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ABSTRACT

A method is developed to identify nonlinear material behavior.
Discussed are the types of functionals that characterize various
classes of nonlinear thermomechanical materials, the types of
experiments needed to generate data capable of identifying non-
linear material constitutive functionals, and the inverse boundary
value problem that models the identification problem. A new
technique of material parameterization that utilizes finite
elements defined over the multi-dimensional domain of the material
operator is found to give very useful results. The identification
problem is expressed as a system of nonlinear algebraic equations
that couples the set of experimentally observed measurements and
the discretized boundary value problem, _

A computer program is developed for the special case of
isotropic, incompressible elastic materials. A wide range of
numerical examples are studied to determine the accuracy and

stability of this material identification algorithm.
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I. NONLINEAR THEORY OF THERMOMECHANICS

1.1 Introduction

In recent years a comprehensive theory of nonlinear continuum
mechanics has been developed [1, 2, 3] which generalizes the
traditional linearized field theories of the nineteenth century.
Parts of this theory involve material constitutive functienals
wﬁich describe the response characteristics of materials under-
going certain processes. The constitutive theory of materials
gives infeormation about the general form these functions must
take, but in the end the exact determination of the response
functionals for any particular material must come from actual
experiments conducted upcon samples of that material. It is an
extremely complex problem to devise adequate experiments that are
performable and to use the information to identify the material
response functionals. Only a few very simple types of nonlinear
materials have vielded to successful identification [4, 3, 61},
and to date virtually all numerical applications of nonlinear
field thecry have employed either these simple materials or other
assumed constitutive functionals which may or may not describe
any real material {7 ~ 10]. This dissertation develops material
identification techniques capable of dealing with materials that
are as generalized as the current noniinear field trheory.

The remainder of this chapter will summérize the parts of

nonlinear continuum mechanics theory underlying this study.






1.7 Motion and Deformation

In continuum theory a material body is represented as a set
of particles in one-to-one correspondence with a region of
Fuclidean space. The motion of a body is a succession of con-
figurations - the regions in space occupied by the set of par-
ticles. 1In each Configuration'gz each particle p can be placed
in one-to-one correspondence with an ordered triplet X = the
spatial coordinates, or position of the particle p - The motion
of the whole body (the set of all particles) can be mathematical-

1y expressed by the function or mapping

X = X(pt) .

where T is the time when particle p occupies the position % ,
and'x is called a deformation function. Motion can be expressed
in a more mathematically usable form if some particular config-
uration of particles is chosen as a reference configuration
{(denoted by 135 } and the position 5 of the particles in that
configuration made to identify the particles themselves. Hence

the motion of the body with respect to a reference configuration

Bk is defined by

LS

KOx.t) (1.2)
where the functional form of X will depend on the particular
configuration chosen as reference. The deformation function in
(1.2) in effect maps the reference configuration 135 into the
configuration 1}1 occupied by the body at time ¥ , as shown

below in Figure 1.1,
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~

Fig. 1.1

Another description of motion is given by the displacement
field &')(5,.1') » which defines a particle's relative motion from
its position in B« . Displacement and deformation fields are

related by

vix.t) = X(x.t) - X. (1.3)

Motion has a local description as well as the global descrip-
tion above. That is, as the reference configuration “55 is mapped
into the configuration ‘133 » the neighborhood of a particle p is
mapped from N'.‘: to N.f. . That is, a material point 2(' +iX in Ny

moves to A+ dX in Ny . The relation between the two differ-

entigl elements,

dx = F - dx, (1.4)

is expressed by the linear transformation (or tenmsor) F , called

-~

the deformation gradient and defined by

F{x,4) = VX(X.t). (1.5)

The transformation f maps a neighborhood Ny in '135 into a

neighborhcod Ny in 13-,( , as shown below in Figure 1.2.



Fig. 1.2

Another local measure of deformation, which has the advantage

of being a symmetric tensor, is the Cauchy-Green deformation ten-

sor, defined by

N

.
= f - F. (1.6)

A symmetric temsor such as {  has the property that certain
quantities associated with it are invariant under orthogonal
transformation. One set of invariants, called the principal in-

variants, is defined by
I‘ = TrE; (1.7a)
I, = detC-trC (1.7b)

I3 = de't'c. (1.7c¢)

and is particularly useful in material constitutive theory. The

tensor El, of course, has other sets of invariants, such as the

principal values of g or the principal moments of g {11].
Another strain measure whose domain is the reference con-

figuration 13& is the Lagrangian strain tensor E: , defined by

2E(x.t) = C(x.t) -1 (1.8)
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where | 1is the identity transformation tensor. Lagrangian

o

strain and displacement are related by the expression

]

E = i[wroywiv] 1.9)
a direct result of substituting (1.6), (1.5, (1.4) and the
gradient of (1.3) into the definition of g {1.8). This choice
of strain measure is particularly convenient due to its svmmetry
and direct correlation with an intuitive sense of deformationm
[12]. Earlier nonlinear elasticity theory and numerical appli-
cations of the current theory tend to be expressed in terms of

Lagrangian strain (1.9) rather than deformation gradient (1.5).

For situations in which the motion of the bedy is infini-

tesimal (i. e., when the inequality
I X=X << 1 (1.10)

holds at all points in the body at all times T )} the reference

configuration 13K and the deformed configuration 135 differ only
by the infinitesimal displacement vector V(X,+t) . Hence the
Lagrangian strain (1.9) becomes linear in Yy and is called the

infinitesimal strain tensor € , such that

g - %[Zu + ZUT]_ (1.11)
Note that the spatial domain of §. can be taken to be either 13§
or By, since the motion is infinitesimal. The assumption of
infinitesimal strain and the linear strain-displacement equation
(1.11) resulting from this assumption is one of the key linear-

izing assumptions that underlie the linear field theories of



continuum mechanics.

411 of these kinematic quantities can be differentiated
with respect to time. To be compatible with the reference con-
figuration domains of other kinematic variables, time differ-
entiation is usually carried ocut in 15% rather than in 151 and

is denoted by a dot. For example, the first two derivatives of

the motion j{(z ﬁT) are
. o |
X({h’r) = 5;2((5,*:) (1.12a)
. y
Z((Z(a’f) = @12((5,?). (1.12b)

called the velocity and acceleration at time t of a point

(or particle) X in By -

1.3 Force and Mass

External surroundings can exert force on a body in two
different ways ~ by a body force ? distributed over the interior
of the body or by a traction vector t distributed over the sur-
face of the body. Either type of force can be referred to either
the reference configuration B, or deformed configuration Ty .
That is, E‘EU—S) with EEQ‘BE refers to the force per unit sur-
face area of the body in its reference configuration T3§ , whereas
E!(E) {or commonly g ) with X € BBX refers to the force per
unit area of the body in its deformed configuration 131 .

The internal forces at a point inside the body are charac-
terized by stress tensors. The Cauchy stress {(measured in the
actual deformed configuration of the body) is defined by the

Cauchy stress principle
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s o

1:(75) = T(x)* n(x) (1.13)

~ ~ ~ -~

where ¥ ig the force vector on the surface at X defined by the
unit normal N . The stress measure which permits both forces
and geometry to be expressed in terms of the reference configu~

ration is called the Piola-Kirchhoff stress tensor, defined by
T
P(x) = (det F)F'T(F) (.16
which results in the following form of Cauchy's stress principle:

tlx) = (F(x)  P(X))- ny (%) (1.15)

A

where i K is the force vector on the surface at point 5 defined
by the unit normal {)5 . FEither I' or f completely character-
izes the state of stress at a point.

In infinitesimal field theory the distinction between Cauchy
stress and Piola-Kirchhoff stress disappears, since the distinc~
tion between a reference configuration domain 13% and deformed
configuration domain 133 disappears.

Also associated with a body'fs is a guantity called mass,

defined such that
Sﬁdm z mass of B (1.16)

Mass is indicated in continua by the distributed quantity P .

called mass density, such that
S f)(})dv = mass of body, (1.17)
BX

or if mass density referred to the reference configuration is used
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1.4 Temperature, Entropy, and Heat

Several other variables are needed to describe the thermo-
mechanical state of a bodv. Temperature iz a measure of molecu-
lar thermal agitation and is indicated by the scalar 9(5,?) .
Specific entropy 1)(},*) is a measure of thermodynamic disorder,
and specific internal energy €( é,f) is a distributed measure
of the thermomechanical energy contained within the deformed

body. Temperature gradient may be defined by
G(x.,¥) = VO(x,t), (1.19)

where the differentiation here is with respect to the reference
configuration.

