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Fast and slow contributions to decision making in corticostriatal 
circuits

Zuzanna Z. Balewski1, Eric B. Knudsen1, Joni D. Wallis1,2,*

1Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, California, 
94720, USA

2Department of Psychology, University of California at Berkeley, Berkeley, California, 94720, USA

Summary

We make complex decisions using both fast judgements and slower, more deliberative reasoning. 

For example, during value-based decision-making, animals make rapid value-guided orienting eye 

movements after stimulus presentation that bias the upcoming decision. The neural mechanisms 

underlying these processes remain unclear. To address this, we recorded from the caudate nucleus 

and orbitofrontal cortex while animals made value-guided decisions. Using population-level 

decoding, we found a rapid, phasic signal in caudate that predicted the choice response and 

closely aligned with animals’ initial orienting eye movements. In contrast, the dynamics in 

orbitofrontal cortex were more consistent with a deliberative system serially representing the 

value of each available option. The phasic caudate value signal and the deliberative orbitofrontal 

value signal were largely independent from each other, consistent with value-guided orienting and 

value-guided decision-making being independent processes.

eTOC blurb

Valuable stimuli attract our attention, but how this interacts with subsequent decisions remains 

unclear. Balewski et al. found a rapid, phasic signal in the caudate that guided eye movements 

and biased subsequent choices. This signal was independent of value representations in the 

orbitofrontal cortex that are involved in value-guided decision-making.

*Lead contact: wallis@berkeley.edu.
Author contributions
ZZB and JDW designed the experiments and wrote the manuscript. EBK edited the manuscript. ZZB and EBK collected the data. ZZB 
analyzed the data. JDW supervised the project.

Declaration of interests
The authors declare no competing interests.

Inclusion and diversity
One or more of the authors of this paper self-identifies as a member of the LGBTQ+ community. While citing references scientifically 
relevant for this work, we also actively worked to promote gender balance in our reference list.

Publisher's Disclaimer: This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our 
customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review 
of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered 
which could affect the content, and all legal disclaimers that apply to the journal pertain.

HHS Public Access
Author manuscript
Neuron. Author manuscript; available in PMC 2023 July 06.

Published in final edited form as:
Neuron. 2022 July 06; 110(13): 2170–2182.e4. doi:10.1016/j.neuron.2022.04.005.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Introduction

To navigate complex decisions, we rely on a combination of fast, autonomous intuitions 

and slower, deliberative judgements (Evans and Stanovich, 2013; Kahneman, 2011). Recent 

studies have begun to highlight a complex interplay between fast and slow processes of 

decision making (McClure et al., 2004). When subjects are presented with a choice, initial 

eye movements appear to reflect rapid value processing; both humans (Shimojo et al., 2003) 

and monkeys (Cavanagh et al., 2019) quickly orient their gaze to high value items within 

150 ms. This quick orientation then biases the subsequent slower deliberation by increasing 

the likelihood that fixated items will be chosen (Cavanagh et al., 2019; Shimojo et al., 2003). 

During learning, this orienting fixation lags changes in choice behavior (Cavanagh et al., 

2019), suggesting that these behaviors reflect two distinct processes that are at least partially 

dissociable.

The neural systems involved in implementing these fast and slow mechanisms remain 

unclear. The basal ganglia are involved in forming and executing habitual behaviors (Atallah 

et al., 2014; Balleine and Dickinson, 1998; Graybiel, 2008). The caudate nucleus (CdN) 

in particular is implicated in orienting value-guided fixations (Hikosaka et al., 2006; 

Lauwereyns et al., 2002; Watanabe and Hikosaka, 2005) and microstimulation of CdN 

can bias choice behavior towards a given reward-predictive cue (Santacruz et al., 2017). 

In contrast, the prefrontal cortex, and particularly the orbitofrontal cortex (OFC), is more 

strongly associated with deliberative value-based decision-making (Padoa-Schioppa, 2011; 

Wallis, 2007). OFC neurons primarily encode the value of chosen options (Kennerley et al., 

2009; Padoa-Schioppa and Assad, 2006), and the region is critical to value-based decisions 

(Ballesta et al.; Knudsen and Wallis, 2020), especially when new information needs to be 

computed or integrated (Murray and Rudebeck, 2018; Stalnaker et al., 2015). Furthermore, 

when animals consider two options, the value representation in the OFC vacillates between 

the two idiosyncratically on each trial, predicting both the speed and optimality of the final 

choice (Rich and Wallis, 2016), consistent with deliberative decision processes occurring 

in OFC. Given the strong, bidirectional connectivity between the head of CdN and OFC 

(Clarke et al., 2014; Ferry et al., 2000; Haber et al., 1995), this circuit may mediate the 

interaction between fast and deliberative valuation processes.

In the current study, we had two goals. First, we wanted to determine whether the CdN 

population dynamics were consistent with orienting eye movements during a value-based 

decision-making task. Second, we wanted to contrast these dynamics with flip-flopping 

value representations in OFC to investigate the interaction between rapid and deliberative 

processes in decision-making. To this end, we simultaneously recorded from the head of 

the CdN and OFC while two monkeys freely viewed pairs of pictures and used a lever 

to select their preferred associated juice outcome. CdN activity predicted choice direction 

rapidly after trial onset, independent of the relatively slow response times and correlated 

with the direction of the first saccade, consistent with a role in mediating the effects of gaze 

on choice behavior. However, the flipping-flopping dynamics of OFC value representations 

were not influenced by eye movements nor the CdN direction signal, but were predictive of 

choice time, suggesting that the two systems reflect parallel valuation processes that both 

contribute to choice.
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Results

We taught two monkeys (subjects C and G) to use a bidirectional lever to select either 

one (forced choice trials) or between two (free choice trials) available pictures for the 

corresponding juice outcome (Fig. 1a). Both subjects learned 16 pictures, which were 

associated with one of four juice amounts and four reward probabilities (Fig. 1b). As 

expected, subjects preferred larger juice amounts and more certain rewards (Fig. 1c). Their 

lever response times were relatively slow (subject C: free trials, median = 666 ms, forced 

trials, median = 700 ms; subject G: 454 ms, 457 ms) and broadly distributed (Fig. 1d). In 

contrast, the first saccades following picture onset were fast (subject C: free trials median 

= 162 ms, forced trials median 206 = ms; subject G: 189 ms, 203 ms; Fig. 1d), yet 

overwhelmingly predicted the chosen picture even on free trials (subject C: 84% of free 

trials; subject G: 91%).

