contribute [136]. Moreover, allowing non-elite com-

munity contributors to share elite developers’ routine duties would help offset the negative

impacts of core member turnover [162]. In fact, decentralizing and delegating proportions

of elite developers’ work has already been recognized by practitioners. Recently, GitHub

acknowledged that inadequate governance and excessive workload of a few core individuals

are two major threats to project sustainability1. They also mentioned that allowing and

guiding ordinary members to run the project is critical to address these threats. Therefore,

this advance can be expected in the near future, particularly since platforms like GitHub

have supported and committed to providing facilities for helping projects to implement such

decentralization and delegation.

Second, RQ2.3’s findings also highlight that relationships between project outcomes and

elite developers’ efforts in non-technical tasks are more significant for company-sponsored

projects. As opposed to non-company-sponsored projects, company-sponsored projects often

inherit the management practices of the parent corporation, and their elite developers tend

to be trapped more in routine non-technical work. In Wagstrom’s dissertation, he has shown

1GitHub development blog, Let’s talk about open source sustainability https://github.blog/

2019-01-17-lets-talk-about-open-source-sustainability/
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that the vertical integration between companies and OSS communities would inevitably lead

to increases in unnecessary communicative and organizational practices [169]. Given the lim-

ited time and attention resources of developers, their unnecessary non-technical tasks could

have hurt their projects’ productivity. Thus, he recommended focusing on necessary com-

munication only “meeting individual coordination requirements.” According to the results

of this chapter, his recommendation is still valid. From a company’s perspective, avoid-

ing directly “copying” their internal governing structures is necessary, even for the projects

dominated by these companies [63, 143, 178].

5.1.4 Design Implications

With the growth of the project, elite developers often have to put more effort into commu-

nicative and supportive tasks. Our study reveals such a shifting of work may have negative

impacts on project outcomes. As we present in the results section, these tasks are often

necessary and cannot be ignored. Moreover, building software tools to assist or partially free

elite developers may be a good solution.

Building such tools is feasible, especially since readily available technologies exist for many

organizational and supportive activities. For instance, Assigned and Unassigned are two

main events in the organizational activity category. The main time cost for them is to identify

the external assignee. These tasks can be easily automated with tools [8]. The supportive

work can be divided into two sets—maintenance and documentation. For many raw activities

associated with maintenance, there are ready-to-use automated tools built by researchers.

For example, the CreateTag can be automated using techniques such as [31]. Automatic

subscribe and unsubscribe can be realized through learning users’ characteristics [19]. For

documentation tasks, there are many metric-based or machine learning techniques ready

for use [105, 187], thus automating some MarkedAsDuplicated and UnMarkedAsDuplicated
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tasks.

Current technologies may be less mature for helping elite developers on communicative tasks.

As shown in Fig. 2.2, the communicative category contains four raw GitHub activities: Ref-

erence, Edit, IssueComment, and CommitComment. For some activities related to Reference,

researchers have developed techniques for automating them. For example, when mentioning

somebody to fix an issue, the bug-fixer recommendation technique developed by Kim et

al. [88] may be directly applied to identify the target of the mentioning. CommentDeleted

tasks also can be automated. For example, a disruptive message by a member can be auto-

mated deleted by a GitHub bot app equipped with advanced sentiment analysis techniques.

Building automated tools for IssueComment and CommitComment requires some advanced

techniques on abstractive semantic summarization and text generation, which are far from

mature even in the Natural Language Processing community [101, 104, 177].

While there are many available techniques, most (if not all) of them have never been used

by practitioners. This may be because such techniques have not been integrated into elite

developers’ normal workflows. As Terry Winograd and his colleagues [182] pointed out

in their influential book “Understanding computers and cognition: A new foundation for

design,” a computing application must be integrated into users’ workflow in a non-intrusive

way to gain widespread acceptance. Moreover, our results also call for innovative workflow

designs that does not only focusing on technical contributions (e.g., multiple-committer

model in [157]) but also those optimized for the full spectrum of activities.

5.1.5 Recommendations

Our findings and the above discussion can be summarized into recommendations for practi-

tioners and researchers.
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Recommendations for open source practitioners are:

• Open source projects may consider decentralizing the administrative authorities and

powers related to routine tasks.

