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Abstract of the Dissertation

Constraining Dark Matter, Four Images at a Time

Dark matter makes up roughly 85 percent of the mass budget of the Universe. Though we cannot

see it, hence the name, the formation and behavior of structures from the largest cosmological scales

down to sub-galactic scales betray the existence of dark matter via its gravitational interactions. The

widely accepted view of cosmological history, informed by observations of hierarchical structure

formation, posits non-relativistic dark matter particles that only interact gravitationally, known as

cold dark matter (CDM). However, alternative theories of dark matter may describe small-scale

observations as well or better. It is essential to test variations on CDM and differentiate between

models that agree on larger scales. We can observe even completely invisible dark matter structures

from the way they deflect and magnify light. This phenomenon, gravitational lensing, has been

used to infer some of the tightest constraints on alternative dark matter models and grows stronger

as telescopes improve and sample sizes increase.

This dissertation is focused on strong gravitational lensing, when multiple images of the light

source appear on the sky. Particularly, I demonstrate and evaluate a method called flux-ratio

analysis, which uses bright, compact sources like quasars that are lensed into four distinct images.

In these systems, the main lens is an elliptical galaxy, the mass distribution of which determines the

positions and relative brightnesses of the images. Low-mass dark matter structures, called halos,

associated with the main lens or along the line of sight are detectable in the additional magnification

or demagnification they introduce to individual images. Discrepancies between observed flux ratios

and those predicted by a smooth model of the main lens indicate the presence of perturbing halos.

With a sample of many lensed quasars, we can characterize the population statistics of low-mass

halos. These statistics are determined by the underlying dark matter model, thus they enable us to

infer constraints on it.

In Chapter 1 of this work, I provide general background information on dark matter and

cosmology and detail the predictions of CDM. I then discuss the use of gravitational lensing to

detect dark matter and review the history of flux-ratio analysis to put my work in the context of the

field.

xiii



Chapter 2 of this work contains a detailed description of my flux-ratio analysis procedure as well

as constraints on warm dark matter (WDM) inferred from a sample of 14 lensed quasars. I provide

background on WDM theory and describe the process of simulating low-mass halo populations

that align with theoretical predictions. Then I walk through my Bayesian inference procedure and

its application to infer the strongest gravitational lensing constraints on WDM to date. Lastly, I

explore the context of my analysis in relation to other works that used subsets of this lens sample.

I highlight the differences in between our analysis procedures and potential sources of systematic

error.

In Chapter 3, I investigate the addition of general third- and fourth-order multipoles to the mass

model. I find that multipoles with realistic amplitudes, at least when compared to the isophotes

of elliptical galaxies, can perturb flux ratios as significantly as low-mass halos. If their orientation

angles are left to vary freely, joint third- and fourth-order multipoles are completely degenerate with

CDM halo populations when modeling quadruply-imaged quasars. This work calls into question

all previous dark matter constraints from flux-ratio analysis, including those presented in Chapter

2. However, those results are still critical to the field moving forward. Until this degeneracy

is mitigated, the method and degree of inclusion of multipoles into an inference procedure will

strongly impact the result. Chapter 2 explores one extreme end of this spectrum – the exclusion of

multipoles.

In Chapter 4, I summarize and provide a framework for reevaluating past dark matter constraints

from flux-ratio analysis. I explain how comparison between observations of lens galaxy isophotes

and mass models from associated lensed arcs can provide more informative priors on multipoles

in future lens models. Additionally, I forecast ways that high-resolution simulations can provide

complementary prior information both regarding multipoles that may be present in galactic dark

matter halos and their connection to the distribution of baryons in the galaxy. Finally, I give an

overview of the increase in the sample size of strong lens systems that is expected from JWST

and Euclid. Though data from these telescopes holds great potential to help us understand the

nature of dark matter, we must first untangle the degeneracy between smooth model complexity

and low-mass halos.
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Chapter 1

An Introduction to Dark Matter and
Gravitational Lensing

In this chapter, I provide a foundation for the research presented in Chapters 2 and 3. After

briefly reviewing the history of dark matter and its cosmological context, I give an overview of the

paradigmatic cold dark matter, its predictions and proposed alternatives. I then discuss gravitational

lensing and explain how it can be applied to differentiate between and constrain competing dark

matter models. This chapter ends with an introduction of other complementary astrophysical

probes that have contributed to dark matter constraints and an outline of the rest of this dissertation.

1.1 The Makeup of the Universe
What makes up the Universe? The answer to this fundamental question has grown from the rough

categorization of elements on Earth to our modern understanding of matter, energy and their

evolution since the Big Bang. The Standard Model of particle physics describes the components

and interactions of matter down to subatomic scales, and general relativity tells us how space and

time behave. When we attempt to explain our observations of the cosmos with these theories alone,

however, it becomes clear that this catalogue of the contents of the Universe is incomplete. Dark

energy, which is the name attributed to the mysterious driver of accelerating cosmic expansion,

turns out to make up ∼70 percent of the Universal mass-energy budget today. Of the rest that we

ascribe to matter, visible matter, the kind described by the Standard Model, can only account for

∼15 percent (Planck Collaboration et al., 2020).
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1.1.1 A History of Missing Matter

As far back as the 19th century, astronomers proposed that planets and stars too dim to be observed

could be contributing to the dynamics of the solar system and Milky Way (see Bertone & Hooper,

2018). Early 20th century observational studies put upper limits on the local density of this so-

called “dark” matter to be equal to that of visible matter (e.g. Jeans, 1922; Oort, 1932). While

these pioneering studies were surely important, the contemporary field of dark matter research

was jump-started by the work of Fritz Zwicky in the mid 1930s. By applying the virial theorem,

which relates the total kinetic and potential energies of a system, to observations of galaxies and

their apparent velocities in the Coma Cluster, Zwicky (1937) inferred that the total mass of the

cluster must be many times that expected from visible matter alone. Though his estimates were

later shown to be flawed, his conclusion that dark matter is not only present in the Universe, but

much more abundant than visible matter has been repeatedly confirmed.

Studies in the 1970s, including the seminal work of Vera Rubin, presented optical and radio

observations of galaxies and found that their rotation curves remained flat in the outer regions (e.g

Rubin & Ford, 1970; Rogstad & Shostak, 1972; Roberts & Rots, 1973; Rubin et al., 1978). As the

mass inferred from their light distributions would result in rotation curves that steeply drop off,

this ubiquitous phenomenon further indicated the presence a substantial amount of dark matter and

showed its dominance over visible matter in the outer regions of galaxies. Since then, the presence

of dark matter has been verified in myriad ways, for example, via gravitational lensing (Refregier,

2003; Vegetti et al., 2010), which will be discussed in detail in this dissertation, and the formation

of large-scale cosmological structure (Einasto et al., 1980; Davis et al., 1982). According to recent

estimates by Planck Collaboration et al. (2020), dark matter accounts for ∼85 percent of the mass

budget of the universe, the rest attributed to visible, or baryonic matter. These findings indicate

that dark matter does not have baryonic origins.

1.2 Cold Dark Matter
Though the precise nature of dark matter is still an open question, the answer to which is the concern

of this dissertation, the phenomenological cold dark matter (CDM) theory is widely accepted as

part of the “standard model” of cosmology. The CDM paradigm posits dark matter particles to

be massive and non-relativistic as well as collisionless or very weakly interacting (Peebles, 1982;
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Blumenthal et al., 1984). The most common CDM particle candidate is the weakly-interacting

massive particle (WIMP), a class of thermal relic with mass ∼100 GeV (Jungman et al., 1996).

This mass scale ensures that the time at which WIMPs fall out of thermal equilibrium in the early

Universe results in a dark matter density consistent with that which is observed today. Other CDM

candidates include axions and sterile neutrinos (see Feng, 2010), though the observational and

experimental distinction between the various CDM candidates is outside the scope of this work.

Unless otherwise specified, I will assume the WIMP formulation of CDM in this work.

Structural growth in the Universe is seeded by primordial density fluctuations that collect dark

matter gravitationally. The free-streaming length, which describes the mean distance that dark

matter particles travel before falling into a potential well, can be calculated as

𝜆fs =
∫ 𝑡EQ

0

𝑣(𝑡)𝑑𝑡
𝑎(𝑡) , (1.1)

where 𝑣 is the mean particle speed, 𝑎 is the scale factor and 𝑡EQ is the time of matter-radiation

equality when perturbations can start to undergo gravitational collapse (Kolb & Turner, 1990).

Density perturbations below the free-streaming length scale are suppressed. CDM particles,

however, are heavy and slow, which allows for perturbations down to present-day planet scales to

survive. The structure formation that arises is hierarchical. Collapsed dark matter clumps, called

halos, grow and merge up from planet scales (𝑀 ≳ 10−6𝑀⊙) to the filaments and nodes of the

cosmic web, the largest structural elements that we observe today. A combination of theoretical

work and simulations gives us predictions for the population of halos on all scales and their internal

structure.

1.2.1 Halo Populations in CDM

Early theoretical work by Press & Schechter (1974) showed that early Universe perturbations

modeled as a Gaussian random field could be mapped to the resulting halo mass function (HMF),

the differential number density as a function of mass and redshift, 𝑑𝑛(𝑚, 𝑧)/𝑑𝑀 , using linear

theory and a spherical collapse model. They found that the HMF follows a power law from

the free-streaming scale up to a redshift-dependent cutoff which is ∼ 1015𝑀⊙, the scale of galaxy

clusters, today. Above this cutoff, which reflects the largest structures that have had time to virialize,

the mass function falls off exponentially. Sheth et al. (2001) expanded upon this work to include a
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more general elliptical collapse model, finding better agreement with numerical simulations (Lacey

& Cole, 1994; Sheth & Tormen, 1999) and inferring the log power law slope of the global HMF

below the cutoff scale to be 𝛼 ≈ −1.9.

Increased computational capacity brought about the ability to probe smaller scales with cosmo-

logical N-body simulations (e.g. Ghigna et al., 1998; Klypin et al., 1999). Though it was known

that larger halos form via accumulation of smaller ones, simulations revealed that many of the small

halos that are accumulated, known as subhalos, survive as identifiable structures. The associated

subhalo mass function (SHMF) has a very similar shape to the global HMF with a log power law

slope of 𝛼𝑠 ≈ −1.8 below the cutoff scale and a normalization that scales with the host halo mass.

The largest subhalos are generally about an order of magnitude less massive than their hosts.

1.2.2 Halo Density Profiles in CDM

Dark matter-only simulations predict that halos on all scales have roughly the same density structure

(Dubinski & Carlberg, 1991; Navarro et al., 2010; Klypin et al., 2016; Ishiyama et al., 2021).

Though profiles with more parameters can of course describe a broader population more accurately,

the two-parameter NFW profile, proposed by and named after Navarro, Frenk, & White (1997), is

the most common choice. It is a spherical density profile defined as a function of radial distance

from the center, 𝑟, as

𝜌(𝑟) = 𝜌0

𝑟
𝑅𝑠

(
1 + 𝑟

𝑅𝑠

)2 , (1.2)

where 𝜌0 is the normalization and 𝑅𝑠 is the scale radius. Though this expression is more directly

interpretable, NFW profiles are most often parameterized instead in terms of total mass and

concentration, 𝑐, which describes compactness. Though the integrated mass of the NFW profile

is divergent and the total mass of a halo depends on a somewhat arbitrary choice of boundary,

two common choices to which I refer in this dissertation are the virial radius, 𝑅vir = 𝑐𝑅𝑠, and its

enclosed mass, 𝑀vir, and the radius of maximum circular velocity, 𝑅max ≈ 2.16𝑅𝑠, and its enclosed

mass, 𝑀max.

The mass and concentration of a halo are dependent on the history of its specific surroundings

(Wechsler et al., 2002), but they are most fundamentally dependent on the time at which the halo

formed and its age. The universe was denser earlier on, so the concentrations of halos that formed
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earlier are, on average, higher. Since smaller halos form first in hierarchical structure formation,

they are generally more concentrated. Additionally, at a fixed halo mass, halos that formed earlier

are more concentrated. Though larger halos are less concentrated, they have higher densities at all

physical distances from their centers than smaller halos. While the relationships between mass,

concentration and age are generally predictable, there is significant scatter in these relations (Duffy

et al., 2008; Moliné et al., 2023), and they are only true on average.

1.2.3 Baryon Content

Since more massive halos create larger gravitational potential wells, we expect the largest halos to

trap the most baryonic matter and thus to have the largest stellar masses. This is roughly true, but

the relationship between halo mass and stellar mass is far from linear. Multiple effects, such as

supernova feedback and heating due to photoionization (e.g. Gnedin & Zhao, 2002), increasingly

inhibit star formation in lower mass subhalos. At masses 𝑀halo ≲ 108𝑀⊙, halos can barely, if at

all, support galaxy formation. Around 𝑀halo ≈ 1012𝑀⊙, the star forming efficiency peaks, and it

continues to drop for increasingly higher mass halos which may experience significant feedback

from active galactic nuclei (AGN). At Milky Way scales and larger, a halo that is an order of

magnitude more massive than another will host a galaxy that is far less than an order of magnitude

more massive than the other’s galaxy. At galaxy cluster scales (≳ 1015𝑀⊙), gas heating processes

exceed cooling in the host halo, and the stellar content is hosted in the galaxies that make up the

cluster. At almost all mass scales, the total mass of galaxies is dominated by dark matter over

baryons by more than an order of magnitude.

1.2.4 Small-Scale Challeges to CDM

While CDM is able to describe large-scale structure well, at scales smaller than ∼ 1011𝑀⊙, tensions

exist between theoretical predictions and observations (see Bullock & Boylan-Kolchin, 2017),

although these problems may mostly be solved with the addition of baryons into simulations. The

mass range in which baryons are expected to most strongly affect the halo density profile roughly

aligns with the mass ranges of the missing satellites, core-cusp and too-big-to-fail problems

discussed below. However, their investigation has sparked inquiry about other types of dark matter

particles with properties that may also solve these tensions. As the constraint of alternate dark

matter models is this focus of this work, I briefly present the most significant of these challenges.
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1.2.4.1 Missing Satellites

Since the HMF for CDM should be scale-invariant at small scales down to ∼ 10−6𝑀⊙, the Milky

Way should host abundant substructure, including ∼ 103 subhalos large enough to have supported

molecular cooling and thus to host satellite galaxies. However, we observe more than an order

of magnitude fewer satellite galaxies in the Milky Way. This may be solved by assuming that

smaller halos are less efficient at forming stars. By comparing the observed population of galaxies

to the predicted population of halos and assuming they have a one-to-one correlation (assuming

the largest halos host the largest galaxies), we can establish a relationship between halo mass and

expected stellar mass. This technique, extrapolated down to the scale of the smallest Milky Way

satellites (𝑀𝑣𝑖𝑟 ≈ 108𝑀⊙, 𝑀∗ ≈ 102𝑀⊙), reveals that there may be no tension between predictions

and observations (Garrison-Kimmel et al., 2017). The predicted halos are simply not all large

enough to be luminous. More recent work that takes into account discovery of smaller dwarf

galaxies, nuanced completeness corrections for larger satellites and tidal stripping as halos pass

through the Milky Way’s stellar disk more concretely resolve the missing satellites problem (Kim

et al., 2019).

1.2.4.2 Core-Cusp Problem

Another feature of CDM-only models is the “cuspy” halo density profile, which is sharply peaked

near the center and is well-described by the NFW halo profile. Close to the center, the NFW profile

becomes 𝜌(𝑟 ≪ 𝑅𝑠) ∝ 𝑟−1, and far from the center it drops off to 𝜌(𝑟 ≫ 𝑅𝑠) ∝ 𝑟−3. However,

observed rotation curves for some smaller galaxies around the size of large Milky Way satellites

and smaller show that their host halos should have much flatter density profiles, or near-constant

density “cores” (inner power law slope 𝜌(𝑟 ≪ 𝑅𝑠) ∝ 𝑟−𝛾 with 0 < 𝛾 < 0.5). Baryonic feedback

is believe to be capable of creating these cores (Read et al., 2016), but the effect is sensitive to the

mass of the halo and its resulting stellar mass (ineffective below 𝑀𝑣𝑖𝑟 ≈ 1010𝑀⊙), and effectiveness

varies between simulations. Interaction between halos and baryons in the host galaxy or cosmic

web may also give rise to lower central masses, but more observations of field dwarfs are needed

to constrain this effect.
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1.2.4.3 Too-Big-To-Fail

Independent of the inner slopes of halo density profiles, CDM-only simulations also predict

an excess of mass in the centers of halos compared to observational inferences - a problem of

normalization (see Boylan-Kolchin et al., 2011). “Central mass” and “central density” are different,

yet related halo quantities. While it is possible to address these individually, effects that reduce

the central densities of halos also tend to reduce their central masses. As mentioned, abundance

matching between the population of expected subhalos and observed galaxies in the Milky Way

and the Local Group seems to solve the issue of missing satellites. However, this method assumes

that the largest subhalos host the largest satellite galaxies. Comparing the largest subhalos in

simulations of Milky Way sized galaxies to the largest observed Milky Way satellites, it was found

that the largest observed satellites have lower central masses than the largest subhalos. If the largest

subhalos did exist with their expected mass profiles from CDM-only simulations, they would be

“too-big-to-fail” at forming stars. Lower central masses as a result of baryon interactions may also

solve this problem (Wetzel et al., 2016).

1.3 Alternatives to CDM
While the missing satellite, core-cusp and too-big-to-fail problems can potentially be solved within

the CDM paradigm, they have also motivated investigation of other models of dark matter that may

better match astrophysical observations. The solutions relying on baryonic feedback are promis-

ing, yet somewhat contentious due to the variance in results between simulations. Additionally,

alternative dark matter models can vary only slightly from CDM such that the differences between

the two are below our current detection thresholds. Establishing constraints on alternative models

is important for testing their viability and is complementary to searches for signatures of dark

matter particle interactions that are dependent on the type of particle. There are two features of

halo populations that are most commonly targeted by observational dark matter studies. One is

the small-scale HMF. Though CDM posits the scale-free nature to potentially continue down to

planetary scales, alternate dark matter models lead to various amounts of truncation below satellite

galaxy scales. The other is the range of halo density profiles and central masses, with some dark

matter models allowing for the creation of cored halos and fewer star-forming satellites. I present

two of the leading alternatives to CDM here. It is important to note that there is diversity in
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observed inner density profiles from small subhalos to large host halo scales, and baryonic effects

will occur alongside the effects of any non-CDM model. Also, these alternatives represent classes

of models, and there are many proposed particle candidates for each whose properties can produce

the effects described. Other solutions exist for the problems with CDM that include abandoning

the idea of dark matter altogether and modifying Newtonian dynamics (see McGaugh, 2015). The

focus of the work presented in this dissertation is the constraint of warm dark matter (WDM),

though the methodologies are applicable to any model that predicts a clumpy distribution.

1.3.1 Warm Dark Matter

Warm dark matter (WDM) is a class of dark matter models that consist of particles, also often

theorized as thermal relics, that have some effective free streaming length much larger than that

of CDM particles (see Bode et al., 2001; Viel et al., 2005). This sets a minimum scale for

perturbations in the early Universe that grow to become the halos we observe today, which results

in suppression of the HMF at small scales. While the conversion between the scale of mass

function suppression and particle mass depends on the specific WDM model, constraints are easily

translated between them. In general, the lighter a WDM particle, the higher the mass scale at

which suppression occurs. This suppression mass scale is often quantified by the half-mode mass,

𝑀hm. For 𝑚 ≪ 𝑀hm, suppression is strong, and for 𝑚 ≫ 𝑀hm it is negligible. This effect can also

be tuned such that the scale of suppression produces the number of observed Milky Way satellites

and solves the missing satellite problem.