We modeled each subjects’ choice behavior on free trials by fitting a soft-max decision 

function, which depended on the value difference between the two pictures and included a 

bias term for the first saccade direction (Eq. 1, Fig. 1e). We estimated subjective picture 

value as expected value (Eq. 2), which better explained choices (subject C: 76% explained 

variance; subject G: 86%) compared with other reported value functions (Eq. 3) (Hosokawa 

et al., 2013). Subjects selected the higher expected value option on 90% (subject C) and 

92% (subject G) of free trials. Both subjects were more likely to select the option they 

looked at first, as indicated by the x-axis shift for the two curves depending on the direction 

of the subjects’ first saccade. To simplify subsequent neuronal analyses, we binned the 16 

pictures into groups of four from lowest to highest value; picture value (1–4) refers to these 

groupings (Fig. 1f).

To examine the relationship between picture value, choice responses, and initial saccade 

times, we considered the effect of the more valuable picture (maximum value) and the 

overall difficulty, or value difference, of the choice. Because each metric is separately 

correlated with response time, we performed a linear regression on response times with 

both as predictors to separate their unique contributions to behavior. Subjects responded 

significantly faster as the maximum value increased (subject C: β= −0.39, CPD = 11%, 

p < 1 ×10−5; subject G: β= −0.40, CPD = 12%, p < 1 × 10−5). There was also a small, 

but significant effect of value difference, with larger differences predicting faster responses 

(subject C: β = −0.04, CPD = 0.2%, p < 0.0001; subject G: β = −0.03, CPD = 0.1%, p = 

0.01; Fig. 1g). The onset of the first saccade was also strongly dependent on the maximum 

value, with faster saccades to more valuable pictures (subject C: β = −0.6, CPD = 27%, p < 1 

× 10−5; subject G: β = −0.54, CPD = 22%, p = 1 × < 10−5). The effect of value difference on 

saccade timing however was weak and inconsistent (subject C: β = 0.06, CPD = 0.4%, p < 1 

× 10−5; subject G: β = 0.01, CPD = 0%, p = 0.58; Fig. 1h). Since maximum value, but not 

value difference, strongly correlated with both subjects’ behavior, we focused only on this 

metric of picture value in the neural data.

Caudate neurons encode choice direction rapidly and phasically

We recorded single neurons and the local field potential (LFP) from the caudate nucleus 

(CdN) using up to 4 acute multisite probes per session (Fig. 2a). To investigate the 
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relationship between choice behavior and neuronal firing rates, we performed linear 

regressions on the firing rates in sliding time windows with maximum value, choice 

direction, and trial type (forced or free) as predictors (Eq. 4, see Methods). Overall, the 

firing rates of 69% of 344 neurons and 68% of 1259 neurons from subjects C and G, 

respectively, were predicted by at least one term during the first 500 ms following picture 

onset (Fig. 2b); we found no anatomical organization among these neurons (Fig. S1). Most 

neurons were significantly predicted by maximum value, choice direction, or both (Fig. 

2c–e). In fact, we observed more neurons that encoded both value and direction than would 

be expected by their independent prevalence (χ2 test; C: χ2 = 25, d.f. = 1, p < 1 × 10−7; G: 

χ2 = 185, d.f. = 1, p < 1 × 10−10).

To better understand the temporal evolution of information in CdN neurons, we looked at the 

dynamics of CdN population-level activity on individual trials. For each session, we trained 

linear discriminant analysis (LDA) decoders to predict the choice direction (left or right) 

from neuronal firing rates and LFP magnitude in sliding windows. We used a subset of free 

trials to validate decoder performance with a leave-one-out (LOO) procedure (see Methods). 

Accuracy rose sharply immediately after picture onset, peaking at 220 ms (74 ± 1% across 

sessions) and 275 ms (82 ± 1%) after picture onset for subjects C and G, respectively 

(Fig. 3a). Repeating this procedure with trials synced to the lever movement, we observed 

significantly lower overall decoding accuracy leading to choice (Fig. 3b). This confirmed 

that the encoding of choice direction in CdN was driven by the onset of the pictures and did 

not reflect response preparation.

We next applied decoder weights to held-out free trials, iterating the procedure multiple 

times to maximize the number of trials (see Methods). We used the posterior probability for 

the choice direction as a proxy for representation strength (Fig. 3c). We observed a phasic 

rise in choice direction representation locked to the picture onset. Even when subjects took 

longer to respond, choice direction encoding was rapid. These dynamics, though readily 

observable from the neural population on individual trials, were not apparent in most 

individual neurons (Fig. 2e). Since most CdN neurons also encoded value, we examined 

how the choice direction representation varied with maximum picture value (Fig. 3d). We 

quantified this relationship by modelling the logit-transformed decoding strength as a linear 

function of maximum value (Fig. 3e) and calculating the resulting beta coefficients and 

coefficient of partial determination (CPD), which is the percentage of the overall variance 

in decoding strength that could be explained by value. The strength of decoding of choice 

direction was strongly predicted by value, peaking at around 190 ms (β = 0.24, CPD = 5.7%, 

p < 1 × 10−15) and 150 ms (β = 0.38, CPD = 14%, p < 1 × 10−15) for subjects C and G, 

respectively.

We next asked if choice direction decoding strength predicted any additional variance in 

response time beyond what was already explained by the maximum picture value. We 

performed a linear regression on log10(response times) with logit-transformed decoding 

strength and maximum value as predictors (Fig. 3f). Indeed, decoding strength significantly 

predicted response times even once the effect of maximum value was accounted for (C: β = 

−0.07, CPD = 0.55%, p < 1 × 10−13; G: β = −0.15, CPD = 2.3%, p < 1 × 10−15).
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Phasic caudate responses predict first saccades

While the strength of direction decoding was correlated with maximum picture value and 

response times, the latency appeared to follow picture onset, coinciding with the first 

saccade (Fig. 1d, 3c). To quantify the onset of direction decoding on each trial, we defined 

direction states to be periods of at least four consecutive time bins (spanning 35 ms) when 

the posterior probability exceeded 99% of a null distribution constructed from values during 

the fixation period (C: 99% threshold = 0.74; G: 0.84).