• Project members should focus on communication “meeting individual coordination re-

quirements.”

• Projects sponsored by companies should avoid copying their sponsors’ internal governing

structures.

We can also consider future research (including tool design and implementation) efforts with

the following possible challenges.

• Further understanding of developer activities that takes an integrated perspective com-

bining both role-based relationships and different types of activities beyond technical

contributions.

• Mechanism and workflow designs for broadening participation in and sharing non-

technical responsibilities.

• Tool support for relieving elite developers from routine administrative burdens by syn-

thesizing existing techniques to their routine workflow.
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5.2 Empirical Studies on Automated Workflow and SE

Bots

5.2.1 Increasing and Integrating Applications of SE Bot

Over 60% of the sampled repositories in Chapter 3 employed at least one bot to automate

routine workflows. This high adoption rate suggests that SE bots have become prevalent in

OSS projects, and have shown their increasing presence in OSS development. Compared to

prior studies on SE bots in popular GitHub repository, there has been a remarkable leap in

adoption rate [180]. Though bots have not been sophisticated enough to handle advanced

tasks in practice, the convenience provided by bots has outweighed many of their drawbacks,

e.g., disruptive notifications [156]. The current practice of OSS development on GitHub

has become a semi-automated procedure that is heavily assisted by bots.

Besides, the mixed-method identification process applied in this study has the potential to

improve identifying SE bots. Through validation by human efforts, we have proved that

the multi-tier identification method yield improved bot identification results compared to

the comment-based classifier. Future studies may consider including other tiers of input

as features to determine bot activity, and therefore improve the identification techniques.

Finally, this method employed in this study provided a baseline to identify bots on software

engineering data set, especially GitHub platform.

However, popular bots that we identified employed similar rule-based design mechanisms.

For the limited number of open-source bots, their implementations employed a rule-based

system, and the system subscribed to and acted based upon certain repository events or

event payloads. For example, when offering automatic issue labeling, carsonbot required

a strictly formatted issue with content in its template. Only when the contributor filled

the label entry with the pre-defined keywords, the carsonbot may label the issue. While

131



many other bots employ the same mechanism and are all subscribed to GitHub’s event

timeline, the server’s load increases exponentially as user-generated events accumulate. One

engineering implication from this observation is that future bot service development may

consider collecting events from one repository event-bus-like bot service infrastructure, and

therefore we may reduce central server load and ensure data reliability. On the other hand,

the simple rule-based design inherits the limitation in interactiveness. Similarly, other studies

also argued various reasons why interactiveness has not yet been improved [1]. Its rule-

based design mechanism has limited bots to respond and act under pre-defined input for

completing simple tedious tasks. Thus, a future direction is to employ an advanced chat

agent to empower the interaction with developers, especially in many community-related

tasks such as welcoming and acknowledging contributors [152].

Another major observation is the prevalence of multi-tasking butlers in popular GitHub

repositories, and we may anticipate a growing percentage of bots that automate multiple

tasks instead of specializing in just one [51]. In addition to prior studies, this study has

found an increasing number of SE bots merging various functionalities (see Figure 3.2).

Software engineers have created bots by combining various existing functions. This observa-

tion suggests a trend of using SE bots in OSS repositories: assembling existing automation

functions according to a project or ecosystem needs. In these repositories, SE bots have

become housekeeping and multi-tasking butlers. For example, the two most popular ecosys-

tem bots, facebook-github-bot and Googlebot have integrated several atomic automating

functions. However, they have shown different emphases, i.e., facebook-github-bot fo-

cuses more on CI/CD practice while Googlebot focuses more on community management.

As these bots somewhat reflect these organizations’ ideology of developing software, impor-

tant takeaways of this observation are twofold: first, software project and ecosystem have

their unique requirements and preferences for software engineering process, and future SE

bots may consider providing a customized space not only in functions but workflow inte-

gration; and second, creating the infrastructure of SE bots or a framework for integrating
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various types of existing automation has its practical value for software maintenance.