Heat energy can be supplied to the body in two direct ways -
by an internal heat supply r(ﬁ,f) distributed throughout the
bedy, or a surface heat flux Cpn(é,f) , x € 385, the rate of
heat flow across a unit area of the surface of 135 . The gstate
of heat flow at a point E in the body is completely specified

by the heat flux vector, defined by

Qnlx,t) = Q{x,4)* n, (x) (1.20)

where Dy is the unit normal to the surface a-~ross which Qqn 1is
measured.
Another useful measure of the internal energy of a body

is the scalar functional of X and + , the specific free energy,



sy,

defined by

s,b = e - en. (1.21)

1.5 Balance Laws and Entropy Production Inequality

The balance principles relevant to thermomechanical continua,
expressed in terms of a body's reference configuration 13;, are

1} balance of linear momentum

s

2) balance of angular momemtum

j Xxt,ds + j

2B,~

H

t.d5 + JB p.bydv

bt
£

v dv (1.223)
"

Pn‘xxév}&v - X‘B PA(}*):():W (1.22m)

K

3
3) balance of energy

tl-'inas+JKbK-'+ dv = g (e + XX )dV. 22¢
LB(N.B Ms + el Xor)ay = § p (e x) (1.22¢)

= "

The entropy production inequality, also expressed in terms cof a

body's reference configuration By, is

Lfﬁﬁdv - L; Pelav + S Sris 2o, e

1 o ‘)BK ©

The conservation of mass principle
ﬁ—g dm = © (1.23)
dt Jg

has been assumed in expressing (1.22a-4d).
The balance principles and entropy production inequality
above can be localized if certain smoothness conditions on the

field variables are satisfied [1]. These local balance laws,



valid at every point in By , are respectively

(F-P)7+ pby = pX He
E)T = P (1.24b)
Pe& - per-ztr(RC)r QY = 2. (1200

N - L ilgo- 2C >

If infinitesimal motion is assumed, the momentum balance

(1.24a) is linearized and the energy balance (1.24c) becomes a

quadratic functional, resulting in the linear balance laws

TV + pb = P)? (1.25a)
IT = T (1.25b)
[)é -pr - (Tre)rQv=c. (1.25¢)

1.6 Material Constitutive Equations

A thermomechanical material is mathematically characterized
A A -~
by four response functionals qJ, LA g? y and g?, all of which in
the most general case are dependent on deformation history,
temperature history, temperature gradient history, and time;
i. e., for a point X in the body "By the functional form of the

constitutive equations is

£ X G, O(%.+-5), 10,9, 1) (1.26)

where E refers to any X € By, and O & 5 < oo,

10



For a homogeneous body composed of a simple material
(a material whose response at a point X 1is affected only by the
motion and temperature in a small neighborhood arcund that point

X ) the response functionals reduce to the form

£( Flx.1s), O(x,+-5), Y9(x,+-9), 1) (1.27)

where the notation E.(§,+~$) ,» O % 5<w refers to all defor—
mation gradient states at point X before time ¥ and the defor-
mation gradient state at time <+ .

The exact form of the four constitutive functionmals must be
determined by experiment. However, certain underlying principles
that govern the nature of the response of a material can lead to
constraints on constitutive equations. Five particularly useful
principles, described in great detail in {1}, are the principles
of determinism and local action (already incorporated into
(1.27) ), the principle of material frame indifference, the
invariance of material symmetry, and the entropy proeduction
inequality (1.24d). The last three principles permit simplifi-
cation of the constitutive characterization of a general

thermomechanical material to the following equations:

Q)(g_z,f) = (;J(Q({(,T-s),@(g,f-s),f) (1.28a)

it

MN(x,+) ﬁ(g(g,%@, &(x,4-5).1) (1.28b)

o
—
>
,..*-

St

it

of(g()jj_s)‘@()é,f*s),‘f) (1.28¢)
Q(l‘»” - @(g(gﬁ.s),e(§,f-s),28(§,+-s),%). (1.28d)

The mathematical characterization of a material can be

11



simplified by making certain assumptions about its behavior.

For example, a material whose behavior at a time t depends on
the value of g_',, €, and Y@ at time T only, rather than on the
history of these variables, is defined as thermoelastic. Such a
material can be completely characterized by the two material

functiconals
~

Gx.t) = g{Cx,1),0(x.1) (1.292)

Qx,1) = @(g(m),etw)&eu,n) (1.29b)

since the other two field wvariables in (1.28) are derivable from
~

qJ as follows:

P(x,+) = 2p, % B(c.0) (1.290)

3

a fa
%1 = —5sPlc.e). (1.29d)

Detailed derivation of (1.29) is available in [1, 14}.
A material whose behavior is assumed to be unaffected by
thermal effects or a material undergoing an isothermal process

can be completely characterized by just one function:
Plx,+) = "f(g(g*s)) (1.30)
If the material is also elastic {(1.30} reduces to

EQ.*) = ‘T(Q({s,ﬂ) (1.31a)

or, if the constitution of the material is defined by a strain

A
energy functional LP ,

Pix.t) = 7—&5"@(@(&*7). (1.31b)

¢

12



Further restrictions on (1.29) are possible if material
symmetyy is considered. For example, if a thermoelastic material
is considered mechanically and thermally isotropic (with respect
te the reference configuration) the constitutive equations must
be form invariant under any orthogonal transformation [2]; hence

{(1.29) takes the form

Pt
¢ = ¢(1.1,.1;.9) (1.32a)
Q = -K{(C,8,v0) VO (1.32b)

where 1, , I, and 13 are the three invariants of g (1.7}

and K (thermal conductivity) is the tensor function

K= d,1+0,C+ o\,_(:f, (1.33)

e

where dg, oh,, and a3 are scalar functions of I, , I, , 13,0 ,

2

2
ve©, Ze(g -V} , and (Z_e(g. . Y_@) [10]. For isotropic,
elastic materials not subject to temperature effects (1.32)
simplifies to one energy functional which completely character—

izes the material:

w o= WI(1.1,.1,) (1.34)

where stress is derivable from the expression

P = 2&%;\'4 (1.35)

1

20, [ 2 _a_ye;.wa_z]

31, 3¢ 91, 3¢ 3133¢C (1.36)

That is, the material can be characterized by three scalar

functions of the three scalar variables L . 11 s 13 . The

13
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stress-strain relation (1.36) can also be expressed without

reference to a strain energy functional [1]:
2
P = 3,1+ 3,C+ 3,C7 (1.37)

Jdo ,‘jl , 12 being scalar functions of I, . Il s 13 as in
(1.36). Refer to [15] for a full discussion of material symmetry
and its effects on the general elastic constitutive relation
(1.31).

Another important class of elastic materials are those
assumed to be capable only of isochoric motions. A deformation

is said to be isochoric if
detC = 1. (1.38)

A material of this type is called incompressible and is charac-

terized by the stress constitutive eguation
-1
P=-hC + T(C) (1.39)

et
or, if a strain energy functional W exists for the material,

~

P = -hgﬁi*" Zp,sggﬁ/(g). (1.40)

The scalar function h (Z,"f) , defined over the whole reference
configuration domain,jas, is called the hydrostatic pressure and
is indeterminate in the stress constitutive equation (1.40) until
the information contained in the incompressibility constraint
equation (1.38) and the balance laws (1.24) is utilized.

If an incompressible, elastic material is also isotropic,

the stress constitutive equations (1.39) or (1.40) reduce to the

14
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simplified forms

P = —hg‘+ M (1,1 ] 4 ‘1‘(1”11)9 (1.461)

oY

Fal
P=-nC ~ 2{35%\4(1‘,12) (1.42)

5
N

~ -
—t 81, 1.
v 2p [ 2y oW 2L (1.43)

31,9C  31,9¢ 4

Hence, the response of incompressible, isotropic elastic materi-
als can be completely specified by the twe scalar functions €,

and (3, such that

5%‘&(1““) = LPEC,U.,IZ) (1.44a)
2ieay - hct

or
.(1,,1,) = Z[C,(L,lz‘;-r]_‘c_lu”lz)] (1. 55a)
1(1,,1,) = -2G(1.1,). (1.45b)

Experimental evidence has shown that natural and synthetic
rubbers are isotropic, elastic, and nearly incompressible. Since
the material functions (1,44) describing these rubbers are
relatively simple, numerous investigators have proposed partic-
ular forms for €, and C3. The simplest, based on a theoret-

ical model of the behavior of rubber molecules, is

constant {1.46a)

il

C’i(j"s Il)
C—Z(Ih Il)

0 (1.46b)

and is called Neo-Hookean [16}. Another form is

15
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C.(1.1,)
Cl ‘IIIZ)

constant (1.47a)

]

constant, {1.47b)

called a Mooney-Rivlin material [17], very commonly used as the
basis for studies of nonlinear elastic behavior because of its
simplicity. Rivlin and Saunders [4], in an extensive series of
tests on various rubbers, determined that the material functions'

proper forms are

CI(IHIZ)

1¢

constant {1.48a)

1]

C,(L.1;) (). (1.48b)

Note that because of (1.44) these functions imply a strain energy

functional of the form

\:/(I:,Iz) = C, - (1,-3) + £(I1,-3). (1.49)

Many other forms have been postulated and are fully discussed
in a paper by Alexander {6].