The distribution of first state onset times (subject C: median = 160 ms, G: 170 ms) was very 

similar to first saccade movement times (C: median = 162 ms, G: 189 ms; Fig. 4a). Similar 

to first saccades, the onset of the first direction state occurred significantly earlier for trials 

with pictures of larger maximum value (Fig. 4b; linear regression, C: β = −0.07, p < 1 × 

10−12; G: β = −0.18, p < 1 × 10−15). The first saccade location was highly predictive of the 

decoded direction (C: same on 68% of trials; G: 80%) and greater than would be expected 

by chance (χ2 test; C: χ2 = 318, d.f. = 1, p < 1 × 10−15; G: χ2 = 304, d.f. = 1, p < 1 × 

10−15). To examine the relationship between the CdN response and the saccade direction, 

independent of the effect of value, we examined trials where both choice options had the 

same value and compared trials where the first saccade was to the ultimately chosen option 

versus those where the first saccade was to the unchosen option. When the first saccade was 

to the chosen option, CdN direction decoding strength was significantly greater and faster 

than when the first saccade was to the unchosen option, and the subjects also responded 

more quickly (Fig. 4c).

These results suggest that the phasic CdN response reflects the first saccade direction and 

that it effects the overall time for the animals to make their choice. However, it is also 

not a simple oculomotor movement signal. Subject C tended to saccade first to the chosen 

picture and then to the unchosen picture before moving the lever. The decoded direction 

did not abruptly change from chosen to unchosen around the time of the second saccade, 

suggesting the information decoded from CdN is related to the processes guiding the initial 

orienting eye movement, but not subsequent movements (Fig. 4c). Of course, we cannot 

rule out more high-level motoric control: for example, the phasic signal might reflect the 

preparation of a sequence of eye movements. In addition, we note that we could not perform 

the same analysis in subject G, since he only typically made a single saccade before making 

his choice. However, in both subjects it was clear that the decoded choice direction typically 

did not change later in the trial. Chosen direction states dominated unchosen direction states 

in quantity and duration (Fig. 4d), and for most trials (C: 62%, G: 71%) the decoded state 

did not change (Fig. 4e).

In sum, direction decoding from CdN reflected similar timing and content as the initial 

saccade. This suggests the decoder is classifying information correlated with the same fast 

valuation system reflected in overt eye movements (Cavanagh et al., 2019; Kim et al., 2020).

Orbitofrontal activity reflects a more deliberative decision-making process

To compare OFC and CdN contributions to our subjects’ decision-making, we recorded 

single neurons and LFP from OFC using up to 4 acute multisite probes per session (Fig. 
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5a). We repeated the single neuron analyses described above to investigate the relationship 

between behavior and neuronal firing rates. The firing rates of 57% of 235 neurons and 54% 

of 498 neurons from subjects C and G, respectively, were predicted by at least one term 

during the first 500 ms following picture onset (Fig. 5b). Compared to CdN neurons, fewer 

OFC neurons were modulated by choice direction and trial type (Fig. 5c–e).

Because we found little evidence of direction information in individual neurons, we looked 

at the value dynamics of the OFC population and compared them to population dynamics 

in CdN. We trained an LDA decoder on forced trials to predict picture value (1 – 4) from 

neuronal firing rates and LFP magnitudes (Rich and Wallis, 2016). We applied the decoder 

weights to free trials in sliding windows to obtain the posterior probability for each value 

across time. Task events, including fixation and picture onsets, systematically biased the 

baseline rates of each value level at these moments in the trial. To remove these artifacts, 

we used the percent change in posterior probability from these baselines as a proxy for 

representation strength. We defined value states as periods of at least four consecutive time 

bins (spanning 35 ms) when the decoding strength exceeded twice the baseline rate.

Unlike the direction states decoded from CdN, value states in OFC flip-flopped between 

multiple picture values idiosyncratically over the course of each trial, replicating our 

previous study (Rich and Wallis, 2016). Decoding strength for the chosen and unchosen 

values peaked at 190 ms and 305 ms for subject C, and 310 ms and 250 ms for subject 

G, respectively. In the first 800 ms from picture onset, we observed a mean of 5.2 ± 0.03 

and 8.5 ± 0.04 value states for subjects C and G, respectively. Chosen value states were 

significantly more prevalent and of longer duration than unchosen states, which in turn were 

more prevalent and longer than unavailable value states (Fig. 6a). For trials where at least 

one chosen or unchosen value state was identified (C: 98.3%; G: 100%), the median number 

of flips between them was 1 and 3 for subjects C and G, respectively (Fig. 6b). Decoding 

strength was predictive of response time: responses were faster on trials with stronger 

chosen value decoding and slower on trials with stronger unchosen value decoding (Fig. 6c). 

However, similar to Rich and Wallis (2016), there was no evidence that the decoder needed 

to be in a particular state at the time of the choice response. Indeed, the difference between 

chosen and unchosen value strength around the time of choice was weak and inconsistent 

between subjects (Fig. S2a). Value decoding in OFC was also not linked to gaze location. 

The strength of decoding of either the chosen or unchosen value did not depend on the 

location of the first saccade (Fig. 6d). Furthermore, there was no relationship between the 

phasic CdN choice direction signal and the OFC value signal. We grouped trials with chosen 

or unchosen initial value states in OFC and found no difference in the strength of the CdN 

direction decoding (Fig. 6e).

In sum, value decoding in OFC correlated with choice behavior on average but vacillated 

between the representation of the chosen and unchosen state on single trials, consistent 

with our previous study. The OFC value signal was not linked to overt eye movements nor 

CdN direction decoding, suggesting it reflects a more deliberative valuation process that is 

separate from the rapid CdN orienting response.
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Value decoding in caudate resembles dynamics in OFC

Since many CdN neurons also encoded value, we repeated the value decoding analyses from 

OFC in the CdN. We found that CdN value dynamics were qualitatively similar to those 

observed in OFC. Decoding strength for the chosen and unchosen values peaked at 170 ms 

and 175 ms for subject C, and 265 ms and 260 ms for subject G, respectively. In the first 

800 ms from picture onset, we observed 4.5 ± 0.03 and 6.5 ± 0.05 value states for subjects C 

and G, respectively. Chosen states were again more frequent and longer than unchosen states 

and unavailable values (Fig. 7a). For trials where at least one chosen or unchosen value state 

was identified (C: 96.1%; G: 92%), the median number of flips between them was 1 and 

2 for subjects C and G, respectively (Fig. 7b). As in OFC, strong encoding of the chosen 

state produced significantly faster response times, while strong encoding of the unchosen 

state produced significantly slower response times (Fig. 7c). However, on the slowest 25% 

of trials, there was no difference between the chosen and unchosen value strength following 

picture onset or around choice (Fig. S2b). Unlike direction decoding, value decoding in CdN 

was not linked to gaze location. We again compared trials where the first saccade and choice 

direction matched those when the directions were mismatched. We found no difference in 

chosen or unchosen value decoding strength across these trial types (Fig. 7d).

