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ABSTRACT OF THE THESIS

Learning Energy-Based Prior Model

for Unsupervised Meta-Learning

by

Deqian Kong

Master of Science in Statistics

University of California, Los Angeles, 2021

Professor Ying Nian Wu, Chair

In this thesis, we shall discuss the unsupervised meta-learning. Building a general-purpose AI

demands an intelligent system capable of learning a broad range of knowledge with modest data

and transferring the learned knowledge to the concrete case. Meta-learning is introduced to tackle

this problem. Enabled by the common feature between meta-learning and unsupervised learning

that they both learn a learning procedure that is more efficient and effective than learning from

scratch, we propose the Symbolic Vector coupling Energy-Based Model (SVEBM) to implement

unsupervised meta-learning by exploiting the structural difference between unsupervised and

supervised meta-learning. From the probabilistic point of view, we illustrate these approaches as

graphical models.
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CHAPTER 1

Meta-Learning

The state-of-the-art machine learning has seen tremendous success in broad range of areas, such as

image recognition[HZR16], natural language processing[VSP17], reinforcement learning[SSS17]

and so on. Take image recognition as an example. Supported by ImageNet[KSH12], the booming

of data has established the route to data-hungry models: after training on thousands of labelled

images for each class, the machine can ’beat’ human in nearly every specific task. However, in the

’state-of-the-art’ of human learning, a five-year-old child can quickly identify an image with only

modest positive examples. In that sense, a computation-intensive system cannot even come close to

achievements of a child, in sharp contrast to human cognition that can readily generalize reasonable

concepts[Ten99].

Another dichotomy existing in human learning and current machine learning is that machine

learning community favors an end-to-end schema for a single task from scratch, while human

can perform multi-task learning at the same time and keep reusing the abstractions and concepts

continuously[Fin18]. From the human learning perspective, the emergence of common sense from

single task end-to-end learning with thousands of datapoints seems implausible.

These dichotomies demand an intelligent system capable of learning a broad range of knowledge

with modest data. The meta-learning is introduced to tackle this problem. The core idea of meta-

learning is treating each task as a training example instead of each datapoint, which is viewed to

learn a general prior in the hierarchical Bayesian framework[Ten99].

While the large and diverse dataset will boost the performance, it doesn’t acquire generalizability

by nature. Therefore, meta-learning also emphasizes the knowledge transfer from the prior to the
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specific task.

In this chapter, we first define the meta-learning problem in Section 1.1 and then introduce the

model-agnostic meta-learning in Section 1.2.1, then formulate it in a probabilistic view in Section

1.2.2 and illustrate it as a graphical model in Section 1.2.
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1.1 Problem Statement

Meta-learning, or learning how to learn, mainly emphasize a learning procedure that learns the

structures and concepts among previous seen tasks such that the model can quickly adapt to make

generalizable inferences with limited amounts of new data. Meta-learning algorithm has wide range

of applications including classification, regression, reinforcement learning et al. In this thesis, we

only talk about the scenario of few-shot classification such that this problem can be sufficiently

defined. A brief introduction of a task in few-shot classification is shown in Figure 1.1.

In the context of few-shot classification, an M -way S-shot classification task T consists of M

classes, each of which has S support examples and labels {xs, ys}Ss=1 and Q query examples and

labels {xq, yq}Qq=1. For each task T , it has total (S + Q)M datapoints and we only use support

examples to train a classifier and query examples to evaluate the learned classifier.

Figure 1.1: 5-way 1-shot 2-query classification task on MiniImagenet[RL16]. In each task, the

training set (support set) has 5 × 1 images and the test set (query set) has 5 × 2 images. The

meta-learning algorithm aims to accomplish any held-out task Tj in the meta-test stage by ingesting

meta-training tasks {Ti}Ii=1 in the meta-training stage.

As shown in Figure 1.1, we assume a distribution over all tasks p(T ) that we want our model

to be able to adapt to. In the supervised few-shot classification task, we first sample a set of

3
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Figure 1.2: Graphical illustration of general meta-learning algorithm. A meta-learning algorithm

M aims to find a learning procedure F such that in the meta-test stage (as dashed lines) it can

accomplish a held-out task by producing a reasonable classifier fj . In the meta-training stage, we

use F to produce specific classifier fi for any given meta-training task and in turn, fine-tune the

learning procedure F .

meta-training tasks {Ti}Ii=1 ∼ p(T ) with their corresponding datasets {DTi}Ii=1, each of which can

be further decomposed into training set (support set) and test set (query set) without overlapping

DTi = {Dtrain
Ti ,Dtest

Ti }. To be concrete, DTi has total (S +Q)M datapoints.

In the meta-training stage, the meta-learning algorithm M(·) takes as input a set of meta-training

tasks {Ti}Ii=1, and produces a learning procedure F(·). During the meta-training stage for each task,

F(·) is optimized on the training set Dtrain
Ti to produce a classifier fi(·) such that fi(·) can perform

well on Dtest
Ti .

While in the meta-test stage, we first sample a set of meta-test tasks {Tj}Jj=1 ∼ p(T ) with their

corresponding datasets {DTj}Jj=1, which are held-out from the meta-training tasks {Ti}Ii=1. Then

we use learned procedure F(·) to produces fj(·) on Dtrain
Tj and perform well on Dtest

Tj . In other

words, the goal of M(·) is to learn F(·) such that when faced the held-out task {Tj}, F(·) can learn

a classifier fj(·) to accomplish Tj .
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Symbol Terminology Examples in few-shot classification

T task The goal of a M -way S-shot classification task is

learn a model on the support set Dtrain
T to correctly

predict the labels of query set Dtest
T .

p(T ) task distribution distributions of all tasks from which meta-training

tasks and meta-test tasks are sampled

{Ti}Ii=1 ∼ p(T ) meta-training tasks tasks sampled from p(T ) used for meta-training

{DTi}Ii=1 meta-training set datasets corresponding to the meta-training tasks,

each of which consists of (S +Q)M datapoints

{Tj}Jj=1 ∼ p(T ) meta-test tasks tasks sampled from p(T ) used for meta-test, which

are held out from the meta-training tasks {Ti}

{DTj}Jj=1 meta-test set datasets corresponding to the meta-test tasks, each

of which consists of (S +Q)M datapoints

Dtrain
T training set (support set) training data for task T with S ×M datapoints

Dtest
T test set (query set) test data for task T with Q×M datapoints

Table 1.1: Summary of meta-learning terminology used in this thesis.
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1.2 Learning to Learn with Gradients

After clearly defining the meta-learning problem in the few-shot classification scenario, we shall

think about how to propose a general and model-agnostic algorithm solely powered by stochastic

gradient descent and backpropagation, which could shed light on the intuitive design of the algorithm

without instantiation of any architecture or model[FAL17].