In addition to affecting the HMF, the suppression of small scale initial density perturbations

in WDM models affects the density profiles of individual halos (Schneider et al., 2013). At

mass scales much larger than 𝑀hm, the formation time and density profile of halos in CDM and

WDM simulations look very similar since the density perturbation scale that produces them is not

suppressed. However, at roughly an order of magnitude above 𝑀hm and below, halos of a given

mass take longer to form in WDM than in CDM. Since the central density of a halo reflects the

mean density of the Universe at its redshift of formation (which increases with redshift), halos

with later formation redshifts have lower central densities. The reduction in central density, and

thus lower concentration, for WDM halos, however, is not limited to halos with later formation

times compared to CDM. Since larger halos are formed by the merging of smaller halos, the
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reduction in concentration extends to 2-3 orders of magnitude above 𝑀hm. This phenomenon,

scaled appropriately, can solve both the core-cusp and too-big-to-fail problems by only reducing

the concentrations of halos below or equal to the size of the smallest Milky Way satellites. This

also allows for the formation of enough of the smallest inferred subhalo masses from observations.

1.3.2 Self-Interacting Dark Matter

Self-interacting dark matter (SIDM) (Spergel & Steinhardt, 2000), is another highly studied alter-

native to CDM that simulations show can reproduce many observations. As the name suggests,

it consists of dark matter particles that can interact with each other via collisions. This creates a

pressure that limits the slope of the inner density profiles of halos. Though by a different mecha-

nism, this can be tuned to solve the core-cusp and too-big-to-fail problems by reducing the central

masses of subhalos. However, at galaxy cluster scales, we do observe more cuspy density profiles

that put an upper limit on the SIDM cross section inconsistent with that required to solve small

scale issues (Kaplinghat et al., 2016). This can be solved with a velocity-dependent cross section

that satisfies both.

1.4 Gravitational Lensing Theory
Gravitational lensing is a phenomenon caused by the deflection of light by the gravitational fields

of massive objects, and the work in this dissertation is devoted to its use to constrain the properties

of dark matter. While general relativity is needed to calculate the observed deflection angle of a

photon passing near a massive object, Newtonian dynamics is sufficient to describe the deflection

for a non-relativistic object. The result obtained when considering light differs by only a factor of

2. This factor can be conceptually explained, thus the Newtonian derivation is still instructive. The

following derivation is based on one performed in Chapter 2 of Dodelson (2017) with additional

information from Perlick (2012) and Wambsganss (1998).

1.4.1 Newtonian Deflection of Light by a Point Mass

Consider a point mass 𝑚 traveling along the z-axis past a much more massive point mass 𝑀 with

impact parameter 𝑏. Assume 𝑀 is sufficiently larger than 𝑚 such that 𝑀 is motionless. From
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Newton’s law of universal gravitation, the equation of motion for 𝑚 is,

¥R = −𝑀𝐺

𝑅2 R̂ (1.3)

where 𝑚 cancels because it appears on both sides of the equation. As a result, the Newtonian

approach yields the same result for a massless photon and a massive object traveling at the same

speed. Focusing on the left hand side of this equation, we first need to decompose the second time

derivative of R into its R̂ and �̂� components. Using,

¤̂𝑹 = − ¤𝜙�̂� and ¤̂𝝓 = ¤𝜙R̂ (1.4)

we find that,
¥R =

(
¥𝑅 − 𝑅 ¤𝜙2

)
R̂ +

(
1
𝑅

d
d𝑡

(
𝑅2 ¤𝜙

))
�̂� . (1.5)

Since there is no �̂� component of the gravitational force, we know that this component of ¥R must

vanish. Thus, we define a conserved quantity 𝐽𝑧,

𝐽𝑧 ≡ 𝑅2 ¤𝜙 , ¤𝐽𝑧 = 0 so − 𝑀𝐺

𝑅2 = ¥𝑅 − 𝐽2
𝑧

𝑅3 (1.6)

which will be helpful in simplifying the rest of this solution. Another way to simplify this

differential equation will be to transform the time derivatives into derivatives with respect to 𝜙,

which will be denoted as 𝑑𝑥/𝑑𝜙 = 𝑥′. This way,

¤𝑅 =
d𝑅
d𝜙

d𝜙
d𝑡

= 𝑅′ ¤𝜙 =
𝑅′𝐽𝑧
𝑅2 and, similarly ¥𝑅 =

𝐽2
𝑧

𝑅2

(
𝑅′′

𝑅2 − 2𝑅′2

𝑅3

)
. (1.7)

Plugging into equation 1.6 and simplifying, we get,

−𝑀𝐺 = 𝐽2
𝑧

(
𝑅′′

𝑅2 − 2𝑅′2

𝑅3 − 1
𝑅

)
(1.8)

which, substituting 𝑢 = 1/𝑅, becomes,

𝑢′′ + 𝑢 =
𝑀𝐺

𝐽2
𝑧

(1.9)
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This simple second-order ordinary differential equation has the solution,

𝑢 =
1

𝑅(𝜙) = 𝐴 cos(𝜙 − 𝜙0) + 𝑀𝐺

𝐽2
𝑧

, (1.10)

where 𝜙0 is the angle at which mass 𝑚 gets closest to 𝑀 (where 𝑢 is maximized). This equation

has two unknowns, 𝐽𝑧 and 𝐴, that we must solve for based on the initial conditions of the problem.

At very early times, when 𝑅 approaches infinity and 𝜙 approaches 0, 𝜙 = sin(𝑏/𝑅) ≈ 𝑏/𝑅 using

the small-angle approximation for sine. Thus, ¤𝜙 ≈ −𝑏 ¤𝑅/𝑅2. At this early time, projectile 𝑚, in

this case a photon, has yet to be deflected significantly, so ¤𝑅 ≈ −𝑐. Since we showed that 𝐽𝑧 is a

conserved quantity,

𝐽𝑧 = 𝑅2 ¤𝜙 ≈ 𝑏𝑐 so ¤𝜙 ≈ 𝑏𝑐

𝑅2 (1.11)

at all times. Examining the early-time state of this problem also holds the key to finding the value

of 𝐴. Substituting 𝜙 = 0, 𝑅 → ∞ and our new value for 𝐽𝑧 into equation 1.10 yields,

0 ≈ 𝐴 cos(𝜙0) + 𝑀𝐺

𝑐2𝑏2 . (1.12)

Taking the time derivative of equation 1.10, substituting our approximate values for ¤𝑅 and ¤𝜙, and

using the early-time (small 𝜙) approximation sin(𝜙 − 𝜙0) ≈ − sin(𝜙0), we get,

𝑐

𝑅2 ≈ 𝐴 sin(𝜙0)
(
𝑏𝑐

𝑅2

)
so 𝐴 ≈ 1

𝑏 sin(𝜙) (1.13)

Plugging equation 1.13 into 1.12 and setting sin (𝜙0) = 1 since 𝜙0 ≈ 𝜋/2, we get,

cos(𝜙0) ≈ −𝑀𝐺

𝑐2𝑏
. (1.14)

Again, since 𝜙0 ≈ 𝜋/2, we can use the small-angle approximation to show that

𝜙0 ≈ 𝜋

2
+ 𝑀𝐺

𝑐2𝑏
. (1.15)

There are multiple ways to solve for the final deflection angle, but the most intuitive is to recognize

that since 𝜙0 is the angle at which the photon is closest to the deflecting point mass, its trajectory
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at this point is perpendicular to R̂. Simple geometric reasoning reveals that at 𝜙0, the deflection

angle from the photon’s original path is equal to the difference between 𝜙0 and 𝜋/2, the angle of

minimum distance for the undeflected trajectory. Finally, since angular momentum is conserved,

the deflection must be symmetric about 𝜙0. The photon undergoes an equivalent deflection to the

one experienced up to 𝜙0 as it continues beyond the point mass to infinity. We thus arrive at the

Newtonian approximation for the deflection angle of light deflected by a point mass,

𝛿𝜃𝑁𝑒𝑤𝑡𝑜𝑛 =
2𝑀𝐺

𝑐2𝑏
. (1.16)

As mentioned previously, this result is a factor of 2 smaller than the correct answer for the

deflection angle predicted by general relativity. The reason for the difference is that Newtonian

dynamics fails to describe the bending of space from the deflecting mass. To describe the path of

the photon in general relativity, we would use the Schwarzchild metric,

d𝑠2 = −
(
1 − 2𝑀𝐺

𝑐2𝑅

)
𝑐2d𝑡2 +

(
1 − 2𝑀𝐺

𝑐2𝑅

)−1
d𝑅2 + 𝑅2dΩ2 (1.17)

which demonstrates the effect mass 𝑀 has on both the time and space components. The Newtonian

approach correctly describes the motion of a non-relativistic point mass being deflected because

with a speed much smaller than 𝑐, it travels much further in time than in space. The spatial

contribution to the spacetime interval is minimal. When the point mass is replaced with a photon,

both the space and time curvature effects are equal in magnitude which results in twice the deflection

angle of the time curvature-only approach.

1.4.2 Quasi-Newtonian Approximation

To simplify many gravitational lensing calculations, the result for the deflection angle of a photon

by a point mass from general relativity,

𝛿𝜃𝐺𝑅 =
4𝑀𝐺

𝑐2𝑏
(1.18)

can be used as a starting point. While linear superposition of deflections for a mass distribution

does not hold in general relativity, it serves as a good approximation under a few assumptions that
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are valid for many astrophysical applications. We first define the dimensionless quantities of the

lens position (𝜽), source position (𝜷) and reduced deflection angle (𝜶) as their transverse distances

from the line of sight scaled by the radial distances along the line of sight of the planes in which

they lie. (Note that up to this point we used 𝛿𝜃 to refer to the deflection angle.) We can relate them

with,

𝜷 ≈ 𝜽 − 𝜶 (1.19)

assuming that 𝜷, 𝜽 and 𝜶 ≪ 1 and thus are approximately equal to their tangents or sines. These

are vector quantities because we are considering a mass distribution, and the angle between the

differential mass elements and the photon’s path will vary. For surface mass density (integrated

along the line of sight to reduce the mass distribution to a single plane) at position 𝝃′ in the lens

plane, Σ(𝝃′), equation 1.18 gives us,

𝜶(𝝃) ≈ 𝐷𝐿𝑆

𝐷𝑆

4𝐺
𝑐2

∫
R2

(𝝃 − 𝝃′)
|𝝃 − 𝝃′|2

Σ(𝝃′) d2𝝃
′ (1.20)

where 𝐷𝐿𝑆 is the angular diameter distance between the lens plane and the source plane, and 𝐷𝑆 is

the angular diameter distance from the observer to the source plane. Equations 1.19 and 1.20 give

us a map from the lens plane to the source plane.

As mentioned, all angles involved must be small enough for the small-angle approximation to

hold. In other words, the lensing effect must be relatively weak (𝐺𝑀/𝑅 ≪ 𝑐2). Additionally, the

assumption of linear superposition of deflections requires a weak field approximation. Related to

this limit of the strength of the field, we must assume that outside the plane of the lens there is

Minkowski space. Alongside this, we must use the thin lens approximation which assumes the lens

mass to be a 2-dimensional distribution in the lens plane. A final assumption that must be made is

that the relative velocities of the source, lens and observer are all much less than 𝑐.

These assumptions are all valid for the strong gravitational lensing analysis techniques I use

for my research. The largest deflectors involved are galaxies with coincident dark matter halos,

and the extents of their mass distributions are many times smaller that the distances between the

lens, source and observer. Though systems that produce multiple lensed images are referred to as

“strong” lenses and thus we can use the thin-lens approximation, the deflection angles that result

are on the order of milliarcseconds - small enough for the weak field approximation. While these
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analyses consider deflectors all along the line of sight, their effects can be added sequentially along

the line of sight, each producing a deflection in its respective plane. Though these assumptions are

valid for the lens systems considered in my research, they do not apply to lensing as a result of very

extended mass distributions like large scale structure. Lensing of light rays passing very close to

massive objects like black holes also cannot be explained by the quasi-Newtonian approximation

because the small-angle appromximation does not apply.

1.5 Strong Gravitational Lensing to Constrain Dark Matter
Strong gravitational lensing refers to lens systems in which multiple images of the source appear

on the sky. It is a powerful probe of smaller dark matter halos that do not host enough luminous

baryonic matter to be directly observable, as these halos will still impact the gravitational potential.

Depending on the type and extent of emission that is dominant in observations of the background

source, these images can be point-like and clearly separate from one another, useful for flux-ratio

analysis, or extended and blended together in arcs, useful for gravitational imaging (both defined

below; see Figure 1.1).

1.5.1 Flux-Ratio Analysis

When the dominant source emission is very bright and concentrated, such as an AGN, multiple

point-like images result, each with a different magnification. In systems that produce 4 images, the

ratios between the magnified fluxes from each image can be a marker of subhalos associated with

the main lens and field halos along the line of sight halos. A smooth lens model for the main lens

galaxy may accurately reproduce observed image positions, but if the flux ratios it predicts do not

match observations, they are considered “anomalous”. Though, the implication is that additional

structures may be necessary to explain the observed flux ratios. Low-mass halos can cause local

magnification perturbations that explain them, thus the frequency and magnitude of observed flux-

ratio anomalies can be used to learn about clumpy dark matter. This method, flux-ratio analysis, is

the subject of this dissertation.

First introduced in the late 1990s and early 2000s (eg., Mao & Schneider, 1998; Dalal &

Kochanek, 2002), the power of flux-ratio-analysis was limited by the amount of usable observations.

Quadruply-imaged AGN are typically first identified by continuum flux from the accretion disk

around the black hole. The AGN continuum flux, as well as the broad-line emission that comes
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Figure 1.1 Examples of strong gravitational lensing. Each image is centered on a massive elliptical
galaxy that is surrounded by multiple images and/or arcs of the background source. The scale bars
indicate 1”. Left: Quadruply-imaged quasar HE 0435–1223 from Chen et al. (2019) observed
at K’-band with the Near-infrared Camera 2 (NIRC2) on the Keck II telescope. The flux ratios
of the images (labeled ‘A’, ‘B’, ‘C’ and ‘D’) can reveal magnification by dark matter halos.
Right: Another lens sytem observed using the same instrument (Shu et al., in prep). There is a
clearly visible perturbation caused by a dark matter halo (labeled ‘halo’) in the lensed arc, though
gravitational lensing is able to detect much smaller perturbations through detailed lens modeling.

from the volume surrounding the black hole, both span regions that are small enough to be subject

to stellar microlensing. When the source size is smaller than the characteristic lensing scale of stars

along the line of sight, magnification due to these stars has a significant effect on the observed image

fluxes. Since stellar microlensing is indistinguishable from the microlensing by halos that we intend

to detect, observations must be made at wavelengths at which the emission is coming from the

spatially larger components of AGN. Observations of AGN radio emission, mid-infrared emission

from the dust torus and more recently narrow-line region (NLR) emission have all been shown to

span regions large enough to produce flux measurements unaffected by stellar microlensing (eg.,

Moustakas & Metcalf, 2003; Sugai et al., 2007; Patnaik et al., 1999). Each of these does present

its own observational difficulty, though. Only around 10% of AGN are radio-loud, ground-based

mid-infrared observations are subject to noise from thermal emission of the Earth’s atmosphere

and narrow-line observations require adaptive optics-fed (AO) integral field unit (IFU) instruments
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or HST observations. These obstacles long prevented the accumulation of a sample size large

enough to give this method the statistical power to compete with alternatives. However, recent

NLR observations of 8 lens systems (Nierenberg et al., 2020a) nearly doubled the sample size, and

telescopes such as the James Webb Space Telescope (JWST) and Euclid are expected to further

increase it by at least an order of magnitude within the next decade.

In constraining WDM, flux-ratio analysis has most recently been applied by Hsueh et al. (2020)

and Gilman et al. (2020) with independent samples of 7 and 8 lens systems, respectively. They

inferred roughly the same upper bounds on the half-mode mass of log10 (𝑀hm/𝑀⊙) < 7.8, which

translates to a lower bound on the thermal relic particle mass of 𝑚th ≳ 5.2keV. Considering the

current expected halo detection limit of below 𝑀 = 106
⊙ from this method, these findings indicate

that a larger sample size should be able to improve constraints significantly (see Gilman et al.,

2019). Assuming CDM is the truth and the effective half-mode mass is ∼ 10−6𝑀⊙, a larger sample

size should bring down the upper bound asymptotically toward toward the detection limit. Below

this threshold, WDM models are indistinguishable from CDM in the analysis of flux ratios.

1.5.2 Gravitational Imaging

When the dominant source emission is extended, such as a luminous galaxy, the lensed image

consists of longer arcs or full rings. With high resolution observations of the arcs, detailed models

can be made of the mass distribution of the host halo, subhalos around it and halos along the line

of sight using a technique called gravitational imaging (Koopmans, 2005; Vegetti & Koopmans,

2009). Whereas flux-ratio analysis can only constrain parameters pertinent to the entire low-mass

halo population, gravitational imaging can be used to detect the precise masses and locations of

individual halos by detecting localized perturbations in extended arcs (e.g. Vegetti et al., 2010). This

method has been used to detect halos down to 108𝑀⊙ (Vegetti et al., 2012; Vegetti & Vogelsberger,

2014), though resulting constraints on WDM (e.g. Ritondale et al., 2019) have yet to be competitive

with other methods. With the milliarcsecond resolution offered by interferometry (e.g. ALMA,

VLBA), gravitational imaging can theoretically probe down to 106𝑀⊙ (Powell et al., 2022, 2023).

As more high-signal-to-noise and high-resolution data becomes available, gravitational imaging

constraints should improve greatly. Additionally, lensed arcs provide much tighter constraints on

the parameters of the base mass model than can be achieved from modelling only image positions
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and fluxes. This information can be used to inform prior distributions for flux-ratio analysis and

improve constraints from that method.

1.6 Other Astrophysical Probes of Dark Matter
It is invaluable to have independent approaches to constraining dark matter, as each entails its

own assumptions, biases and sources of systematic error. While gravitational lensing avoids many

astrophysical assumptions due to the well-understood nature of gravitation, it relies on assumptions

about the mass distribution of the main lens that may not be accurate (see Chapter 3). Other

observational phenomena that have enabled significant constraints on dark matter include Milky

Way satellites and the Lyman-alpha forest.

1.6.1 Lyman-Alpha Forest

Spectroscopic observation of quasars provides a complementary method for measuring the dark

matter distribution along their lines of sight (see Meiksin, 2009; McQuinn, 2016). The Lyman-

alpha (Ly𝛼) forest, a series of absorption lines blueward of the redshifted Ly𝛼 emission wavelength

of a quasar, acts as a map of the neutral hydrogen along the line of sight that is causing the

absorption. At redshifts 2 ≲ 𝑧 ≲ 6, the range in which most relevant observations are sensitive

to this effect, gravitational forces dominate pressure forces on Ly𝛼 absorbing gas. As a result, the

gas acts as a tracer of dark matter, the dominant gravitating entity in the Universe. For absorber

redshifts ≲ 2, the absorption lines exist at UV wavelengths that require satellite observations to

avoid absorption by the Earth’s atmosphere.