Given that we saw vacillation of value states in both OFC and CdN, we next asked 

whether these dynamics correlated between the two structures. We restricted our analysis 

to those sessions with successful value decoding simultaneously in both regions (C: 1 

session; G: 5 sessions, see Methods). We correlated separately the chosen and unchosen 

value strengths decoded from OFC and CdN in each trial over time (Fig. 7e). We tested 

these correlations against null distributions of correlation values from permuted trials. In 

both subjects, within the first 500 ms after picture onset, both chosen and unchosen value 

dynamics were significantly correlated, although the effect was rather weak and inconsistent. 

We also performed a cross-correlation on these time series to examine whether there might 

be a lag between the two regions, but there was no evidence of a consistent lead or lag 

between the two regions.

Discussion

We observed rapid and phasic encoding of the choice response in the head of the CdN 

that was synced to the presentation of the choice options. While difficult to infer from 

trial-averaged neural firing rates, these dynamics were readily observed from the neural 

population on individual trials. Despite this early signal that predicted the choice, both 

animals took much longer to make their final decision. The direction signals in the CdN 

were strikingly similar to the subjects’ initial saccade in that they occurred within 200 ms of 

the presentation of the choice options and were directed to the chosen item on the majority 

of trials. Our results are consistent with behavioral findings which suggest that there are 

two independent systems responsible for value-guided attentional capture and value-guided 

choice (Cavanagh et al., 2019). Our results suggest that CdN, but not OFC, is an important 

component of the value-guided attentional capture system.
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Striatal encoding of salient environmental stimuli

In recent years, there has been increasing appreciation of the role that value plays in 

guiding attention (Anderson, 2016; 2019; Della Libera and Chelazzi, 2006). The basal 

ganglia appear to play a particularly important role in guiding saccades to rewarded targets 

(Hikosaka et al., 2006). For example, in a task where monkeys fixated peripheral cues 

that predicted different sizes of reward, CdN neuronal activity was spatially selective and 

typically stronger when the cue predicted a larger reward (Kawagoe et al., 1998; Lauwereyns 

et al., 2002). In humans, neuroimaging results have shown that CdN is more active when 

humans must avoid being distracted by reward-associated cues (Anderson et al., 2014) 

suggesting that it may also play an important role in value-guided attentional capture. A 

possible mechanism for this involves projections to CdN from the superior colliculus via 

the thalamus (McHaffie et al., 2005). Neurons in the suprageniculate nucleus, which relays 

information from the superior colliculus to CdN, discriminate between pictures that predict 

high and low values of reward (Kim et al., 2020). This would also help explain why the 

CdN response is so rapid, since it conceivably only involves three synapses from the retina. 

Outputs from the CdN to the superior colliculus via the substantia nigra can then generate 

saccades to the target (McHaffie et al., 2005). The entire system can function to generate 

saccades to orient gaze towards ecologically relevant visual stimuli (Ghazizadeh et al., 

2016).

Although CdN responses have been extensively studied in the context of peripheral 

presentation of reward-predictive cues, it was unclear how these findings would translate 

to more complex decision-making tasks. Our results show that the fast, phasic CdN response 

is also present during choice and may make an important contribution to value-based 

decision-making where it could mediate the biasing effect of saccades on choice. However, 

CdN also showed the kind of value vacillation that we previously observed in OFC. Thus, 

CdN appears to multiplex two signals in the dynamics of its firing that could make distinct 

contributions to choice. The first is the rapid, phasic directional signal that could mediate 

the effects of value-guided attentional capture, and the second is the vacillation in the 

value representation that corresponds to deliberative valuation. While our evidence for the 

multiplexing of fast and slow decision signals in CdN is correlational, this framework 

may help to explain previously reported effects of causal manipulations of this region. 

In a visually guided saccade task, CdN microstimulation following the saccade caused 

subsequent saccades in that direction to occur more rapidly, an effect that mimicked the 

effects of natural rewards on saccades (Nakamura and Hikosaka, 2006). In addition, we 

have shown that CdN microstimulation during a value-guided decision-making task can 

selectively increase the value of a specific stimulus independent of the choice response 

(Santacruz et al., 2017). An intriguing possibility is that the timing of microstimulation in 

the CdN relative to the presentation of the choice options may be able to differentially effect 

value-guided attention from value-guided decision-making.

It will also be important to determine how these signals are initially learned. CdN has 

frequently been associated with goal-directed, model-based reward learning, while the more 

lateral putamen has been associated with habitual, model-free responses (Balleine and 

O’Doherty, 2010). However, several features of value-guided attentional capture, suggest 
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that it is more consistent with a habitual, as opposed to goal-directed response. For example, 

it occurs even when subjects are unaware of the underlying reward schedules (Pearson 

et al., 2015) and when it conflicts with the goals of a task (Le Pelley et al., 2015), 

neither of which is consistent with a deliberative process. With respect to the influence 

of value-guided attentional capture specifically on decision-making, here too the behavioral 

evidence seems to favor a model-free, habitual response. For example, valuable options on 

which animals are overtrained show an attentional capture effect which biases subsequent 

choices. In contrast, while novel choices also demonstrate attentional capture, they do not 

bias choice (Cavanagh et al., 2019). The fact that value-based attentional capture is only 

seen in the overtrained situation is consistent with a model-free mechanism, and the fact that 

the behavioral effects on choice are different from those of novel choice options, suggests 

that it is also at least partly independent of information sampling (Monosov, 2020; Traner 

et al., 2021). To understand these mechanisms and how they map onto striatal circuitry it 

will be important to compare neural responses between CdN and the putamen, as well as use 

behavioral probes that can test whether behaviors are goal-directed or habitual. For example, 

one could devalue one of the rewards and examine how quickly the attentional capture effect 

changes relative to the animal’s choice behavior.