1.2.1 Model Agnostic Meta-Learning Algorithm (MAML)

As discussed in Section 1.1, the goal of a meta-learning algorithm is to learn a learning procedure

F such that it can easily adapt to a new held-out task. Here, we mainly focus on Neural Network

type of model powered by stochastic gradient descent.

From the view of representation learning, F is supposed to be internal representations that make

sense most across all the tasks sampled from p(T ) and F serves as a better initialization to learn a

task-specific classifier f than a random start point from scratch. If the internal representations indeed

make sense, when given a specific task, the model should be able to learn a good classifier within

one or few gradient updates. Standing on this viewpoint, the learning procedure F is assumed to be

sensitive to the loss function of the new task in a sense that a small local change of the parameters

will induce large improvements with respect to the task loss. With these simple intuitions behind,

we can formally define the algorithms as follows.

We consider a learning procedure F is instantiated by a Neural Network fθ with parameter θ.

fθ is also known as meta-learner with meta-parameter θ. When adapting to a new task Ti, meta-

parameter θ becomes task-specific parameter ϕi according to the loss function Lθ(Dtrain
Ti ) within

one or few gradient updates. The loss function can be mean squared error (MSE) for regression or

binary cross-entropy (BCE) loss for discrete classification. Suppose we only update gradient once

and denote η0 as step size,

ϕi = θ − η0∇θL(Dtrain
Ti , θ) (1.1)

6



The few-shot classification objective function aims to evaluate the task-specific parameter on

the query set Dtest
Ti . This objective function is also named as meta-objective function,

∑
Ti∼p(T )

L
(
Dtest

Ti , ϕi
)
=

∑
Ti∼p(T )

L
(
Dtest

Ti , θ − η0∇θL(Dtrain
Ti , θ)

)
(1.2)

Then the meta-parameter θ is updated by stochastic gradient descent with respect to θ. What’s to

mention is that the gradient with respect to θ requires additional gradient computation that can be

accomplished by auto-differentiation in PyTorch. In conclusion, MAML is shown in Algorithm 1.

Algorithm 1: Supervised MAML
Input : Total learning iterations T , initial meta-parameters θ0, learning rate for the inner

loop η0 to compute task-specific parameter ϕ and learning rate η1 for outer loop to

update θ, a dataset that forms a distribution of task p(T ).

Output : Meta-parameter θT

if Meta-training then

for t = 0 : T − 1 do
1. Sample meta-training tasks: {Ti}Ii=1 ∼ p(T )

for i = 1 : I do
2. Sample dataset: Dtrain

Ti ∼ DTi and Dtest
Ti ∼ DTi \ Dtrain

Ti

3. Compute task-specific parameter: ϕi = θt − η0∇θL(Dtrain
Ti , θt)

4. Update meta-parameter: θt+1 = θt + η1
1
I

∑I
i=1 L

(
Dtest

Ti , ϕi
)

if Meta-test then
5. Sample meta-test tasks:

{Tj}Ji=1 ∼ p(T ), each of which is held-out from meta-training tasks.

for j = 1 : J do
6. Sample dataset: Dtrain

Tj ∼ DTj and Dtest
Tj ∼ DTi \ Dtrain

Tj

7. Compute task-specific parameter: ϕj = θT − η0∇θL(Dtrain
Tj , θT )

8. Compute evaluation metric.

7



1.2.2 A Probabilistic View of MAML

In Section 1.2.1, MAML is fully detailed with simple but informative intuition. MAML learns a

learning procedure F that can be further parameterized by meta-parameter θ. In meta-training stage,

θ learns to optimize a specific task Ti as task-specific parameter ϕi with one or few gradient updates.

However, like most of black-box Neural Networks, MAML has great expressive power but

the ability to explain uncertainty. Direct gradient updates in (1.1) are deterministic which is a

slight violation in human sense. Given a learned learning procedure, human tends to produce a set

of different solutions for one specific task. This set of different solutions form as a distribution

over task-specific parameter that can be further used to model the uncertainty for each task in a

statistical way. In the view of Bayes, finding task-specific parameter ϕi in (1.1) can be regarded

as an inference problem and meta-parameter θ is viewed as a prior. In other words, we need to

make inferences of joint distribution on q(θ, ϕi) based on the evidence (training set). Each of the

parameter can be inferred akin to hierarchical Bayesian framework as q(θ, ϕi) = q(θ)q(ϕi|θ), where

θ serves as a prior to infer ϕi[FXL18].

One possible solution is using structured variational inference, where we recruit another infer-

ence network qα parameterized by a Neural Network with parameter α to make inference over θ. To

be more concrete, for a supervised few-shot classification task Ti, we denote Dtrain
i =

(
xtrain
i ,ytrain

i

)
and Dtest

i = (xtest
i ,ytest

i ), in which xtrain
i ,ytrain

i ,xtest
i ,ytest

i are a set of meta-training datapoints with

x as examples and y as corresponding labels. With little abuse of concepts, we model the q(θ)

as a posterior qα(θ|xtrain
i ,ytrain

i ,xtest
i ,ytest

i ) and q(ϕi|θ) as qα(ϕi|θ,xtrain
i ,ytrain

i ,xtest
i ,ytest

i ) so that

q(θ, ϕi) is q(θ, ϕi|xtrain
i ,ytrain

i ,xtest
i ,ytest

i ).

