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A Spiking Neural Model of the n-Back Task
Jan Gosmann (jgosmann@uwaterloo.ca)

Chris Eliasmith (celiasmith@uwaterloo.ca)
Centre for Theoretical Neuroscience, University of Waterloo

200 University Avenue West, Waterloo, ON, N2L 3G1, Canada

Abstract

We present a computational model performing the n-back task.
This task requires a number of cognitive processes includ-
ing rapid binding, updating, and retrieval of items in work-
ing memory. The model is implemented in spiking leaky-
integrate-and-fire neurons with physiologically constrained pa-
rameters, and anatomically constrained organization. The
methods of the Semantic Pointer Architecture (SPA) are used
to construct the model. Accuracies and reaction times pro-
duced by the model are shown to match human data. Namely,
characteristic decline in accuracy and response speed with in-
crease of n is reproduced. Furthermore, the model provides
evidence, contrary to some past proposals, that an active re-
moval process of items in working memory is not necessary
for an accurate performance on the n-back task.
Keywords: n-back task; neural engineering; computational
neuroscience; vector symbolic architecture

Introduction
Reasoning about the world is a cognitive skill mediated by
a large number of cognitive processes, including the ability
to store information in working memory and quickly update
this information in a controlled manner. The n-back task has
been used extensively to investigate these features of cogni-
tive processing. Thus, characteristic patterns in accuracy and
reaction time data in this executive control test of working
memory have been well validated.

Despite its wide use in experiments, only few computa-
tional models of this task exist. Here we propose the first
model of the n-back task implemented in a spiking neural
network. Our motivation is two-fold. First, we hope to gain
a better understanding how the brain might process and up-
date contents in working memory. Second, the model might
lead to new insights about the interaction of different cogni-
tive mechanisms in performing more complex working mem-
ory tasks. By using spiking neural networks we can tie many
model parameters to biological constraints, diminishing the
parameter space.

In the n-back task the test subject is presented with a list
of stimuli (usually letters or spatial locations) one item at a
time. For each stimulus the subject has to indicate whether
he or she saw the current item exactly n positions before. As
an example consider the sequence j-n-j-j-k. In a 2-back task
the ‘j’ in bold would be a target, whereas the other letters in
the sequence would be considered distractors.

A number of executive control processes, including up-
dating, modification, maintenance, and matching of memory
contents, are of importance in this task. Specifically, the se-
quence of recent stimuli has to be stored in working memory
for some duration. For each new stimulus the list has to be
updated. This requires rapid binding of the new item to its

position in the list and an update of the position of remem-
bered items. At the same time, older stimuli become irrele-
vant. Preserving them in memory could interfere with new
stimuli and degrade performance. Because of this, an active
removal or unbinding of old items from memory is often as-
sumed (e.g., Juvina & Taatgen, 2007; Szmalec, Verbruggen,
Vandierendonck, & Kemps, 2011). However, the model pre-
sented here shows that active removal is not essential. Finally,
a recollection process is needed to recall the item n positions
back and compare it to the current stimulus.

To construct this model, we employ the methods of the Se-
mantic Pointer Architecture (SPA; Eliasmith, 2013). Among
other things, the SPA proposes methods for representing
symbol-like information, controlling the flow of informa-
tion, and implementing serial working memory in biologi-
cally plausible spiking neural networks. It relies heavily on
the Neural Engineering Framework (NEF; Eliasmith & An-
derson, 2003) for constructing such networks.

This paper is organized as follows: First, we will give a
short overview of the NEF. This is followed by a description
of the methods used to represent symbol-like items and their
positions in the model. Next we introduce the n-back model
and present the simulation results. Finally, we conclude with
a discussion of these results.

The Neural Engineering Framework
The Neural Engineering Framework (NEF) provides meth-
ods for implementing algorithms on abstract vector spaces
in spiking neural networks (Eliasmith & Anderson, 2003).
There are two key components to the NEF. First, it describes
how an ensemble of neurons can form a distributed represen-
tation of a vector space. Second, it specifies how connections
between neural populations can implement transformations
and computations on vectors in those spaces.