For generations the usual approach to elasticity problems

has been to assume that materials are linear and that deformations

are infinitesimal. This assumes a strain energy functional of

the form
” §
W(e) = 3e-E¢ (1.50)

where € 1is the infinitesimal strain tensor (1.11) and E; is a
constant tensor of rank four called the elasticity of the mate-
rial. The particular form of the 81 elements of g; will depend

on the type of material symmetry existing in the material EZ is

16



meant to characterize. The functional (}1.50)} leads to the

linearized stress constitutive equation

T = Pg‘é'%- (1.51)

_—

If the linearized material is also isctropic, only two constants
are needed to define the elasticity E : Young's modulus £ and
Poisson's ratio ¥ . Therefore, (1.51) can be simply expressed as

Ewv
T = —--m----1r€l+ £ €, (1.52)

~ {vrvi{1-2v) I b+ v

the familiar stress-strain law that completely characterizes a

linear, isotropic elastic material.

1.7 Thermomechanical Process

A thermomechanical state is defined by the set of state
variables {1( , e, E ,b,©8,m, Q ,l"} - 81] functions of
X € 135 and a specified interval of time Tmin &t & Toox . IF
these state variables satisfy the balance principles (1.24a-c)
and the entropy production inequality (1.24d) at every point in
domain 135 and for the interval of time Tmnét ¢ tmox , they
define a thermomechanical process. For a given material bady
such a process is called admissible if additionally it satisfies

the constitutive functionals (1.28) that characterize that

material.

1.8 1Initial Boundary Value Problem of Thermoelasticity

The thermomechanical state of a body subjected to a process
is completely defined by a set of state variables {’X , g , E .

b , © » 1} ,q) s Q,Q ,f‘} - all functions with domain _)S in

17



BK and Tyin$ t ¢ fmax - Normally the body force P( X.%¥) and
the internal heat source I(X.%) are assigned functions. The
remaining state variables R{(X,+) : { X,C,P,©, 7, (/J ,

9 R g} must then satisfy twe further conditions:

I: R must be an admissible thermomechanical process. That is,
for all X in BK and for 'Q'mm_ £ tmox must satisfy the
following field equations:

1) definitions of strain, temperature gradieat, and specific

free energy

g_ = VX VX {1.53a)
G = Vo (1.53b)

¢ = e-on (1.53¢)

2) balance laws

(TXP)T *pb = pX o s

T

P =P (1.53e)

:_;-..h,_(Eé) + PET‘ - Q-Y = P’Se’ {1.53f)

3) material constitutive equations for a thermoelastic

material
(,} (’[;( .0) (1.53g)
@ - &c.e.0)
~
P= 2(9533 gb(g,e) (1.531)

—

18



n = -%¥(.9) (1.533)

11: R must correctly reflect the prescribed process, represented
by initial conditions and boundary conditions. That is, R must
satisfy the following equations:

1) boundary conditions

?;((Zx,*’) = 7:((3,+) X € QBZ (1.54a)
(z E) ‘.‘:: 25(5-,1') 2( £ B‘Bi {(1.54b)
(%, 4) = @(x t) X e QB‘? (1.540)

e
Q g = én{gﬁ‘) X € agf (1.54d)

-~

N ~ Fa la)
where {x,'X s CQn, EB are prescribed functions of time (over
a~ ~

the interval ¥mn st ¢ tmey ) for traction, motion, heat flow,

and temperature on the boundaries of the body such that

BB; + BB“K = agi% agf" = R, (1.55)
2) dindtial conditions
A
KOk tmn) = X (X)) X € B, (1.56a)
X(%sfm.tn) = ‘go(ﬁ) 5 € BE (1,56b)
e(zaTmin) = c.()f) K = BK (1.56¢)

L) . ~
where Ky, Vo, O, are prescribed functions for configuration,

veloeity, and temperature at ¥ = trmin -

Determination of the process R that satisfies 211 these

conditions is called the initial boundary value problem of



thermoelasticity.

The initial boundary value problem for more cemplex materials
can be formulated by use of the generalized constitutive function-
als (1.28) in place of {1.53f-j). Inelastic material behavior
can also be represented by the introduction of internal state
variables in the constitutive functiconals. A paper by Coleman

and Gurtin [14] contains a full development of this approach,

1.9 Boundary Value Problem of Elasticity

If thermal and dynamic effects are ignored a simpler, more
specialized boundary value problew can be defined. That is, the
thermomechanical state of a leoaded elastic body is completely
defined by the set R(?_() : {?S‘ g_., E } that satisfies at every

point X in Bx the field equations
T
C = VX- VX (1.57a)

(V_VX E)..v + Pﬁb = Q (1.57b)

Er= P (1.57¢)
P = %(¢) (1.574)

and the boundary conditions
A 1
(V_:)( , P) « = T X € M, (1.58a)

0
X = X

(1.58b)

[ 4
'\
Q/
(WY
* B

where

R, + 313: = 3B, . (1.59)
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If the elastic material is isctropic, the constitutive equation

(1.57d) simplifies to the form (1.36); that is,

P = 2p, [%’-’{( b1 3)81‘ (Iuha 3)%18*' 31, (L.5,1 5)81 ] (1.60)

Note the mathematical structure of this boundary value
problem - a system of nonlinear partial differential equations
(1.57) defined over the three-dimensional domain 5 € 13K with
independent variables X , C , and P and with the boundary

conditions (1.58),

1.10 Boundary Value Problem of Linear Elasticity

If an isotropic, elastic material is assumed to behave
linearly, as in (1.52), ané the motion of the body is infini-
tesimal, as in (1.11) and (1.25), the boundary value problem of
classical elasticity results. That is, find the state FQ(E):

i v, €, 1—} which satisfies the field equations

€ = s[vw-vu] (1.61a)
TV + be = o (1.61b)
E v £
I = (.W)(._Z,,}?rél Yoy §_- {1.61c)
and the boundary conditions
7 1
T-ne=+t, X e 3B, (1.62a)
~ 18
U=uU X € 9B, (1.62b)
where
I ju
OB, + By = IBy. (1.63)
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Nete that a much simpler mathematical problem results due to
linearization - a system of 15 linear partial differential
equations (1.61) defined over the threé»dimensional domain TSK
with independent variables U, € , T and the boundary conditions
(1.62). The solution of boundary value problem (1.61) is far
simpler than the solution of boundary value problem (1.57) because
of the equations' linearity and because of the material's very
simple description in terms of the two easily determined constants

£ and v.

1.11 Boundary Value Problem of Incompressible Elasticity

In Section 1.6 materials capable only of isochoric motion
were discussed. The boundary value problem associated with an
isotropic, elastic, incompressible material is to find the set
of 16 state wvariables R(%) : {Z . g y E? . h} that satisfies

the field equations
C = \Z'_XT' VX (1.64a)
(VX-P)V + peb = g C1.o6)
E - ““‘C ¥ Z(C (I-Jﬂ"lwcl(x,, ) ) (1.64¢c)
detC =\ (1.64d)
and the boundary conditions
(Y_X'E)'QE: is X € 33; (1.65a)
X -

10d >
s

a1y
€ 9B, (1.65b)

where



o
M, + 3B, = B, (1.65¢)

Note how the indeterminate constant ¥ in the stress constitutive
equation (1.64c) must be treated as an additional state variable,
necessitating the addition of ancther field equation, the incom-
pressibility constraint equation (1.64d). When the definitions

(1.7a~b) are expanded, I, and Iz can be expressed as

I, = O, + Cap + C33 (1.66a)
" 2 2 2
I = CuC3* CnCyr Culiy-C iy Cly- Cpy. (1.66D)

if aI.lc}g and 913/39C are evaluated the stress constitutive

equation (l.64c) can be written as

- 1 e o Curlyy ~Cuy =Gy,
Pz -nC+2C (L) o+ o+ 2C,(1.1) | -C, C.oCy, €, L(1.67)
G ot "C.} -LIS C—!‘*C—il

Using a variational appreoach to this boundary value problem
[10,18], it can be rephrased in a way that is more suitable for
numerical solution techniques. That is, to find the state

R(x) : { X.C, P, h} that satisfies the field equations

T

g - v’xz}( {(1.68a)
-4
P:-hC + 2{c B+ o130 (1.68b)

and the boundary condition

N
75 = X X e ggf (1.68¢)
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results in a solution if the state R also minimizes the varia-—

tional functional @(?ﬁ(.‘”\), i. e.,

i

6 (X, n) = SgE-& dv - 5B(de‘r§-a)6hdv

. (1.684)
-5 Pcb-&Xdv - § L 6Xds= 0.