Relationship to frontal deliberative decision-making

In contrast to the highly stereotyped early phasic direction response in CdN, OFC population 

value dynamics are idiosyncratic across trials. We replicated the main findings from Rich 

and Wallis (2016): the value representation flip-flopped between the available pictures, more 

valuable states were represented more frequently and for longer duration, and the strength 

of these representations predicted subjects’ response times. Importantly, these dynamics 

were not influenced by overt eye movements. We saw very similar dynamics in the value 

encoding in CdN, along with a correlation with the states on OFC. The interareal correlation 

was rather weak and inconsistent. The weakness of the correlation may be real, but it could 

also reflect a relative lack of power in our analyses. Decoding simultaneously from two deep 

structures is technically challenging since it requires recording many neurons. These are 

exactly the kinds of experiments that will be made possible by new recording probes that 

have many hundreds of contacts (Steinmetz et al., 2018; Steinmetz et al., 2019).

It also remains unclear how the value vacillation is translated into choice. We previously 

speculated that a motor area downstream of OFC could integrate the value vacillation 

to determine the correct response, given that more valuable states are represented more 

frequently and for longer duration (Wallis, 2018). We identified three likely candidates based 

on their connections with OFC and the presence of both value and motor signals: anterior 

cingulate cortex, dorsolateral prefrontal cortex, and the striatum. We can now eliminate 

CdN as a possibility since the encoding of the choice response was clearly not a gradual 

accumulation of evidence from the value vacillation. However, it is conceivable that we 

might have seen integration of value signals or stronger correlations with OFC vacillation 

if we had recorded from the putamen rather than CdN. The putamen is a key striatal region 

involved in arm movement control (Inase et al., 1996; Kelly and Strick, 2004; Takada et 

al., 1998) and our animals were using arm movements to indicate their choice response. 

Furthermore, OFC projections into the striatum are not limited to CdN but extend into 
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ventromedial putamen (Ferry et al., 2000). Neurons in the putamen encode action and value 

information (Hori et al., 2009), and inactivation of this region disrupts action selection that is 

dependent on reward history (Muranishi et al., 2011).

Dysfunction of corticostriatal circuitry is a component of many neuropsychiatric disorders 

(Fernando and Robbins, 2011). The corticostriatal network is increasingly the target of 

implantable devices that can meaningfully interact with the circuit to treat these disorders 

(Creed et al., 2015; Scangos et al., 2021; Shanechi, 2019). Our results demonstrate both 

the challenges and potential of these approaches (Wallis and Rich, 2011). Value signals are 

nearly ubiquitous throughout the brain (Vickery et al., 2011), yet they often subserve very 

different functions (Wallis and Kennerley, 2010). Our results show that CdN multiplexes two 

distinct value signals with different dynamics. Understanding those dynamics potentially 

allows devices to target different value-related processes.

STAR Methods

RESOURCE AVAILABILITY

LEAD CONTACT—Further information and requests for resources should be directed to 

and will be fulfilled by the lead contact, Joni Wallis (wallis@berkeley.edu).

MATERIALS AVAILABILITY—This study did not generate any new unique reagents.

DATA AND CODE AVAILABILITY—Any data, code, and additional information 

supporting the current work are available from the lead contact on request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All procedures were carried out as specified in the National Research Council guidelines 

and approved by the Animal Care and Use Committee and the University of California, 

Berkeley. Two male rhesus macaques (subjects C and G, respectively) aged 6 and 4 years, 

and weighing 10 and 7 kg at the time of recording were used in the current study. Subjects 

sat head-fixed in a primate chair (Crist Instrument, Hagerstown, MD) and manipulated a 

bidirectional lever located on the front of the chair; eye movements were tracked with an 

infrared eye-tracking system (SR Research, Ottawa, Ontario, CN). Stimulus presentation and 

behavioral conditions were controlled using the MonkeyLogic toolbox (Hwang et al., 2019). 

Subjects had unilateral (subject C) or bilateral (subject G) recording chambers implanted, 

centered over the frontal lobe.

METHOD DETAILS

Task Design—Subjects performed a task in which they were required to choose between 

pairs of pictures or single pictures. Each trial started with a 0.5° fixation cue in the center 

of the screen, which subjects fixated continuously for 750 ms to initiate picture presentation. 

On free choice trials (67% of trials), two pictures 2.5° × 2.5° appeared 6° on either side 

of the fixation cue; on forced choice trials (33%), one picture appeared on either side. 

Subjects used a bidirectional lever to indicate the left or right choice. Both subjects learned 

to associate 16 pictures with one of four amounts of juice (subject C: 0.15, 0.3, 0.45, 0.6 
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mL; subject G: 0.1, 0.2, 0.3, 0.4 mL) and one of four reward probabilities (C: 0.15, 0.4, 0.65, 

0.9; subject G: 0.1, 0.37, 0.63, 0.9). Amounts and probabilities were titrated for each subject 

so that one dimension did not dominate choice behavior. The selected picture remained on 

the screen while the corresponding juice amount was delivered probabilistically. Trials were 

separated by a 1000 ms intertrial interval. Gaze position was sampled at 500 Hz. Subject C 

completed 10,358 free trials and 5,397 forced trials over 11 sessions; subject G completed 

10,793 and 5,873 trials over 12 sessions.

Neurophysiological recordings—Subjects were fitted with head positioners and 

imaged in a 3T scanner. From the MR images, we constructed 3D models of each subjects’ 

skull and target brain areas (Paxinos et al., 2000). Subjects were implanted with custom 

radiolucent recording chambers fabricated from polyether ether ketone (PEEK). During 

each recording session, up to 8 multisite linear probes (16- or 32- channel V probes with 

75, 100, or 200 μm contact spacing, Plexon, Dallas, TX) were lowered into CdN (head 

of the caudate nucleus, AP +22 to +32 mm) and OFC (areas 11 and 13, AP +29 to 

+39 mm) in each chamber. Electrode trajectories were defined in custom software, and 

the appropriate microdrives were 3D printed (Form 2 and 3, Formlabs, Cambridge, MA) 

(Knudsen et al., 2019). Lowering depths were derived from the MR images and verified 

from neurophysiological signals via grey/white matter transitions. Neural signals were 

digitized using a Plexon OmniPlex system, with continuous spike-filtered signals (200 Hz - 

6 kHz) acquired at 40 kHz and local field-filtered signals acquired at 1 kHz.