Equation 1 states how a vector xxx(t), varying over time, is
encoded by an ensemble of neurons. Each neuron i has a pre-
ferred direction or encoding vector eeei, a gain αi, and a back-
ground or bias current Jbias

i . From these parameters the neu-
ron’s input current Ji(xxx(t)) is determined and passed through
a non-linearity Gi that models the spiking response of a neu-
ron to current input. The vector is thus encoded into the ac-
tivity of the neurons ai(t).

ai(t) = Gi[J(t)], J(t) = αi
(
eeei · xxx(t)

)
+ Jbias

i (1)

Different neuron models with a varying degree of realism
can be used as the non-linearity Gi. For this model, we use
spiking leaky integrate-and-fire (LIF) neurons as a good bal-
ance of biological realism and computational efficiency. In a
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LIF neuron, the input currents are integrated over time with
an exponential decay determined by the neuron’s membrane
time constant. Once a specified threshold is reached the neu-
ron generates a spike. Afterwards it is reset to its starting
voltage and held there for the duration of the absolute refrac-
tory period. This spiking neuron model produces a spike train
of the form ai(t) = ∑s δ(t − ti,s) where ti,s is the time of spike
s from neuron i.

To reconstruct, or decode, an encoded vector from the ac-
tivity (i.e., the spike train) of the neuron, the spikes are con-
volved with a low pass filter h(t) that accounts for the post-
synaptic response of receiving neurons, and then weighted
by linear decoding weights dddi. To be clear, the low pass
filter models the post-synaptic current produced in the post-
synaptic neuron by an incoming action potential. A typical
choice for this filter, also used here, is a decaying exponential
with some synaptic time constant τ. The decoded value x̂xx(t)
is then given by

x̂xx(t) = ∑
i

dddi (ai ∗h)(t). (2)

The decoding weights dddi are obtained through a reg-
ularized least-squares optimization of the decoding error
〈‖x̂xx− xxx‖〉xxx over a set of inputs xxx. Consequently, the represen-
tation of the vector x by the neural population a is defined by
the combination of the encoding (Eq. 1) and decoding (Eq. 2)
equations.

However, these equations only describe how a vector can
be encoded and decoded in a single ensemble. To connect
two ensembles in a communication channel, the synaptic
weight matrix is given by the pre-synaptic decoders and post-
synaptic encoders as Wi j = eeeiddd>

j . Thus, the input current
of the post-synaptic neuron is obtained as Ji(t) = αiWi j(a j ∗
h)(t)+ Jbias

i .
Transformations, f (xxx), of the represented vector across

neural connections can be implemented analogously to the
communication channel. Instead of obtaining the decoding
weights with the least-squares optimization of 〈‖x̂xx− xxx‖〉xxx the
decoding error 〈

∥∥x̂xx− f (xxx)
∥∥〉xxx is used. Linear and low-order

polynomials can be approximated best, whereas for high-
order polynomials and less smooth function the approxima-
tion will be less precise. A desired accuracy can be reached
in general by increasing the number of neurons in the ensem-
ble (Eliasmith & Anderson, 2003).

Finally, it is possible to implement differential equations
with recurrent connections. Note that the synaptic low-pass
filter h(t) will influence the recurrent connection dynam-
ics. To implement dx

dt = f (x) the connection weights for
f ′(x) = τ f (x) + x have to be computed with the approach
given above (Eliasmith & Anderson, 2003, pp. 222–225).

Symbol-like representation
With the NEF we are able to represent vectors with neural en-
sembles and perform calculations on these with connections
between neural populations. To represent structured, concep-
tual or symbolic information the SPA employs a specific type

of Vector Symbolic Architecture (VSA; Gayler, 2003). Com-
mon to VSA approaches is that they represent individual con-
cepts as vectors and combine vectors with nonlinear and lin-
ear operators to perform binding, all of which can easily be
implemented by neurons with the NEF.