As mentioned, the Ly𝛼 forest consists of a dense group of absorption lines. The wavelength

at which each line appears is related to the redshift of the absorber, and the profile of each line

can be used to determine the column density. With knowledge of the background ionization

rate and the average temperature at its redshift, the overdensity of the absorbing gas can then be

calculated from its optical depth. As a result, each line of sight probes the overdensity of neutral

hydrogen, and in turn dark matter, along it. By cross-correlating nearby lines of sight and using

high resolution spectra to spatially correlate along single lines of sight, we can reveal the Ly𝛼 flux

power spectrum and in turn the dark matter power spectrum that determines it. Comparison to

power spectra generated from hydrodynamical simulations using various models of dark matter

can then constrain the properties of dark matter candidates.
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This method, like strong gravitational lensing, is sensitive to a suppression of the power

spectrum at small scales. However, it allows for measurement at higher redshifts where the matter

power spectrum is more linear and thus easier to reproduce with simulations. This is a unique

strength of Ly𝛼 forest measurements that gravitational lensing studies cannot match. At higher

redshifts, the WDM power spectrum deviates much more strongly from CDM than at lower redshifts

at the same scales. Also, the decrease in the power spectrum at high wavenumbers due to free

streaming of WDM is increasingly, up to at least around 𝑧 = 5, larger that that due to Doppler

broadening of absorption lines, an effect that also washes out small scale power. Thus, high redshift

measurements of the Ly𝛼 forest are particularly powerful. Observations of 2 < 𝑧 < 3 quasars are

also valuable since the ease of observations has allowed the accumulation of more than 50,000

quasar spectra. So far though, the uncertainty of their analysis has been unable to produce as tight

constraints as higher redshift observations (e.g. Viel et al., 2005).

Though higher redshifts offer a more robust probe of the dark matter power spectrum, the

Ly𝛼 forest approach to constraining dark matter requires a deeper understanding of baryonic

physics. In practice, this means many assumptions are made along the way. In getting from

a group of absorption lines to a map of overdensity along the line of sight, the widths of the

lines are used to find the temperature of the absorbing gas. A higher temperature gas consists of

particles with a wider distribution of velocities, which in turn results in a wider distribution of

Ly𝛼 absorption wavelengths and a wider absorption line. Then, a redshift-dependent temperature-

density relation is used to find the overdensity. The parameters of this power law relation, the

mean IGM temperature and the slope, depend on the photo-heating background. The spatial

fluctuations of the UV background also impact the power spectrum and are either modeled or

ignored as a higher-order effect. The amplitude of the power spectrum is set by the effective optical

depth along lines of sight. Additionally, the redshift of reionization impacts the level of Jeans

smoothing (increased temperature/pressure inhibiting gravitational collapse) of the distribution of

gas. This effect must be disentangled from the thermal broadening of absorption lines, and the

power spectrum suppression of both of these must be modeled in order to discern the potential

suppression from WDM. Simulations have successfully reproduced available observations of the

IGM and results of reionization, but many of these variables are not well constrained and rely on

marginalization over a larger range of values to produce constraints on dark matter.
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Compared to strong gravitational lensing, the Ly𝛼 forest provides a view of dark matter over

a larger redshift range. At redshifts comparable to those probed by strong lensing, the lower

end of the mass of halos measured is of order 108𝑀⊙. As mentioned, at higher redshifts Ly𝛼

forest measurements get tighter constraints from larger mass scales, and the tightest constraints on

WDM currently inferred from this method are similar to those recovered via flux-ratio analysis,

log10 (𝑀hm/𝑀⊙) ≲ 8 (Murgia et al., 2018). However, the detailed modeling of strong lensing

systems allows us to resolve individual halos (gravitational imaging only) and potentially discern

between the mass profiles predicted by CDM and WDM (gravitational imaging and flux-ratio

analysis). The main limits of strong lensing are currently instrument resolution and sample size.

On the other hand, the main limits of Ly𝛼 forest measurements are knowledge about the history of

the IGM and its concurrent evolution with dark matter structures. Thus, while current bounds set

by both methods are similar, their advancement will be complementary.

1.6.2 Milky Way Satellites

Dark matter constraints can also be inferred by comparing the observed population of luminous

satellite galaxies in the Milky Way and other nearby galaxies to that predicted by semi-analytical

models (e.g. Lovell et al., 2016) and simulations (e.g. Jethwa et al. 2018; see also Moore et al. 1999;

Nierenberg et al. 2013). Born out of reasoning used to solve the missing satellite problem, this

method has evolved to produce the strongest constraints on WDM to date, log10 (𝑀hm/𝑀⊙) ≲ 7.2

(Nadler et al., 2021). Since our knowledge of satellite galaxies around and near the Milky Way

is incomplete, the assumption of the observation selection function greatly impacts the inferred

constraint. Additionally, the predicted number of luminous satellite galaxies depends on treatment

of galaxy formation and the epoch of reionization in simulations (see Lacey et al., 2016).

1.7 This dissertation
The strength of flux-ratio analysis constraints on dark matter are dependent on the sample size of

lens systems, and their validity requires adequate understanding and modelling of the lens galaxy

mass distribution. The focus of my PhD work has been to maximize the constraining power of

currently available data and to carefully investigate systematic error and biases that may affect the

results. In Chapter 2, I present a joint analysis of the flux ratio samples used by Hsueh et al. (2020)

and Gilman et al. (2020). I detail the creation of model CDM and WDM low-mass halo populations,

19



our Bayesian inference procedure and the context of this analysis within the field. We present the

strongest WDM inference from strong gravitational lensing to date, log10 (𝑀hm/𝑀⊙) < 7.47, and

reproduce the findings of previous works by analyzing corresponding subsamples.

In Chapter 3, I investigate the degeneracy between complex angular structure in the lens galaxy

and low-mass halos when modelling quadruply-imaged quasars. We find that third- and fourth-

order multipoles, which are found in observations of the isophotes of lens-like elliptical galaxies,

can cause flux ratio perturbations in excess of 40 percent. Extreme simulated flux-ratio anomalies

that were induced by CDM halo populations can be recovered within observational uncertainties

by including realistic multipoles and no perturbing halos. Moving forward, flux ratio studies must

find ways to resolve this degeneracy. Otherwise, any constraints on the nature of dark matter cannot

be taken at face value.

In Chapter 4, I summarize the findings presented in this work and provide a framework for

moving forward with flux-ratio analysis. This includes multiple strategies to implement multipoles

within existing analysis procedures and an assessment of the viability of various ways to potentially

mitigate the multipole-halo degeneracy. I conclude by commenting on the future of flux-ratio

analysis as Euclid and JWST promise to dramatically increase the available sample size.
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Chapter 2

Constraining Warm Dark Matter with
Quadruply-Imaged Quasars

We present a Bayesian inference on thermal relic warm dark matter from joint analysis of the flux

ratios of 14 gravitationally lensed quasars. At the 7:1 likelihood ratio level, we put an upper limit on

the half-mode mass of log10 (𝑀hm/𝑀⊙) < 7.47, which corresponds to a particle mass lower limit

of 𝑚th > 6.63keV. This constraint is the strongest placed on warm dark matter from gravitational

lensing, however, we show that it is dependent on the precise evaluation of the likelihood function

when comparing simulated realizations to observations. We also compare results derived from

subsamples from the joint set to those presented in previous works and find good agreement despite

differences in our analysis procedure.

2.1 Introduction
While great progress has been made in confining its behavior and distribution, the fundamental

physics governing dark matter remains unknown. The cold dark matter (CDM) paradigm, which

posits dark matter to consist of non-relativistic, collisionless particles, is successful in describing

cosmic structure at scales larger than ∼ 1 Mpc (e.g. Planck Collaboration et al., 2016) and has

been adopted as the standard in cosmology. However, CDM alone fails to reproduce the observed

distribution of dark matter at galaxy scales and smaller (Bullock & Boylan-Kolchin, 2017). Inclu-

sion of baryons in CDM simulations may reconcile most discrepancies (e.g. Wetzel et al., 2016;

Brooks, 2014), but the potential shortcomings of CDM have motivated exploration of other dark

matter particle candidates that could better match small-scale observations. Though each alter-
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native model produces unique deviations from CDM, common observables used to compare their

halo populations are the halo mass function (HMF) and the concentrations of halos.

The focus of this work, warm dark matter (WDM), posits dark matter particles to be more

relativistic than CDM particles at the time of decoupling. This causes them to diffuse from small-

density perturbations in the early universe. The result is a departure from the hierarchical structure

formation predicted from CDM, a suppression of small-scale structure compared to CDM at all

times, and a reduction in the central density of halos (Bode et al., 2001; Schneider et al., 2012;

Lovell et al., 2014).

In addition to the gravitational lensing method discussed in this paper, other approaches to

constrain alternative dark matter models have been developed over the past few decades that

presently provide similar constraining power. By comparing the population of luminous satellite

galaxies in the Milky Way to expectations from theory and simulations, Nadler et al. (2021) derived

a lower limit of 6.50 keV on the thermal relic particle mass at the 95 per cent confidence level.

This is the strongest constraint on the thermal relic WDM particle mass to date. However, this

method is limited by the availability of high-resolution simulations of Milky Way-like galaxies

and halos. Since the IGM acts as a tracer of the dark matter distribution in the Universe, probing

it with the Lyman-𝛼 forest also provides a way to constrain dark matter candidates (Iršič et al.,

2017; Murgia, 2018; Murgia et al., 2018) that has provided similar and slightly weaker constraints

than lensing and Milky Way satellites depending on assumptions about the IGM. This method is

highly dependent on the thermal history of the IGM and other baryonic physics (Viel et al., 2013).

Disruptions of stellar streams by non-luminous halos also provide a way to probe the HMF at small

scales (Banik et al., 2018, 2021). Due to a relatively small sample size, stellar stream analyses

have yet to constrain WDM as strongly as other methods. Combining results from many of these

complementary approaches, Enzi et al. (2021) derived a joint lower limit of 6.05 keV on the thermal

relic particle mass at the 95 per cent confidence level.

Strong gravitational lensing offers a way to probe the distribution of matter in the universe

without requiring the matter to be baryonic or luminous. Subhalos and line-of-sight (LOS) halos

produce perturbations in the lensing potential expected from a smooth lens model. The resulting

effects on lensed images are thus indicative of small-scale structure. When the dominant source

emission is extended, such as a luminous galaxy with no bright active galactic nucleus (AGN),
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the lensed image consists of arcs or rings. Gravitational imaging (Vegetti & Koopmans, 2009;

Ritondale et al., 2019) allows for detection of perturbing halos without assuming a parametric form

for the substructure.

When the dominant source emission is very bright and compact, such as an AGN, multiple

point-like images result, each with its own magnification that is set by the second derivative of the

lensing potential. Subhalos and field halos can further magnify or demagnify images, introducing

a discrepancy between smooth models and observations. Since the population statistics and

properties of these additional structures that perturb flux ratios are governed by the nature of dark

matter, we can put constraints on different dark matter models based on their ability to reproduce

observed flux ratios. Warmer (lower particle mass) WDM models produce fewer and less dense

perturbers, so the prevalence of anomalous flux ratios provides lower bounds on the potential

particle mass. On the other hand, a multitude of non-detections – lens systems with flux ratios that

are well-described by smooth mass models – could similarly provide an upper bound.

Since its theoretical conception (Mao & Schneider, 1998; Metcalf & Madau, 2001) and first im-

plementation (Dalal & Kochanek, 2002), the flux-ratio analysis method has significantly advanced.

Following research demonstrating the significant impact of baryonic structures on flux ratios, we

model stellar disks in galaxies in which they are observed Hsueh et al. (2016, 2017, 2018); Gilman

et al. (2018). Additionally, Despali et al. (2018) and Gilman et al. (2019) showed the importance

and frequent dominance of LOS halos over galactic subhalos, and simulations have illuminated

more detailed ways of modelling the mass-concentration relation of subhalos and its scatter for

various WDM models and at different redshifts (Duffy et al., 2008; Lovell et al., 2014).

The power of flux-ratio analyses have been limited by small sample sizes of suitable obser-

vational data. Optical emission from Type 1 quasars is usually dominated by emission from the

accretion disk. However, when the size of a source is smaller than the scale of the lensing caus-

tics of stars in the lensing galaxy, magnification due to these stars has a significant effect on the

observed image fluxes. The angular size of the accretion disk is small enough to be subject to this

microlensing by stars. Thus, observations must be made at different wavelengths to measure the

spatially larger components of AGN. Radio, mid-infrared (MIR) and narrrow-line region (NLR)

observations all fulfill this criterion, though each presents its own observational difficulties that

have thus far kept growth of the sample size relatively slow. Recent NLR observations of 8 lens
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systems (Nierenberg et al., 2020a), however, nearly doubled the sample size. Gilman et al. (2020,

hereafter G20) analyzed 8 NLR systems, and Hsueh et al. (2020, hereafter H20) analyzed 7 Radio

or MIR systems. Both works reported similar 95 per cent confidence level lower limits on the

thermal relic WDM partical mass of 𝑚th > 5.2keV and 𝑚th > 5.6keV, respectively.

In this work, we perform a joint analysis on these two lens samples. With the largest flux

ratio sample to date and an updated technique that accumulates developments across the field, we

present the tightest constraints yet on WDM from gravitational lensing.

2.2 Methodology
In this section, we review our flux-ratio analysis framework. This framework is largely similar

to that described in H20, but we have made a number of modifications. Section 2.2.1 details

the lens macro-models including both the dark and baryonic components where applicable. In

Sections 2.2.2 and 2.2.3, we present our calculations for the population statistics of subhalos and

LOS halos, respectively. Sections 2.2.4-2.2.6 describe the combination of these components into

complete model realizations. We then describe our analysis procedure in Section 2.2.7. Finally,

we emphasize the differences between our analysis procedure and those used in H20 and G20 in

Sections 2.2.8 and 2.2.9, respectively.

2.2.1 Macro Model

For the initial macro-modelling of the quad lens systems, we use only the observed image positions

and not their fluxes. As our later analysis allows these fluxes to be different from their expected

smooth model values due to mass perturbations, we do not expect macro-models to be able to

reproduce them simultaneously with the observed positions. We model each main lens as a

singular isothermal ellipsoid (SIE) with external shear. The SIE density as a function of position

with respect to the center is defined as

𝜅(𝑥, 𝑦) = 𝑏

2
√︁
(1 − 𝜖)𝑥2 + (1 + 𝜖)𝑦2

, (2.1)

where 𝑏 is the Einstein radius and the ellipticity, 𝜖 , is related to the axis ratio, 𝑞, by

𝑞2 =
1 − 𝜖

1 + 𝜖
. (2.2)
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For systems with an observed satellite, we model the satellite as a singular isothermal sphere (SIE

with 𝜖 = 0) with its position fixed from observations and its Einstein radius as a free parameter. For

systems with an observed stellar disk, we introduce an exponential disk component with density

defined by

𝜅(𝑥, 𝑦) = 𝑞−1𝜅0 exp
(
−𝜉 (𝑥, 𝑦)

𝑟𝑠

)
, (2.3)

where 𝑞 is the axis ratio, 𝜅0 is the central density, 𝑟𝑠 is the scale length and

𝜉 (𝑥, 𝑦) =
√︄

𝑥2 + 𝑦2

𝑞2 , (2.4)

where (𝑥, 𝑦) is the position with respect to the disk center. The position of the disk’s center, its

axis ratio and its position angle are roughly inferred from imaging then optimized along with 𝜅0,

𝑟𝑠 and the SIE parameters. For all lenses, we used the lensmodel feature of gravlens (Keeton,

2001) to optimize the macro-model parameters.

2.2.2 Substructures

We quantify the “warmth” of WDM models with the half-mode mass, 𝑀hm, which is the mass scale

at which the transfer function is suppressed by one-half compared to that of CDM. For CDM as

WIMPs, 𝑀hm ≈ 10−6𝑀⊙ (Schneider et al., 2013). 𝑀hm can be related to the thermal relic particle

mass, 𝑚th, via

𝑀hm =
4𝜋
3
�̄�

(
6.97𝜆eff

fs

)3
, (2.5)

(Schneider et al., 2012), where �̄� is the background density of the universe and 𝜆eff
fs , the effective

free-streaming length scale, is defined by

𝜆eff
fs = 0.049

( 𝑚th
keV

)−1.11
(
Ωth
0.25

)0.11 (
ℎ

0.7

)1.22
Mpc h−1 (2.6)

(Viel et al., 2005). Combining these and assuming Ωth = 0.25 and ℎ = 0.68 (Planck Collaboration

et al., 2016), the relationship between the half-mode mass and the thermal relic paricle mass is

𝑚th = 2.30
(
𝑀hm

109

)−0.3
keV . (2.7)
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Thus, a lower WDM particle mass results in a higher half-mode mass and a warmer model with

suppression of structures up to higher mass scales.

We model all subhalos with spherical NFW profiles (Navarro et al., 1997) with concentrations

determined from a mass-concentration relation (detailed in Chapter 3) derived from simulations

(Ishiyama & Ando, 2020; Moliné et al., 2023). As Despali et al. (2018) have shown the effects

to be small compared to the scatter on the mass-concentration relation, we do not include tidal

truncation or a dependence on the distance from the main lens center of the mass-concentration

relation. We parameterize the CDM subhalo mass function (SHMF, the number of subhalos within

the mass range 𝑚, 𝑚 + 𝑑𝑚) as

𝑛CDM(𝑚) = 𝑑𝑁sub(𝑚)
𝑑𝑚

= 𝐴0 𝑚
−1.9 (2.8)

(Schneider et al., 2012; Lovell et al., 2014), where 𝐴0 is a normalization factor set by the fraction

of mass in substructure for CDM, 𝑓sub. To calculate and define 𝑓sub, we consider a region that is

twice the Einstein radius (𝜃E) of the host halo. We use this 2𝜃E boundary to define the projected

mass of the host halo, 𝑀proj, and the total mass and number of subhalos generated using a CDM

mass function, 𝑀sub and 𝑁sub, respectively. We then define 𝑓sub as

𝑓sub =
𝑀sub
𝑀proj

=

∫ 𝑀high
𝑀low

𝑛sub(𝑚) 𝑚 𝑑𝑚

𝑀proj
, (2.9)

with (𝑀low, 𝑀high) = (106, 109)𝑀⊙. We expect subhalos below this mass range to be below our

detection threshold and halos above this mass range to contain enough luminous baryonic mass to

be directly observed (see e.g. Yuan et al., 2022).

For WDM models, we implement a suppression factor such that

𝑛WDM(𝑚)
𝑛CDM(𝑚) =

(
1 + 𝑀hm

𝑚

)−1.3
(2.10)

(Schneider et al., 2012; Lovell et al., 2014). Since 𝑓sub and 𝑀proj are explicitly chosen for each

model, we can determine 𝐴0. Though we calculate its value to produce the desired 𝑓sub assuming

CDM (𝑀hm = 0), we use the same 𝐴0 for all WDM models with the same desired 𝑓sub. This
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ensures that at mass scales higher than that at which there is suppression of the WDM SHMF, the

CDM and WDM SHMFs align. As a result, 𝑓sub for WDM models is not equal to the true fraction

of the mass in substructures.