We recorded neuronal activity over the course of 11 sessions for subject C and 12 sessions 

for subject G. Units were manually isolated using 1400 ms waveforms, thresholded at 

4 standard deviations above noise (Offline Sorter, Plexon). We restricted our analysis to 

neurons with a mean firing rate across the session >1 Hz firing rates. In addition, to 

ensure adequate isolation of neurons, we excluded neurons where >0.2% of spikes were 

separated by <1100 ms. Sorting quality was subjectively ranked on a 1 – 5 scale to separate 

well-isolated single neurons from possible multi-units. None of the results reported in the 

manuscript depended on the isolation quality of our neurons, and so we included all neurons 

in our analyses. CdN neurons were additionally labeled as putative phasic or tonic neurons 

from waveform shape, firing rate, and ISI distribution shape (Alexander and DeLong, 1985; 

Aosaki et al., 1995). We did not find any significant differences in the functional properties 

of these two classes of neurons and so we included all CdN neurons for the analyses 

reported in the manuscript. Only LFP channels with at least one unit were also included. 

In total, we recorded 344 and 1259 neurons and 247 and 899 LFP channels from CdN in 

subjects C and G, respectively; we recorded 235 and 498 neurons and 189 and 383 LFP 

channels from OFC.

Raw LFPs were notch filtered at 60, 120, and 180 Hz and bandpassed using finite impulse 

response filters in six frequency bands: delta (2–4 Hz), theta (4–8Hz), alpha (8–12 Hz), beta 

(12–30 Hz), gamma (30–60 Hz), and high gamma (70–200 Hz). Analytic amplitudes were 

obtained from Hilbert transforms in the pass bands.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Behavioral analysis—We defined saccades as eye movements whose velocity exceeded 6 

standard deviations from the mean velocity during fixation. The saccade time was defined by 

the peak velocity within each movement, and direction was identified by the subsequent eye 

position.

We fit choice behavior for each subject using a soft-max decision rule,

PR = 1
1 + exp w1 * V R − V L + w2 * S + w3

Eq. 1:

which attempts to predict the probability that the subject will select the picture on the 

right, PR, with three free parameters: the inverse temperature, w1, which determines the 

stochasticity of the choice behavior as a function of the difference in value, V, between 

the right and left picture, a saccade bias term, w2, which accounts for influence of the 

first gaze location, S, after picture onset, and a side bias term, w3, which accounts for 

any preference for one choice direction. We considered multiple subjective value functions, 

including expected value

expected value = juice probability * reward amount Eq. 2:

which did not add any free parameters to the model, and discount functions from Hosokawa 

et al (2013), which all added one free parameter. We estimated all free parameters by 

maximizing the log likelihood of the full model:

−∑NR * ln PR ∣ ΔV − ∑NL * ln 1 − PR ∣ ΔV Eq. 3:

where N is the number of trials where the animal selected either the right or left option. 

The expected value model was the best fit for both subjects’ behavior, when models were 

compared with BIC, AIC, and overall explained variance.

Single neuron regression analysis—For each neuron, in overlapping 100 ms windows 

shifted by 25 ms, we performed the following linear regression on firing rate, FR:

FR = β0 + β1 * trial type + β2 * cℎoice direction + β3 * max value + β4 * trial
number Eq. 4:

with binary variables for trial type (+1 free, −1 forced) and choice direction (+1 

contralateral, −1 ipsilateral), continuous variables for the maximum value of the presented 

pictures (max value: 1 – 4), and trial number as a noise parameter to absorb potential 

variance due to neuronal drift over the recording session. Significance was defined as p < 

0.01 for 100 ms (four consecutive time bins).

To compare the proportion of significant neurons between CdN and OFC, we performed a 

χ2 test for each factor (trial type, choice direction, and max value) independently.

Direction decoding with single trial resolution—Choice direction was decoded from 

CdN only. For each session, we trained linear discrimination analysis (LDA) decoders to 
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predict the choice direction (left or right) from neural activity during free trials. We synced 

the trials to picture onset or choice response, and the decoders were trained in sliding 

windows of 20 ms stepped by 5 ms. To reduce the dimensionality of the input features in 

each window, we performed PCA across trials separately for normalized neuron firing rates 

and normalized magnitudes from the δ LFP band (2 – 4 Hz); higher frequency LFP bands 

did not meaningfully improve decoding accuracy. We then restricted inputs to the top PCs 

that explained 95% of the variance within each group.

We randomly split all free trials into separate training and held-out sets. Trials in the training 

set were constrained such that there was an equal number of each offer pair where the 

chosen value level was greater than the unchosen value (i.e., left 3 vs. right 4, left 4 vs. right 

3, 2 vs. 4, 4 vs. 2, etc.). The held-out set contained all remaining trials. We used a k-fold 

leave-one-out validation procedure on the trials in the training set to assess the accuracy 

of the decoders. We then used the entire training set to compute the posterior probabilities 

for left and right direction on each trial in the held-out set. To maximally use all trials in 

a session, we repeated the procedure with 25 random splits of training and held-out sets. 

For each trial, we averaged the posterior probabilities across all instances when it was in the 

held-out set. To ease interpretation of reported results, we relabeled the decoder classes (left 
and right) as chosen direction and unchosen direction for each trial.

We identified sustained periods of confident decoding as states. We built a null distribution 

of posterior probability values from the fixation period (−500 to 0 ms before picture onset) 

to define a threshold that exceeded 99% of this distribution. On each trial, the posterior 

probability for a given direction needed to surpass this threshold for at least four consecutive 

time bins (spanning 35 ms, accounting for bin overlap) to be considered a state.

We bootstrapped confidence intervals to compare decoding strength between trials where the 

first saccade was to the chosen (matched) or unchosen (mismatched) direction, restricted to 

trials where the choice was between pictures of equal value. Note that we had about eight 

times more matched trials compared to mismatched trials, and mismatched trials were more 

likely to occur for lower picture values. To account for these differences, we ensured that 

the random samples of matched trials had the same value distribution and total number as 

the mismatched trials (subject C: n = 581, G: n = 383). We calculated 99.9% confidence 

intervals over the means of 10,000 samples drawn from each trial group.

Value decoding with single trial resolution—Picture value was decoded from OFC 

and CdN, separately for each session. It is difficult to train a decoder for picture value 

from free trials, where two pictures are available, without making assumptions about how 

and when each picture is being represented (e.g., only the picture on the right; only the 

best picture). Instead, following the approach in Rich and Wallis (2016), for each session 

we trained an LDA decoder to predict the value (1 – 4) from neural activity on forced 
trials, where a single picture was available. We then used these decoder weights to compute 

the posterior probability of each value on every free trial in sliding windows of 20 ms 

stepped by 5 ms. Trials were synced to picture onset or lever response. The neural input and 

dimensionality reduction was the same as for direction decoding.
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We trained one decoder from forced trials on neural activity averaged between 100 – 500 

ms, for each session. We randomly sampled these trials to uniformly represent all pictures 

on either side of the screen and used a k-fold LOO validation procedure. We repeated this 

procedure with 50 random samples and averaged classification accuracy across all instances. 