Recall that in (1.1), ϕi is obtained by one or few gradient updates with respect to θ on the

training set in the essence that ϕi is obtained by optimizing,

ϕ⋆i = max p(ϕi|θ,xtrain
i ,ytrain

i ) (1.3)

which gives the probabilistic interpretation of the MAML. When performing empirical Bayes, the

marginal likelihood function in the first line (1.4) is required to integrate the task-specific parameter

8



ϕi out, which is impractical. Instead, we use a point estimate to replace the integration. In this way,

the marginal likelihood is approximated by a posterior p(ytest
i |xtrain

i ,ytrain
i ,xtest

i , θ) in (1.4) with

respect to θ which uses the maximum a posterior (MAP) estimate of ϕi.

p(ytest
i |xtrain

i ,ytrain
i ,xtest

i , θ) =

∫
p(ytest

i |xtest
i , ϕi)p(ϕi|xtrain

i ,ytrain
i , θ)dϕi

≈ p(ytest
i |xtest

i , ϕ⋆i )

(1.4)

Thus, in the hierarchical Bayes framework, we only perform variational inference for θ only

and make MAP inference on ϕi. The evidence lower-bound (ELBO) for the log-likelihood

p(ytest
i |xtrain

i ,ytrain
i ,xtest

i ) is shown as

ELBO = Eqα(θ|xtest
i ,ytest

i )

[
p(ytest

i |xtrain
i ,ytrain

i ,xtest
i , θ)

]
− DKL

(
p(θ)∥qα(θ|xtest

i ,ytest
i )

)
≈ Eqα(θ|xtest

i ,ytest
i )

[
p(ytest

i |xtest
i , ϕ⋆i )

]
− DKL

(
qα(θ|xtest

i ,ytest
i )∥p(θ)

) (1.5)

where DKL denotes the Kullback-Leibler divergence.

The prior distribution can be chosen to be Gaussian with learned mean µθ and diagonal covari-

ance σ2
θ . The posterior sampled from the inference network is given by

qα(θ|xtest
i ,ytest

i ) = N(µθ + η∇µθ log p(y
test
i |xtest

i , µθ), v
2) (1.6)

The detailed algorithm is shown in Algorithm 2. The comparison between vanilla MAML and

probabilistic MAML is shown in Figure 1.3.

Here, we only give a basic introduction of the probabilistic MAML, which has been extended

in the current literature. However, whichever form of probabilistic MAML built upon hierarchical

Bayes would arguably give principled but intricate inference procedure.

Since this thesis is more interested in unsupervised meta-learning, while variational inference

plays a crucial role in that scenario, this probabilistic MAML type of idea can be a great starting

point. General illustration of unsupervised MAML is shown in Figure 1.4[HLF18].

Standing on the view of empirical Bayes, MAML further emphasize the prior art that treat-

ing meta-parameter as a prior. Akin to this, we build an energy-based prior model to perform

unsupervised meta-learning in Chapter 3.

9



θ ϕi

xtrain
i

ytrain
i

xtest
i

ytest
i

(1.1)
θ ϕi

xtrain
i

ytrain
i

xtest
i

ytest
i

MAP

observed examples unobserved examples

Figure 1.3: Graphical illustration of vanilla MAML in Algorithm 1 (left) and probabilistic MAML

(right) in the supervised few-shot classification scenario. In vanilla MAML, ϕi is obtained by

additional gradient updates with respect to θ, which is independent of xtrain and xtest. While in

probabilistic MAML, ϕi is inferred by p(ϕi|xtrain
i ,ytrain

i , θ).

θ ϕi

xtrain
i

ltraini

xtest
i

ltesti

MAP

clustering

clustering

observed examples unobserved examples

Figure 1.4: Graphical illustration of unsupervised MAML[HLF18]. During training, we first need to

infer the pseudo-label (ltraini , ltesti ) by K-means clustering, then generate the corresponding few-shot

classification tasks and finally perform supervised MAML as before.
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Algorithm 2: Supervised MAML via variational inference
Input : Total learning iterations T , initial learnable parameters Θ = (µθ, σ

2
θ , v

2, γ0, γ1),

step size (η0, η1), a dataset that forms a distribution of task p(T ).

Output :ΘT

if Meta-training then

for t = 0 : T − 1 do
1. Sample meta-training tasks: {Ti}Ii=1 ∼ p(T )

for i = 1 : I do
2. Sample dataset: Dtrain

Ti ∼ DTi and Dtest
Ti ∼ DTi \ Dtrain

Ti

3. Posterior sampling: θ ∼ N(µθ − γ0∇µθL(Dtest
i , µθ), v

2)

4. MAP of task-specific parameter: ϕi = θ − η0∇θL(Dtrain
Ti , θ)

5. Define prior: p(θ|Dtrain) = N(µθ − γ1∇µθL(Dtrain
i , µθ), σ

2
θ)

6. Update meta-parameter: Θt+1 = Θt + η1∇ΘELBO using (1.5)

if Meta-test then
7. Sample meta-test tasks:

{Tj}Ji=1 ∼ p(T ), each of which is held-out from meta-training tasks.

for j = 1 : J do
8. Sample dataset: Dtrain

Tj ∼ DTj and Dtest
Tj ∼ DTi \ Dtrain

Tj

9. Sample prior: θ ∼ p(θ|Dtrain)

10. Compute task-specific parameter: ϕj = θ − η0∇θL(Dtrain
Tj , θ)

11



CHAPTER 2

Latent Space Energy-Based Model

The main purpose of statistical modeling and machine learning is to encode dependencies between

random variables. By capturing those dependencies, a model can be used to answer questions about

the values of unknown variables using Bayesian framework. Energy-Based Model (EBM) captures

dependencies between variables by associating a scalar energy to each configuration of the variables,

where observed examples are assigned with low energy.

[LCH06] has defined the EBM in a non-probabilistic way such that it forms as a factor graph with

much more flexibility than probabilistic approaches by circumventing the computation of intractable

partition function. However, as to be shown in this chapter, the partition function can be used as a

strength, which forms a principled way to model high-dimensional data and the learning process is

directly accomplished by Maximum Likelihood Estimate (MLE). Both theoretical frameworks of

EBM provide a common ground for many learning models, including traditional discriminative and

generative approaches[XZL20], as well as conditional random fields[ZWM98].