In addition to representing symbol-like concepts it has to
be possible to perform appropriate syntactic operations on
these concepts. The specific operator (i.e., circular convo-
lution) we employ was first suggested by Plate (1995) for
encoding syntactic structure in vector spaces and termed as
Holographic Reduced Representations1 (HRRs). The SPA
provides a general characterization of compressed neural rep-
resentations as ‘semantic pointers’. Circular convolution is
one of the compressive operations used in the SPA, and so
the symbol-like representations used here are one example of
semantic pointers.

Given two vectors vvv and www we perform a union like or su-
perposition operation yielding a new vector uuu similar to both
vvv and www by simple addition

uuu = vvv+www. (3)

Another important operation is the binding of vectors. This
operation produces a new vector uuu which is dissimilar to both
of the original vectors vvv and www. As with HRRs, the SPA em-
ploys circular convolution defined as

uuu = vvv~www : ui =
D

∑
j=1

v jw(i− j) mod D. (4)

The binding operation can be undone (unbinding) by circular
convolution with the involution of one of the operands.

vvv ≈ uuu~www−1 (5)

The involution is defined as

www−1 = (w1,wD,wD−1, . . . ,w2)
>. (6)

Note that the unbinding operation produces an approximation
of the original vector. The SPA includes a method for build-
ing biologically realistic clean up memories (Stewart, Tang,
& Eliasmith, 2011). These compare the noisy vector with
the clean vectors and then threshold the result with specially
tuned neurons.

The binding and unbinding mechanisms allow us to re-
cover certain concepts out of a superposition of bound
items. Consider the vector vvv=RED~COLOR+SQUARE~
SHAPE. The color can be recovered as:

vvv~COLOR−1 = RED~COLOR~COLOR−1 (7)

+SQUARE~SHAPE~COLOR−1 (8)
≈ RED+noise (9)
≈ RED (10)

1We relax the requirement that vectors are always renormalized.
Given the noise inherent in the neural representation, this does not
alter the behavior significantly. In addition, much of the normaliza-
tion is automatically accounted for by neural saturation.
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In the n-back task a list of items has to represented. Us-
ing a variation of the standard SPA approach, this is done by
binding each item to a position vector with backward index-
ing (POS1 indicates the most recent item):

list = item1 ~POS1 + item2 ~POS2 + . . .+ itemn ~POSn
(11)
The position vectors are defined as

POSi = CTXi (12)

with
CTXi = CTX~ . . .~CTX︸ ︷︷ ︸

i times

. (13)

CTX is a random unitary vector, so that convolving with it
does not change the norm of the vector being bound (for every
vvv it has to hold that‖vvv‖=‖vvv~CTX‖).

Model
An overview of the model is given in Figure 1. It gets input
through the stimulus ensemble in form of a semantic pointer
which represents the parsed visual input (i.e., a consonant or
spatial location). We do not model the visual system here as
this is out of the scope of this paper (although see Eliasmith
et al. (2012) for an example of doing so with the SPA).

The input is routed through a number of working memory
ensembles. Each of these ensembles can be described as a
gated difference integrator (see Fig. 2). This kind of integra-
tor has a primary population of neurons acting as a standard
recurrent integrator. Without any input, a recurrent connec-
tion with a long synaptic time constant (τ = 0.1s) ensures
that the currently represented value does not change much
over time (save for a small drift due to noise). Input is given
through another neural ensemble, gate, which also receives
the negative currently stored value. Thus, the input to the in-
tegrator population is the difference of the target value and
current value. Furthermore, the gating population can be in-
hibited to disable any input to the integrator.