Finally, for over two-thirds (69%) of the identified bots, their implementations yet remained

opaque to the public. While many bot creation frameworks are helping to create and shop

simple automation, over half (53%) of existing bots were only available or applicable to

specific repositories or organizations. I argue that there were two major reasons for bots

to be kept private or closed-source. First, there are security and business concerns about a

bot’s functions. To perform various repository tasks seamlessly, SE bots often have a high

level of permission (above the write access) in these repositories, and the data flows carried

by these bots may be security-sensitive such as access tokens2 and SSH keys3. Open-sourcing

these bots may expose the vulnerabilities in a repository’s automated workflow, which leads

to risks of malicious behaviors. Any organization would prefer not to undertake these risks.

Second, as mentioned in the previous paragraph, many customized butler bots integrate

multiple existing services and adapt to the needs of a specific project or ecosystem, and

therefore, developers have few motivations to share source code as many components of such

bots have been publicly available already. However, without a framework that integrates

various bot services, the current practice is far from optimal for developing SE bots as many

repositories choose to withhold their bots.

5.2.2 Developer Experience and Expectation of Future SE Bots

The second interview study advances our knowledge of how expert and elite developers

integrate bots into their daily SE workflow and demonstrates several challenges with the

current bot-assisted workflow. Moreover, this study summarizes their experience of using

bots and also their expectations of future bots. Finally, the results of this study call for

2Access tokens: https://docs.github.com/en/authentication/keeping-your-account-and-data-secure/
creating-a-personal-access-token

3SSH keys: https://docs.github.com/en/authentication/connecting-to-github-with-ssh/

generating-a-new-ssh-key-and-adding-it-to-the-ssh-agent
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a framework that not only manages valuable automation but also promotes OSS’ sharing

spirits. In addition, this study provides directions for bot usability research.

This study particularly advances our understanding of how elite developers incorporate SE

bots into their software development workflow. In addition to prior studies, this study pro-

vides a full picture of how bots proactively and re-actively integrate into elite developers’ full

spectrum of software development activities. For technical activities, elite developers require

more hands-on control over bots, i.e., explicitly configure how bots take commends and what

repository events the bots should respond to. Therefore, sufficient feedback such as notifi-

cations from these bots can complement developers’ awareness of the repository status [45].

However, on the other end of the spectrum, developers took another approach while handling

community support, repository security, legal issues, etc: Leveraging proactive SE bots as a

buffer between demands of the above aspects and developer actions. This finding provides

two dimensions of implications for designing future SE bots, which advise practitioners to

have different considerations while assisting elite developers.

Furthermore, this study also demonstrates the important role of notifications in software de-

velopment at GitHub and similar code hosting platforms. For elite developers, notifications

in CI/CD pipelines, these notifications are additional testing and deployment information,

and immediate feedback provided by SE bots. On the other hand, notifications from com-

munity requests and ones produced by other proactive bots work in a different approach as

reminders or to-do lists without prioritization [38]. Therefore, these two types of SE bots

employing the same notification channel could have led to additional mental load and mixed

presumptions of underlying tasks [172]. My empirical confirmation suggests that various

categories of notifications should be delivered to developers at disparate paces. In this chap-

ter, I argue that reactive SE bots who provided testing and deployment feedback should

deliver notifications in a timely responsive, and immediate approach as they are now. Thus,

they reinforce the transparent CI feedback loop and enhance the quality of software produc-
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tion continuously. Nevertheless, notifications from proactive SE bots can be delivered in a

controllable manner which allows several degrees of customization. For instance, high-level

dependency updates for security issues may yield real-time notification delivery, while weekly

repository activity summaries and inactive issue reminders can be merged into a notifica-

tion batch. Therefore, controlling notifications generated by bots can enhance developers’

productivity while working on technical and creative tasks without additional noise [156].

Moreover, it can also improve elite developers’ well-being without worrying about the project

all the time but still keep them alerted about essential actions on security and privacy.

Finally, for improving the interactivity of GitHub bots, there are various comment styles.

One viewpoint suggests that making bots more human-like can enhance the level of engage-

ment and make communication more natural and relatable for humans [132]. Therefore an

improved user experience and trust could be achieved from interaction [98]. However, ac-

cording to Wessel et al., SE bots ought to limit their human-like interactions—phrases such

as ”thank you”, for example—given that these interactions can be perceived as insincere

and could lead to user frustration [181]. Therefore, to decide whether to make SE bots’

interactions more “human-like” or not, we should balance potential drawbacks and ethical

concerns.