Probabilistic models must be properly normalized. A powerful and efficient way is to use

Markov Chain Monte Carlo (MCMC) to approximate the partition function. Powered by gradient-

based method, we shall adapt Langevin dynamics as short-run MCMC[NPH20]. To overcome the

computational consumption of MCMC, EBM is built in the low-dimensional latent space.

In this chapter, we shall build a probabilistic EBM in the latent space by treating it as a prior

in Section 2.1[PHN20]. The intractable partition function is approximated by short-run MCMC.

Then we further couple the latent variable with symbolic vector to perform classification in Section

2.2[PW21]. Both of the model are illustrated as graphical models.
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2.1 Learning Latent Space Energy-Based Prior Model

Recently, deep generative models has flourished in the context of unsupervised learning and data

generation. One of the simple but must-mentioned is the generator model, which learns to map

the low-dimensional latent vector to the high-dimensional data space via a top-down network. The

generator model is originated from the concepts of variational auto-encoder (VAE)[KW13] and

generative adversarial network (GAN)[GPM20], in which the generator model is learned jointly

with complementary models as the inference models in VAE and the discriminator models in GAN.

In a more recent literature, the generator network can also be learned by MLE without resorting to

a complementary model[PHN20], where the inference is guided by the MCMC such as Langevin

dynamics[UO30].

2.1.1 Model: EBM as a prior

Let x ∈ RD be an observed example and z ∈ Rd be the latent variable, where D ≫ d. The joint

distribution of (x, z) is

pθ(x, z) = pα(z)pβ(x|z) (2.1)

where pα(z) is the prior model with parameter α, pβ(x|z) is the top-down generator model with

parameters β, and θ = (α, β).

The prior model pα(z) is an EBM,

pα(z) =
1

Z(α)
exp (fα(z)) p0(z) (2.2)

where p0(z) is the reference distribution, assumed to be isotropic Gaussian. fα(z) is the negative

energy, which can be parameterized by a small multi-layer perceptron with the parameter α. Z(α)

is known as the normalizing constant or the partition function that is computed by integrating z out.

Z(α) =

∫
exp (fα(z)) p0(z)dz = Ep0(z) [exp (fα(z))] (2.3)

The generator model is a top-down model with parameters β. For generation of images, it’s

13



x

z

pβ(x|z)pθ(z|x)

Figure 2.1: Graphical illustration of latent space EBM prior model. In the latent space, z follows

a prior distribution pα(z) in the form of EBM. Given z, the example x can be obtained from a

generator model with parameters β. While the latent variable z is inferred from the posterior

distribution pθ(z|x) by Langevin dynamics.

always parameterized by a series of deconvolutional layers.

x = gβ(z) + ϵ (2.4)

where ϵ ∼ N(0, σ2ID) is random noise with assumed variance σ2. Then x ∼ N(gβ(z), σ
2ID).

Different from vanilla generator in VAE mapping the uni-modal prior p0(z) to be close to multi-

modal data space, the generator gβ(z) here refines p0(z) based on the observed examples so that it

maps the more expressive pα(z) to be closer to the data space.

The marginal distribution pθ(x) used for MLE and the posterior distribution pθ(z|x) for inference

can be defined accordingly.

pθ(x) =

∫
pθ(x, z)dz =

∫
pα(z)pβ(x|z)dz (2.5)

pθ(z|x) =
pθ(x, z)

pθ(x)
=
pα(z)pβ(x|z)

pθ(x)
(2.6)
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2.1.2 Unsupervised Learning via Short-run MCMC

Given observed training examples {xi}ni=1, the log-likelihood function is

L(θ) =
n∑
i=1

log pθ(xi) (2.7)

For an observed example x, the learning gradient is

∇θ log pθ(x) = Epθ(z|x) [∇θ log pθ(x, z)]

= Epθ(z|x) [∇θ (log pα(z) + log pβ(x|z))]
(2.8)

which is a consequence of the simple identity Epθ(x) [∇θ log pθ(x)] = 0. The proof is shown as

follows,

Epθ(z|x) [∇θ log pθ(x, z)] = Epθ(z|x) [∇θ log pθ(x) +∇θ log pθ(z|x)]

= Epθ(z|x) [∇θ log pθ(x) + 0]

= ∇θ log pθ(x)

(2.9)

Specifically, for the prior model, ∇α log pα(z) = ∇αfα(z) − Epα(z) [∇αfα(z)]. The learning

gradient for an example x is

δα(x) = ∇α log pθ(x) = Epθ(z|x) [∇αfα(z)]− Epα(z) [∇αfα(z)] (2.10)

which shows the nature of the empirical Bayes. The parameter α for the EBM is updated by

comparing the difference between z inferred from the empirical observation x and z sampled from

the current prior pα(z).

As for the generator model,

δβ(x) = ∇β log pθ(x) = Epθ(z|x) [∇β log pβ(x|z)] (2.11)

which is also named as reconstruction error in practice.

The computation of above two gradient updates in (2.10) and (2.11) involves sampling the

prior distribution pα(z) and the posterior distribution pθ(z|x). Here, we use Langevin dynamics to
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perform the sampling procedure. For a target distribution π(z), the dynamic iterates

zk+1 = zk + s∇z log π(zk) +
√
2sϵk (2.12)

where k denotes the time step of the sampling procedure, s is the small step size, and ϵk ∼ N(0, Id)

is white noise as its analogy to Brownian motion.

Convergence of Langevin dynamics to the target distribution requires infinite steps with infinites-

imal step size. Hence, we propose to use short-run MCMC for approximation.

The short-run MCMC is initialized from the fixed initial distribution and only run a fixed number

of K steps in each sampling trial. In that sense, we only sample from an approximate of target

distribution as π̃(z). The short-run MCMC is defined as

z0 ∼ p0(z), zk+1 = zk + s∇z log π(zk) +
√
2sϵk, k = 1, . . . , K (2.13)

where zK ∼ π̃(z).

The full algorithm with unsupervised scheme is shown in Algorithm 3.

Algorithm 3: Unsupervised learning latent space EBM prior model via short-run MCMC
Input :Total learning iterations T , initial parameters θ0 = (α0, β0) for the EBM and the

generator model, learning rate (etaα, ηβ), observed training examples {xi}ni=1,

batch size m, number of prior sampling Kα and posterior sampling Kθ, step size

in prior sampling sα and posterior sampling sθ.