By W~

Equation (1.68d) is a generalized virtual work theorem for
incompressible elasticity, and the state {'X . (:, F), F\} which
satisfies it is precisely the same {X ’ C s E . h‘g which would
satisfy the balance equations (1.64b), incompressibility constraint
equation (1.64d}, and the traction boundary condition (i.65a).
Hence boundary value problem {1.68) is equivalent to boundary

value problem (1.64-5),

1.12 Boundary Value Problem for Isotropic, Incompressible Elastic

Materials in a State of Plane Stress

If restrictive assumptions are made asbout the kinematic or
thermal behavior of the bodies discussed above, simpler, vet
significant, boundary value problems often result. A useful
assumption is that the body is in a state of plane stress. That
is, a body in the shape of a thin planar sheet, unicaded on its
plane surfaces, is assumed to sustain no stresses on planes per-
pendicular to the plane of the sheet. For the body below in

Figure 1.3 the plane stress assumption states:

{?K = O for =1

P,

{1.69a)

M-

Qr

P

33 Piy= Py =0, VEEB,s, (1.69b)
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Fig. 1.3

Substitution of assumptions (1.69b) into the stress constitutive
equation (1.67) of the isotropic, incompressible elastic boundary

value problem of Section 1.11 results in the following constraints

ong and h @

Ciy= © (1.70a)
Ci;3y= © (1.70b)

h = 2C41C (1 L)+ 2G5 {C 4 Cn)GL L), (1.700)

If motion perpendicular to the x-y plane of the bedy is repre-

sented by an extension ratio }\(X,\/) , such that
a
N(x.y) = Canlxy), (1.71)

then all field variables in a plane stress problem are functions
of only two variables, with domain B’S — the portion of the x-vy
plane the body occupies in its reference state ‘5,5.

Substituting (1.70c) into the three-dimensional constitutive
equation (1.67) and writing the x- and y-components of the field
equations (1.64), we can derive the two-dimensional plane stress
boundary value problem of isotropic, incompressible elasticity.

That is, for a prescribed body under prescribed loading condi-
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tions find the set of 9 state variables R(Xs\/) : { x, s )(2,
ChsChas Cuw APy, P, Pzz} that satisfies at all (qu)

in the two-dimensional domain BK the field equations

C = X vx (1.72a)
(vx-p)v + PR = 9 (1.72b)

e - sl ] 25 @)
‘20, (I.,h)[)\z[ ?]_}(* ;ﬁc(jc,rcc.u)) Ca2 “Cuz}

"Gz Gy (1.72¢)
detC =1 (1.72d)

and the boundary conditions

(VX P)n, = t, X € SB,: (1.73a)

X=X X € 3, (1.73b)
where
I et
By * MWy = . (1.74)

Note that the plane stress assumption is a kinematic restriction,
not a material restriction; the material functions C. (Ig 5 12)
and Cz(L,Iz) are precisely the same as those in the three-
dimensional incompressible boundary value problem (1.64-5).

It is often more useful to express the plane stress boundary
value problem (1.72-3) in terms of displacement U (X., Y) and
Lagrangian strain g()QY) , since this nonlinear formulation
originally evolved as an extension of a linear plane stress

boundary value problem. Also, numerical solution techniques are

26



easier to apply when Y and g are state variasbles. Therefore,
rephrasing (1.72-4}), we seek the mechanical state R(X,‘/) .
{Uu s Uas Ey s Eias Eazs A, Py, P, leg that satisfies at

all points (XY} io ‘13,5 the field equations
E = e+ 9 Tu] (1.75a)
((1+90):P)V + pb = © (1.75b)
R B Rl B |
~ ‘ det(2E+1}| -2€. 2£, 41
+ 1&;1(1,,11‘)[)\1[2-,?}(“Wzdf:é;‘g))r_i;‘ 2;}:::}} (1.75¢)

dej(lg*;): | (1.754)

and the boundary conditions

A 1
(Vo+1)P) 0y =ty (,y) € 3B,  (.76w
A o
Vo= U (x,y) € 90, (1.76b)
where
1 ]
B, + M, = M. (1.77)

Note the mathematical structure of boundary value preblem
(1.75-6): 9 nonlinear partial differential equations with two-
dimensional domain ‘BK’ boundary conditions (1.76), and 9 un-
known field variables U, g , A and l:f .

A variaticonal formulation for this boundary value problem
is obtained by replacing the balance law (1.75b) and the traction

boundary condition (1.76a) by the virtual work principle

&d(v) = SB P:oEdv - EBKP.SE?:!V - J’?Fﬁii”—*' duds = ©. (178

o

.
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I1. IDENTIFICATION OF WONLINEAR MATERIALS

2.1 Identification of Material Behavior

Application of the continuum mechanics concepts and boundary
value problems developed in the previous chapter is predicated on
the ability to identify the behavior of thermomechanical materials.
That is, actual physical specimens of materials must be loaded and
measured, and the observed data used to identify explicitly the
appropriate constitutive functionals that mathematically charac-—
terize the materials. Nonlinear continuum mechanics theory is
very useful in determining the format of the constitutive response
functionals for various special classes of materials, but how to
find explicitly these functions from experimentally obtained data
igs still an open guestion.

To identify a nonlinear material two separate steps are

involved:

1) Design an experiment which will both supply adequate input
information to identify the material of the specimen and be

physically possible to conduct in the laboratory.

2) Design a mathematical model capable of representing the
identification experiment. Observed experimental measurements

are input to this model and identified material respomse is output.

The general material response functionals of Section 1.6 are
tensor-valued functionals with tensor-valued arguments involving
field histories. Even the far simpler response functionals for

rhermoelastic (1.29) or elastic (1.31) materials are temnsor-
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valued functionals with tensor-valued arguments. Consequently,
traditional testing techniques (measuring a material specimen
loaded in such a way that the strain and temperature fields {(or
field histories if a nonelastic material) are spatially uniform

in the measured arez of the specimen) will not generate sufficient
information to determine the material operator - except for the
very special cases to be discussed in Section 2.3. TFor example,

in order that the general elastic respomse functional
0-—’-
F(Q)

be determined from a uniform strain experiment (where g;( 5} is
constant throughout the measured part of the specimen) for a par-
ticular argument 9 s & independent measurements in different
directions must be taken - an impossible task in a loaded three-
dimensional specimen.

Therefore, a general identification technique must utilize
the input~output response for a material specimen in which strain
and temperature field histories are not spatially uniform through-
out the body. Hence thé problem of material identification is
coupled with the problem of sclving boundary value problems
(Sections 1.8-1.12). That is, a very complex system is needed
to describe the material characterization experiment, one that
imposes relationships upon both spatial field variables and mate-
rial response functionals. We will refer to this input-output
system as the material identification inverse problem. A more

formal and more complete discussion of this approach to the mate-

rial identification problem can be found in a paper by Pister [24].
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Since material response functionals have different values for
different strain and temperature arguments, the results of one
identification experiment cannot be blindly applied to any stress
analysis problem. Usually numerous different types of experiments

are necessary to define a constitutive functional over a signifi-

cant portion of its argument space, since the results of any single

experiment (or associated inverse problem) will be valid only for
those strain and temperature states (or histories) that exist in
that experiment. Extrapclation of results to other strain states
is facilitated by the constitutive theory of Section 1.6, but it
is extrapolation nonetheless.

We shall now turn to the expression of a material identifica-

tion problem in terms of the concepts of Chapter I.

2.2 Inverse Boundary Value Problem

Let us examine more closely the mathematical structure of the
inverse problem involved in material identification. The inverse
problem for a general thermomechanical material has the following

elements:

Input - a geometric description of the specimen, a specified
loading process ( DX, ¥}, L, (X.+), r(X,t), Q. (x.+)),
and a description of the motion and temperature histories

resulting from this loading process ( -X()EJ‘) s 9(?5,1') ).

- A iy
Qutput - the four material functionals 9) ,77 ,OF?,CQ that
-~ e
characterize the material of the specimen, defined for the
strain and temperature histories that occur in the

experiment.
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Since the motion and temperature field histories that serve
as input above cannot be measured continuously (in time and space)
in an actual experiment, if is necessary to modify the inverse
problem in such a way that the motion and temperature field his-
tories are also unknowns, as well as the material operators, in
the problem., Thus, a series of experimental observations of the
field histories ‘5(5‘*) and 9(5,‘\‘) serve as input to the identi-
fication problem, from which the continuous field histories
2(( Z\,%) s @(5,*) and the material functionals are determined.
This inverse boundary value problem can be stated more precisely

as follows:

Input - a geometric description of the specimen, a specified
loading process ( ?(5,?) , if(ng), r{xt), Qa(at)),
relevant boundary conditions and initial conditions, and a
description {through a finite set of experimental measure—
ments) of the motion and temperature histories resulting

from this loading process, i. e.,

X (R, 4) = X(x 1) 2.1a)

(X, 1) - é()_g,ﬂ. (2.1p)

Qutput - the material functionals that characterize the

material of the specimen,

>

i

eN) O C(x.t-3), ©(X,1-3)) (2.2a)

(X9 ( Clx.+-9), ©(x.+-5)) (2.2b)

3
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P(x.t) = F(C(X,t-5), 6(X,1-3)) (2.2¢)

A
Qa1 = QCUX,¥-9), O(X 4-5), G(x,+-5)) (2.2

defined for the strain and temperature histories that occur
in the experiment, the motion %(5,*) and temperature

e( A ), and any other field histories involwved in the
observed thermomechanical process that are derived as inter-
mediate steps in determining the material functionals -

such as strain history C (X, t-5).