5.3 Limitations

Similar to other empirical studies, our study is not free of threats to validity. I briefly discuss

them from three perspectives.

First, from the perspective of construct validity, the first empirical study involves six

primary constructs, which are four categories of GitHub activities, and project productiv-

ity and quality (each with two metrics, a total of four metrics). All their definitions and
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operationalizations are based on prior literature. For the four acting categories, I carefully

follow the standard procedure to develop the mappings between raw GitHub activities and

these categories. The two project outcomes are adapted from Software Engineering litera-

ture, and each is measured by two distinct indicators. By using multiple indicators for one

project outcome construct, our study avoids oversimplifying the concept of “productivity”

and “quality”, and brings new insights. Thus, most of the threats to construct validity have

been mitigated.

Second, from the perspective of internal validity, there were multiple measures to ensure

that the data collection process avoids the most of perils summarized in [18, 83]. For example,

all subjected projects are all large ones with established governing structures and practices,

and use pull requests to manage members’ contributions. The data used in the study are

objective human activity records collected from online repositories. The analysis processes

are unbiased. The main analysis method is a mature, widely used analysis technique, and

empirically justifies the use of the fixed effects models in panel regressions.

One threat is that our data comes from one source: GitHub. But, doing so has its method-

ological justifications. While we acknowledge that the development trace data could be in

multiple other channels such as email, IRC, forums, and so on, an unfortunate fact is that

not all of them are publicly available. In fact, of the 20 projects studied in this paper, none

of them has all the channel data available. If this chapter’s study applied multiple data

sources for some projects but a single data source for the rest, guaranteeing fair comparisons

among them could be impossible. Moreover, selectively using multiple data sources would

pose serious threats to the “construct validity” because establishing the mapping between

activities and categories would require different protocols when crossing data sources. Thus,

having weighed the gain and loss of using multiple data sources, we decide only to use

GitHub data; this at least guarantees consistency at the methodological level, which is a

basic requirement for any scientific inquiry [20, 46, 94]. Thus, not employing multiple data
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sources is a major limitation, but not a serious threat to internal validity, as pointed out by

Margaret-Anne Storey in her ICSE’19 keynote [155].

Third, from the perspective of external validity, while our results may not be generalizable

to all open source projects, the sampled projects represent a wide range of projects regarding

the application domains. They also form a balanced sample of non-company-sponsored and

company-sponsored projects. One potential limitation is that all 20 projects are large ones

and the following studies leverage projects from five major OSS ecosystems or top popular

repositories. We urge caution, however, for applying our findings in the context of small or

medium size open-source projects.
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Chapter 6

Concluding Remarks and Future

Work

This dissertation, started and rooted in the social structure and community reputation within

Open Source Software (OSS) communities, delineates a clear distinction between elite and

non-elite developers based on their managerial privileges. Although the integral role of

elite developers in OSS development has been recognized in software engineering literature,

comprehensive investigation into their activities had been lacking until now. Drawing on

fine-grained event data from 20 OSS projects, five major ecosystems, and bot usage data

from the most active repositories, this dissertation provides an in-depth, dynamic portrait

of elite developers’ activities. These are categorized into four high-level, interpretive groups,

with an analysis of their impact on project outcomes in terms of productivity and quality.

Furthermore, this dissertation expands our understanding of the current workflow of elite

developers with SE bots and proposes an innovative automation management framework to

centralize control over automation features in development.

This dissertation offers a suite of empirical findings regarding the role of elite developers
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in OSS development. It affirms the pivotal contribution of elite developers, who account

for the majority of activities across all four high-level categories: communicative, organiza-

tional, supportive, and typical. It further unveils a shift in elite developers’ activities from

technical work to project management tasks, as communicative and supportive activities es-

calate more rapidly than typical development activities. Notably, it establishes a significant

correlation between the distribution of elite developers’ efforts and project productivity and

quality outcomes. These findings not only highlight the complex dynamics of elite devel-

opers’ effort distribution, but also hint at a dilemma many OSS elite developers encounter:

as a project grows, elite developers are compelled to undertake an increasing amount of

communicative and supportive work. This dissertation further delves into the practical and

design implications of these findings.