Output :θT = (αT , βT )

for t = 0 : T − 1 do
1. Mini-batch: Sample observed examples {xi}mi=1.

2. Prior sampling: For each xi, sample z−i ∼ p̃αt(z) using (2.13), where

π(z) = pαt(z), s = sα and K = Kα.

3. Posterior sampling: For each xi, sample z+i ∼ p̃θt(z|xi) using (2.13), where

π(z) = pθt(z|xi), s = sθ and K = Kθ.

4. Learning prior model: αt+1 = αt + ηα
1
m

∑m
i=1[∇αfαt(z

+
i )−∇αfαt(z

−
i )]

5. Learning generator model: βt+1 = βt + ηβ
1
m

∑m
i=1 log pβt(xi|z

+
i )
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2.2 Coupling Symbolic Vectors For Classification

2.2.1 Model: symbolic-vector coupling EBM (SVEBM)

Let x ∈ RD be an observed example, z ∈ Rd be the dense latent vector and y ∈ {0, 1}K be the

symbolic one-hot vector indicating its belonging in total K categories. With the assumption that

given z, y and x are independent, the joint distribution of (x, y, z) is

pθ(y, z, x) = pα(y, z)pβ(x|z) (2.14)

where pα(y, z) is the EBM prior model as mentioned in Section 2.1 with parameters α. pβ(x|z) is

the top-down generator model with parameters β and θ = (α, β).

The prior model is defined as

pα(y, z) =
1

Zα
exp (⟨y, fα(z)⟩) p0(z) (2.15)

where similar to (2.2), p0(z) is the reference distribution as isotropic Gaussian, fα(z) is a small

multi-layer perceptron and Zα is the normalizing constant or partition function.

The negative energy term ⟨y, fα(z)⟩ couples the dense vector z and symbolic vector y. The

inference of symbolic vector y can be achieved from latent vector z using a softmax classifier.

pα(y|z) ∝ exp (⟨y, fα(z)⟩) (2.16)

Therefore, fα(z) maps a latent vector in Rd to logit scores in RK .

The marginal distribution of latent variable z is computed by summation over y,

pα(z) =
1

Zα
exp (Fα(z)) p0(z) (2.17)

where Fα(z) denotes marginal energy as the form of log-sum-exponential.

Fα(z) = log
∑
y

exp (⟨y, fα(z)⟩) (2.18)
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x

z

y

pα(y, z)

pβ(x|z)qϕ(z|x)

Figure 2.2: Graphical illustration of SVEBM. x is observed example. y is a symbolic one-hot vector

and z is a dense vector. They are coupled through an EBM, pα(y, z) in the latent space and y can be

sufficiently inferred by z. The example x can be reconstructed from the generator model pβ(x|z).

The intractable posterior pθ(z|x) is approximated by an inference network qϕ(z|x). Dashed lines

denote variational inference.

The generator model is a top-down model with parameters β as Section 2.1. For image modeling,

x = gβ(z) + ϵ (2.19)

where ϵ ∼ N(0, σ2ID) is random noise with assumed variance σ2. Then x ∼ N(gβ(z), σ
2ID).

The posterior distribution pθ(z|x) for inference can be defined accordingly.

pθ(z|x) =
pθ(x, z)

pθ(x)
=
pα(z)pβ(x|z)

pθ(x)
(2.20)

Here, instead of directly sampling the posterior pθ(z|x) accomplished by short-run MCMC in

Section 2.1, we tend to recruit another inference network qϕ(z|x) to approximate the true posterior

pθ(z|x) as VAE, and this inference model is jointly learned with the prior model and the generator

model shown in Section 2.2.2.
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2.2.2 Semi-supervised Learning via Variational Inference

In Section 2.1, we aim to use short-run MCMC to sample both the prior and the posterior. Due to

the low-dimensionality in the latent space, short-run MCMC is affordable and mixes well. However,

its additional back-propagation through whole generator model is undesirable. Hence, we adopt

the same idea as VAE that we recruit another inference network qϕ(z|x) to approximate the true

posterior pθ(z|x). Following VAE, we tend to learn the inference model qϕ(z|x), the generator

model pβ(x|z) jointly.

For unlabelled example x, we have the unsupervised learning scheme and the log-likelihood

pθ(x) is lower bounded by evidence lower bound (ELBO).

ELBO(θ, ϕ) = log pθ(x)− DKL (qϕ(z|x)∥pθ(z|x))

= Eqϕ(z|x) [log pβ(x|z)]− DKL (qϕ(z|x)∥pα(z))
(2.21)

where DKL denotes the Kullback-Leibler divergence.

For the prior model, the learning gradient for an example x is

δα = ∇αELBO = Eqϕ(z|x) [∇αFα(z)]− Epα(z) [∇αFα(z)] (2.22)

where Eqϕ(z|x) is approximated by samples from the inference network, while Epα(z) is approximated

by short-run MCMC from the prior.

Let ψ = (ϕ, β) be the placeholder for the parameters of the inference network ϕ and the

generator network β. The learning gradient for ψ is

δψ = ∇ψELBO = ∇ψEqϕ(z|x) [log pβ(x|z)]−∇ψDKL (qϕ(z|x)∥p0(z)) +∇ψEqϕ(z|x) [Fα(z)]

(2.23)

where Eqϕ(z|x) involved in the two terms is approximated by samples from the inference network

with reparametrization trick and the DKL term is analytical tractable.