2.2.3 Line of Sight

In addition to the flux perturbations from dark matter in subhalos of the main lens, significant

and often dominant effects come from halos along the line of sight (Despali et al., 2018). We

consider the relevant volume to be contained within two cones that share a base with radius 2𝜃E

in the lens plane. One cone intersects a circle with radius 𝜃E in the source plane, and the other

comes to a point in observer planes. This volume is centered on the lensing galaxy. We then divide

this double-cone into 200 equally-spaced redshift slices. This spacing is small enough to preserve

reasonable agreement between line-of-sight halo populations in different realizations using the

same model parameters while ensuring computational efficiency.

For the line-of-sight HMF, we use the parameterization described by Sheth & Tormen (1999)

and consider halos in the mass range 105.26𝑀⊙ < 𝑚vir < 1010.88𝑀⊙. Specifically, we follow

the implementation of Despali et al. (2016) and use their best-fitting parameters (shown to be

universal when halos are identified by virial overdensity) optimized over all considered redshifts

and cosmologies. We notate the LOS HMF as 𝑛los(𝑚, 𝑧𝑖), where 𝑧𝑖 is the redshift of a particular

plane along the line of sight. Using the volume of each redshift slice and the HMF evaluated at

its midpoint redshift, we calculate the expected number of line-of-sight halos. We use the same

suppression factor for WDM models here as we did for the subhalo mass function (see equation

2.10). For the line-of-sight mass-concentration relation we use that reported by Duffy et al. (2008)

from N-body simulations using the virial radius definition of relaxed halos between redshifts 0 and

2, and we apply the associated scatter on the parameters.

2.2.4 Source

The size of the narrow-line region, the largest of the AGN components used for flux-ratio analysis,

ranges from 1pc to up to 60pc (Nierenberg et al., 2017), and the effect of perturbers on the

magnification of lensed images decreases with increasing source size. For increased computational

efficiency, we use point-like sources in our analysis. However, the lens systems that most strongly

impact our results come from the Radio/MIR sample, and are thus expected to have sources smaller
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than 10pc (Burtscher et al., 2013; Kim et al., 2022). As a result, we expect this choice to have

minimal impact on our findings.

2.2.5 Likelihood Calculation

We adopt a Bayesian approach to evaluate the posterior probability densities of the mass function

parameters, 𝑀hm and 𝑓sub, which we will refer to as ®𝜃. We will refer to the macro-model parameters

that describe the main lens SIE and external shear (Γ), source information and any observed satellites

or disks as ®𝜃𝑀 , and we will refer to the perturber parameters that describe substructures’ and LOS

halos’ quantity, masses, concentrations and positions as ®𝜃𝑚. By Bayes’ theorem, the posterior

probability density of ®𝜃 given the observed data d is,

𝑃( ®𝜃 |d) ∝
∫

𝑃(d| ®𝜃, ®𝜃𝑀 , ®𝜃𝑚)𝑃( ®𝜃𝑚 | ®𝜃, ®𝜃𝑀) × 𝑃( ®𝜃)𝑃( ®𝜃𝑀)𝑑 ®𝜃𝑀𝑑 ®𝜃𝑚 . (2.11)

𝑃( ®𝜃𝑚 | ®𝜃, ®𝜃𝑀) is detailed in Sections 2.2.2 and 2.2.3, and we discuss the choice of priors on ®𝜃 and ®𝜃𝑀
in Section 2.2.6. Assuming Gaussian errors on the observed fluxes, we approximate the likelihood

function as,

𝑃(d| ®𝜃, ®𝜃𝑀 , ®𝜃𝑚) ≈ exp

(
−
𝜒2

flux + 𝜒2
pos

2

)
. (2.12)

2.2.6 Priors

To implement a prior on the macro-model parameters, we use Markov chain Monte Carlo (MCMC)

to sample the parameter space. As with the original model, we use only the image positions and not

the fluxes to evaluate 𝜒2 since in many cases perturbing masses are needed to reproduce observed

fluxes. For each lens system, we evaluate 105 MCMC steps, leaving all SIE+Γ parameters free for

the main halo, the Einstein radius free for any observed satellites, and the mass free for observed

stellar disks. We use the emcee package for all MCMC (Foreman-Mackey et al., 2013). We also let

the source position vary freely. For each lens, we ensure chain convergence and a densely sampled

parameter space.

We set the priors on ®𝜃 to be uniform in logarithmic space and encapsulate the entire ranges

that are consistent with existing constraints and our ability to detect differences between models.

For 𝑀hm, we cover 106 < 𝑀hm < 1013𝑀⊙, and for 𝑓sub we cover 10−4 < 𝑓sub < 10−1.25 (.25 dex

spacing for both parameters). This results in a 29 × 11 grid of parameter combinations, each of
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which describes a WDM model. For each of these model grid points, we use the same set of

randomly selected macro-model realizations.

2.2.7 Analysis Scheme

For each realization, we draw a sample of perturbers according to the mass functions set by the

dark matter model parameters and macro-model. For subhalos, we start by calculating the expected

total number, 𝜇sub, from the subhalo mass function, 𝑛sub(𝑚) (equation 2.8). The subhalo mass

function has a slope dependent on 𝑀hm and normalization dependent on both 𝑓sub and the mass of

the host halo. For each realization, we draw the total number of subhalos, 𝑁sub, from a Poisson

distribution with expectation value 𝜇sub. From a probability distribution created by normalizing

the subhalo mass function to unity,

𝑃sub(𝑚) = 𝑛sub(𝑚)∫ 𝑀high
𝑀low

𝑛sub(𝑚′)𝑑𝑚′
, (2.13)

we randomly draw 𝑁sub subhalo masses. The subhalos are all placed in the redshift plane of the main

lens, and the angular positions of the resulting set of subhalos are assigned by drawing randomly

from a uniform spatial distribution within 2𝜃E of the lens center. While the spatial distribution of

subhalos is not truly uniform around the center of the host halo (e.g. tidal disruption prevents more

massive subhalos from surviving near the center), simulations show this to be approximately true

in projection (Xu et al., 2015).

For LOS halos, generating realizations is more involved since the mass function, 𝑛los(𝑚, 𝑧𝑖), is

a number density that is dependent on redshift in addition to 𝑀hm (it is independent of 𝑓sub and the

host halo mass). To find an expectation value for the total number of LOS halos, 𝜇los, we calculate

the expected number of halos in each redshift bin, 𝜇𝑖, and take the sum as,

𝜇los =
∑︁
𝑖

𝜇(𝑧𝑖) =
∑︁
𝑖

𝑉𝑖

∫ 𝑀high

𝑀low

𝑛los(𝑚, 𝑧𝑖)𝑑𝑚 (2.14)

where 𝑉𝑖 is the volume of the 𝑖th redshift bin. For each realization we draw the total number of

LOS halos, 𝑁los, from a Poisson distribution with mean 𝜇los. The redshifts of the LOS halos are

then drawn from a probability distribution created by integrating the mass function over mass and
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normalizing to unity as

𝑃los(𝑧𝑖) = 𝜇(𝑧𝑖)
𝜇los

. (2.15)

The masses of these halos are then drawn from probability distributions created by normalizing to

unity the mass function for each individual redshift bin as

𝑃los(𝑚 |𝑧𝑖) = 𝑛los(𝑚, 𝑧𝑖)∫ 𝑀high
𝑀low

𝑛los(𝑚′, 𝑧𝑖)𝑑𝑚′
. (2.16)

The angular positions are assigned randomly from a uniform spatial distribution within the bound-

aries defined by the double cone structure as outlined in Section 2.2.3. Finally, we remove mass

from the main lens to account for that added by the perturber population.

For each (𝑀hm, 𝑓sub) grid point, we stochastically generate 2000 model realizations consisting

of a macro-model, subhalos and LOS halos. For realizations that contain at least one perturber,

we then optimize the macro-model parameters to account for small shifts in image positions due to

the added mass. For some lens systems, high-perturber realizations do not produce 4 images even

after attempted optimization. For these realizations, we assign the likelihood to be null.

2.2.8 Changes from Hsueh et al. (2020)

Our flux-ratio analysis procedure is an extension of that used by H20. We have, however, made

a number of improvements that keep this research up-to-date with WDM simulations and theory,

increase computational efficiency and reduce systematic error. Whereas previous analysis by

H20 used multi-dimensional Gaussian fits to the posterior to draw macro-model realizations, we

draw directly from random permutations of the MCMC chains. We found this method to be

computationally efficient and to produce samples that are representative of the true parameter

space. For all 𝑀hm- 𝑓sub grid points for a lens, we use the same sample of macro-model draws.

Another key difference between these two approaches is the way we address the rarity of matching

a macro-model to a perturber population that actually brings the flux ratios closer to the observed

values. For colder models with many perturbers, most random combinations of macro-models

and perturbers will result in flux ratios and image positions that are worse than the macro-model

alone. H20 drew tens of thousands of realizations for each grid point for each lens (requiring

upwards of 107 realizations per lens) to account for this. Instead, we optimize the macro-model
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parameters for each realization after the perturbers are been added (see Section 2.4.1). While

increasing the computing time required for each realization, this greatly reduces the number of

ill-fitting realizations with insignificant likelihood contributions and increases the efficiency of our

analysis.

For both LOS halos and subhalos, we also update the concentration-mass relation. H20 used

the relation from Duffy et al. (2008) without the associated scatter for both. As mentioned in

Section 2.2.3, we implement scatter on this relation for LOS halos. We adopt an entirely different

approach dependent on both mass and redshift that is described in Chapter 3. In addition to these

changes, we remedied small bugs in the code we adopted related to handling realizations with low

expectation values for the number of perturbers and factors of the dimensionless Hubble constant.

2.2.9 Comparison to Gilman et al. (2020)

To aid in the comparison between this work and previous analysis of the NLR lens systems in

our sample (excluding SDSS J1330+1810), we detail some of the key differences between our

analysis procedure and that used by G20. We uniformly sample the parameter space of 𝑀hm and

𝑓sub by evaluating the likelihood over a grid of values allowed by our priors, using the same sets

of MCMC-generated macro-model parameters with perturber populations generated at each grid

point. G20 simultaneously sampled 𝑀hm and 𝑓sub along with the macro-model parameters for each

lens. They also allow the power-law slope of the main deflector to vary, while we keep it fixed so

that they are all isothermal. G20 also simultaneously samples the logarithmic slope of the subhalo

mass function with a uniform prior between -1.95 and -1.85 whereas we leave it fixed at -1.9 (see

equation 2.8). They report evaluating between 300,000 and 1,200,000 realizations per lens system,

and we evaluate between 600,000 and 2,500,000.

When evaluating the likelihood contribution for each realization, G20 only include models

that predict the observed image positions and use a summary statistic calculated solely using

model-predicted and observed fluxes. Lens system-dependent astrometric perturbations and flux

uncertainties are sampled simultaneously with other model parameters and added to the observed

values before comparison to predicted values. As described in Section 2.2.5, we evaluate the

likelihood contribution for each realization using the combined 𝜒2 from image positions and fluxes,

and we use fixed values for the uncertainties on both for each lens. To allow for a readier comparison
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with their work, we also include inferences calculated using only fluxes from realizations that match

the observed image positions within 3𝜎.

2.3 Data
The 14 quadruply imaged quasar lens systems in our sample consist of 6 with radio or MIR

flux measurements and 8 with NLR flux measurements. We model all lensing galaxies with

singular isothermal ellipsoids with shear components. We model measured satellites with singular

isothermal spheres, and we model measured stellar disks with exponential disks. The best-fit model

parameters for each lens are shown in Table 3.2.

2.3.1 NLR Systems

For 7 of the 8 NLR systems, WGD J0405-3308, RX J0911+0551, SDSS J1330+1810, PS J1606-

2333, WFI 2026-4536, WFI 2033-4723 and WGD J2038-4008, we collect all position and flux

measurements from Nierenberg et al. (2020a). We collect position and flux measurements for

lens system HE0435-1223 from Nierenberg et al. (2017). For all of these, they used the Hubble

Space Telescope (HST) F105W/F140W direct imaging for image and galaxy positions, and they

measured narrow line fluxes from G102/G141 spectra. Though they also report measurements

for HS 0810+2554, we exclude it from our analysis. Due to the unusually high magnification of

merging images A1 and A2, there is likely to be blending that renders analysis of the flux ratios

inappropriate.

RX J0911+0551, PS J1606-2333 and WFI 2033-4723 all have satellite galaxies, and SDSS

J1330+1810 has an associated stellar disk. All of our lens models were created independently of

those included in Nierenberg et al. (2020a), but with the exception of SDSS J1330+1810 (they

did not model the stellar disk) they show good agreement in both model parameters and resulting

model flux ratios.

The NLR sample mostly overlaps with that used in G20 with the exceptions of our inclusion

of SDSS J1330+1810 and exclusion of JVAS B1422+231. Instead, we include JVAS B1422+231

in our Radio/MIR sample since the errors on image positions and fluxes reported in Patnaik et al.

(1999) are smaller than the NLR ones reported in Nierenberg et al. (2014).
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2.3.2 Radio and MIR Systems

We include 5 of the same radio and MIR lens systems and references as did H20. These in-

clude CLASS B0128+437, CLASS B0712+472, PG 1115+080, JVAS B1422+231, and CLASS

B1555+375. We do not include MG J0414+0534 since the source is quite extended (about 200 pc

in a linear extent; see Stacey et al. (2020)) and cannot be considered a point-like source. CLASS

B0712+472 and CLASS B1555+375 have observed stellar disks which we include in our models.

Our lens models were created independently of those included in H20, but there is mostly good

agreement between them aside from CLASS B1555+375.

We also include CLASS B1608+656 (Myers et al., 1995; Fassnacht et al., 1999, 2002), which

has two “main” lensing galaxies. For this lens, we model both lensing galaxies as SIEs with

nonzero ellipticity (all other satellite galaxies are modeled as spherically symmetric). We base our

initial lens model on that reported in Fassnacht et al. (2002).

In the case of CLASS B1555+375, our lens model differs significantly from that used by H20.

In the methodology employed by Hsueh et al. (2016), the center position, the ellipticity and position

angle of the exponential disk are roughly inferred from NICMOS F160W imaging. These four

quantities are fixed in further lens modelling and analysis. They found that this SIE+exponential

disk model is able to match observed flux ratios significantly better than an SIE+Γ model, but it

still leaves two flux ratios with approximately 2𝜎 discrepancies between modelled and observed.

However, when we allow the center of the disk to vary with respect to the center of the SIE, we

find a model that fits all image positions and flux ratios within 1𝜎. The resulting model still aligns

qualitatively with the imaging of the disk. We leave further investigation of the comparison of

these models for future work and proceed with the updated model that best fits the observed data.

2.4 Results
2.4.1 Perturbers and Macro Model Optimization

Though perturbations to a smooth lensing potential via subhalos and LOS halos are often necessary

to reproduce observed flux ratios between images, the majority of the randomly generated realiza-

tions in our analysis do not fit the observed data better than the smooth model. Optimizing the

macro-model parameters after adding perturbers greatly improves the positions of most of these

otherwise poor-fitting realizations. Despite this, the likelihoods calculated for each model grid
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(a) Adding perturbers (subhalos and LOS halos) to
macro-model without optimizing.

(b) Total change from adding perturbers and optimiz-
ing macro-model.

Figure 2.1 Histograms showing the changes in distance (left) and flux (right) 𝜒2 from adding
perturbers and re-optimizing the macro-model parameters in 2000 realizations of PG 1115+080
with 𝑀hm = 106𝑀⊙ and 𝑓sub = 10−2. 367 of these 2000 realizations resulted in a number of images
other than four, and they are not included in the histograms. In our likelihood calculations, these
are assigned infinitely small likelihoods.

point are dominated by a small group of the best-fitting realizations.

Figure 2.1 shows the change in fit (measured by 𝜒2) of both image positions and fluxes due to

the addition of perturbers to a smooth macro-model of and subsequent macro-model optimization

for PG 1115+080. While the magnitudes of the changes differ between lens systems, the general

behavior is similar for all lens systems with flux ratios that cannot be fit by a smooth macro-model.

As shown in Figure 2.1a, the addition of perturbers, while improving some flux ratio fits and

worsening others, worsens the image position fits for almost all realizations. This is expected since

the macro-model parameters were chosen to fit the positions well alone. The optimization largely

corrects both the positions and fluxes that were worsened by the addition of perturbers. The overall

change from adding perturbers and then optimizing macro-model parameters is demonstrated in

Figure 2.1b. While a large portion of realizations end up fitting worse than the smooth models

alone, there is a significant group remaining with improved fluxes and/or positions. Of these 2000

realizations, 911 have overall improved fluxes, 641 have improved positions and 322 have both

improved positions and fluxes.

Figure 2.2 shows the top four realizations from the same subsample of 2000 realizations for

PG 1115+080 as Figure 2.1. PG 1115+080 is a lens system with fluxes that cannot be exactly
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Figure 2.2 The top 4 highest likelihood (flux+pos) realizations for PG 1115+080 (𝑀hm = 106𝑀⊙,
𝑓sub = 10−2). The first four columns from the left show 0.1” cutouts around the four images with the
foreground (orange) and background (blue) LOS halos and subhalos (green) plotted as circles. The
perturbers are all scaled proportionally to their Einstein radii. Observed image positions are shown
by green crosses, and model-predicted (macro+perturbers+re-opt) image positions are shown by
red triangles. The column on the right shows the flux ratios corresponding to each realization. The
green brackets show the ±1𝜎 range of the observed flux ratios, the blue dots show the macro-model
predicted flux ratios, and the red dots show the macro+perturbers+re-opt predicted flux ratios.
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reproduced by a smooth lens model. Our smooth models over-predict flux ratio C/A1 and fail to

produce any realizations with C/A1 within 1𝜎 of the observed value. Smooth models do produce

B/A1 flux ratios within 1𝜎 of the observed value, but the distribution is centered above the observed

value. The realizations with the best fits have numerous (or a few massive) perturbers in the vicinity

of these images that are decreasing the fluxes of images B and C and/or increasing the flux of image

A1. In the realization at the top of Figure 2.2, there is a foreground LOS halo magnifying A1 such

that the flux ratios B/A1 and C/A1 match the predicted ones significantly better than the smooth

model. Despite the fact that the A2/A1 flux ratio is made worse than the smooth model, there is

still overall improvement in the fit and this realization is ranked highly. Typically, large differences

between the likelihood contributions of the top few samples indicates that more realizations are

necessary. Indeed, with only 2000 realizations, PG 1115+080 returns a very noisy contribution to

our inference on 𝑀hm. In our complete analysis of this lens (shown in Section 2.4.2), we generate

8000 realizations for the inference to converge to a stable value.

2.4.2 Example Inferences from Individual Lens Systems

In this section, we present individual results from 3 lens systems to highlight specific features

within them. We include similar plots for the remaining lens systems in Appendix A.

2.4.2.1 PG 1115+080

As shown in Figure 2.3, PG 1115+080 strongly favors colder models which have more perturbers.

As shown in Section 2.4.1 and much prior analysis of this lens (Chiba et al. 2005; H20), smooth

models are unable to exactly fit the observed flux ratios of this lens. Warmer models with

𝑀hm > 1010𝑀⊙ generate few to no perturbers regardless of 𝑓sub due to mass function suppression.