The solution (output) of the general thermomechanical inverse
boundary value problem is found by use of the field equations
(1.53a-f) discussed in Section 1.8 and the input data described
above, Needless to say, the mathematical nature of this general
inverse boundary value problem is extremely complex and a general
analytical solution is not possible.

The inverse boundary value problems associated with the
forward-direction boundary value problems for more specialized
materials (Sections 1.9-1,11) can be easily derived and take
forms similar to that of the general problem just discussed.

Here we will state precisely the inverse problem only for an iso-
tropic, incompressible elastic material in a state of plane stress
{equations (1.75-1.78) of Section 1.12) since we will refer to
this problem frequently in later chapters because of its relative
mathematical simplicity.

From an experiment on a body described by a two-dimensional

reference configuration TBK , subject to a prescribed body force



33

?( X, + } , and whose deformed configuration is specified (through

a finite number of experimental measurements) as

VX, y) = Olx.y) (.7} € B, 2. 32)
AXLY) = :\(X,y) (x.y) € By, (2.3b)

find the material constitutive functions C:.(I,*ll) and Cll{\I!,Iz )
and the thermomechanical state i%(x1y): {Lh, Uy, E45 1 Eaas
A s g%q, Faz, Fﬂ;} which satisfy at all (X,y) iIl!SK the field

equations

i T u
£ = E{ZU + Vu + Ezuu- '{Z_u] (2.4a)
4
. () AN 26,5+ -2E,,
? - 2C|(Ii511){[0 l] - deT(Zg*E)[ ‘2-E|1 ZE“ + )
4
21y o ZA (E“+Eu+i) ZEH_H -1k,
+ . Y ooy .
ZCI(I Iz){A [O !] ( de?(zg*;)) _zEll ZE“+t (2 Z&b)
det(26+1) =1, (2.4¢)
the boundary condition
A I
Ux,y) = U(x,y) (x,y) ¢ IR, (2.4d)
and the virtual work principle
5PV = 5559. 6Edv - SBEPEQ.@W
SO

where the strain invariants are directly related to g; and A by

the relations



I, = 2(Ep*tEpnri)+ N (2.5a)
2
I‘)_: ZAl(Eu*’Ellr’)*(1511*9)(2E21*‘)* 4’E;2- (2.5b)

Note that the possibility of mixed boundary conditions is provided

for in the expression

ful
3B, + B, : IB,. (2.6)

The material functions C, and {3 will, of course, not be iden-—
tified over all possible points (I,,1;) but only over those
points derivable from the cutput state Fl(x,y ).

Note the extensive amount of mathematical modelling that is
necessary to express the isotropic, incompressible elastic material
characterization problem in terms of the inverse boundary value

problem (2.3-2.6):

1) The physical body is idealized as a homogeneous continuum

representable by a set 13& in Buclidean space.

2) The loads upon the body are idealized as distributed

EaY
loading functions i_?(i.,y) and E'K( X,y ).

3) The way the body is connected to its environment is

”~
idealized by the geometric boundary conditions U

4) The material function ﬁr(gj reflects the assumptions
of perfect elasticity: behavior depends only on current

configuration and shows ne temperature effacts.

5) The body is two-dimemsionalized by the plane stress model.
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6) The material is idealized as isotropic and incompressible.

The solution (:;(I,,Izj of the inverse boundary value problem
(2.3-2.6) will accurately portray the experimental material only
if the mathematical model accurately represents the experimental
situation. The material assumptions in 4) and 6} above should be
thoroughly tested, and an experimental body and lcading process
should be designed in a way that permits accurate modelling.

Note the basic difference between the forward-direction
boundary value problem of elasticity and the associated inverse
boundary value problem. 1In the forward-direction boundary value
problem we seek to determine the motion (Figure 2.1} of the body

when the material operator (Figure 2.2) is known. On the other

X(x)

T

Dy Ry

- -

Fig. 2.1
strain stress
distribution 0}_ (C) distribution

in deformed body in deformed body

N

Dy R

—~

>

Fig. 2.2
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hand, in the inverse boundary value problem we seek to determine
both the motion and the material operator when an experimental
description of the motion is known. The inverse problem is far

more difficult since the domain of the material operator is un-—

known a priori.

2.3 Analytical Solution of the Inverse Problem

Stress analysis has always demanded some sort of mathematical
characterization of englneering materials. For centuries this
demand has been met by assuming linear material behavior - at
least in the strain ranges involved in engineering design.
Material identification for linear elastic materials is a very
simple affair, since the material response functions (1.51) are
expressed in terms of constant elastic moduli completely independ-
ent of the strain domain of the operator. Hence, identifying the
elastic parameters through any experiment will produce a material
characterization that is valid in any other strain state. Thus,

a simple homogeneous strain experiment will suffice to identify
a linear elastic material and solution of the inverse boundary
value problem is a trivial algebraic operation.

For example, most engineering materials are assumed to be
isotropic, linear elastic (1.52); therefore, the boundary value
problem (1.61-1.63) describes the behavior of any body composed
of this material and finding the two material moduli & and Vv
requires the solution of the associated inverse problem. Since
identifying E and V in any strain state will produce results
valid for all strain states, a simple uniaxial stress experiment

is usually used, as in Figure 2.3.
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The solution of the inverse problem is an extremely simple analyt-

ical process, resulting in

E

1t

P Lx /A DLy (2.7a)

v

1

Oly'Lx /Dby Ly (2.7b)

where Aly and Aly are measured displacements or data from strain
gauges.

Numerous irrational nonlinear material characterization
techniques have been developed using a nonlinear functional form
for £ . The exact form of E(E.) is then determined from a
uniaxial or other simple homogeneous strain experiment. However,
applyving an identified E:(E.) to a stress analysis problem in-
volving strain states different from those of the identifying
experiment is a gross approximation unless the strain invariant
domain of the stress analysis problem is a subset of the strain
invariant domain of the experiment that derived E(:E.) . A non-
linear isotropic elastic material characterization that will be
valid in all strain states must be based on the general elastic

constitutive relation (1.37).



The isotropic, incompressible inverse boundary value problem
(2.3-2.6) can be solved analytically for bodies in a state of bi-
axial homogeneous strain, making possible the identification of
the functions (:;(I,qlz) for all strain states except those pro-
ducing buckling in a thin sheet. A body in biaxial strain is

shown in Figure 2.4.

Py
; [ h = thickness of sheet
P, ¥ = extension ratio for
ﬁy__ — deformation in the
x-directiocon
et R . .
& Ay = extension ratio for
T deformation in the
f l l 1 y~direction
S

Fig. 2.4

If traction boundary conditions are given by

Fx‘ )\x
tl .- {2.8a)

ty = Py - Ay (2.8b)
Lyt

then the inverse boundary value problem applied to the homogeneous
body of Figure 2.4 reduces to the two algebraic equations

| 2
ta= 20 sTRNC+ Ay Cy)
x (2.9)

‘ty = 2()\;" /\2:)\1)( )(Cg'{" /\\lx C—l)
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which can be solved directly for {, and ;. The strain invariant
values corresponding to the measured extension ratio pair (AX,AY)
- and hence the domain (I,aiz) of the calculated C, and (3 -
is given by
2 2 ¢

Iiz )\x*‘/\y"'m

_ ‘ I 7 2 {2.10)

J_z: :{i*‘";iy*/\x}\y.
Conducting the biaxial experiment for other lcoading combinations
(PK,D,) will define C,(L,,1;} at other points in its domain.
A thoreugh investigation of rubber-like materials using (2.9) has
been carried out by Rivlin and Saunders [4}] with excellent results.
Consequently, the material constitution of rubber is quite well
understoed and numercus functlonal forms for C;;(I‘QIZ) have been
preposed [6].

