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Detection of mobile colistin resistance genes mcr-9.1 and 
mcr-10.1 in Enterobacter asburiae from Ecuadorian children

Sara G. Cifuentes,1 Jay Graham,2 Gabriel Trueba,1 Paúl A. Cádenas1

AUTHOR AFFILIATIONS See affiliation list on p. 2.

ABSTRACT Colistin is one of the last-line treatments for multi-drug resistant Gram-neg
ative bacterial infections. The emergence of mobile colistin resistance genes has driven 
global concern and triggered the need for surveillance. Our report reveals the identifica
tion of mcr-9.1 and mcr-10.1 in Ecuador by employing a proximity ligation technique.
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T he emergence of mobile colistin resistance genes endangers the treatment of 
infections caused by multi-drug resistant Gram-negative bacteria (1, 2). The mobile 

colistin resistance gene mcr-1 was initially discovered in China in 2015 (3), followed by 
detection in Ecuador in 2016 (4); however, no additional variants of the mcr gene have 
been reported in the country since then (5–11). During a metagenomics study (12), 
mcr-9.1 and mcr-10.1 genes were identified. This study received approval from the Ethics 
Committee for Research in Human Beings at Universidad San Francisco de Quito USFQ 
(IRB# 2017-178M) and the Office for Protection of Human Subjects at the University of 
California, Berkeley (IRB# 2019-02-11803).

Two fecal samples were collected from two healthy young boys, aged 1 and 5, 
as part of a repeated measures study that recruited 600 children from 2018 to 2021 
(13). The collection methods and transport conditions for samples have been detailed 
in a previous study (12). We employed a culture-independent approach, dividing the 
specimens into DNA extraction and crosslinking aliquots. Genomic DNA was isolated 
employing the Qiagen QIAamp Fast DNA Stool Mini Kit (cat. no.51604, Qiagen) follow
ing a modified protocol (14) and stored at −80°C until further analyses. The second 
aliquot was crosslinked with 1% formaldehyde for 20 minutes (15). DNA and cross
linked samples were sent to Phase Genomics for ProxiMeta full-service analysis. The 
complete protocol has been detailed previously (16), and default parameters were 
applied unless otherwise specified. Briefly, the shotgun library was prepared using 
the Watchmaker DNA Library Prep Kit (cat. no. 7K0103-096, Watchmaker Genomics, 
USA), and the proximity ligation library was created using the ProxiMeta Hi-C kit (cat. 
no. KT5045, Phase Genomics, USA). Shotgun metagenomic and Hi-C libraries were 
sequenced on an Illumina NovaSeqX platform (2 × 150 bp paired-end reads), yielding 
708,033,774 and 293,351,862 read pairs for the two shotgun metagenomic and Hi-C 
libraries, respectively. Fastp v0.20.1 was used to preprocess and control the FASTQ 
data quality (17). Shotgun metagenomic assemblies were generated and assessed 
using Megahit v1.2.9 (18) and MataQUAST v5.2.0 (19), respectively. Hi-C reads were 
mapped to the metagenomic assemblies using BWA-MEM (0.7.17-r1198-dirty) (20, 21). 
Instead of using a conventional metagenomic binning approach, contigs were clus
tered into genome clusters with the ProxiMeta platform (Phase Genomics, USA) (22). 
Mash was used to compare genome clusters with NCBI RefSeq genomes, and CheckM 
(23) evaluated the quality of the genomes in terms of completeness and contamina
tion. Antimicrobial resistance genes (ARGs) were detected using AMRFinderPlus (https://
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www.ncbi.nlm.nih.gov/pathogens/antimicrobial-resistance/AMRFinder/) and ResFinder 
v4.0 (24) (https://cge.food.dtu.dk/services/ResFinder-4.1/). Both colistin resistance genes 
showed 100% identity and 100% template coverage. Metagenome deconvolution 
analysis identified these ARGs on plasmid contigs, although we could not characterize 
the plasmids harboring these ARGs using PlasmidFinder v.2.1 (https://cge.food.dtu.dk/
services/PlasmidFinder/) with the available contigs. Table 1 presents an overview of the 
genome assembly statistics, colistin resistance, co-resistances, and the bacterial host. This 
report highlights the importance and the feasibility of community-level metagenomic 
surveillance to detect the spread of mobile resistance genes that pose a risk to public 
health.
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TABLE 1 Summary of data for two metagenome-assembled genomes of Enterobacter asburiae strains carrying mobile colistin resistance and other mobile and 
genomic ARGs

Bin ID/
sample 
name

Taxonomy Genome 
size

Genome 
completion 
(%)

Contig 
N50

Number 
of contigs

GC (%) Mobile 
mcr gene

Other mobile 
antimicrobial 
resistance 
genes

Genomic 
antimicrobial 
resistance genes

SRA accession no./
assembly accession 
no.

bin_3/
HC45

Enterobacter 
asburiae L1

4,081,523 91.26 19,822 273 56.13 mcr-10.1 qnrB19
tet(A)

blaACT-4
blaACT-7
oqxA oqxB

SRS20620200
JBEOKR000000000.1

bin_4/
HC32

Enterobacter 
asburiae B

4,677,763 94.85 20,261 145 55.65 mcr-9.1 N/A blaACT-6
fosA oqxA oqxB

SRS20620198
JBEOKS000000000.1
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