Thus, they produce realizations with flux ratios approximately unchanged from those of the input

smooth models. Increasingly colder models produce increasingly more perturbers for all 𝑓sub

values, and the resulting realizations have a wider distribution of flux ratios which include the

measured values. The likelihood monotonically increases as 𝑀hm decreases, showing that colder

models more often produce realizations that match the observations.

Though this lens does not provide nearly as strong a constraint on 𝑓sub as it does on 𝑀hm,

the marginalized likelihood for lower values of 𝑓sub is slightly higher than it is for higher values

(above 10−3). At low values of 𝑀hm and high values of 𝑓sub, excessive perturbation often results in
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Figure 2.3 The grid on the bottom left shows the two-dimensional posterior probability distribution
of 𝑀hm and 𝑓sub recovered from analysis of PG 1115+080. The likelihood for each grid point is
calculated using both the image positions and fluxes. The top panel shows the result of marginalizing
over 𝑓sub to get the posterior of 𝑀hm, and the right panel shows the result of marginalizing over
𝑀hm to get the posterior of 𝑓sub.

Figure 2.4 Flux ratio histograms for PG 1115+080 with 𝑀hm = 106𝑀⊙ and 𝑓sub = 10−2. The black
lines and surrounding gray regions show the observed values and their corresponding measurement
errors, and the blue histograms show the results from full model raytracing. 6642/8000 realizations
produced 4 images and are included in this plot.
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Figure 2.5 Same as Figure 2.3, except for WGD J0405-3308.

lens configurations that do not produce four images even after attempted macro-model parameter

optimization. For 𝑀hm = 106𝑀⊙, lower 𝑓sub values (between 10−4 and 10−3) result in more than

95% of realizations returning four images. Each successively higher 𝑓sub value results in fewer four-

image realizations, and by the maximum 𝑓sub = 10−1.25, only about 40% of realizations produce

four images. Since realizations that do not produce four images do not contribute to the likelihood

for a grid point, higher 𝑓sub values end up with slightly lower marginalized likelihoods.

2.4.2.2 WGD J0405-3308

As shown in Figure 2.5, WGD J0405-3308 favors colder models which have more perturbers. Like

PG 1115+080, smooth models are unable to exactly fit the observed flux ratios of this lens. The

degree to which this lens favors colder models is lesser than it is for PG 1115+080. The reason

may be that there is only disagreement between macro-model predictions and one of the observed

flux ratios for WGD J0405-3308 (as opposed to two for PG 1115+080), and a smaller percentage of

realizations are able to improve the discrepant flux ratio. Higher values of 𝑓sub are slightly favored.

While cold, high- 𝑓sub models result in some realizations returning non-four-image realizations, the

frequency of this is much smaller than for PG 1115+080.
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Figure 2.6 Same as Figure 2.1, except for WGD J0405-3308. 1890/2000 realizations produced 4
images and are included in this plot.

2.4.2.3 WFI 2033-4723

Like PG 1115+080 and WGD J0405-3308, WFI 2033-4723 has flux ratios that cannot be matched

by smooth models alone. As shown in Figure 2.7, it favors increasingly colder models down to

𝑀hm ≈ 107𝑀⊙. Below this, however, the posterior probability distribution begins to drop again.

To verify this trend and allow more complete comparison to the results for this lens from G20,

we evaluate 𝑀hm = 105𝑀⊙ grid points and interpolate. The likelihood does continue to drop off,

though at a declining rate, and for high 𝑓sub, 𝑀hm = 105𝑀⊙ grid points, almost no realizations

return four images. This lens does not provide any constraint on 𝑓sub.

These findings do not agree with a similar analysis of the lens by G20. They found that the

likelihood continues to rise monotonically as 𝑀hm decreases. Additionally, their highest-likelihood

realizations were able to exactly reproduce the observed flux ratios, whereas ours still have < 1𝜎

discrepancies. While the differences between our overall analysis procedures (see Section 2.2.9)

may contribute this difference, G20 added an additional component to their macro-model to describe

a nearby galaxy that we exclude. We suspect this added freedom in their model to contribute to the

difference between our results for this lens.
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Figure 2.7 Same as Figure 2.3, except for WFI 2033-4723.

Figure 2.8 Same as Figure 2.3, except for WFI 2026-4536.
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2.4.2.4 WFI 2026-4536

As shown in Figure 2.8, WFI 2026-4536 favors warmer models that have fewer perturbers. This

lens system has image positions and fluxes that can be perfectly described by a smooth macro-

model. Warmer models with few to no perturbers can thus produce realizations that fit very well.

Since there is no room for improvement of image positions and fluxes, colder models with more

perturbers can only fit as well or worse. Many perturber arrangements leave images relatively

unaffected. In rare cases, perturber arrangements may improve macro-models that do not fit well

on their own. However, a much more common scenario is for perturbations to worsen the fit. As

a result, models with lower 𝑀hm values have lower marginalized likelihoods for this lens. This

lens system provides almost no information about 𝑓sub since the marginalized 𝑓sub likelihoods are

dominated by warm realizations with few to no subhalos.

Note that this lens favors higher 𝑀hm values much less strongly than PG 1115+080 favors

lower 𝑀hm values. In general, lens systems with ‘anomalous’ flux ratios that can be resolved with

perturbers (such as PG 1115+080) favor colder models more strongly than lens systems with flux

ratios that can be reproduced with smooth models (such as WFI 2026-4536) favor warmer models.

The former is a ‘detection’ of perturbation by low-mass dark matter halos that provides strong

evidence against a model with significant mass function suppression at that mass scale. The latter

is a ‘non-detection’ and requires many others like it to provide similarly strong evidence for a model

with significant mass function suppression at that mass scale.

2.4.3 Inference on Thermal Relic WDM Particle Mass

In order to obtain an an inference on 𝑀hm from the 2D likelihoods shown in Figure 2.9, we

marginalize over 𝑓sub. Figure 2.10 presents the normalized posterior probability distributions that

result. Table 2.2 shows the resulting 7:1, 20:1 and 30:1 likelihood ratio as well as 95% confidence

level upper limits on the half-mode mass, 𝑀hm, and corresponding lower limits on particle mass,

𝑚th, assuming thermal relic WDM. We choose these constraint criteria in order to allow for

comparison to constraints published in previous work. We report the values derived from the joint

sample, the NLR and Radio/MIR subsets, and a subset that matches the lens sample used by G20,

which we refer to as NLR+B1422 or G20-like.

Though it is a commonly used statistic in the literature, the 95% (2𝜎) bound in this case is
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highly dependent on the choice of a prior on 𝑀hm. H20 use −6.0 < log10 (𝑀hm/𝑀⊙) < 9.0,

G20 use 4.8 < log10 (𝑀hm/𝑀⊙) < 10.0, and in this work we use 6.0 < log10 (𝑀hm/𝑀⊙) < 13.0.

Models with log10 (𝑀hm/𝑀⊙) < 6.0 produce similar populations of perturbers above our detection

threshold. Thus, we do not expect to find a significant difference between the likelihood inferred for

CDM and a WDM model with log10 (𝑀hm/𝑀⊙) < 6.0. Thus, we expect the posterior probabilities

for all models below this point to be roughly equal. Lowering the extent of the prior on 𝑀hm

can then significantly change the constraining power of the 95% (2𝜎) statistic. The lenses which

we have explored down to log10 (𝑀hm/𝑀⊙) = 5.0 indicate that we are approaching our detection

threshold, but we will check this in more detail in future work. Likelihood ratio constraints avoid

these concerns related to the choice of prior and are only dependent on the maximum of the

distribution. If the likelihood function flattens below our lower bound on 𝑀hm, extending the prior

lower will not change their strength. The 7:1 likelihood ratio roughly corresponds to the ratio

between the maximum height of a Gaussian distribution and its height at 2𝜎, and we mainly rely

on this statistic in the following discussion for its robustness.

2.4.3.1 Joint Sample

As expected, our strongest constraints come from the joint sample of all 14 lenses studied in

this work. Using only the fluxes from realizations with image positions that fit within 3𝜎 to

calculate the likelihood, we constrain thermal relic WDM to models with log10 (𝑀hm/𝑀⊙) < 7.47

(𝑚th > 6.63keV) with a 7:1 likelihood ratio. This is the strongest constraint on WDM to be set from

a gravitational lensing-only analysis to date. This inference weakens to log10 (𝑀hm/𝑀⊙) < 7.63

(𝑚th > 5.93keV) if we instead use both image fluxes and positions to calculate the likelihood. In

either case, the inference is most strongly driven by two lenses from our Radio/MIR sample, PG

1115+080 and JVAS B1422+231, which have flux ratios that cannot be matched with a smooth

macro-model and can be matched with the addition of perturbers (see figures 2.9 and 2.10).

2.4.3.2 NLR

Our NLR sample, which includes SDSS J1330+1810 and excludes JVAS B1422+231, provides

relatively weak constraints on its own of log10 (𝑀hm/𝑀⊙) < 9.15 (𝑚th > 2.08keV) with a 7:1

likelihood ratio using fluxes and positions. The lens that contributes most strongly to this inference

is WGD J0405-3308. Though they favor warmer models less strongly than other lenses favor colder

models, HE0435-1223 and WFI 2026-4536, the lenses which most strongly favor warmer models,
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Figure 2.9 Plots similar to Figure 2.3, except for combined NLR (top left), NLR+B1422 (top right),
Radio/MIR (bottom left) and full Joint (bottom right) samples. Distributions from individual lenses
are shown in dashed (NLR) and dotted (Radio/MIR) colorful lines, and joint distributions for each
sample are shown in solid black.
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Figure 2.10 Normalized posterior probability distributions of log10(𝑀hm) from the (top to bottom)
NLR, NLR+B1422, Radio/MIR and joint samples. Distributions from individual lenses are shown
in dashed (NLR) and dotted (Radio/MIR) lines, and joint distributions for each sample are shown
in solid black. Colors for individual lenses are the same as those described in the legend of Figure
2.9. The left hand column is calculated using both the image positions and fluxes, and the right
hand column is calculated using only the fluxes from realizations with all image positions within
3𝜎 of observed positions. Vertical black lines show joint 7:1 t likelihood ratios relative to the peaks
of the joint distributions.
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Table 2.2 Inferences on the upper limit of 𝑀hm from all sample sets and various levels of constraint.
Shown are upper limits on log10 (𝑀hm/𝑀⊙) with corresponding lower limits on 𝑚th/keV shown
in parentheses (see equations 2.5 and 2.6). We calculate 7:1, 20:1 and 30:1 likelihood ratios with
respect to the maximum likelihoods. The last column shows the 95% confidence level limits. Note
that we were unable to place 20:1 and 30:1 likelihood ratio constraints with the flux-only method
for the NLR sample that excludes B1422.

log10 (𝑀hm/𝑀⊙) Upper Bound 𝑚th/keV Lower Bound
Sample 7:1 20:1 30:1 95% 7:1 20:1 30:1 95%
NLR
flux+pos 9.15 9.88 10.25 9.93 2.08 1.25 0.97 1.21
flux 8.46 - - 12.0 3.35 - - 0.29
NLR+B1422∗

flux+pos 8.38 8.88 8.98 8.27 3.53 2.50 2.34 3.81
flux 7.81 8.40 8.47 8.13 5.23 3.49 3.31 4.20
Radio/MIR
flux+pos 7.99 8.48 8.62 8.01 4.63 3.29 2.99 4.56
flux 8.02 8.63 8.70 8.00 4.53 2.98 2.84 4.59
Joint
flux+pos 7.63 8.49 8.31 7.80 5.93 3.28 3.72 5.28
flux 7.47 7.91 7.96 7.56 6.63 4.88 4.72 6.23

∗ In order to replicate the sample used by G20, the NLR+B1422 includes lens system B1422+231
with larger measurement uncertainties on image positions and fluxes that correspond to the NLR
measurements of this system and excludes SDSS J1330+1810.

are also included in this set.

2.4.3.3 NLR+B1422

This group of lenses, which is the same as the NLR sample with the inclusion of JVAS B1422+231

and exclusion of SDSS J1330+1810, exactly matches the set used by G20. From it, we draw

constraints of log10 (𝑀hm/𝑀⊙) < 7.81 (𝑚th > 5.23keV) with a 7:1 likelihood ratio using fluxes

only and log10 (𝑀hm/𝑀⊙) < 8.38 (𝑚th > 3.53keV) using fluxes and positions. These 7:1 flux-

only constraints are in excellent agreement those made by G20 at 2𝜎, log10 (𝑀hm/𝑀⊙) < 7.8

(𝑚th > 5.20keV). Our 2𝜎 limits are significantly weaker than theirs, which is expected due to their

lower-extending prior. The 7:1 and 30:1 likelihood ratio constraints that they report, however, fall

between our flux-only and flux and position values.
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2.4.3.4 Radio/MIR

Our Radio/MIR sample contains the two most constraining (favoring colder models) lenses, JVAS

B1422+231 and PG 1115+080. From it, we draw constraints of log10 (𝑀hm/𝑀⊙) < 8.02 (𝑚th >

4.53keV) with a 7:1 likelihood ratio using fluxes only and log10 (𝑀hm/𝑀⊙) < 7.99 (𝑚th > 4.63keV)

using fluxes and positions. The difference between the two likelihood calculation methods is much

smaller than it is for any of the other sample sets. This is weaker than the log10 (𝑀hm/𝑀⊙) < 7.80

(𝑚th > 5.58keV) constraints set by H20, but their constraint includes two additional lens systems,

MG J0414+0534 and CLASS B2045+265. Due to uncertainties surrounding the analyses of

these two systems, they also report constraints excluding them of log10 (𝑀hm/𝑀⊙) < 8.03 (𝑚th >

4.77keV at the 95% confidence level that align well with our 7:1 constraints. Our Radio/MIR sample

includes CLASS B1608+656 whereas theirs does not, however this lens lacks an anomalous flux

ratio (unlike MG J0414+0534 and CLASS B2045+265) and only works to weaken our bounds on

WDM.

2.4.4 Inference on the CDM Subhalo Mass Function

Figure 2.11 shows the posterior probability distribution that we recover for 𝑓sub using the joint

14 lens sample, and also the result from excluding PG 1115+080. This value determines the

normalization of the subhalo mass function (see Section 2.2.2) assuming CDM. PG 1115+080 has

a much stronger influence than any of the other lens systems we include, and it drives the joint

inference to favor 𝑓sub values below 0.001. This is in disagreement with existing constraints that all

place 𝑓sub above 0.001 (Dalal & Kochanek 2002; Xu et al. 2015; H20; G20). When we remove PG

1115+080 and recalculate, this preference weakens significantly such that 𝑓sub is unconstrained.

As expected, there is degeneracy between 𝑓sub and 𝑀hm as both alter the amount of perturbation

expected. The top-left panel of Figure 2.9 illustrates this most clearly.

2.5 Discussion
2.5.1 Comparison to Predictions

Gilman et al. (2019) used a sample of 50 mock lensed quasars in order to predict the expected

constraining power from increasingly large data sets. They generated subhalos and LOS halos using

a CDM mass function with various SHMF normalizations and multiple WDM mass functions with
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Figure 2.11 Posterior probability distributions of the normalization of the SHMF, 𝑓sub, for the joint
sample of 14 lenses (black) and all lenses except PG 1115+080 (red), which dominates the inference
otherwise. For CDM, this represents the true substructure fraction, the total mass in substructure
divided by the mass of the host halo. For WDM models, the suppression of the low-mass end of the
SHMF is implemented after the normalization. As a result, there are less subhalos than in colder
models with the same 𝑓sub values and the true fraction of mass in substructure is lower than 𝑓sub.

the same SMHF normalization. Assuming CDM with 𝑓sub ≈ 0.015 and 6% flux uncertainties, they

expected a sample of 10 lensed quasars to be able to set a 2𝜎 upper bound of log10 (𝑀hm/𝑀⊙) <
8.6. However, using the same analysis method on a sample of 8 real lens systems with similar

uncertainties in a follow up paper, G20 were able to set an upper bound of log10 (𝑀hm/𝑀⊙) < 7.8.

They note that this discrepancy is likely due to the higher mean value of 𝑓sub = 0.035 recovered

from the real data. The 7:1 likelihood ratio constraints we recover from the same sample of 8

lens systems using only fluxes to calculate the likelihood, log10 (𝑀hm/𝑀⊙) < 7.81, are likewise

consistent with their predictions based on a higher 𝑓sub value that is in agreement with our findings.

Using fluxes and positions, our constraint of log10 (𝑀hm/𝑀⊙) < 8.38 agrees with their predictions

for a smaller 𝑓sub value.

Though Gilman et al. (2019) do not make predictions for samples with fewer than 10 lens

systems, they predict that doubling the sample size from 10 to 20 lens systems would lower the
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upper bound on log10 (𝑀hm/𝑀⊙) by roughly 0.4 dex or more, depending on flux uncertainty and

SHMF normalization. Our sample of 14 lensed quasars is double the size of that used by H20

(7) and nearly double the size of that used by G20 (8). Depending on the subsample comparison,

likelihood calculation method and the constraint statistic, we find improvement of between 0.3

and 1.0 dex, which is slightly larger than their expectations. However, considering the smaller

SHMF normalizations used for their predictions, our results are broadly consistent with them.

Additionally, Gilman et al. (2019) created their mock lens sample with equal numbers of cross,

fold and cusp configurations. Gilman et al. (2018) found that fold and cusp configurations tend to

produce stronger constraints on WDM, and our sample consists of mostly folds and cusps. This

may also contribute to a greater-than-expected improvement from the increased sample size.

2.5.2 Systematic Uncertainties

Though we have introduced multiple methods to reduce systematic uncertainty in our analysis, we

have yet to closely investigate their efficacy and effects on our final inferences. Additionally, there

are effects that we assume to be second-order that may be modeled to reduce systematic uncertainty

in future work.

2.5.2.1 Macro Models

The foundational concept of our analysis is that we can constrain dark matter properties by trying

to reproduce observed flux ratios by adding perturbing dark matter halos as substructure to a

macro-model and along the line of sight. Dark matter models that produce populations of halos

that are more likely to reproduce observed flux ratios are thus favored. Thus, to test the viability

of a perturber population we need to ensure that the underlying macro-model is correct. Many

of the lens systems in our sample have lensed arcs from extended emission in addition to the

discreet images used for flux ratios. Modelling these arcs provides much tighter constraints on the

macro-model than can be achieved with only image positions and fluxes. In future work, we plan

to incorporate the constraints from modelling arcs into our flux-ratio analysis procedure to greatly

reduce this source of uncertainty.

Optimizing the macro-model parameters after the addition of perturbers allows us to greatly im-

prove the pairing of perturber populations and macro-models. However, especially for realizations

with the most perturbers (low 𝑀hm, high 𝑓sub), this optimization step is often unsuccessful when the
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initial macro-model/perturber combination does not produce four images. The initial macro-model

parameters are drawn from a distribution created by fitting only to the image positions and with

only the smooth model. We have shown that the addition of perturbers can have a significant effect

on the image positions of some realizations, and it is possible that macro-model parameter values

that are outside our sampled distribution may combine with these perturber populations to produce

well-fitting, four-image realizations. Assuming CDM, this may be systematically reducing the

posterior probability of high-perturber realizations, making our constraints on WDM weaker.