We applied these decoder weights to each free trial in sliding windows of 20 ms stepped by 

5 ms. We repeated this procedure with 50 random samples of forced trials and averaged the 

posterior probabilities on free trials across all instances.

Only sessions with good decoding accuracy on forced choice trials were included in the 

analyses, defined as >40% overall accuracy on forced trials (chance = 25%). For subject C, 

5 sessions met these criteria for OFC (mean accuracy 44 ± 1.7%) and 5 sessions for CdN 

(46 ± 1.7%). However, only 1 of these sessions had acceptable decoding in both areas. For 

subject G, all 5 sessions with probes in OFC met these criteria for both regions (OFC: 58 

± 2.5%, CdN: 53 ± 1.3%), likely due to larger neuron yields. In the remaining sessions, 

no probes were lowered to OFC and CdN value decoding was not analyzed to match trial 

counts from subject C.

We observed that chance rates of decoding each value deviated from the expected 25%, 

likely due to global differences in population firing rates during different phases of the task. 

To correct for this, we defined a unique baseline rate for each value level by averaging the 

posterior probability corresponding to that level across trials when that picture value was 

not available. We reported posterior probabilities as percent change from these baselines. We 

refer to this metric as decoding strength.

To ease interpretation of reported results, we relabeled the decoder classes (1 – 4) as chosen 
value, unchosen value, and unavailable for each trial. Only free trials where the chosen 

value was greater than the unchosen value were analyzed (i.e., correct choice). For all 

visualizations and analyses, one of the remaining unavailable levels was randomly selected 

for each trial.

We identified sustained periods of confident decoding as states. On each trial, the decoding 

strength for a given value level needed to exceed 200% (i.e., double the baseline rate) for at 

least four consecutive time bins (spanning 35 ms) to be considered a state.

Using sessions with good value decoding from both OFC and CdN, we asked if decoded 

value dynamics were synchronized in the two regions (C: 1 session, G: 5 sessions). We 

separately correlated the chosen value and unchosen value decoder strengths from OFC and 

CdN at each time point. We built a null distribution of correlation values at each time point 

from 10,000 permutations of the trials; trials were shuffled within value comparison (e.g., 1 

vs. 2, 1 vs. 3, etc.)

Statistics—All statistical tests are described in the main text or the corresponding figure 

legends. Error bars and shading indicate standard error of the mean (s.e.m.) unless otherwise 

specified. All terms in regression models were normalized and had maximum variance 

inflation factors of 1.7. All comparisons were two-tailed.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Rapid, phasic signals in caudate predict choice behavior during value-guided 

choices

• The phasic caudate response aligned with value-guided eye movements

• Fast caudate signals were independent of vacillating value representations in 

OFC
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Figure 1. 
Task and behavior.

(a) Subjects fixated a cue to initiate each trial. They were presented with one (forced choice 

trials) or two (free) pictures. After indicating their choice with a lever, they received the 

corresponding juice amount with the probability Preward.

(b) Subjects learned 16 pictures associated with different juice amounts and reward 

probabilities.

(c) Subjects were more likely to choose pictures associated with larger and more probable 

rewards. Using the same arrangement as (b), the color indicates the percent of free trials on 

which each picture was chosen.
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(d) Lever response time distributions for free (blue) and forced (gray) trials. First (purple) 

and second (orange) saccade distributions from free trials.

(e) The likelihood of choosing the right picture as a function of the difference in expected 

value (EV) of the two pictures, separated by the first saccade direction. Circle size represents 

the number of trials. Lines show the model fit. Both subjects were more likely to select an 

option when they first looked at it.

(f) We split the pictures into equal-sized groups from lowest expected value (value bin = 1) 

to highest (value bin = 4). Groupings were the same for both subjects. Same arrangement as 

(b).

(g) The unique effects of maximum value and value difference on reaction times. To 

visualize the unique contributions of each of these predictors, log10(response times) were 

modeled as a linear function of one parameter and the residuals (mean ± s.e.m.) were plotted 

as a function of the other parameter.

(h) The effect of maximum value and value difference on the timing of the first saccade. 

Conventions as in (g).
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Figure 2. 
CdN neurons.

(a) Reconstruction of CdN recording sites on coronal slices. Circles represent the number of 

neurons.

(b) CdN neuron firing rates were modelled as a linear combination of maximum value, 

choice direction, and trial type. Most neurons were significantly predicted by at least one 

factor during the first 500 ms following picture onset.
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(c) Three example neurons illustrating prevalent response types, including significant 

encoding of choice direction (left column), maximum value (middle), or both (right). Panels 

within each column show firing rates (mean ± s.e.m.) averaged over choice direction (top 

row) or maximum value (bottom row). Red bars at the top of each panel indicate periods of 

significance as determined from the regression.

(d) Single neuron encoding of maximum value across the entire population. Each horizontal 

line indicates data from a single neuron. Color intensity indicates the percentage of variance 

in the neuron’s firing rate explained by maximum value as determined by the coefficient 

of partial determination. Neurons were grouped according to whether they showed a 

positive (hot colors) or negative (cold colors) relationship between firing rate and value 

and ordered by the first significant time bin. Data from non-significant neurons are shown 

using grayscale.

(e) Single neuron encoding of choice direction across the entire population. Conventions as 

in (d).
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Figure 3. 
Direction decoding from CdN population.

(a) Population decoding of choice direction (left or right) on free trials from CdN. Gray 

lines represent accuracy from the leave-one-out validation procedure for each session; the 

mean across sessions is shown in black. The mean choice time (black triangle) is shown for 

reference.

(b) Peak LOO accuracy of the direction decoder for each session, trained on trials aligned 

to the onset of the pictures (x-axis) compared to choice (y-axis). Most sessions for both 

subjects fall below the diagonal equality line, indicating better decoding performance for 
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trials aligned to picture onset (C: 68 ± 1%, paired t(10) = 4.7, p < 0.001; G: 80 ± 1%, paired 

t(11) = 2.5, p = 0.02).

(c) We used the LDA weights to compute the posterior probability for the choice direction 

on held-out free trials (1 = chosen direction, 0 = unchosen direction). Each row corresponds 

to a single trial, ordered by increasing response time (black line).

(d) Choice direction representation strength increased with maximum picture value. Lines 

represent mean ± s.e.m. choice direction posterior probability across trials grouped by 

maximum value.