For labelled example x, the log-likelihood can be decomposed into

log pθ(x, y) = log pθ(x) + log pα(y|x) (2.24)

19



The first term can be optimized as the unsupervised learning scheme above and the second term

can also be approximated by samples from the inference network,

log pθ(y|x) = logEpθ(z|x) [pα(y|z)] ≈ logEqϕ(z|x) [pα(y|z)] (2.25)

The learning gradients for the inference and prior model are computed accordingly,

∇α,ϕ log pθ(y|x) ≈ ∇α,ϕ logEqϕ(z|x) [pα(y|z)] (2.26)

As in (2.16), pα(y|z) is a softmax classifier. In the setting of VAE, the inference network

produces µϕ(x) and σ2
ϕ(x) and latent variable z is sampled by reparametrization trick as

z = µϕ(x) + σϕ(x)ϵ, ϵ ∼ N(0, Id) (2.27)

In the supervised scheme, we only need to use mean without variance to perform classification,

so that the (2.25) can further be refined as

log pθ(y|x) ≈ logEqϕ(z|x) [pα(y|z = µϕ(x))] (2.28)

The full algorithm with semi-supervised scheme is detailed in Algorithm 4.
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Algorithm 4: Semi-supervised learning of SVEBM via variational inference
Input :Total learning iterations T , initial parameters θ0 = (α0, β0, ϕ0) for the EBM, the

generator model and the inference model respectively; learning rate for three

learning procedures (η0, η1, η2), observed unlabelled training examples {xi}Mi=1

and labelled examples {xi}M+N
i=M+1, batch size for unlabelled and labelled examples

(m,n), number of prior sampling Kα, step size in prior sampling sα.

Output :θT = (αT , βT , ϕT )

for t = 0 : T − 1 do
1. Mini-batch: Sample unlabelled examples {xi}mi=1 and labelled examples {xi}ni=1.

2. Prior sampling: For each xi, sample z−i ∼ p̃αt(z) using (2.13), where

π(z) = pαt(z), s = sα and K = Kα.

3. Posterior sampling: For each xi, sample z+i ∼ qϕ(z|xi) using (2.13) from the

inference network with reparametrization trick.

if Unsupervised learning then
4. Learning prior model: αt+1 = αt + η0

1
m

∑m
i=1[∇αFαt(z

+
i )−∇αFαt(z

−
i )]

5. Learning inference and generator models:

ψt+1 = ψt + η1
1
m

∑m
i=1∇ψ

[
log pβ(xi|z+i )− DKL (qϕ(z|x)∥p0(z)) + Fα(z

+
i )

]
if Supervised learning then

6. Learning prior and inference models: Let γ = (α, ϕ).

γt+1 = γt + η2
1
n

∑m+n
i=m+1∇γ log pαt(yi|z+i = µϕt(xi))
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CHAPTER 3

SVEBM for Unsupervised Meta-Learning

Meta-learning is a broad concept to learn meta-knowledge across diverse tasks, such that the learned

meta-knowledge can be further adapted to novel tasks. Unsupervised learning is a fundamental,

unsolved problem and has witnessed promising results in wide range of domains. The core idea of

unsupervised learning is to enable a proxy objective function to learn internal representations such

that they can be used or fine-tuned to a downstream supervised task.

If an ultimate goal of unsupervised learning is to learn useful representations, can we derive an

unsupervised learning objective that explicitly takes into account how the representation will be

used? In that sense, meta-learning shares the spirit of unsupervised learning in that they attempt to

discover a learning procedure that is more efficient and effective than learning from scratch.

However, the biggest obstacle ahead is that in meta-learning, there are two types of supervision

from human: one is supervised labeled data in each task, the other is human-crafted task distribu-

tion. The former is easy to overcome in unsupervised case, while the latter is extremely hard in

unsupervised learning schema, which results in failed learning.

To perform unsupervised meta-learning, we have to bear in mind that it differs from the

supervised meta-learning in that the meta-training task space might be different from the meta-test

task space. Since random generated tasks contain insufficient regularity to enable useful meta-

learning, the unsupervised clustering is performed to get pseudo-labels followed by a general

supervised MAML. Another approach is to learn the multi-modal task-specific prior from irregular

tasks and then requires additional knowledge trick when adapting from the meta-training task space

to meta-test task space. In this chapter, we follow the second line and introduce the Meta-SVEBM.
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3.1 Unsupervised Meta-Learning

In Section 1.2, we have given a systemic sketch of supervised meta-learning in the few-shot

classification scenario as MAML, where we further illustrate the unsupervised version of proba-

bilistic MAML in Figure 1.4. However, MAML is not the end nor the beginning of the end of the

meta-learning. It’s probably a great end of the beginning. Especially for current unsupervised meta-

learning literature, the task-specific parameter ϕi can be optimized implicitly from meta-parameter θ

instead of explicit gradient updates as a MAP estimate. Moreover, rather than a two-stage framework

as first unsupervised clustering for task generation, followed by MAML, we can directly use the

multi-modal prior to represent latent class labels as shown in Section 3.2. Here we illustrate the

general form of unsupervised meta-learning without any constraints in Figure 3.1.

θ ϕi

xtrain
i

ltraini

f
θ ϕj

xtrain
j

ytrain
j

xtest
j

ytest
j

f

unobserved examplesobserved examples

Meta-training Stage Meta-test Stage

Figure 3.1: Graphical illustration of unsupervised meta-learning. Here task-specific parameter is

obtained from meta-parameter by function f . During meta-training, for each sampled task Ti, infer

the pseudo-label ltraini for each training example, and then optimize the model with respect to θ and

ϕi. Meta-test stage is the same as supervised meta-training.

From Figure 3.1, during the meta-training stage, we perform exact unsupervised learning on

few-shot classification task, while in the meta-test stage, we can either perform supervised learning

or semi-supervised learning using the labelled data.
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3.2 Model and Learning: meta-level SVEBM

Problem Statement The goal of unsupervised meta-learning is to obtain sufficient general feature

embeddings such that they can be adapted to a wide range of human-crafted downstream few-shot

classification tasks. During the meta-learning stage, we only assume an unlabelled dataset as

Du = {xu}Uu=1. In the meta-test stage, we tend to use learned meta-parameter to solve a M -way,

S-shot classification task, which is to use S support data and labels {(xs,ys)}Ss=1 to correctly

predict the labels of query set with Q unlabelled data as {xq}Qq=1 as aforementioned in Section 1.1.