There is also systematic uncertainty introduced in lens systems with stellar disks included in

the macro-model, CLASS B0712+472, CLASS B1555+375 and SDSS J1330+1810. As shown in

Hsueh et al. (2018), stellar structures can increase flux ratio anomalies by up to 10%. From the

imaging available, we have weak constraints on the elliptical disk parameters including the centroid

positions and position angles. The model parameters we report and with which we initialize our

MCMC analysis are the best-fit values from initial smooth modeling. For these lenses, we fit

to images positions and fluxes with the assumption that the disk is contributing to the flux ratio

anomalies. We found that different disk models that fit the image positions equally well can result

in different flux ratios and thus different final inferences. If there are undetected stellar structures

in other lens systems, this uncertainty may be even more pervasive. In future work, we intend

to quantify the degree to which reasonable modification of the disk parameters can affect a lens

system’s constribution to an inference on 𝑀hm.

2.5.2.2 Source Size

In future work, we can improve our analysis by modelling sources as extended Gaussian brightness

distributions, as in G20. However, we do not currently have the observational ability to determine

the approximate source size for individual lenses. Instead, source sizes must be randomly sampled.

Future work may investigate the affect on the inference on 𝑀hm from changing the source size and

predict expected improvement from measuring the source structure for individual lenses.

2.5.2.3 Dark Matter Halo Population

In modelling the population of dark matter halos as substructure and along the line of sight, we

make a number of choices with the intention of balancing the inclusion of up-to-date findings and

computational efficiency. In future work, we intend to explore potential biases and uncertainties

resulting from these choices. For both subhalos and LOS halos, we adopt stochastic mass-
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concentration relations based on simulation results (see Section 2.2.2). As the lensing signal of a

halo is highly dependent on its central density, changes in the mass-concentration relation may have

large impacts on our final inference. Assuming CDM, producing halos with higher concentrations

would increase the lensing signal would weaken our ability to constrain WDM.

Our parameterizations of the HMFs also introduce systematic uncertainty. For both the subhalo

and LOS mass functions, we use the the same suppression factor for WDM models in relation to

CDM (see equation 2.10). Recent work based on simulations suggests that a slightly more complex

parameterization that differs between subhalos and LOS halos may be more appropriate (Lovell,

2020). Including this distinction may help reduce the degeneracy between 𝑓sub and 𝑀hm. We

expect the effects of these choices to be of secondary importance, but future exploration of their

relative effects on our final inference on 𝑀hm will help inform best practices for future analyses.

2.6 Conclusions
Using a sample of 14 four-image lensed quasars, we place the strongest constraints to date on the

properties of thermal relic dark matter using gravitational lensing. We place an upper bound of

log10 (𝑀hm/𝑀⊙) < 7.47 (𝑚th > 6.63keV) with a 7:1 likelihood ratio. Our findings for subsets of

this sample analyzed in previous work are consistent with their results (H20; G20). We find that

our constraints are most strongly driven by two lens systems with anomalous measured flux ratios,

JVAS B1422+231 and PG 1115+080. To further strengthen constrains, it is crucial to increase

the sample size. Upcoming observations from the James Webb Space Telescope (JWST) should

increase the sample size of gravitationally lensed quasars by more than an order of magnitude. This

should enable a joint analysis to reach the theoretical potential of flux ratios to constrain WDM.

Thus, it is crucial to understand the systematics involved in this method. This will be the subject

of our future work.
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Chapter 3

Forgotten multipoles and their implication
for dark matter inference

This chapter has been submitted to 𝑀𝑁𝑅𝐴𝑆 as of March, 2024 and is currently under review.

The flux ratios of strongly lensed quasars have previously been used to infer the properties of

dark matter. In these analyses it is crucial to separate the effect of the main lensing galaxy and

the low-mass dark matter halo population. In this work, we investigate flux-ratio perturbations

resulting from general third- and fourth-order multipole perturbations to the main lensing galaxy’s

mass profile. We simulate four lens systems, each with a different lensing configuration, without

multipoles. The simulated flux ratios are perturbed by 10-40 per cent by a population of low-mass

haloes consistent with CDM and, in one case, also a satellite galaxy. This level of perturbation is

comparable to the magnitude of flux-ratio anomalies in real data that has been previously analyzed.

We then attempt to fit the simulated systems using multipoles instead of low-mass haloes. We find

that multipoles with amplitudes of 0.01 or less can produce flux-ratio perturbations in excess of 40

per cent. In all cases, third- or fourth-order multipoles can individually reduce the magnitude of, if

not eliminate, flux-ratio anomalies. When both multipole orders are jointly included, all simulated

flux ratios can be fit to within the observational uncertainty. Our results indicate that low-mass

haloes and multipoles are highly degenerate when modelling quadruply-imaged quasars based just

on image positions and flux ratios. In the presence of this degeneracy, flux-ratio anomalies in

lensed quasars alone cannot be used to place strong constraints on the properties of dark matter

without additional information that can inform our priors.
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3.1 Introduction
The cold dark matter (CDM) paradigm, which posits that dark matter consists of non-relativistic,

collisionless particles (e.g. Planck Collaboration et al., 2016), is successful at describing cosmic

structure at scales larger than ∼ 1 Mpc (Springel et al., 2005; Planck Collaboration et al., 2020) and

has been adopted as the standard in cosmology. CDM predicts a clumpy distribution of dark matter

on sub-galactic scales and the existence of a large population of low-mass haloes (e.g., Vogelsberger

et al., 2014; Schaye et al., 2015). On the other hand, warm dark matter models (WDM) predict a

smaller amount of such objects with a less concentrated mass density profile (e.g. Bode et al., 2001;

Viel et al., 2005; Lovell et al., 2014; Lovell, 2020). The difference between CDM and still-viable

WDM models is strongest at halo masses lower than 109𝑀⊙ (Hsueh et al., 2020), where most of

these objects are predicted to be faint or even completely dark. Strong gravitational lensing allows

us to detect them via their gravitational effect on the strongly lensed images.

In this paper, we focus on galaxy-scale strong lensing of unresolved sources, specifically

quadruply-imaged quasars (quads). The image configuration is determined by the mass distribution

of the lens and the position of the source. Low-mass haloes associated with the lens galaxy, called

subhaloes, and haloes along the line of sight, called field haloes, can produce measurable changes

in the relative fluxes of the lensed images due to the dependence of the image magnifications on

the second derivative of the lensing potential.

This method of investigating dark matter, known as flux-ratio analysis, cannot be used to

precisely determine the masses and positions of individual haloes that cause the perturbations.

Rather, the viability of a dark matter model is assessed based on the probability that its halo

population could have produced the observed flux ratios, marginalised over the possible individual

halo configurations. Dark matter models that produce larger numbers of low-mass haloes will lead

to a higher incidence of lens systems that show so-called flux-ratio anomalies, in which a standard

unperturbed smooth mass distribution cannot reproduce the observed flux ratios. In contrast, dark

matter models that suppress the formation of low-mass haloes will lead to fewer and less significant

flux-ratio anomalies in samples of lensed quasar systems. Single lens systems provide only a

weak inference on dark matter models, since even in the presence of a large number of associated

low-mass perturbers, these may be spatially distributed in a way such that no flux-ratio anomaly is

produced. Thus, large samples of lens systems are needed.
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Flux-ratio analysis was first proposed by Mao & Schneider (1998) and Metcalf & Madau

(2001), and it was originally limited to subhaloes. Soon after, Dalal & Kochanek (2002) applied it

to a sample of seven quads and reported results that were consistent with CDM simulations at 90

per cent confidence.

Follow-up studies argued for the inclusion of additional components that could also influence

flux ratios, such as field haloes and stellar disks (Möller et al., 2003; Inoue & Takahashi, 2012;

Metcalf, 2005; Despali et al., 2018). The contribution from field haloes is especially important

given that they are often more numerous than substructures (Despali et al., 2018). Furthermore,

field haloes should provide a cleaner test of dark matter models because their properties are not

influenced by the tidal effects that can be so important for subhaloes. Baryonic components such

as stellar disks have been discovered in real lens systems and, when included in the lens model,

have successfully been able to reproduce the flux-ratio anomalies in those systems without having

to resort to low-mass dark matter haloes (Hsueh et al., 2016, 2017). Similarly, more general

explorations have shown that baryonic structures in lensing galaxies can mimic perturbations by

low-mass haloes if not properly accounted for in the lens model (Gilman et al., 2017, 2018; Hsueh

et al., 2018). Sensitive high-resolution imaging can be used to estimate the contribution of baryonic

structure in lensing galaxies, but other complexities may remain as confounding factors.

In this paper, we will investigate an important form of additional complexity for lens mass

models, namely, the angular structure in the lensing galaxy, parameterised here as multipole

perturbations. The most common mass profile used to model lens galaxies is the elliptical power

law (EPL) with external shear (e.g., Tessore & Metcalf, 2015). We will hereafter refer to this type

of base model as the EPL𝛾 model. The multipoles that we consider add Fourier-type perturbations

to the angular part of the density profile, leaving the radial part unchanged. The use of multipoles is

motivated by optical and infrared observations of elliptical galaxies, which show that the isophotes

of many of them deviate from perfect ellipticity (e.g., Bender et al., 1988, 1989; Cappellari, 2016).

These deviations can be modeled by simply-parameterized multipole components. While many

treatments of elliptical galaxy isophotes focus only on fourth-order multipoles, Hao et al. (2006)

present an extensive investigation of the surface brightness distribution in elliptical galaxies in

which they fit both third- and fourth-order multipoles with a variety of orientation angles.

It is thus natural to consider multipole components in the mass distributions of galaxies as
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well. Demonstrating the impact of angular complexity in the lens galaxy on flux ratios, Evans &

Witt (2003) and Congdon & Keeton (2005) showed that the joint inclusion of third- and fourth-

order multipoles with unrestricted orientation angles can reproduce many anomalies that had been

observed at the time. We focus specifically on third- and fourth-order multipoles because they

are expected to cause flux-ratio effects degenerate with those of perturbing haloes. Lower-order

multipoles have effects that are analogous to changes in the macro-model parameters, and higher-

order multipoles may introduce deviations from ellipticity that either produce greater than four

images or are unphysical (Evans & Witt, 2003; Congdon & Keeton, 2005). Despite these findings,

flux-ratio analyses since then have neglected to implement them completely. Hsueh et al. (2020)

study some of the same lenses as Evans & Witt (2003) and Congdon & Keeton (2005), including

angular structure in one lens in the form of an exponential disk, but they modelled all other lenses

with only an EPL and shear. Recent flux-ratio analyses by Gilman et al. (2021, 2022, 2023) have

included multipoles but in a specific and restrictive way. In those analyses, the orientation angle of

the fourth order multipole is fixed to align with the EPL. Third order multipoles are not included.

Gilman et al. (2024) inferred constraints on WDM from simulated lens systems including both

third- and fourth-order multipoles, but the fourth order was fixed to align with the EPL. The effect

of multipoles has also been considered in the context of the extended emission of lensed galaxies,

where O’Riordan & Vegetti (2023) found that the inclusion of third- and fourth-order multipoles

with unrestricted orientation angles could produce false substructure detections.

In this paper, we extend earlier work on lensed quasar flux-ratios (Evans & Witt, 2003; Congdon

& Keeton, 2005) in several important ways. First, while those papers modeled real lenses with

multipole components, our investigation uses simulated lenses so that we can directly compare

the perturbative effects of low-mass haloes with those of multipoles. In addition, we consider the

effects of third- and fourth-order multipoles separately as well as jointly, and have more generality

in our base models by allowing the power-law index to be different from the isothermal value. Our

particular focus is an investigation of the potential for general third- and fourth-order multipoles to

perturb the flux ratios of quadruply-imaged quasars in a way that is degenerate with perturbations

from low-mass dark matter haloes. In Section 3.2, we describe our procedure for obtaining EPL𝛾

base models for a sample of real lens systems. In Section 3.3, we detail the creation of four

simulated lens systems from the combination of EPL𝛾 base models and CDM low-mass halo
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populations plus, for one of the systems, a satellite galaxy. Section 3.4 describes how we model the

simulated lenses in our sample using just an EPL𝛾 model plus multipole components, and Section

3.5 presents the results. We discuss the implications of our results and future work in Section 3.6.

3.2 Modelling real data: EPL𝛾
To quantify the effect of multipoles in realistic scenarios, we create simulated strong gravitational

lens systems using image configurations from real lens systems taken from recent flux-ratio analysis

studies (Hsueh et al., 2020; Gilman et al., 2020). To ensure applicability of our results across

different image configurations, we select lens systems that fall into one of each of the general

categories (see Figure 3.1 for visualizations): cross (WGD J0405-3308), fold (WFI 2026-4536)

and cusp (B1422+231). We also select the PS J1606-2333 system, which has a luminous satellite

associated with the main lensing galaxy, as the basis for a fourth simulated strong lens system.

The satellite will allow us to investigate the degeneracy between multipoles and haloes beyond the

low-mass range we otherwise consider (see Section 3.3.2).

For the mass model, we use an EPL𝛾. The corresponding dimensionless surface mass density

(convergence) is given by

𝜅(𝑅) = 2 − 𝑡

2

(
𝑏

𝑅

) 𝑡
, (3.1)

where 𝑅 is an ellitpical radius such that 𝑅2 = (𝑞𝑥)2 + 𝑦2. The model parameters are the power-law

slope, 𝑡, axis ratio, 𝑞, and scale length, 𝑏 = 𝑅𝐸
√
𝑞, where 𝑅𝐸 is the Einstein radius. We define

external shear with amplitude, 𝛾ext, and orientation angle, 𝜙ext. The satellite in J1606 is modelled

as a singular isothermal sphere (SIS), an EPL profile with 𝑡 = 1 and 𝑞 = 1.

Fitting only the observed image positions, we perform Markov chain Monte Carlo (MCMC)

sampling to approximate posterior distributions of the mass model parameters for each lens system.

The location of the luminous satellite in J1606 is fixed to the observed position, but we allow all

other parameters, including the source position, to vary freely. For convenience, we will hereafter

refer to the distributions generated in this step, including the system with the satellite, as EPL𝛾

distributions. These sets of parameters describe the base models that will be perturbed either by

low-mass haloes (EPL𝛾+CDM; Section 3.3) or by multipoles (EPL𝛾+MP; Section 3.4).
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3.3 Simulated data: EPL𝛾+CDM
We create our four simulated lens systems by adding populations of CDM subhaloes and field

haloes to base models drawn from the EPL𝛾 distributions described in Section 3.2. The results

are mock quads with image positions that match those of a real lens system and flux ratios that are

perturbed only by low-mass haloes. These lens systems do not contain any multipole components.

3.3.1 Background source

Typically, flux-ratio investigations focus on emission from regions of the background objects that are

large enough to avoid being affected by microlensing by stars in the primary lensing galaxy. These

include mid-infrared emission from dust surrounding quasar accretion disks, which are typically

smaller than 10 pc (Burtscher et al., 2013); emission from the narrow-line regions surrounding a

quasar, which can extend up to 60 pc (Müller-Sánchez et al., 2011; Nierenberg et al., 2017); or

radio emitting regions, for which individual observations give estimates of sizes smaller than 10

pc (Lee et al., 2017; Kim et al., 2022). Generally, as the size of the background source increases,

it becomes less susceptible to flux perturbations from low-mass haloes (Dobler & Keeton, 2006).

In this paper, we want to quantify the degeneracy between low-mass haloes and multipoles in

the scenario in which the effect of the former is maximal, hence the background sources in our

mock observations and models are point-like. Their location in each realization is drawn from the

MCMC chains associated with the modelling of the real data. In Section 3.6, we further investigate

the effect of the source size and its implication for the degeneracy under study.

3.3.2 Low-mass halo population

To generate the CDM halo populations that we add to the EPL𝛾 models, we largely follow the

process described in Hsueh et al. (2020) with updated treatments of the mass-concentration relations

for subhaloes and field haloes. All low-mass haloes are modelled as NFW profiles (?; however, see

Heinze et al., 2024).

For the field halo mass-concentration relation, we use that reported in Table 1 of Duffy et al.

(2008) from N-body simulations. We use values derived using the virial radius definition of relaxed

haloes between redshifts 0 and 2. Unlike Hsueh et al. (2020), we apply the associated scatter on the

parameters. We follow the implementation of Despali et al. (2016), which is based on the approach

introduced by Sheth & Tormen (1999), for the field halo mass function. We use their best-fitting
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Table 3.1 Unitless constants used in equations 3.2 and 3.3.

𝑅CDM
max,mean

a 0.24986592
b 1.55822031
c -0.01885084
d 0.38482671
𝜎
p 1.28099
m 0.21388
n 0.46263
k 0.01501

parameters optimized over all considered redshifts and cosmologies.

We determine subhalo concentrations from a redshift-dependent mass-concentration relation

extracted from the ShinUchuu N-body simulation (Ishiyama & Ando, 2020; Moliné et al., 2023,

also see O’Riordan et al., 2023 for more details). This relation is derived in terms of 𝑅max and 𝑚max,

the radius of maximum tangential velocity and mass enclosed within it, as these more accurately

describe the characteristics of haloes in simulations than the usual virial quantities. Our choice of

mass-concentration relation results in more concentrated subhaloes than does the typical one from

Duffy et al. (2008). We use a subhalo mass function that comes from fitting to the data in Lovell

(2020) and has been reparameterised in terms of 𝑚max. After drawing the subhalo mass, 𝑚max,

from the mass function, we draw the corresponding 𝑅max value from a log-normal distribution with

mean

𝑅CDM
max,mean =

(
𝐴2/𝐵𝐺𝑚max𝑀⊙

100 (km/s)−2 kpc 𝑀⊙

)𝐵/(𝐵+2)
kpc , (3.2)

and standard deviation

𝜎 = exp
[
(𝑝 + 𝑚𝑧) + (𝑛 − 𝑘𝑧) ln

(
𝑚max

1010𝑀⊙

)]
. (3.3)

Here, 𝐴 = 𝑎𝑧 + 𝑑 and 𝐵 = 𝑐𝑧 + 𝑏. Values for 𝑎, 𝑏, 𝑐, 𝑑, 𝑘 , 𝑚, 𝑛, and 𝑝 are listed in Table 3.1, and 𝑧

is the redshift. The NFW profile for a subhalo then has normalization

𝜌0 [𝑀⊙kpc−3] = 𝑚max(1 + 𝐶)2

4𝜋𝐶2𝑅3
s

, (3.4)
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where 𝑅s is the scale radius and𝐶 = 𝑅max/𝑅s = 2.16 (Bullock et al., 2001). We do not include tidal

truncation or a dependence on the distance from the main lens centre of the mass-concentration

relation because Despali et al. (2018) have shown the effects to be small compared to the scatter

on the mass-concentration relation.

We generate populations consistent with predicted CDM subhalo and field halo mass functions

down to a halo mass of 105𝑀⊙, and we assume the total mass in substructure in the region of the

lensed images to be ∼ 2 per cent of the total mass of the main lens in that region, which is roughly

consistent with observational constraints (Dalal & Kochanek, 2002; Hsueh et al., 2020; Gilman

et al., 2020). This substructure fraction is higher than simulation predictions by Xu et al. (2015),

but since we are testing the ability of multipoles to mimic low-mass haloes that strongly perturb

the flux ratios, a bias towards models that have more perturbing haloes is a conservative choice.