1f an incompressible material is subjected to a uniaxial

stress experiment (Figure 2.3), the inverse boundary value problem

(2.3-2.6) reduces to the single algebraic equation
P = ZQ(X-L;\z)(C,-riCz) (2.11)
where A is the measured extension ratio
A= ALyt Ly (2.12)

and the strain invariants are given by

(2.13
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Therefore, the material functions are indeterminate in a uniaxial
stress experiment; only enough information for determination of
the total stiffness ({-.*'}\Cz) is given, and even the identified
total stiffness is valid only for the strain invariant states
derivable from (2.13). For an infinitesimal strain uniaxial
experiment (where A = 1 and hence I,.1; = 3) the total stiffness

is related to the traditional Young's modulus by
E
C,+ C,y = ' (2.14)

To identify a compressible elastic material, characterized
by the response functional (:;(I,,Il,13), by a homogeneous strain

experiment a fully triaxial strain state (as shown in Figure 2.5)

R

)

Fig. 2.5

would be needed. However, an experiment of this type canmot be
designed in a way that makes measurement of the three extension
ratios nhysically possible. A nonhomogeneous strain state is
needed to identify (l;(1.§'11*13), a situation much toc compli-
cated for analytical solution.

More general materials (1.28, 1.30, 1,32) also require complex
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nonhomogenecus inverse boundary value problems to identify their
response functionals - situations too difficult to solve analyt-
ically. Consequently, some sort of numerical solution will be

necessary to identify all but the simplest nonlinear materials.
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I11. SOLUTION OF INVERSE PROBLEM BY DISCRETIZATION

3.1 Introducticon

The inverse preblem that must be solved to identify even the
simplest of nonlinear materials is extremely complex. To solve
the continuous inverse boundary value problems discussed in
Seection 2.2 is virtually impossible without approximate methods
that eventuallv lead to linearized algebraic problems. The con-
tinuous noniinear identification problem requives two very
different types of numerical approximation: (1) transformation
of the continucus partial differential equations to a system of
discrete algebraic equations, and (2) transformation of the non-
linear equations to a sequence of solvable linear equations. The
integration of these two operations can be accomplished in either

of the following ways:

1) Quasilinearize the nonlinear inverse boundary value problem,
and solve each linear step by means of some sort of discretiza-
tion technique that converts the linear partial differential

equations of each step into a system of linear algebraic equatioms.

2) Discretize the monlinear continuous inverse boundary value
problem at the outset to obtain a system of nonlinear algebraic
equations, and solve these by a numerical method which converts

them to a sequence of linear algebralc equations.

The second strategv seems to be the easiest approach, since
it permits one to leave behind the extremely intractable contin~

uous inverse boundary value problem at the earliest possible
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moment. The method developed in this chapter will follow this
second approach. The reader is referred to [19,20] for a full
discussion of guasilinearization as applied to nonlinear boundary
value problems.

Therefore, following the first strategy above, the first
step in solving an inverse boundary value problem is to convert
it to an algebraic problem. Three levels of discretization are

necessary to accomplish this:

1) Space-time discretization of the kinematic and temperature
state variables involved in the thermomechanical process il(é,f)
is required. 1In practice, if the motion ‘X(E,T) and temperature
history ©(X,%} are discretized, then the strain, stress, and
temperature gradient state varlables can be expressed in discrete
form by use of appropriate field equations in (1.53). Any of the
standard methods of approximating an infinite—dimensional func-
tion by a finite number of elements in a subspace could be used,
such as polynomial or finite difference approximations. One of
the most successful discretization methods for nonlinear boundary
value problems is the finite element method, which represents
each function in terms of a finite number of very localized co-
ordinate functions with scalar coefficients. For example,
temperature can be discretized in terms of a finite element
basis as follows:
n
o(x.1) = 2 6;9i(x.1). (3.1)
Pt
In the simplest, most intuitive situations each coefficient €

is the value of temperature at a certain sample point or node



in the domain of ©(X,¥) - that is By and T..%+t & to,.
And the functions (?1(35+) simply interpolate between these
nodal values of temperature to define an approximation to the
temperature field 9(5.,+) . Each of the three components of
motion X(Eﬁf) can be discretized similarly to (3.1).

This level of discretization (which we will refer to as
geometric discretization) is the only level needed to completely
discretize the forward-direction boundary value problems of
Sections 1.8-1.12, in which material properties are known and
only the thermomechanical process R is sought. For example, in
the thermoelastic initial boundary value problem (1.52-56} dis-
cretization of 9(§,+) and X()},T) as in (3.1) leads directly
to the expression of the entire continucus problem as a system
of algebraic equations.

Solution of forward-direction nenlinear boundary value
problems by the finite element method is a well-established
procedure - especially for elastic materials [7-10,13]. A full
theoretical development of the finite element method and its
application to continuum analysis can be found in any of the

standard texts [21,22].

2} Secondly, discretization of the information that describes
the defeormed configuration and temperature of the experimental
body, the informaticn contained in (2.1a-b), is needed. The
continuous inverse problem assumes that X and & are known
exactly at every space~time point (gﬁi') , wWhereas in an actual

experiment it is possible to know them only at a finite number

of points - points where measurements are taken. The way in



which these experimental data (2.la-b) are described -~ the number
and distribution of observations and the precise types of meas-
urements of strain or temperature input -~ constitute the second

level of discretization of the inverse boundary value problemn.

3) Finally, discretization of the material constitutive func-
ticnals (2.2) is required. As discussed in Chapter 11, the
domain of the material functions will not be all (g., e, G)

but only those sets (;C;-u o, E’) that occur in the thermomechan-
ical process R(§,"i’) for the particular inverse boundary value
problem. Hence @), "ﬁ ,"f , and @ can be discretized only over
the subset (g_ﬁe,g;) that constitutes the proper domain for
the particular experiment. The way in which the material con-
stitutive functions are parameterized is the third level of dis-
cretization of the inverse boundary value problem. In this dis-
sertation we shall examine in great detail the idea of represent-
ing the material functions in terms of finite element bases. For
example, the stress constitutive equation (2.2¢) can be expressed
in terms of a finite element expansion by

Flohrg,0(x0) = 2 F

-~ ]
1=

cP;(g_()s,f-s),e(ij,,f-s)) (3.2)

where °¥'- are values of the stress constitutive functional

W(C(g,f—s), =14 X,i’—s)) at various "modes” or points in its
domain, and QE(C(Z(,?-s),G{g,'bS)) are coordinate functinoms
defined over the material operator °F 's domain for the partic-

ular experiment.

The general thermomechanical inverse problem is extremely
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complex and demands very complicated and extensive discretiza-
tion. Therefore, to develop and test solution technigues for
§ the inverse preblem we shall in the sequel consider the much
simpler inverse boundary value problem (2,3-2.6) for am isotropic,
incompressible elastic body in a state of plane stress. Applica-
tion of the technigque to the general thermomechanical problem
! will be discussed in Chapter V.

Let e here summarize the parts of the continuous inverse
problem that must be discretized in each of the three levels

indicated above:

1) Thermomechanical Inverse Problem

a) geometric: .X().S,‘l'), @(5,*)

b) experimental measurements: X, e
§ &) material: P(C,0), N(C.®), F(C.0), QL. ©.6)

2) Incompressible Elastic Plane Stress Inverse Problem
a) geometric: g(x,y), ALK, Y)
-~ L4}
b) experimental measurements: W, A

¢} material: C;(I,,IZ), C.(1,.1;)

The next three sections will examine each of these levels of

discretization in detail for the incompressible elastic inverse

problem and will indicate how the resulting discretized problem
effects an approximate identification of the two material

functions.
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3.7 Tinite Element Geometric Discretization

As a discretization choice for the kinematic field variables
of the incompressible elastic inverse problem (2.3-2.6), consider

the representations

U (x,y) (3.3a)

i it
gt ek’
> C
2 o
Tz x
< <

AKXy = L AP %, (3. 3b)

where N and M are the number of degrees of freedom {or nodes) in
the discretizations for Y{¥%,Y) and A{X,y) respectively. The
finite element coordinate basis cb;(x,y) must satisfy the
geometric boundary conditions (2.4d8). The distributed body
force ?5 and the boundary traction loading i‘f‘ found in
(2.4e) must also be discretized in some way consistent with

(3.3a), preferably with the same basis. Consider the following

expansions:

(3.4a)

t v
i s
P~
>
4
Nt
i
™z
o
X
-r“'\
>
~
o

" N
teOoy) = 5 RiPi(x,Y) (3.4b)
where BM refers to the boundary nodes of the discretization for

(x.y)

Substitution of the discretized field variables (3.3-3.4)
into the field equatioms (2.4) leads directly to a discretized
energy functional which must be minimized with respect to each

discrete nodal displacement and extension ratio, leading to the

2xM algebraic equations

fealw.2) = R (3.5)
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and the continucus incompressibility constraint equation (2.4¢)

in the form of ™M discrete equations

frclon) = 1. (3.6)

In the notation of equations (3.5) and (3.8) L dis a 2xN-dimen-

sional vector composed of all ncdal values of displacement

;s
Pl |

and b is an My—-dimensional wvector composed of all nodal values
of extension ratio >\', . The 2xm ~dimensional vector R repre-
o~
ey

sents the discretized prescribed loading 13._;‘ and ‘E‘.K; , and the
M —dimensional vector 1 is a unit vector.