Furthermore, this dissertation sheds light on the utilization of automated techniques by OSS

practitioners, particularly SE bots, within their OSS contribution workflow. Both empiri-

cal data mining and practitioner interviews attest to the importance of SE bots as integral

extensions of modern OSS development teams. Nevertheless, deficiencies in interactivity

and control over notification mechanisms have led to unnecessary interruptions and context-

switching. To address these challenges, this dissertation introduces the Bot Management

Console (BMC), an automation management framework designed to optimize the manage-

ment experience of automation features and control various aspects of human-bot interac-

tions. The effectiveness of this framework is corroborated through simulated deployment,

marking a promising step towards a more efficient and seamless integration of bots in OSS

development.

In continuing the research trajectory initiated by this dissertation, my future work aims

to deepen the understanding of elite developers and OSS communities. As an immediate

next step, I propose to extend the empirical study from the second chapter by including a

larger sample of projects. This will allow us to further investigate the unique and context-
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dependent differences among elite developers. It’s also important to recognize that project

outcomes extend beyond basic productivity and quality metrics. Thus, exploring alternative

outcomes, especially those related to social and human aspects like the influx of newcomers

and long-term project sustainability, may offer valuable insights into the broader objectives

of OSS communities. Additionally, employing diverse evaluation approaches could highlight

novel design insights [74]. It would be beneficial to further evaluate the management console

with practitioners, utilizing design critique sessions to obtain more nuanced feedback and

identify opportunities for usability improvements [4]. Lastly, future research could explore

innovative reward mechanisms and OSS contribution workflow designs. These should aim

to strike a balance between technical and non-technical contributions, ensuring equitable

recognition of all project members’ efforts. This progressive approach promises to further

enrich our understanding of OSS communities and their unique dynamics.
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[84] Hanna Kallio, Anna-Maija Pietilä, Martin Johnson, and Mari Kangasniemi. System-
atic methodological review: developing a framework for a qualitative semi-structured
interview guide. Journal of advanced nursing, 72(12):2954–2965, 2016.
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Appendix A

SE Bot User Study

A.1 Solicitation Message for Private Organizations

Hello, my name is Zhendong Wang and I am a doctoral candidate in the Informatics

Department at the University of California, Irvine. I am conducting a research study to

understand and improve open source developers’ experience with automation technologies

(such as experience with GitHub bots). This work has the potential to improve the

productivity and sustainability of open source projects. I am recruiting developers who

have the administrative privilege (write-access in the main repository) in large-scale open

source projects to participate in an interview study.

Participation in this study will take approximately 20 to 30 minutes via Zoom. Par-

ticipation in this study is fully voluntary. You are free to choose not to participate or

withdraw from the study at any time.

We deeply respect the privacy of all participants, and guarantee complete anonymity

throughout your participation. The data will be kept secure on a private hard disk and
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password protected. No personal identifiers will be kept. You will receive $20 Amazon

gift card for participating in this study. In addition, based on your response, you may

be invited to another study. If you are willing to participate in this study, please fill out

the following form:

[expired intent form link ]

We plan to include the results of the study in a scientific publication. Should you be

interested in being informed about the outcome of this study, you may indicate so by

providing us with an e-mail address in the form. Please feel free to contact me for any

questions about the study at:

zhendow@uci.edu

A.2 SE Bot Usage Participant Intent Form

Participant intent response form for a study of SE bots on GitHub. If there were any

questions about this study please do not hesitate to contact Zhendong Wang at: zhen-

dow@uci.edu

Are you willing to participate this interview study about automation usage

at GitHub?

Yes

No

What is your email address so that we can contact you for scheduling the

interview (your personal identifies will be deleted after the interview)?
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Will you be comfortable to participant in the interview via Zoom in a recorded

session?

Yes

No

If you are willing to participant in this study, please check all the following

apply to you:

an active open source contributor

obtained write access in some GitHub repository

contributed to some repositories that employed automation, such as stale bot,

GitHub actions, or other automated assistance

over 18

able to fluently communicate in English

If the results of this study are published, would you like a copy of the initial

publication?