3.3.3 Selecting realizations for simulated lens systems

Because we will proceed to stress test multipoles as they try to reproduce the flux ratios resulting

from these EPL𝛾+CDM models, we generate 2000 realizations for each of the four main types

of simulated lens in our sample (cross, fold, cusp, or satellite) and then select for each type the

realization that produces the most extreme flux-ratio anomalies. These four EPL𝛾+CDM models

should thus present the flux ratios that are most difficult for the EPL𝛾+MP models to reproduce.

If models with multipoles but without low-mass haloes can fit perturbations produced by the most

extreme halo populations, they should be able to do so in nearly all cases. We stress that even though

strong the perturbations in our simulated lens systems are of comparable magnitude to flux-ratio

anomalies in real observations (e.g. Nierenberg et al., 2020b). Each simulated lens system contains

total flux-ratio perturbations in excess of 10 per cent, and some images are perturbed beyond 20

per cent. Table 3.2 lists the macro-model parameters used in each of the four simulated systems,

and Table 3.3 presents the image positions and flux ratios. We add to each flux in the models

uncertainties that are based on the observations of the real lenses on which they were based.
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3.4 Modelling of simulated data: EPL𝛾+MP
In accordance with previous work examining the lensing effects of complex angular structure, we

describe the convergence of multipoles in polar form

𝜅(𝑅, 𝜙) = 𝑅−𝑡 [𝑎𝑚 cos (𝑚𝜙) + 𝑏𝑚 sin (𝑚𝜙)] . (3.5)

Here, 𝑎𝑚 and 𝑏𝑚 are the standard multipole sine and cosine amplitudes, and 𝑚 is the multipole

order. For ease of interpretation, we also describe multipoles in terms of their overall amplitudes,

𝜂𝑚 =
√︃
𝑎2
𝑚 + 𝑏2

𝑚 , (3.6)

and orientation angles,

𝜙𝑚 =
1
𝑚

arctan
(
𝑏𝑚
𝑎𝑚

)
∈ 1
𝑚
[0, 2𝜋) . (3.7)

We focus on third- and fourth-order multipoles (𝑚 = 3, 4), as these are expected to cause flux-ratio

effects degenerate with those of perturbing haloes (Evans & Witt, 2003; Congdon & Keeton, 2005).

Lower-order multipoles have effects that are analogous to changes in the macro-model parameters,

and higher-order multipoles may introduce deviations from ellipticity that either produce greater

than four images or are unphysical (Evans & Witt, 2003; Congdon & Keeton, 2005). There is

also ample evidence for third- and fourth-order multipoles in the observed isophotes of lens-like

elliptical galaxies (Hao et al., 2006).

To assess the possible degeneracy between the lensing effects of multipoles and haloes above

our standard mass range, we do not include the SIS satellite galaxy in any of our models of that

lens system.

3.5 Results
In this section, we attempt to reproduce the simulated lens systems with multipoles in two distinct

ways. First, we apply third- and fourth-order multipoles separately (Section 3.5.1). We explicitly

step through the parameter space of strengths and orientation angles for each to explore the possible

range of flux-ratio perturbations induced by the individual multipole orders. Then, we use MCMC

to fit each simulated system with both multipole orders simultaneously (Section 3.5.2).
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Table 3.3 Image positions and flux ratios for each of the simulated lens systems along with the
fractional degree of flux perturbation by low-mass haloes compared to the best-fitting EPL and
shear-only fiducial model. All position units are in arcsec. These are generated using an EPL+shear
macro-model in addition to a population of perturbing CDM subhaloes and field haloes. No
multipoles are present in any of the simulated systems. Positions are given with respect to the
observation centre, and all dRA and dDec uncertainties are 0.005. Flux ratio uncertainties are
listed in parentheses next to each flux ratio.

Lens Image Position Flux Ratio
dRA dDec

Cross A 1.0656 0.3204 1.000 (0.030)
B 0.0026 -0.0017 0.508 (0.001)
C 0.7222 1.1589 0.920 (0.030)
D -0.1562 1.0206 0.658 (0.030)

Fold A1 -0.4985 -0.2207 0.288 (0.012)
A2 0.2364 -0.6048 1.000 (0.040)
B 0.4897 -0.3895 0.893 (0.036)
C 0.0725 0.8233 0.299 (0.015)

Cusp A 0.3908 0.3213 1.000 (0.010)
B 0.0003 0.0003 1.149 (0.010)
C -0.3330 -0.7463 0.537 (0.010)
D 0.9511 -0.8018 0.045 (0.010)

Satellite A 1.6217 0.5890 0.867 (0.030)
B -0.0005 0.0003 1.000 (0.010)
C 0.8328 -0.3170 0.670 (0.030)
D 0.4948 0.7377 0.694 (0.030)

3.5.1 Independent investigation of third- and fourth-order multipoles

At this stage we are not trying to fit to the flux ratios in our simulated sample, but rather to

explore the dependence of the flux-ratio perturbations on the multipole amplitudes (𝜂𝑚, where 𝑚

is either 3 or 4) and position angles (𝜙𝑚). We do this by generating a grid of (𝜂𝑚, 𝜙𝑚) pairs and,

for each grid point, adding multipole components with those parameters to the 200 base EPL𝛾

models. We do this exercise for 𝑚 = 3 and 𝑚 = 4 separately. While, judging from isophotes,

multipole amplitudes are not expected to be much larger than 𝜂𝑚 ≈ 10−2 in real galaxies (see Hao

et al., 2006), we explore 11 multipole strengths ranging from 10−3 − 10−1 with equal logarithmic

spacing. For each multipole strength, we examine an evenly spaced set of 10 orientation angles

encompassing the full range over which they are unique, i.e., from −60 to +60 degrees for the

third-order multipoles and from −45 to +45 degrees for the fourth-order multipoles. To correct for
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any astrometric perturbations introduced by the addition of the multipole component, we optimize

the macro-model parameters to fit to the simulated image positions after adding the multipole.

We show the results of this exploration in Figures 3.1 (third-order) and 3.2 (fourth-order).

In each of the panels in the first two columns, the horizontal lines show the flux ratios of our

simulated lenses while the points show the flux ratios produced by the EPL𝛾+MP models. In the

left-hand columns we show how the perturbations change with multipole amplitude, showing only

the points for values of 𝜙𝑚 corresponding to the orientations of the highest-likelihood realizations.

We calculate the likelihood of a realization from

𝜒2 =
∑︁
𝑖

xm
𝑖 − xd

𝑖

2

𝛿𝑥2
𝑖

+
∑︁
𝑖

(
𝑓 m
𝑖 − 𝑓 d

𝑖

)2

𝛿 𝑓 2
𝑖

, (3.8)

where x𝑖 and 𝑓𝑖 are the image positions and flux ratios of a model realization (denoted 𝑚) and

simulated data (denoted 𝑑). 𝛿𝑥𝑖 and 𝛿 𝑓𝑖 are the simulated uncertainties. As expected, flux-ratio

perturbations get larger with increasing multipole amplitude. However, the size of this effect is

dependent on the configuration and the particular image in question.

The centre columns of Figures 3.1 and 3.2 show perturbations due to multipoles over the full

range of orientation angles with 𝜂𝑚 values fixed to those of the highest-likelihood realizations.

All four lens systems show clear periodic behavior as the orientation angle changes. In all cases,

some realizations bring the flux ratios closer to the simulated values than the macro-model alone.

The simulated flux ratios in the fold and cusp lens systems can be reproduced within observational

uncertainty by either third- or fourth-order multipoles, though the highest-likelihood realizations

for the cusp system both have potentially unrealistic1 amplitudes of 𝜂𝑚 = 0.1. Though no third-

or fourth-order multipole perturbations can reproduce the simulated flux ratios in the cross and

satellite systems, the magnitude of the discrepancy between model-predicted and simulated flux

ratios can be significantly reduced by either order with reasonable amplitudes.

The flux-ratio perturbations induced by the SIS in conjunction with low-mass haloes in our

simulated satellite system are comparable to those induced by low-mass haloes alone in other

mocks. While satellite galaxies may be directly observable from their light, there may be a

1What we mean here by unrealistic is large compared to what is on average observed in the isophotes of elliptical
galaxies. However, as we discuss in Section 3.6, the amplitude of multipole components in the light and mass
distribution do not necessarily have to agree.
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Figure 3.1 The range of flux-ratios as a function of third-order multipole parameters 𝜂3 (left) and
𝜙3 (middle). Only flux ratios from models with position error less than 1𝜎 for each image are
included. The horizontal lines and shaded regions represent the flux-ratios and uncertainties in the
simulated data, which is generated by an EPL𝛾+CDM model. The filled dots show the flux-ratios
of each image for each multipole parameter value. Open circles represent the flux-ratios from the
EPL𝛾+MP model that most closely matches the simulated flux ratios. The solid, dashed and dotted
vertical black lines in the left column indicate the mean, 1𝜎 and 2𝜎 values, respectively, of the
third-order multipole amplitude distributions from elliptical galaxy isophotes (Hao et al., 2006).
The solid black line in the middle column indicates the orientation angle of the EPL major axis
in each simulated lens system. The rightmost column shows the image configuration for each lens
system, and the color of each image corresponds to data for its respective flux ratio in the other
columns. The black point marks the image used in the denominator of the flux ratios.
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Figure 3.2 Same description as Figure 3.1, except with fourth-order multipoles.
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degeneracy between their inferred properties and multipole amplitudes. We leave the investigation

of this potential degeneracy to a future work.

3.5.2 Joint investigation of third- and fourth-order multipoles

We now fit the mass model and multipole parameters simultaneously to both the flux ratios and

image positions of our simulated lens systems. These data are the elements of a vector d. Similarly,

the macro model parameters are the elements of a vector θMM = {𝜃𝐸 , ...}, and the multipole

amplitudes form a vector θ𝑚 = {𝑎3, 𝑏3, 𝑎4, 𝑏4}. From Bayes’ theorem, the posterior distribution of

the parameters given the data is

Pr (θ𝑚, θMM |d) = Pr (d|θ𝑚, θMM) Pr (θ𝑚, θMM)
Pr (d) . (3.9)

The first term in the numerator Pr (d|θ𝑚, θMM) depends only on 𝜒2 defined previously (see Equation

3.8). The prior probability Pr (θ𝑚, θMM) = Pr (θ𝑚) Pr (θMM) is the probability of a given parameter

value before the data is observed, based on other information. The normalisation of the posterior,

or the evidence, Pr (d) can be ignored in this case as we only consider one model. The posterior

we use in practice is then

Pr (θ𝑚, θMM |d) ∝ Pr (θ𝑚, θMM) exp
(
−1

2
𝜒2

)
. (3.10)

The calculation of this many-dimensional posterior is intractable, so we use MCMC to obtain sam-

ples of θ𝑚 and θMM. The density of these samples represents the posterior probability distribution.

To conduct the MCMC sampling, we use the emcee2 ensemble sampler with 120 walkers and

10,000 burn-in steps that are discarded, followed by 20,000 recorded steps. We use broad uniform

priors on the mass model parameters θMM and use a normally distributed prior with mean zero and

standard deviation of one per cent on the multipole amplitudes.

With both third- and fourth-order multipole parameters free, all flux ratios in the simulated

lens systems can be fit within 1𝜎. Figure 3.3 displays flux ratio histograms from the joint MCMC

sampling of both multipole orders and macro-model parameters (EPL𝛾+MP). For reference, we

also include the flux ratio histograms that result from the MCMC sampling with only an EPL𝛾.

2Foreman-Mackey et al. (2013)
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Figure 3.3 Flux ratio histograms created using random samples of 10,000 models from MCMC
chains for all four simulated lens systems: cross (a), fold (b), cusp (c) and satellite (d). For
comparison, we show distributions resulting from using EPL𝛾 models (blue) and EPL𝛾+MP
models with third- and fourth-order multipoles included simultaneously (red). Vertical black lines
show flux ratios from the simulated data, and the surrounding grey regions show the associated
uncertainties.

These EPL𝛾-only models are unable to reproduce the simulated flux ratios within observational

uncertainty in every case. Generally, the addition of third- and fourth-order multipoles to the model

makes the model flux ratio distributions narrower and roughly centered around the simulated values.

In other words, when multipoles with amplitudes that are consistent with the amplitudes of observed

isophotes are included in the model, the simulated flux ratios do not appear anomalous despite the

fact that they were perturbed by a population of CDM low-mass haloes, and, in one case, also a

satellite galaxy.

Figures 3.4, 3.5, 3.6 and 3.7 show the resulting posterior distributions for the third- and fourth-

order multipole parameters for all four lens systems. Non-zero third- and fourth-order multipole

amplitudes are preferred in every case, and most orientation angles are constrained within 20

degrees.

Isodensity contours for the best-fitting models for each system and their underlying macro-

models are shown in Figure 3.8. The shapes of the contours for the cross and fold systems

generally become ’boxier’. However, offsets from perfect alignment between the fourth-order

67



03 = 0.002+0.001
−0.001

−0.
04
−0.

02
0.0

0
0.0

2
0.0

4

1
3

13 = −0.012+0.004
−0.003

−0.
04
−0.

02
0.0

0
0.0

2
0.0

4

0
4

04 = 0.004+0.008
−0.004

−0.
04
−0.

02 0.0
0

0.0
2

0.0
4

03

−0.
04
−0.

02
0.0

0
0.0

2
0.0

4

1
4

−0.
04
−0.

02 0.0
0

0.0
2

0.0
4

13

−0.
04
−0.

02 0.0
0

0.0
2

0.0
4

04

−0.
04
−0.

02 0.0
0

0.0
2

0.0
4

14

14 = 0.003+0.004
−0.004

[3 = 0.013+0.003
−0.004

88

96

10
4

11
2

q
3

q3 = 93.421+2.773
−2.204

0.0
1

0.0
2

0.0
3

0.0
4

[
4

[4 = 0.007+0.007
−0.004

0.0
06

0.0
12

0.0
18

0.0
24

[3

20

40

60

80

q
4

88 96 10
4

11
2

q3

0.0
1

0.0
2

0.0
3

0.0
4

[4

20 40 60 80

q4

q4 = 15.786+61.358
−9.393

Figure 3.4 Corner plots from simultaneous MCMC sampling of EPL, shear and both multipole
order parameters on the cross lens system. MCMC was conducted in the sine/cosine amplitude
basis (left), and we also present the same data transformed into the overall amplitudes and angles
(right) for ease of interpretation. Only multipole parameters are displayed, but all EPL and shear
parameters, along with the source position, were allowed to vary freely.
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Figure 3.5 Same description as Figure 3.4, except for the fold system.
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Figure 3.6 Same description as Figure 3.4, except for the cusp system.
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Figure 3.7 Same description as Figure 3.4, except for the satellite system.
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Figure 3.8 Isodensity contours of the best-fitting models from the MCMC analysis of the cross, fold,
cusp and satellite systems (left to right). The red curves show contours for the total convergence,
including the EPL, shear and third- and fourth-order multipoles. The underlying black curves
show contours of the EPL and shear only. Multipole parameter values: cross: 𝜂3 = 0.0109,
𝜙3 = 93.91, 𝜂4 = 0.0023, 𝜙4 = 20.73; fold: 𝜂3 = 0.0068, 𝜙3 = 62.21, 𝜂4 = 0.0052, 𝜙4 = 44.86;
cusp: 𝜂3 = 0.0073, 𝜙3 = 51.36, 𝜂4 = 0.0151, 𝜙4 = 73.19; satellite: 𝜂3 = 0.0088, 𝜙3 = 32.15,
𝜂4 = 0.0037, 𝜙4 = 54.78.

multipole and the EPL major axes along with the inclusion of third-order multipoles, makes this

effect more irregular than pure ’diskiness’ or ’boxiness’. Deviation between the perturbed and

unperturbed contours for the satellite system occurs roughly in alignment with the location of the

missing satellite galaxy. It is worth noting again that the simulated data were generated without

any multipoles.

3.6 Discussion and conclusions
We find that there is a substantial degeneracy between the perturbative lensing effects of low-

mass dark matter haloes and multipoles when modelling quadruply-imaged quasars. Individually,

third- and fourth-order multipoles with amplitudes around or below 0.01 can produce flux-ratio

perturbations over 40 per cent. This is sufficient to reproduce perturbations induced not only by

a population of low-mass CDM haloes, but also a satellite galaxy. Our results agree well with

early investigations of this topic by Evans & Witt (2003) and Congdon & Keeton (2005). From

the analysis of real data, they find that all but the most extreme flux-ratio anomalies, such as those

in the cusp systems B2045+265 and B1422+231, which differ from EPL𝛾 predictions in excess of

∼50 per cent, can be fit using multipoles with amplitudes smaller than 0.01.
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3.6.1 A more general treatment of multipoles

In our analysis of the ability of multipole components to reproduce flux ratio anomalies, we utilized

two important general treatments of the multipoles: we included third-order multipoles in addition

to the more standard fourth-order one, and we did not fix their position angle to the major axis of

the underlying EPL model.

The freedom allowed to the position angle plays a key role in the degeneracy between multipoles

and low-mass haloes. As we have shown, the orientations of multipoles that most closely reproduce

the perturbed flux ratios in our simulated data do not always align with the EPL. Evans & Witt

(2003), Kochanek & Dalal (2004) and Congdon & Keeton (2005) also found that a larger portion

of observed flux-ratio anomalies can be reduced or eliminated when multipole angles are allowed

to vary freely as opposed to being fixed.

Recent flux-ratio analyses, where fourth-order multipoles have been included (e.g. Gilman

et al., 2021, 2022, 2023, 2024), have fixed the orientation angles to align with the EPL major

axis. However, neither the total mass density nor the light distribution of real galaxies seem to

suggest this assumption to be generally valid. Using high-angular resolution observations of real

gravitational lens systems with an extended source, Powell et al. (2022) and Stacey (2024) have

found that the multipoles can be misaligned with respect to the underlying EPL. Additionally, tilted

dark matter haloes are commonly observed in numerical simulations (e.g Han et al., 2023). At

the same time, the observed isophotes of elliptical galaxies only have order 𝑚 = 4 perturbations

aligned with the EPL for larger values of 𝑎4, in excess of one per cent, i.e. for truly boxy isophotes

(Hao et al., 2006, their fig. 4). The fourth-order multipole in the best-fitting model for our cusp

system has an amplitude of 1.5 percent, and it does not align with the EPL. The best-fitting models

for our other systems all have fourth-order multipoles with amplitudes ≲ 0.5 per cent.

3.6.2 Isophotes and iso-density contours

An important comparison to our work is the study of isophotes in elliptical galaxies, since multipole

patterns in the former are often used as motivation for including multipole components in the mass

distribution of lens galaxies.

The amplitudes of the multipoles that we find to be highly degenerate with low-mass haloes

are consistent with amplitudes of the isophotes observed in elliptical galaxies. Indeed, our best-
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fitting values fall within the central 1-2 𝜎 of the distributions found by Hao et al. (2006), even

though we use Gaussian priors that allow for more extreme values. Interestingly, despite isophote

observations indicating that third-order multipoles may on average be weaker than fourth-order

(Hao et al., 2006), our findings indicate that they can still have significant impacts on flux ratios.

We repeated our analysis with much tighter priors on the multipole amplitudes, Gaussians with

widths 0.35 per cent instead of 1 per cent, and found that the cross and fold simulated lens systems

can still be fit with 𝜒2 < 2. The best-fitting realizations for the cusp and satellite systems both

had 𝜒2 < 4, much better than the best-fitting EPL𝛾 models. Even with priors on the multipole

amplitudes that are comparable to, and tighter in the case of 𝑎4, those suggested from isophotes,

multipoles can have a significant impact on the flux ratios.