The force equilibrium equaticns (3.5) and the incompressi-
bility constraint equations (3.6) can be written together in

the form

0

feq(‘:’»i\)
= - (3.7

Trnc(w. )

T

or more compactly
f(g,{\) = P, (3.8)

a system of {2xMN+mM) nonlinear algebraic equations that com-
pletely discretizes the continucus boundary value problem,

In actual practice the global finite element method co-
ordinate functions cp*(x,y) , defined over the whole domain of
the boundary value problem 13,5, are not used. Rather local
element cocrdinate functions {(called interpolation functions)
(}'J(X,y) are defined over each element, such that the wvalue of

¢ and A in each element is given by



Ue(x,y) = ;Uké%(x.y) (3.9)

(where U;(Xsy) is the x—diSplacement,Ejz(K»Y) the y-displace-
ment, ™ the number of nodes in the element, and U¥& the elements

of ki that arve represented in this particular element) and
L]
ANxY) = T NE(xy) (3.10)
[

{where M 1is the number of extension ratio nodes in the element
and IK] are the elements of é that are represented in this
particular element). If a constant-strain finite element [21] is
chosen to discretize E?(X,y) and a constant-A triangular finite
element 1s chosen to discretize A(X,y) the shape of the two-

dimensional element is as shown in Figure 3.1

Node 2

Node 1

Node 3
Fig. 3.1

and the local coordinate functions are as shown in Figure 3.2,

Hence, the deformation in the element can be represented by
UG Y) = 0 P(xy) + U (G )+ Usgs(x,y) (3.11a)
Ua(x,¥)= Uz, 06Gy) + Uaa by (X, y) + Laaa(X, y) (3.11b)

Ax,y) = AE(xy). (3.11¢)

The relevant field equations (2.4a-c) and the virtual work

principle (2.4e) must be satisfied within each element. Substi-

49



50

Gu(x.y)

l

E(x.y)

FINITE ELEMENT LOCAL COORDINATE FUNCTIONS

Fig. 3.2
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tution of the discretizations (3.11) into the former equationms
and minimization of the energy functional @{y) result in a
set of & force equilibrium equations and one incompressibility

constraint equation for each triangular element:
L Pd.p LyN;d { Spx + 'J)M,pUKM)dV

—[VPEth)NdV+SS€KqJNdS (3.12)

and

SvdET{ZEdP + Sdp ]ij - la (3.13)

where d,B,K = 1,2 and N,M = 1,2,3 and

Ed[! = %[QJN,ﬁUd\N + “PH,GUPN + ‘-PN;GUKN\PM,PUKM] (3.14)

Pdp = 2C (In 2){(‘ dg‘{'{c R) )Sdﬁ

~_2X4E* 1En -En } + 2c1(1,,11){ N E 640

det(Cy) |[-E,, E,

+ (I + 2)\454(51-"'511"'*) 2E2271 ~2En

det{ Cr) ~2€,, 2Eut1 } (3.15)

When the algebraic equations (3.12-3.13) are calculated for each
element in the mesh and assembled into a global system of
equations en'compassing all the nodes in the body, expression

(3.8) again results:

*H‘-h?;)’ E’ (3.8)

~

All the numerical examples analvzed in this dissertation utilize

this constant-strain, constant-A element formulation.



3.3 Discretization of Deformed Configuration of Experiment

A continucus inverse problem requires as input a complete
description of the deformed configuration ?31 of the experimental
body, expressed by rhe two continuous prescribed functions

A A
Q(K,y) and /\(X,y) , @5 illustrated in Figure 3.3.

Oxy)  A(x,y)
{x,y) ¢ B
K -B'X

Fig. 3.3

Since an infinite number of measurements would be needed to
determine 133 exactly, the identification problem was restated

in terms of an inverse boundary value problem, permitting the
deformed configuration.f}z to be specified by a finite number

of observations. The second level of discretization for plane
stress inverse boundary value problem (2.3-2.6), therefore, is

to choose a finite set of experimentally observed measurements
that will in some sense adequately represent'?5x. These measure-

ments can be in many forms:

1} A statement of the x- or y-displacement of some point on the
body's surface (in the reference configuration By ). This is the

type of measurement used as input for the example of Appendix A.

2) The amount of deformation {in some specified direction)
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between any two points on the surface of the body, as measured
on an experimental specimen. This is the type of information

used as input for the example of Appendix D.

3) A direct measurement of the strain state at some point in
the body (e. g., elements of € or E ) by the use of some

sort of strain gauge.

4) A measurement of the extension ratio at some point in the

domain B, .

These actual physical measurements must be converted to
mathematical expressions involving the same discrete variables
U and é‘ used to discretize the kinematic variables of the
boundary wvalue problem - the vectors U and é. defined by (3.3).

That is, each observed measurement of BX must be expressed by

an algebraic equation of the form

gq(u.2) = &. (3.16)

In practical situations it is simplest to design the geometric
finite element mesh in such a way that each measured point coin-
cides with a node, making the mathematical description of the
system of observed experimental measurements very obvious. For
example, if the item of input &, is the change in distance in
the x—-direction between points A and B (as shown in Figure 3.4),
where point A lies on node 19 and point B lies on node 27, the

input equation is

(3;(9-,2}) = Uzy - Uy = gz- (3.17)



—

i
i
i
i

Fig. 3.4

The full get of q input measurements is expressed as
g{v.,2) = 6 (3.18)

where j§ is a vector with as many elements as there are items

of input. If a strain is measured in the body it must be ex~

panded in terms of its finite element bases to obtain g(g},é) .
Therefore, the set of Q algebraic equations (3.18) com-

pletely discretizes the description of the deformed configurationm

133 of the experimental body, described in the continuous inverse

boundary value problem by

Q(X,Y) = Q(X.Y) (3.192)
MNX,Y) = AXY). (3.19b)

In other words, the information contained in § is an experi-
mental approximation to the exactly prescribed configuration
Q)(X,)’) and ;\(X,Y) . As the dimension eof é increases to
infinity, the discretized description of ?SX (3.18) coincides

with the continuous description (3.19).
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3.4 VFinite Element Material Discretization

The two material functioms, C,{1,, I;) and Cy(1,, 1.) s
which characterize an isotropic, incompressible elastic material
can be expressed in terms of a finite set of material parameters
in several ways. We shall iabel this set of unknown material
parameters by the C&«dimensional vector € . The fcllowing

three techniques warrant investigation:

1) Expand CLI(I.,I;) in a polvnomial in terms of the strain

invariants:

C:i(InIz) = Ly + Ciz(I;'3> * C33(11’3)
. N (3.20)
tCa(1,-3) ¥ Cis(13) + Cle(T,3)(I,-3) 4+

Here the vector of material parameters E} is composed of all
polynomial coefficients ij. This discretization technigue
works very well if there are only onme or two terms in the poly-
nomial; however, in larger, more realistic problems the higher-
order terms make the inverse problem hopelessly hypersensitive.
Consequently, although this approach is constantly mentioned in
theoretical work it has not been very successfully used as the
basis of a material identification method.

In addition, the polynomial expansion method gives the
experimenter very little centrol over his material discretiza-
tion. The domain of {(3.20) is the whole (I“Iz) plane - not
just the domain of the specific inverse boundary value prcblem
that models the experiment. Hence inclusion of higher—order

coefficients in € tends to create a very unstable and usually
ot



unusable material discretization.

A traditional way of parameterizing isotropic, incompress-
ible materials is to express the energy functional (1,42) in
terms of a polvnomial

Y LAl m »& .

WILLL) = )0 ) o5(i-3) (1 3), (5.21)

g ] JZO

where (:1 are the derivatives (1.43a) and hence expressible in
terms of the parameters Od} . However, (3.21) suffers from the
sensitivities of (3,20) plus the added sensitivity of knowing (:i
and C3 only through the derivatives of c& -~ derivatives which
must be obtained numerically and are extremely ill-conditioned
with respect to Qi) . For discussion of an application of the
polynomial expansion (3.21) to material identification the reader

is referred to a paper by Kavanaugh [23].

2) TDiscretize (:| and (:2 spatially by means of a finite element

basis in . That is, let
K

Ci{x,y) ic;@;(x,y) (3.22a)

i C, P (%,y) (3.22b)

"
[l

i

Ca(x.y)

at every point in the body. ¥or example, if Cq(X,Y) for the
body illustrated in Figure 3.4 is discretized by means of two
quadrilateral elements with linear interpolation functions, 6
degrees of freedom result, as indicated in Figure 3.5. Hence,
in physical terms the elements of the qﬂdegree-—of—freedc}m vector

C which describes in parametric terms the two material functions

are simply the nodal values of the approximate material functions,
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Fig. 3.5

The location of these nodal vazlues of the material variables will
depend on the material meshes chosen. Since the gtrain invariants
I, and Il are also known in discretized form at all points in
135, the parameters C also establish an approximation to CQ(I,,II).
The discrete C@(K,Y Y method needs very many degrees of
freedom in g. to reasonably approximate the spatial material
functions, which means each material node has only one or two
measurements taken in its vicinity; hence the resulting alegebraic
system of equations tends to be ill-conditioned - even with virtu-
ally perfect discretizations and exact input measurements, as the
example in Appendix A shows. In that example any input error at
all (even 0 01%) in § caused divergence. The main difficulty
is that funectional continuity with respect to I, and 12_ is not
enforced, causing results very difficult to use when an identifi-

cation contains error; however, there are some benefits to this
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procedure since the scatter in the data (as in Figures A.7 and

A.B) gives an indication of how reliable the identification is.