Unsupervised meta-training During meta-training, we aim to learn sufficient internal represen-

tations that can be further transferred to human-crafted few-shot classification tasks. We tend

to directly adopt the VAE framework by recruiting another inference network to infer the latent

variable. Standing on the empirical Bayesian perspective, the prior is learned from the observed

data, which can be modeled by an EBM. The model is detailed in Section 2.2.1. To be brief, suppose

we have an EBM parameterized by a Neural Network with parameter α, an inference network with

parameter γ and a generator with parameter β. The prior model is

pα(z) =
1

Zα
exp (Fα(z)) p0(z) (3.1)

where Fα(z) denotes marginal energy as the form of log-sum-exponential.

Fα(z) = log
∑
y

exp (⟨y, fα(z)⟩) (3.2)

During meta-training, since y is unobserved, we can assume a uniform prior for simplicity so

that Fα(z) = log
∑

exp (fα(z)). In this way, unsupervised meta-training is to match the expressive

EBM prior to the variational posterior. The posterior of z is sampled from the inference network

qγ(z|x) using reparametrization trick. The generator is a top-down model with deconvolutional

layers,

x = gβ(z) + ϵ (3.3)

where ϵ ∼ N(0, σ2ID) is random noise with assumed variance σ2. Then pβ(x|z) = N(gβ(z), σ
2ID).

The objective function for the meta-training is approximated by ELBO as (2.21).
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Supervised meta-test During meta-test, we aim to solve a predefined few-shot classification task

with learned meta-parameter. In that sense, we have to carefully define the meta-parameter θ and

the task-specific parameter ϕi as the terminology used in Chapter 1.

Our task-specific parameter is obviously defined as the task-specific prior modeled by EBM

so that z ∼ pα(z) is treated as ϕi. It’s a little tricky to find out meta-parameter θ. During the

meta-training, what has been invariant to specific tasks is the learned internal representations or

embeddings for training example x, that is θ as learned qγ(z|x). As what has been discussed in

probabilistic MAML in Section 1.2.2, meta-learning is to infer joint distribution of q(θ, ϕi) =

q(θ)q(ϕi|θ), which is instantiated as p(x, z) = pα(z)qγ(x|z). In that sense, during meta-test, we

can only update EBM as a few-shot classifier when fixing the parameter γ in inference network.

The model can be learned by supervised SVEBM.

xu

z

y

pα(y, z)

pβ(x|z)qγ(z|x)

z

ys yq

xs xq

pα(y, z) pα(y|z)

qγ(x|z)

unobserved examplesobserved examples

Meta-training Stage Meta-test Stage

Figure 3.2: Graphical illustration of the meta-level SVEBM. The dashed lines indicate variational

inference. During the meta-training stage (left), y and z are coupled in the latent space which cannot

be observed. The model learns the variational posterior by matching the task-specific prior from

SVEBM. During the meta-test stage, the posterior is inferred from the inference network. Using the

labelled information from ys, predict the label yq using a softmax classifier pα(y|z).
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Multi-task learning for EBM As discussed above, the task-specific prior model is formulated as an

EBM. When the model ingests n tasks as a batch, the EBM should generate independent priors for

each individual task in a sense that we should instantiate n same structures to generate n priors as

{zi}ni=1, such as n 2-layer multi-layer perceptron (MLP). However in the multi-task setting, we do

not assume independence between the tasks. We believe there are shared structures among different

tasks to certain degree, especially in the unsupervised scenario. In that sense, we can assume those

tasks are conditionally independent on some shared structures. We have made a simple attempt

as multi-head EBM. The multi-task learning choice is empirical, whether it’s positive transfer or

negative transfer is heavily based on the concrete tasks. One obvious benefit of using multi-head

EBM is to avoid over-fitting for individual task prior generation[Rud17].

MLP

MLP

z1

MLP

MLP

zi

MLP

MLP

zn

· · · · · ·

MLP

MLP MLP MLP

z1 zi zn

· · · · · ·

Figure 3.3: Graphical illustration of model architectures of EBM. In our experiment, we use the

multi-head version (bottom) instead of the independent version (top).

The full algorithm for meta-level SVEBM is shown in Algorithm 5.
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Algorithm 5: Unsupervised learning of meta-level SVEBM
Input :Meta-training iterations T , meta-test iterations Tte, initial parameters

Θ0 = (α0, β0, γ0), step size (η0, η1, η2, η3), Langevin sampling step size sα,

iterations Kα, batch size n.

Output :ΘT = (αT , βT , γT )

if Meta-training then

for t = 0 : T − 1 do
1. Mini-batch: Sample a batch of n training tasks {Ti}ni=1 ∼ p(T ), each of which

has U unlabelled examples {xu}Uu=1.

2. Task-specific prior sampling: For each xu, sample z−u ∼ p̃αt(z) using (2.13),

where π(z) = pαt(z), s = sα and K = Kα.

3. Variational posterior sampling: For each xu, sample z+u ∼ qγ(z|xu) using

(2.13) from the inference network with reparametrization trick.

4. Learning prior model for each head:

αt+1 = αt + η0
1
U

∑
u[∇αFαt(z

+
u )−∇αFαt(z

−
u )]

5. Learning inference and generator models: ψ = (β, γ)

ψt+1 = ψt + η1
1
nU

∑nU
u=1 ∇ψ [log pβ(xu|z+u )− DKL (qγ(z|x)∥p0(z)) + Fα(z

+
u )]

if Meta-test then

for t = 0 : T − 1 do
1. Mini-batch: Sample a batch of n training tasks {Tj}nj=1 ∼ p(T ), each of which

has S support examples {xs, ys}Ss=1 and Q query examples {xq}Qq=1.

2. Task-specific prior sampling: For each xs, xq, sample z−s , z
−
1 ∼ p̃αt(z).

3. Variational posterior sampling: For each xs, xq, sample z+s , z
+
q ∼ qγ(z|xu)

4. Learning prior model using query set:

αt+1 = αt + η2
1
Q

∑
q[∇αFαt(z

+
q )−∇αFαt(z

−
q )]

5. Learning prior model using support set:

αt+1 = αt + η3
1
s

∑S
s=1 ∇α log pαt(ys|z+s = µγ(xs))
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3.3 Experiment

In this section, we are trying to validate the effectiveness of meta-level SVEBM on a set of

downstream human-crafted tasks by comparison with other baselines.