As the visual input is usually shown for a limited time only
it is first stored in memory to have it available beyond the pre-
sentation. The currently remembered list of stimuli is stored
in the current-list memory. The new list to remember is con-
structed in updated-list as

updated-list =
1√
n

memory+

√
1− 1

n
current-list. (14)

This provides the best representation of the n-th item com-
pared to other possible weightings of memory and current-
list. It is possible that humans are not able to optimally weight
the components or that the exact weighting depends on how
much experience a person has with the task. When chang-
ing the weighting to a simpler rule (e.g., both components
weighted by 1/

√
2), the model performance decreases, but

qualitatively remains the same.
The representational strength of items after the n-th posi-

tion will decrease with each new item. Thus, older items will

stimulus

memory

· 1√
n

updated-list

~CTX

current-list

list-copy

·
√ 1−

1
n

~

compare

cue

cue −
1

rectify

response

bias

thresholding

·

Basal Ganglia

cortical state

Thalamus

Figure 1: Overview of the n-back model. The labeled boxes
represent neural ensembles with exception of Basal Ganglia
which is a more complex network of multiple interconnected
ensembles. The · and ~ ensembles output the dot product and
circular convolution of their inputs. The gating ensembles
of gated difference integrators are unlabeled diamonds. For
clarity the difference connection back from the integrator is
not shown. The flow of information is denoted with arrows
( ). Transformations and computations are denoted along
these connections. Inhibitory connections are indicated with
full circles ( ).
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gate integrator

-1

Figure 2: A gated difference integrator unit. It consists out of
two neural populations gate and integrator. Arrows ( ) rep-
resent NEF connections between ensembles. The line ending
in a filled circle ( ) is a connection directly inhibiting the
neurons of the targeted ensemble. See the text for additional
details.

be automatically forgotten without an active removal mecha-
nism.

Once the new list has been constructed, it is transferred
from updated-list to current-list and a circular convolution
with CTX is applied to update the position tags in the remem-
bered list. In this convolution, one of the operands is constant
allowing this transformation to occur efficiently in the con-
nection weights (otherwise a dedicated neural ensemble with
both operands as input would be needed).

A copy of the remembered list is also stored in list-copy.
This allows the list in current-list to be updated while the
model is still deciding on whether it saw the current item n
positions before. Once it has given its answer, the content of
current-list will be loaded into list-copy.

To provide an appropriate response, the desired n has to be
given to the model (just as people are told the desired n). This
information is encoded as CTXn in cue. Using involution, the
item at the n-th position in the sequence stored in list-copy is
retrieved. This intermediate result is compared to memory in
compare by computing a dot product. Values below zero will
be clipped to zero in rectify.

The output of the rectify ensemble minus a bias is taken as
evidence for a match if the value is positive and as evidence
for a mismatch if the value is negative. The bias was set to
−exp( n

0.62 )− 0.2. To form a final decision, the evidence is
integrated in the response ensemble until either a positive or
negative threshold is reached. This is consistent with neural
mechanisms observed in decision making tasks (e.g., Wang,
2008). By reaching the decision threshold, the correspond-
ing motor action would be triggered. The motor system is
not part of the presented model and is out of the scope of
this paper. Thresholds 0.5 and −0.9 were chosen for match
and mismatch answers respectively. The bias and threshold
parameters were obtained by trial-and-error.

As with SPA models in general, the routing is controlled by
an action selection model of the basal ganglia and thalamus
presented by Stewart, Choo, and Eliasmith (2010). To control
routing in the n-back model, three states – ENCODE, WAIT,
and TRANSFER – are used. For each state, a utility value is
continuously calculated and the basal ganglia model selects
the state with the highest utility value. The corresponding
neurons in the thalamus are disinhibited and this leads to in-

hibition of cortical neural populations to route information
accordingly. Table 1 lists how the utility values are calculated
and how information is routed.

The model switches to the ENCODE state once input is
available which is detected by calculating the squared length
of stimulus using a dot product. A bias of 0.2 is added to en-
sure that this switch happens. In this state, the gate to current-
list has to be inhibited to prevent the current list from being
overridden while the new item is added to it.