Yes

No

If yes, could you provide the email address for us to send the copy:
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A.3 SE Bot Usage Interview Protocol

Interview Protocol Project: Assisting the Elite-driven Open Source Develop-

ment through Activity Data and Automation

Time of interview Date Place

Interviewer Interviewee ID

A.3.1 Introduction

My name is Zhendong Wang, a Ph.D. candidate in the Software Engineering program

at the University of California, Irvine. Thanks for participating in this study. My

research interest focuses on leveraging development activity data to support the expert

and elite group of developers in the open-source community. To understand how to

assist open source developers with their daily routine development activities in the open

source project, I would like to ask you some questions in this interview study. Before

we enter the study, I would like to provide some information about this study and some

terminology that will be used by us.

We invite you to this study as you are an elite developer in the [XXX] project, who holds

the administrative privilege, and you are still actively involved in contributing to this

project.

The intention of this study is to understand elite developers’ daily workflow, the types of

activities they do, and how to support their work while mitigating the interruptions in

their daily workflow. In our study, small-scale automation and bots, are specifically re-

ferred to as software agents that perform small maintenance-related tasks on repositories,
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serving as a conduit between users and services. For example, first-timers, issue-label-

bot, and mention-bot so on.

A.3.2 Informed Consent

The interviewer will read essential content in the informed consent reviewed by IRB and

remind the participant that the soundtrack of the interview would be recorded, and their

responses will be kept confidential without any identity information. Besides, they may

choose to quit the study at any time.

A.3.3 Developer and Project Background

This section investigates the interviewee’s background information on their roles and

responsibilities in the project, and also looks for project-specific detailed information.

First, I would like to thank you for your contribution to the open-source community. We

would like to know a bit more about you and your projects. We identified you as our

target participants since we found that you have performed some administrative activity

in your repository, thus,

Q1: Can you briefly introduce yourself, and the project that you contributed

to?

Q2: Can you describe the routine activities you do during a typical session

that you contribute to the project?
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A.3.4 Non-coding Activities

This section investigates the participant’s focus shifts and additional non-technical bur-

dens as the project become mature, especially when external developers enter the project.

Thanks for answering the questions about your contributions and your background

Q3: As your project develops over time, what types of contributing activities

do you enjoy?

Q4: Have you or your project employed any measures to assist or support

your managerial activities?

Q5: What is your experience with these measures and technologies?

A.3.5 Bot Experience and Expectation

This section seeks answers for the first questions and focuses on the inquiries on the

bots that deployed in interviewee’s code repository. There are some major categories of

bots in the OSS development, for example, acknowledging contributors, welcoming new

contributors, finding best pull-requests reviewers, and tracking todo items etc. We would

like to know,

Q6: Currently, does your repository employ any types of bot helping with
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your daily activities?

Q7a: (If Q6 yes) What types of development activities in your repositories

have assistance from bots? What is your experience with these bots?

Q7b: (If Q6 no) What was the reason that kept you from using bots? (Ask

followup questions to let participants specify)

Q8: What are your expectations of the future automation assistance in open

source development?

A.3.6 Final

This section invites participants to future design critics’ follow-ups.

Q9: We are designing a set of automation to assist open source developers

with their non-coding activities, will you be willing to participate in a follow-

up to critique the design in the future?

Q10: Would you like to receive an early report of this study in the form of a

technical report?
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This is the end of the interview. Thank the individual for participating in this interview.

Assure them the confidentiality of the response and potential future interviews.
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Appendix B

Empirical Data Repository

B.1 Elite Developer Empirical Study

The Google Drive repository includes

• Raw event data from 2016 to 2018, collected from 20 OSS projects in Chapter 2

• Intermediate analysis data for each research question from RQ2.1 to RQ2.3

https://drive.google.com/drive/folders/10ibmz2svPRf3jfRtm7mbiouo9ATaYAoB

B.2 GitHub Bot Usage Study

This GitHub repository includes

• All sampled 1,000 GitHub SDE projects in Chapter 3

• A manual bot identification/review guide
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• All identified bot services

https://github.com/zhendow/GitHub_Bot_Usage
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