(e) We performed a linear regression to verify the observation in (d) by modelling choice 

direction strength as a function of maximum value. Blue lines indicate significant periods, p 
< 0.001.

(f) Regression of response times as a function of choice direction strength after partialing out 

the effect of maximum value. Orange lines indicate significant periods, p < 0.001.
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Figure 4. 
CdN population tracks first saccade.

(a) We defined direction states as sustained periods of decoding of choice direction. The 

distribution of first state onsets (shaded blue) coincided with the distribution of first saccade 

movements (blue line).

(b) First direction state onsets occurred significantly earlier on trials with higher maximum 

picture values.
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(c) We compared the average choice direction posterior probability for trials where the 

first saccade location was to the choice direction (matched trials; orange) and the unchosen 

direction (mismatched trials; black), restricting our analysis to trials where the pictures were 

of equal value. Dark lines represent the means calculated from 10,000 bootstrapped samples. 

Subjects responded more quickly (subject C: 116 ms, G: 83 ms) on matched trials. Shading 

and error bars indicate 99.9% CIs. Gray triangles indicate the mean time of the 1st (both 

subjects) and 2nd saccade (subject C only) across both trial groups.

(d) During the 800 ms immediately following picture onset, chosen states (red) were more 

prevalent (right) and longer duration (left) than unchosen (blue) direction states. Asterisks 

indicate p < 1 ×10−15 determined from paired t-tests.

(e) Distribution of number of flips between chosen and unchosen direction states per trial.
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Figure 5. 
OFC neurons.

(a) Reconstruction of OFC recording sites on coronal slices. Circles represent the number of 

neurons.

(b) OFC neuron firing rates were modelled as a linear combination of maximum value, 

choice direction, and trial type. About half of the neurons were significantly predicted by 

at least one factor during the first 500 ms after picture onset, of which the majority was 

dominated by maximum value.
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(c) Proportion of neurons in CdN (dark colors) and OFC (light colors) significantly 

predicted by each factor (from Figs. 2b and 5b). Asterisks indicate p < 0.01 as determined 

by a χ2 test. There was no difference between the areas in the prevalence of value-encoding 

neurons, but neurons encoding choice direction and trial type were more common in CdN.

(d) Two example OFC neurons that were modulated by maximum value, but not choice 

direction. Conventions as in Fig. 2c.

(e) Single neuron encoding of maximum value across the entire OFC population. 

Conventions as in Fig. 2d.
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Figure 6. 
Value dynamics in OFC.

(a) We trained an LDA decoder to classify picture value (1 – 4) on forced trials from 

OFC and applied the decoder weights to free trials in sliding windows. Value states are 

sustained periods of confident decoding of value. The prevalence (left) and duration (right) 

of value states favored chosen (red) over unchosen (blue) over unavailable (gray) value 

states. Asterisks indicate p < 0.001 as determined from a 1-way ANOVA with post-hoc 

t-tests.
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(b) Distribution of number of flips between chosen and unchosen value states per trial.

(c) Response times were faster when the chosen value (red) was decoded more strongly, 

and slower when the unchosen value (blue) was decoded more strongly. We built a linear 

regression for response time with chosen and unchosen decoding strength as predictors. Top: 

regression coefficients; bottom: % CPD. Bold lines indicate p < 0.001.

(d) We compared the average decoding strength of the chosen value (top) or the unchosen 

value (bottom) for trials where the first saccade location was to the chosen direction 

(shaded) and the unchosen direction (black line), using the same procedure as in Figure 

4c. There was no difference in decoding strength of either value given the first saccade 

direction. Shading indicates bootstrapped 99.9% confidence intervals. The mean 1st saccade 

times (black triangles) are shown for reference.

(e) We observed no difference in the strength (mean ± s.e.m.) of the CdN direction decoder 

between trials with an initial chosen (red) or unchosen (blue) value state in OFC.
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Figure 7. 
Value dynamics in CdN.

(a) We trained an LDA decoder to classify picture value from CdN using the same procedure 

as in Figure 6a. The prevalence (left) and duration (right) of value states favored chosen 

(red) over unchosen (blue) and unavailable (gray) value states. Asterisks indicate p < 0.001 

as determined from a 1-way ANOVA with post-hoc tests.

(b) Distribution of number of flips between chosen and unchosen value states per trial.

(c) Response times were faster when the chosen value (red) was decoded more strongly, 

and slower when the unchosen value (blue) was decoded more strongly, using the same 

regression and visualization as Figure 6c.

(d) We compared the average value decoding strength of the chosen (top) or the unchosen 

value (bottom) for trials where the first saccade location was to the chosen (shaded) or the 

unchosen direction (black line), using the same procedure as Figures 4c and 6d. Decoding 

strength of either value did not depend on the direction of the first saccade. Shading 

indicates bootstrapped 99.9% confidence intervals. The mean 1st saccade times (black 

triangles) are shown for reference.
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(e) We correlated the chosen (top, red) and unchosen (bottom, blue) value strength decoded 

from OFC and CdN on individual trials at each time point. We built a null distribution of 

correlation values from 10,000 permutations of trials; the gray line represents the median 

across these permutations and the shaded area indicates the 1% and 99% bounds. There was 

a weak, but significant, correlation in both animals during the first 500 ms of the choice 

period indicating that OFC and CdN tended to encode the same value at the same time.
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Key Resources table:

REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental models: Organisms/strains

Non-human primate (macaca mulatta) UC Davis N/A

PEEK inserts Graymatter Research https://www.graymatter-research.com

Form2 and Form3 3D printers Formlabs https://formlabs.com

Plexon V-Probes Plexon https://plexon.com

Software and algorithms

MATLAB The Mathworks https://www.mathworks.com/products/matlab.html

Omniplex Plexon https://plexon.com

Offline Sorter Plexon https://plexon.com

Monkey Logic Toolbox for MATLAB NIH https://www.brown.edu/Research/monkeylogic

3D Slicer BWH https://www.slicer.org

Eyelink 1000 Eyelink https://www.sr-research.com/eyelink-1000-plus/

Fast smoothing function for MATLAB Tom O’Haver https://www.mathworks.com/matlabcentral/fileexchange/
19998-fast-smoothing-function

Statistics and Machine Learning Toolbox for 
MATLAB

The Mathworks https://www.mathworks.com/products/statistics.html

Original code This paper https://doi.org/10.5281/zenodo.6408604
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