Once the stimulus disappears, the utility for the ENCODE
state decreases and the model switches to the WAIT state. As
there is no input stimulus, the memory and updated-list gate
have to be inhibited. Also, the list-copy gate will be inhibited
to give the model time to provide an answer for the current
trial.

Once an answer has been provided, which is detected by
the thresholding of the response integrator, the state switches
to TRANSFER. In the TRANSFER state the inhibition of
the list-copy gate ends to allow the transfer of the content
of current-list. The response integrator will be inhibited to
prepare it for the next trial.

Most ensembles in the model represent 64 dimensional
vectors with 3200 neurons. The dot product uses twice the
number of neurons and the circular convolution uses 12800
neurons. The rectify and response ensemble represent scalars
with 50 neurons each. The thresholding ensemble represents
a scalar with 100 neurons. 31450 neurons are used in the
basal ganglia and thalamus part of the model. Overall there
are 92250 neurons in the model. The connections between
neurons are pre-calculated with the NEF methods and no
learning occurs during simulation.

Apart from the basal ganglia and thalamus, all model com-
ponents are assumed to be part of the cortex, and the neu-
ron’s model parameters were chosen accordingly. A mem-
brane time constant of τRC = 20ms and an absolute refractory
period of 2 ms were used which are typical values for pyrami-
dal cells in the cortex. During delay periods in memory tasks,
maximal firing rates are typically around 80 Hz. But for com-
putational efficiency the maximum firing rates in the model
were uniformly chosen from 200 Hz to 400 Hz. The same
results can be obtained with lower firing rates, but require a
larger number of neurons, which increases simulation times.
Recurrent connections were assumed to be of the NMDA type
with a slow time constant of τNMDA = 100ms. Inhibitory con-
nections, assumed to be GABA-ergic, used a time constant of
τGABA = 8.48ms. Finally, for non-recurrent excitatory con-
nections synapses of the glutamate type with a time constant
of τglut = 5ms were assumed.

Results
To test the model, 48 instances of the model with different
random number generator seeds were created. Each was run
on a 1-, 2-, and 3-back random sequence consisting of 15
match and 30 mismatch trials (45+n trials overall). Lure tri-
als, where the current item matches the one at position n−1
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Table 1: The utility calculations for switching to different states and the routing actions taken in these states.

Cortical State Utility Calculation Routing
ENCODE stimulus · stimulus+0.2 inhibit current-list gate; inhibit response
WAIT cortical state ·ENCODE+ cortical state ·WAIT inhibit memory, updated-list, and list-copy gate
TRANSFER cortical state ·TRANSFER+|thresholding| inhibit memory and updated-list gate; inhibit response

1 2 3
n

0.5

0.6

0.7

0.8

0.9

1.0

A
cc

ur
ac

y

Overall Match trials Mismatch trials Experimental

Figure 3: The average model accuracy (proportion of correct
answers) given n. For each n, the overall model accuracy,
experimental data, model accuracy in match trials, and model
accuracy in mismatch trials is shown from left to right. The
experimental data for comparison was taken from the practice
session in Jonides et al. (1997). Error bars denote the standard
deviation.

or n+ 1, were allowed to occur. 20 different stimulus items
analogous to the 20 consonants commonly used in the n-back
task were generated, but as the model makes no assumptions
about the stimulus modality, those items could also be inter-
preted as different spatial locations. In each trial, the current
item was provided as input to stimulus for 0.5 s. The duration
of a single trial was 2.5 s. Similar protocols are employed in
n-back studies with human subjects (e.g., Jonides et al., 1997;
Szmalec et al., 2011).

The response of the model was read out from the re-
sponse population at the moment of switching the state to
TRANSFER. A positive value indicated a ‘match’ response,
whereas a negative value indicated a ‘mismatch’ response. In
some rare trials (less than 5%) the model did not switch to the
TRANSFER state because it did not gather enough evidence
for one of the responses in time. These trials were counted as
wrong answers and were excluded in the reaction time analy-
sis.