Still, it is currently unclear how closely galaxy mass distributions resemble their observed

isophotes. Recently, Stacey (2024) analysed a sample of three strong gravitational lens systems

and inferred multipole amplitudes in the total mass density distribution of up to ∼0.01 for both

third and fourth orders. They found that in some cases the multipole amplitudes in the isophotes of

the lens galaxies differ from those inferred in the total mass density distribution by 0.01 or more.

Modelling very long baseline interferometric (VLBI) observations of a lensed radio jet, Powell

et al. (2022) found the third-order multipole to have an amplitude that is roughly twice as large

as that of the fourth order, in disagreement with expectations from observations of isophotes in

elliptical galaxies. Whether this is related to a genuine discrepancy between the light and mass

distributions or to the fact that third-order multipoles in the mass density are more degenerate with

low-mass haloes, at least for resolved lensing observations (O’Riordan & Vegetti, 2023), remains

to be determined. As already pointed out by Stacey (2024), the environment within which the

lens galaxies reside may also play a role in observed differences between the isophotes and the

iso-density contours. In general, our lack of knowledge about how well the projected mass density

profile at the Einstein radius is traced by light limits our capability to use isophote distributions as a

strong prior for the properties of multipoles in the mass distribution of gravitational lens galaxies.

3.6.3 Considerations on the source size

To understand the role played by the source on the relative effect of low-mass haloes and multipoles,

we quantify the level of flux-ratio anomaly induced by the two contributions, i.e., low-mass haloes
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Figure 3.9 Flux ratios as a function of source size for fixed EPL𝛾+CDM (circles) and EPL𝛾+M34
(crosses) models that predict the same image positions and point-source flux ratios. Source size
denotes the standard deviation of a Gaussian brightness distribution. Note that the physical extents
of the radio-emitting, mid-infrared-emitting and warm dust regions of quasars are typically expected
to be ≲ 10pc.

and multipoles, independently as a function of the source size (see Figure 3.9). We select two

models, one perturbed by low-mass haloes and the other by multipoles, which result in the same

image positions and flux ratios from a lensed point source. As we increase the source size from a

point to 40 pc, we find that the flux ratios perturbed by low-mass haloes approach their unperturbed

values (i.e. the values expected from an EPL𝛾-only mass distribution). Even when the source

is only 10 pc in size, there is a ∼10 percent change of two of the flux ratios from their point-

source values. On the other hand, the flux ratios perturbed by multipoles are hardly affected by

increasing the source size up to 20 pc (i.e. 0-3 per cent). While in both cases larger source sizes

produce smaller flux ratio anomalies, the effect is much smaller for the multipoles than for low-mass

haloes. As the multipoles are less sensitive to changes in the source size, the more extended the

source, the lower the multipole amplitudes that are needed to reproduce the effect of a given halo

population. We can conclude, therefore, that our assumption of a point source gives a conservative

quantification of the degeneracy between low-mass haloes and multipoles.
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3.6.4 Implication for dark matter inferences using flux ratios

Traditionally, flux-ratio constraints have been based on the concept that any anomaly that is seen

with respect to the flux ratios predicted by the smooth EPL𝛾 model (perhaps with the addition of a

stellar disc; Hsueh et al., 2016, 2017, 2018), is due to perturbations by clumpy dark matter. Thus,

the underlying assumption is that the prevalence of observed flux-ratio anomalies can be used to

infer the mass-function of low-mass dark matter haloes and, in turn, the properties of dark matter.

If, instead, some unknown fraction of those anomalies are caused by multipole structure in the

primary lensing galaxy, the constraining power of this method is diminished.

In this paper we have shown that, when presented with a simple set of observables, namely

four image positions and four fluxes, it is generally possible to reproduce those observations with a

model consisting of an EPL𝛾 base model plus either (1) low-mass CDM haloes but no multipoles

or (2) multipoles but no low-mass haloes. The fluxes in real lens systems are likely to be affected

by a combination of these two effects. Because we cannot identify from just the lensed image

positions and fluxes whether observed anomalies are due to low-mass haloes or multipoles, any

dark matter inference from real flux-ratio data will be affected by what weight is given to each

of these two components, i.e., by the priors on the relative contributions of the perturbing haloes

and multipole components. For example, neglecting the contribution of the multipole component

or reducing its complexity, e.g., by not including third-order multipoles or by fixing the multipole

position angle to match the major axis of the EPL, will lead to a bias in favour of colder dark matter

models. Most extremely, an inference could be made under the assumption that all perturbations

were due to low-mass haloes, as was done in Hsueh et al. (2020), in which case a CDM-like model,

which predicts large numbers of low-mass haloes, is likely to be preferred. Similarly, an inference

could be made assuming the maximum multipole contribution, in which case models that predict

fewer low-mass haloes, such as WDM, are likely to be preferred.

All but the most extreme flux-ratio anomalies seen in real lensed quasar systems are comparable

to or smaller than the anomalies considered in this paper, indicating that our ability to fit the

anomalies with multipole components is not due to selectively choosing easy systems to fit. Thus,

one conclusion to be drawn from our results is that, in the absence of other data that can inform our

priors, lensed quasar flux ratios alone are ineffective at placing constraints on dark matter models.

In a follow-up paper, we will quantify how the inclusion of multipole components in the lens
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mass distribution affect existing constraints on dark matter from the two recent investigations by

Hsueh et al. (2020) and Gilman et al. (2020). Despite their different approach to multipoles, both

works found nearly identical constraints on the WDM particle mass. However, neither work allowed

for a general treatment of multipoles as presented in this paper. We expect that allowing more

freedom in the angular structure of the lens galaxies will reduce the contribution from low-mass

haloes to the observed flux ratios, and potentially weaken the constraints on dark matter.

3.6.5 Future prospects

As the prospects to derive meaningful constraints on the properties of dark matter with flux ratio

only observations strongly depends on independent knowledge about the general mass density

distribution of lens galaxies, it is fair to wonder where the required information could be obtained.

One option is deep observations that could allow one to identify and quantify the prevalence of

multipoles in the light distribution of lens galaxies. However, it is currently unknown how well the

total mass distribution follows that of the light. Though the best-fit multipole amplitudes that we

have found in this paper are not in tension with those observed in galaxy isophotes by Hao et al.

(2006), the current number of quadruply-imaged quasar observations is not sufficient to precisely

quantify the distributions of inferred multipole parameters across all elliptical galaxies from lens

modelling.

Another option is modelling high-resolution images of strongly lensed extended emission,

which is expected to allow for the constraint of more complex macro model features including

multipoles (e.g. Powell et al., 2022; Stacey, 2024). In principle, this information could be applied

to the analysis of flux ratios when available (Gilman et al., 2024). However, high-resolution

imaging of lensed extended emission is at the moment not available for the majority of the ∼ 15

lens systems in the current flux ratio sample. In addition, O’Riordan & Vegetti (2023) have

shown that the degeneracy between multipoles and low-mass haloes persists in the modelling of

lensed extended emission, leaving as reliably detectable only low-mass haloes which are located in

projection close to the lensed images. Furthermore, Herle et al. (2023) have shown that automatic

lens finding techniques may lead to the selection of gravitational lens galaxies that have different

mass distributions when the sources are extended instead of unresolved. If confirmed, their result

may place some doubts on the possibility of transferring knowledge from one type of lens system
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to another.

Galan et al. (2022) have recently shown that it may be possible to distinguish between the

lensing effects of multipoles and low-mass haloes using extended sources and a non-analytical

description of the lensing potential, but this method has yet to be demonstrated on real data. If

proven successful, in combination with the large number of gravitational lens systems expected

from the James Webb Space Telescope, Euclid and the SKA (Nierenberg et al., 2023; Collett, 2015;

McKean et al., 2015), it may represent a path forward to obtain the necessary information on the

mass density distribution of lens galaxies. Similarly, numerical simulations could provide useful

insights on the mass and light distribution of (lens) galaxies (e.g. Gao & White, 2006; Lokas, 2022;

Despali et al., 2022; Han et al., 2023).

To conclude, our results as well as previous similar works demonstrate that the analysis of

flux-ratio anomalies, in its current form, cannot directly constrain the properties of the low-mass

dark matter halo population. This follows from the main issue identified in this work, that the

priors imposed on multipole parameters play a dominant role in the inference process. Though

our focus is on CDM, we expect our results to be applicable to other dark matter models, but

potentially with some differences. We expect, for example, the degeneracy here identified to be

stronger for warm (WDM) and weaker for self-interacting (SIDM) dark matter. In the former case,

the amplitude of the multipoles should not be significantly different than in CDM, but as low-mass

haloes are less numerous and concentrated they result in weaker flux ratio anomalies. In SIDM

models, galaxies are predicted to be rounder (e.g. Brinckmann et al., 2018; however, see Despali

et al., 2022), while low-mass haloes, which experience core-collapse, have a stronger lensing effect

(Gilman et al., 2023). We will quantify the degeneracy between multipoles and low-mass haloes

in different dark-matter models in a follow-up publication.
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Chapter 4

Summary and Conclusions

In this dissertation, I have detailed my development and use of strong gravitational lensing tech-

niques as a means for learning about the dark matter distribution on sub-galactic scales. Because

the flux ratios of quadruply-imaged quasars are sensitive to magnification by low-mass halos, they

offer a probe of the populations along their lines of sight. The information gained about the popu-

lation of subhalos, field halos and their internal structure allows us to test the predictions of CDM

and constrain alternative models. Discovery of frequent and extreme flux ratio anomalies would

provide evidence for dark matter models that predict ample and concentrated halo populations, like

CDM. On the other hand, a large sample of flux ratios that lack evidence of perturbation could

indicate a suppression of the number of halos or their central densities, as in WDM.

A growing sample of observations that are eligible for flux-ratio analysis should lead to tighter

constraints on the properties of dark matter. Constraints from lensing analyses are complementary

to other astrophysical probes such as Milky Way satellites and the Ly𝛼 forest, as each method entails

a different set of assumptions and biases. However, a thorough understanding of the main lens

mass distribution, comparison to which defines anomalous flux ratios, is essential for gravitational

lensing constraints. In Chapter 2, I perform flux-ratio analysis on 14 lens systems, the largest sample

to date. In addition to introducing the connection between the WDM particle mass and its effect on

halos, I detail each of the base mass model components, our procedure for simulating CDM halo

populations and our model of truncation of the mass functions and concentrations under WDM. I

then present constraints on WDM of log10 (𝑀hm/𝑀⊙) < 7.81 (𝑚th > 5.23keV), which have only

been surpassed by analysis of Milky Way satellites. Finally, I note potential sources of systematic
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error and the effect that different ways of interpreting the results have on the constraining power.

Though in Chapter 3 I argue that this analysis cannot be taken at face value due to its exclusion of

multipoles, the findings are still relevant as the proper treatment of multipoles is ambiguous and it

is important to compare their implementation in various ways. The constraints inferred in Chapter

2 represent the limiting case in which third-order and higher multipoles have zero amplitude.

Next, in Chapter 3 I investigate the degree to which third- and fourth-order multipoles can

perturb flux ratios. When applied independently, both multipole orders can cause perturbations

of up to 40 percent. Using a diverse set of mocks that have been strongly perturbed by CDM

halo populations, I show that they can be modeled within the observational uncertainties using

smooth mass models with the joint inclusion of realistic third- and fourth-order multipoles and,

importantly, without low-mass halos. This indicates, at least when analyzing only flux ratios and

image positions from quads, that there is a complete degeneracy between low-mass halos and

general third- and fourth-order multipoles. Powell et al. (2022) and O’Riordan & Vegetti (2023)

find that this degeneracy extends to modeling lensed extended emission. This calls for a better

understanding of multipoles in galaxy mass distributions, reevaluation of previous constraints from

flux-ratio analysis that did not sufficiently include them, and rigorous exploration of the ways in

which they can be included in an inference procedure.

4.1 Moving Forward with Multipoles
This work has uncovered an important source of systematic uncertainty. Future work will need to

address this in order to fully realize the potential of lensing to constrain the nature of dark matter.

There are two avenues of research that can be pursued to more definitively address the problem

of multipoles. The reason for the ambiguity in implementing multipoles is that we do not have a

good understanding of the frequency and degree to which they exist in the mass distributions of

lens-like elliptical galaxies. Observations of both lens galaxy isophotes and lensed arcs around

them as well as simulations will better inform multipole priors that can have a profound impact on

dark matter inferences. As mentioned, there is also a wide range of ways in which multipoles can

be included in mass models. It is important to experiment with them and see how, if at all, the

resulting inferences vary.

Most gravitational lensing work that has included multipoles, including my own, uses the
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distribution of multipoles found in the isophotes of lens-like galaxies as a reference for realistic

multipole perturbations. Hao et al. (2006) analyzed 847 ellipticals from the Sloan Digital Sky Sur-

vey (Blanton et al., 2017) and derived distributions of third- and fourth-order multipole amplitudes

that very roughly follow Gaussian distributions centered around 0 with widths of 0.0035. They also

found that multipoles occur in all orientations. However, it is not known whether multipoles in the

mass distribution of a galaxy match those of the light distribution. In fact, comparing multipoles

found from modelling arcs in high-resolution ALMA observations to those found in isophotes of

the lens galaxies Stacey (2024) find disagreement in two of the three systems investigated. While

this tension already indicates that the multipoles in the mass and light distribution may differ, a

larger sample of lens systems with observations of both lens galaxy isophotes observations and the

arcs will allow us to quantify the discrepancy.

Even if a relationship, or a lack thereof, between multipoles in galaxy isophotes and lens models

is concretely established, we still cannot be sure of the origin of inferred multipoles in the mass

distribution. My work in Chapter 3 and that of O’Riordan & Vegetti (2023) indicate that there is a

degeneracy between low-mass halos and multipoles that may lead to false detections of either. In

this regard, simulations will be an invaluable complementary tool for searching for the emergence

of angular complexity in galaxies through mergers and interactions with baryons (Prada et al.,

2019; Chua et al., 2019). Galaxies from simulations have been found to display offsets between

the halo and baryon centers (Liao et al., 2017) and radially dependent twists (Emami et al., 2021).

With the next generation of simulations, it may be possible to resolve multipoles in the dark matter

and baryon distributions. This would be doubly helpful, as dark matter multipole distributions

alone could be used to set priors in lensing analysis, and their comparison to baryons would inform

the proper use of isophotes for this purpose.

Given the current uncertainty regarding appropriate priors for multipoles in flux-ratio analysis,

exploration of various choices is warranted. My work in Chapter 2 presents the resulting inference

on WDM from currently available data if multipoles are left out. Other recent works have partially

implemented multipoles, excluding the third order altogether and restricting the fourth order to align

with the major axis of the EPL (Gilman et al., 2021, 2022, 2023). As expected given my findings

in Chapter 3, this limited inclusion does not have a measurable impact on constraining power.

It will be extremely important to repeat the analysis presented in Chapter 2 with general third-
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and fourth-order multipoles free to vary in orientation and with varying priors on the amplitudes.

This will allow us to find the degree of limitation of multipole amplitudes at which constraining

power starts to return. As I have shown, I expect that any prior which allows for both amplitudes

to be around or above ∼0.01 will eliminate all constraining power. Beyond the types of priors

on multipoles, other decisions about their place in the analysis procedure remain. For instance,

should multipoles parameters be optimized after the addition of a low-mass halo population as

are the macro-model parameters? Also, pending further knowledge from simulations about their

relationship to dark matter models, can inferred multipoles actually contribute to dark matter

constraints? Regardless of the results of the proposed inquiries via observation and simulation,

multipoles must be implemented using a careful Bayesian approach in order for dark matter

constraints from flux-ratio analysis to be trusted.

4.2 Future of the Field
Despite the challenges presented by multipoles, the enormous increase in the sample size of lens

systems expected in the coming decades from JWST (see Nierenberg et al., 2023), Euclid (see

O’Riordan & Vegetti, 2023) and the application of machine learning to efficiently identify lens

candidates (see Herle et al., 2023) promises to accelerate progress in constraining dark matter using

strong gravitational lensing. Flux-ratio analysis on its own may provide weaker constraints than

originally predicted (e.g. Gilman et al., 2019). With the aid of simulation results, detailed mass

models from lensed arcs and lens light observations, however, it has the potential to provide great

value. Comparing the magnification of lensed quasar images allows us to probe down to smaller

halo mass scales than any other method at redshifts 0 ≲ 𝑧 ≲ 3, thus it provides a unique insight

into the distribution of dark matter. If the next generation of flux-ratio analysis reveals fewer

anomalies that can be attributed to low-mass halos, it could indicate tension with longstanding

CDM predictions. Otherwise, the space of viable alternatives would be further narrowed. The

results of this thesis serve to highlight important next steps to mitigate systematic uncertainty, which

will be necessary for any major future discoveries. It’s a case of scientific progress, addressing

successive systematic errors, which occasionally leads to remarkable discoveries.
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Murgia, R., Iršič, V., & Viel, M. 2018, Phys. Rev. D, 98, 083540, 1806.08371

Myers, S. T. et al. 1995, ApJ, 447, L5

Nadler, E. O., et al. 2021, Phys. Rev. Lett., 126, 091101, 2008.00022

Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493, astro-ph/9611107

Navarro, J. F. et al. 2010, MNRAS, 402, 21, 0810.1522

Nierenberg, A. M. et al. 2020a, MNRAS, 492, 5314, 1908.06344

——. 2020b, MNRAS, 492, 5314, 1908.06344

——. 2023, arXiv e-prints, arXiv:2309.10101, 2309.10101

——. 2017, MNRAS, 471, 2224, 1701.05188

Nierenberg, A. M., Treu, T., Menci, N., Lu, Y., & Wang, W. 2013, ApJ, 772, 146, 1302.3243

Nierenberg, A. M., Treu, T., Wright, S. A., Fassnacht, C. D., & Auger, M. W. 2014, MNRAS, 442,
2434, 1402.1496

Oort, J. H. 1932, Bull. Astron. Inst. Netherlands, 6, 249

O’Riordan, C. M., Despali, G., Vegetti, S., Lovell, M. R., & Moliné, Á. 2023, MNRAS, 521, 2342,
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Appendix A

Individual Lens Inferences

The grid on the bottom left shows the two-dimensional posterior probability distribution of 𝑀hm

and 𝑓sub recovered from each of the individual lenses in our sample that were not discussed in

Section 2.4.2. The likelihood for each grid point is calculated using both the image positions and

fluxes. The top panel shows the result of marginalizing over 𝑓sub to get the posterior of 𝑀hm, and

the right panel shows the result of marginalizing over 𝑀hm to get the posterior of 𝑓sub.

Figure A.1 PS J1606-2333 (NLR)
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Figure A.2 WGD J2038-4008 (NLR)

Figure A.3 RX J0911+0551 (NLR)
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Figure A.4 SDSS J1330+1810 (NLR)

Figure A.5 HE0435-1223 (NLR)
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Figure A.6 JVAS B1422+231 (Radio/MIR)

Figure A.7 CLASS B0128+437 (Radio/MIR)
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Figure A.8 CLASS B0712+472 (Radio/MIR)

Figure A.9 CLASS B0128+437 (Radio/MIR)
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Figure A.10 CLASS B1555+375 (Radio/MIR)
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