Baselines We mainly compare our model with three types of unsupervised meta-learning approaches

and one supervised meta-learning approaches. (1) MAML[FAL17]: model-agnostic meta learning

by in Section 1.2 as one supervised meta-learning baseline. (2) CACTUs[HLF18]: clustering

to automatically construct tasks for unsupervised meta-learning, also known as a unsupervised

version of MAML. (3) UMTRA[KBS18]: unsupervised meta-learning with tasks constructed by

random sampling and augmentation by, also an extended version of unsupervised MAML. (4)

Meta-GMVAE[LML20]: a meta-level VAE with prior parameterized as a Gaussian mixture prior

optimized by Expectation-Maximum (EM) algorithm. (5) Meta-SVEBM: our proposed method

also build a meta-level VAE while the prior is parameterized by learned SVEBM.

Datasets We implement above models on two benchmark datasets for few-shot classification task.

(1) Omniglot: This is a dataset with 28× 28 gray-scale hand-written characters with 1623 different

classes, each of which has 20 examples. Following the experiment setting in [HLF18], we used

1200 classes for unsupervised meta-training, 100 classes for validation and the rest 323 classes

for meta-test. We further perform data augmentation by rotating each instance for 90, 180, and

270 degrees so that we have total four times data than the original. (2) Mini-ImageNet. The

Mini-ImageNet is a crafted subset of ImageNet with total 100 classes, each of which consists of

600 84× 84 images. The 64 classes are used for meta-training and the rest 16 classes for validation

and 20 classes for meta-test. Instead of directly using the raw images for training, following

[LML20], we use high-level features learned from a out-of-shelf contrastive learning framework as

SimCLR[CKN20].

Visualization The detailed trained results on Omniglot is shown in Figure 3.4. In this figure, we

compare the reconstructed results with the real examples, showing that VAE is learned successfully.

We also plot the generated examples where the latent variable z is sampled from the prior model
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pα(z), which shows the multi-modality captured by the EBM and the power of short-run MCMC.

As the increase length of Markov chain, the latent variable with lower energy is sampled, which

generates more clear characters.

Results In table 3.13.2, we show the few-shot classification results on 1000 randomly sampled

tasks comparing with the other baselines mentioned above. Comparing to the state-of-the-art, the

Meta-SVEBM outperforms all of the other approaches on MiniImageNet dataset and achieves

nearly the best on Omniglot dataset and even comparable to the supervised MAML in both datasets,

showing the effectiveness of Meta-SVEBM.

Discussion Meta-SVEBM learns a task-specific prior by matching the variational posterior. One

of the amazing phenomena is that with the increasing of the shots, Meta-SVEBM can boost much

more performance than the other methods. However, since the algorithm doesn’t involve a task

generation procedure, it’s possible that the meta-training tasks are not sampled from exactly the

same task distribution as meta-test tasks. Bridging the gap between the meta-training task space and

meta-test task space matters here. Meta-GMVAE designs a special initialization trick for adapting

meta-parameters to task-specific parameters for each meta-test task. We should also consider it in

the near future.
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Table 3.1: Summary of few-shot classification results (way, shot) on the Omniglot dataset. The

accuracy is calculated over 1000 randomly sampled meta-test tasks. Bold number denotes the best

performance.

Method Feature Extractor (5,1) (5,5) (20,1) (20,5)

CACTUs-MAML[HLF18] BiGAN 58.18 78.66 35.56 58.62

CACTUs-ProtoNets[HLF18] BiGAN 54.74 71.69 33.40 50.62

CACTUs-MAML[HLF18] ACAI 68.84 87.78 48.09 73.36

CACTUs-ProtoNets[HLF18] ACAI 68.12 83.58 47.75 66.27

UMTRA-MAML[KBS18] N/A 83.80 95.43 74.25 92.12

LASIUM-N-VAE-MAML[KZV20] N/A 76.11 94.42 − −

LASIUM-OC-VAE-ProtoNets[KZV20] N/A 73.22 85.05 − −

LASIUM-RO-GAN-MAML[KZV20] N/A 83.26 95.29 − −

LASIUM-RO-GAN-ProtoNets[KZV20] N/A 80.15 91.10 − −

Meta-GMVAE[LML20] N/A 94.92 97.09 82.21 90.06

Meta-SVEBM (Ours) N/A 90.95 97.38 77.63 92.23

MAML (supervised) N/A 94.46 98.83 84.60 96.29

ProtoNets (supervised) N/A 98.35 99.58 95.31 98.81
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Table 3.2: Summary of few-shot classification results (way, shot) on the miniImagenet dataset. The

accuracy is calculated over 1000 randomly sampled meta-test tasks. Bold number denotes the best

performance.

Method Feature Extractor (5,1) (5,5) (5,20) (5,50)

CACTUs-MAML[HLF18] BiGAN 36.24 51.28 61.33 66.91

CACTUs-ProtoNets[HLF18] BiGAN 36.62 50.16 59.56 63.27

CACTUs-MAML[HLF18] DeepCluster 39.90 53.97 63.84 69.64

CACTUs-ProtoNets[HLF18] DeepCluster 39.18 53.36 61.54 63.55

UMTRA-MAML[KBS18] N/A 39.93 50.73 61.11 67.15

LASIUM-N-GAN-MAML[KZV20] N/A 40.19 54.56 65.17 69.13

LASIUM-N-GAN-ProtoNets[KZV20] N/A 40.05 52.53 59.45 61.43

CACTUs-MAML[LML20] SimCLR 40.39 52.35 61.09 64.89

UMTRA-MAML[LML20] SimCLR 40.85 51.47 61.03 67.30

Meta-GMVAE[LML20] SimCLR 42.82 55.73 63.14 68.26

Meta-SVEBM (Ours) SimCLR 43.35 56.25 67.32 73.25

MAML (supervised) N/A 46.81 62.12 71.03 75.54

ProtoNets (supervised) N/A 46.56 62.29 70.07 72.04
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(a) Real examples (b) Reconstructed examples from pβ(x|z+),

where z+ ∼ qγ(z|x)

(c) Generated example from pβ(x|z−)

where z− ∼ pα(z)

(d) Generated example from pβ(x|z−) after k steps

short-run MCMC

Figure 3.4: Visualization of learned Meta-SVEBM.
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