The model reproduces the characteristic decline in accu-
racy with increasing n as shown in Figure 3. The standard
deviation increases with n as in human studies. Reaction
time data of the model is shown in Figure 4. With increas-
ing n the reaction times increase. Moreover, reaction times
in match trials are shorter than in mismatch trials. These re-
sults match the observations from human studies well (e.g.,
Jonides et al., 1997; Szmalec et al., 2011). Performing the
same statistical analysis as in these human studies shows thas

1 2 3
n

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

R
ea

ct
io

n 
tim

e 
[s

]

Overall
Match trials
Mismatch trials
Experimental

Figure 4: The average model reaction times (excluding trials
without a response). Experimental data for comparison was
taken from the practice session in Jonides et al. (1997). Error
bars show the standard deviation.

the effect of n on accuracy and reaction times is highly signif-
icant (accuracies: F(3,48) = 36.2, p < 0.001; reaction times:
F(3,48) = 48.0, p < 0.001).

Discussion
To the best of our knowledge, we have presented the first bio-
logically plausible, spiking neural network model able to per-
form the n-back task. The model is able to reproduce the well
known decline in accuracy and increase in response times
with increasing n. Slower reaction to mismatch trials than
to match trials is also captured by the model.

Despite being implemented in spiking neurons it is
straightforward to reuse parts of the model in other models
related to list learning or working memory. This is a wel-
come feature of the model as it is unlikely that the brain has
specialized subsystems for the n-back task. Also, in the n-
back task itself, the model exhibits some flexibility. For ex-
ample, it does not depend on a fixed timing of the stimuli and
is robust to changing n on the fly. The latter can be done by
changing the input to the cue ensemble and modulating the
strength of the connections with a scaling dependent on n.
This scaling of connection weights may correspond to the ef-
fect of dopamine in the prefrontal cortex, which is commonly
taken to be modulatory.

However, we do not think that this model is complete with
respect to all the processes involved in the n-back task. The
current model only implements a recall based process, but
there might also be a familiarity based process and a rehearsal
process to keep the relevant items active in memory (Szmalec
et al., 2011). To make matters more complicated, the con-
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tribution of these additional processes might not be fixed but
dynamically adjusted according to task demands (Botvinick,
Braver, Barch, Carter, & Cohen, 2001). For example, if the
number of lure trials is low, relying purely on familiarity can
be quite accurate, but as the number of lure trials increases
it becomes more important to recall the exact position of an
item.

There is also the possibility that human subjects con-
sciously or unconsciously employ different strategies in the
n-back task. For this reason, Juvina and Taatgen (2007) build
two different ACT-R models of the n-back task. The model
presented here is similar to their low-control model which
uses a time-tag approach. Here, however, we tag the serial
position instead of the time an item occurred. It should be
possible to tell these approaches apart by designing an n-back
experiment with varying trial duration. This should leave our
model mostly unaffected, but should be detrimental to the
performance of the model by Juvina and Taatgen (2007).

The only other neural model of the n-back task to our
knowledge was presented by Chatham et al. (2011). It is less
biologically and psychologically plausible than the model
presented here. First, the spiking LIF neurons of our model
provide greater biological plausibility than rate neurons, by
using a known mechanism of information transmission in the
brain (i.e., action potentials). In addition, the Chatham et
al. (2011) model relies on idealized computational functions
(e.g., max for kWTA) not implemented in neurons, as well
as several localist representations. Second, at the same time
our model gives more insight into the high-level algorithm
as it is explicitly formulated, whereas the model by Chatham
et al. (2011) only implicitly learns it. Third, our model can
dynamically switch between different n. In contrast to this,
the model by Chatham et al. (2011) has to be trained for each
specific n. While humans improve with training on the n-back
task, they are also able to perform the task without any prior
training.

It is often stated that the n-back task requires active inhibi-
tion or removal of irrelevant items. While there is evidence
for active removal in some working memory tasks (Ecker,
Oberauer, & Lewandowsky, 2014), this claim has not been
investigated in the context of the n-back task. The perfor-
mance of our model shows that an active removal process is
not necessary in the n-back task. Furthermore, the model im-
plies a two stage update process requiring a secondary mem-
ory population. First, the updated list is constructed and then
the current list is replaced.

Notes
The source code for simulations and data analysis is avail-
able at https://github.com/ctn-archive/gosmann-cogsci2015/
releases/tag/cogsci2015-paper. It has not been peer reviewed.

Acknowledgments
This work was supported by the Canada Research Chairs
program, the NSERC Discovery grant 261453, Air Force

Office of Scientific Research grant FA8655-13-1-3084, CFI
and OIT. This work made use of SHARCNET an Compute
Canada computer resources.

References
Botvinick, M. M., Braver, T. S., Barch, D. M., Carter, C. S.,

& Cohen, J. D. (2001). Conflict monitoring and cognitive
control. Psychological Review, 108(3), 624–652.

Chatham, C. H., Herd, S. A., Brant, A. M., Hazy, T. E.,
Miyake, A., O’Reilly, R., & Friedman, N. P. (2011, May).
From an executive network to executive control: a com-
putational model of the n-back task. Journal of Cognitive
Neuroscience, 23(11), 3598–3619.

Ecker, U. K., Oberauer, K., & Lewandowsky, S. (2014).
Working memory updating involves item-specific removal.
Journal of Memory and Language, 74, 1–15.

Eliasmith, C. (2013). How to build a brain: A neural ar-
chitecture for biological cognition. New York, NY: Oxford
University Press.

Eliasmith, C., & Anderson, C. H. (2003). Neural engineer-
ing: computation, representation, and dynamics in neuro-
biological systems. Cambridge: MIT Press.

Eliasmith, C., Stewart, T. C., Choo, X., Bekolay, T., DeWolf,
T., Tang, Y., & Rasmussen, D. (2012, November). A Large-
Scale Model of the Functioning Brain. Science, 338(6111),
1202–1205.

Gayler, R. W. (2003). Vector symbolic architectures answer
Jackendoff’s challenges for cognitive neuroscience. In In-
ternational Conference on Cognitive Science.

Jonides, J., Schumacher, E. H., Smith, E. E., Lauber, E. J.,
Awh, E., Minoshima, S., & Koeppe, R. A. (1997, July).
Verbal working memory load affects regional brain acti-
vation as measured by PET. Journal of Cognitive Neuro-
science, 9(4), 462–475.

Juvina, I., & Taatgen, N. A. (2007). Modeling control strate-
gies in the n-back task. In Proceedings of the 8th Interna-
tional Conference on Cognitive Modeling (pp. 73–78).

Plate, T. A. (1995). Holographic reduced representations.
IEEE transactions on Neural networks, 6(3), 623–641.

Stewart, T. C., Choo, X., & Eliasmith, C. (2010). Dynamic
behaviour of a spiking model of action selection in the
basal ganglia. In D. Salvucci & G. Gunzelmann (Eds.),
Proceedings of the 10th International Conference on Cog-
nitive Modeling (pp. 235–240).

Stewart, T. C., Tang, Y., & Eliasmith, C. (2011, June).
A biologically realistic cleanup memory: Autoassociation
in spiking neurons. Cognitive Systems Research, 12(2),
84–92.

Szmalec, A., Verbruggen, F., Vandierendonck, A., & Kemps,
E. (2011). Control of interference during working memory
updating. Journal of Experimental Psychology: Human
Perception and Performance, 37(1), 137–151.

Wang, X.-J. (2008, October). Decision making in recurrent
neuronal circuits. Neuron, 60(2), 215–234.

817


	cogsci_2015_812-817