3) Discretize (:,‘(1“11) and C}_(L.Il\} directly in terms of
the two strain invariants by setting up a finite element mesh in

the (I,,I,) plane. That is, let

i

i_ ¢@i(L. 1) (3.23a)

izt

fc3{?i(14~11)= (3.23b)

11Xt

Cl(IH 12)

it

C‘Z(I!»IL)

For example, in an experimental body loaded such that the strain

invariant range invelved is the area crosshatched in Figure 3.6

| I

Fig. 3.6

a feasible finite element material mesh would be the 10 degree-
cf-freedom discretization shown in Figure 3.7. Note that these
finite element bases permit extrapolation beyond the elements
themselves and are a bit unorthodox. However, when viewed in
terms of the global definition of discretization (3.23a-b) extra-
polation is perfectly consistent, since the finite element co-
ordinate functions qD;(I.,Iz) are defined over an unbounded

domain., For example, in the 10 degree—of-freedom mesh of



domain of C,{1,,1,) domain of Cz(I,, 1)

Fig. 3.7

Pigure 3.7 the basis q>4(11,12) is as sketched in Figure 3.8
and is defined over the whole (1,,1,) plane. Note that this
particular choice of element (a quadrilateral treated as two tri-
angular elements with linear material interpolation functions)
gives q?'s that are discontinuous in parts of their domain that
lie outside the elements themselves; however, this is quite
acceptable and leads to no particular difficulties, especially

since the strain states that must be dealt with in the identifi-

G (LT P

P4 (1.1,)

Fig. 3.8



cation problem lie almost entirely within the elements.
An isometric representation of c,{(1,,1;) as discretized in

Figure 3.7 is shown below in Figure 3.9 (with discontinuities in

extrapolation ignored).

b c. (1.1

domain of €, inveolved in experiment

Fig. 3.9

From the previous discussion it is obvious that the elements of
the material parameter vector C are nodal values of CL or O
at various points (I,,Iz) in the domain of C;(I; ’ 12\) .

At first glance a difficulty of this type of discretization
might appear to be the large number of nodes needed for a full
two~-dimensional discretization of C:i(l.,iz). In practical
situations only a very small part of the total (14,12) domain of
the general functions is involved in any particular experiment;

hence only a few nodes are usually needed. The strain states



invelved in the experiment can be very effectively estimated

a priori by sclving the forward-direction boundary value problem
using a crude guess at the material functions - a guess perhaps
arrived at from the simple experiments of Section 2.3. This in-
formation is then used to design an appropriate material mesh,

It is an interesting phenomenon that in technically feasible
experiments the material operator will have a domain that involves
only a near lineal sliver of the (I{,Yz) plane; hence a one-
dimensional discretization of C;(I,,Iz) is normally sufficient,.
For example, the three very common homogeneous strain states

shown below in Figure 3.10

pure extension pure shear biaxial extension

Fig. 3,10

can only generate strain invariant states {as P increases from

zero) which lie on the lines shown below in Figure 3.11.

.

biaxial extension
&t
pure shear
pure uniaxial extension
I
3 ! P
3 =3

Fig. 3.11



Nonhomogeneous experiments designed with some forethought will
have similar near one-dimensional distributions., For example, the

specimen of Figure 3.12

A
4

1

G

y P

-]

- .

‘; i
5ZRzﬂ%wv7ﬁ%aﬂﬁvzmﬁﬁ5§%umm7
. .

Fig. 3.12

will have a sfrain invariant distribution domain as in Figure 3.13,

J)k- {domain of
)
’(//”‘_“_— material operator)

1,

|2

Fig. 3.13

which can be discretized by the one-dimensional elements shown

below in Figure 3.14

elements

Fig. 3.14

Note that these elements define the material functions (:;(1‘,113
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over the entire (I,,Iz) plane - should any intermediate step in
the solution require a value of Cﬁ(l;,ll) for a point (I.,Iz)
not in the basically one-dimensional domain of (:i. These dis—
cretized material functions can be visualized isometrically as

shown below in Figure 3.15.

I c,(1.1,) 4

I

Fig., 3.15

The experiment of Appendix D is solved with the one-dimensional
material discretization of Figure 3.14. Note how the domain of
the material functions (Figure D.3) is ideally suited for one-
dimensional material meshes.

Even experiments with very complicated nonhemogeneous strain
states tend to have near lineal material operator domains. For
example, a thin rubber sheet with a hole at its center is lcaded

as in Figure 3.16,

6" dia./bole
o~

B

2{)%? - 240 1bs.

20”

Fig. 3.16
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Assume a Mooney-Rivlin material description with

i

Ci(lia Il)
Cl(iiﬁ]:Z)

80 psi.
(3.24)

20 psi.

and adopt the geometric mesh shown in Figure 3.17. Analysis shows
that the material operator has the domain indicated in Figure

3.18 ~ a virtually lineal (I;,Iz) distribution. Other experi-
ments with isotropic, incompressible elastic materials show this
same phenomenon, making it very simple to effect a simple, stable
material discretization. However, very little is known about the
behavior of compressible or other more general materials; it may
be necessary to discretize the material operator in several
dimensions even in a relatively simple experimental situation.
Refer to Chapter V for a discussion of material meshes for these

more complicated materials.,

The third discretization method - utilizing a finite element
mesh defined directly over the domain of Ci{(I,,1;) - was found
to be far superior to the other two methods. FExcellent material
identifications have been obtained using it - even with very poor
input data in é . See Appendices B, C, and D for a summary of
the results of various tests of this type of finite element
material mesh. Note also that in Appendices A and B the same
example is solved using both the second and third discretizatien
methods and the relative merits of each solution compared.

Whichever system of material discretization is chosen, the
continuous material functions Cl;(I,,I: ) in the field equations

of the inverse boundary value problem (2.4} must be expressed in
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terms of the discrete material parameter vector € . This is done
most simply by direct substitution of (3.20), (3.22), or (3.23)

into the geometrically discretized field equations (3.8):

flur,e)= P (3.25)

If
dim(U,A)=n, (3.26a)
dimC = Ny, (3.26b)

then (3.25) is a system of M, algebraic equations in Mu+ Pm
variables. Adding to (3.25) the mathematical description of the
G experimental measurements (3.18), we obtain the system of
nonlinear algebraic equations that fully defines the discretized

inverse problem:

)
o
:1C
>
o™
S
BV

= (3.27)

(2. A) S

a global total of Ny*Q  equations and MN,+ N, independent
variables. For the constant-strain finite element upom which
{3.12-13) are based (and upon which all the test examples of this
dissertation are based) expression (3.27) represents a global
total of two force equilibrium equations for each node in the
geometric mesh, one incompressibility constraint equation for each
element, and an equation for each experimental measurement used

as input.

The system of algebraic equations (3.27) is the discretized

version of the continuous inverse boundary value problem (2,3-2.6).
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Its sclution (E_L__)., Z\, g) is the discretized version of the con-
tinuous solution te (2.3-2.6), i. e., g(x,y), )\(X,y),
CQ(IMIZ) , and C}_(lnlz‘). This discretized soluticn (Q.,f}.,(_;)
ig physically determinate if the number of parameters in g; is
equal to the number of experimental measurements; numerical solu-
rion techniques will be discussed in Section 3.6. The final
identification of the material constitutive functions follows
directly from interpolation between the elements of the discrete

material solution g; using the appronriate finite element basis:

n,

c, (1,.1,) = 2::<:;q3;(1,,113 (3.232)
C (1.1 = ) ai(l, 1,). (3.23p)

3.5 Interaction of the Three Levels of Discretization

Recall that three different levels of discretization were
necessary to reduce the continucus inverse boundary value problem

(2.3-2.6) to the algebraic system of eqguations

flu,h O P
b = ) (3.27)

9(Y.A) §

L

These include a geometric discretization of the physical body and
the measures of deformation, boundary conditicons and lcading, a
discretization of the description of the deformed shape of the
ioaded body, and a discretization of the material functions.

Each of these levels of discretization requires approximation of
scme type; therefore, equations (3.27) contain discretization

errors from each of these three sources. When sclving the discrete
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inverse problem, the experimenter should keep in mind the relative

sizes of these sorts of errors for his particular discretization

; scheme., For example, it is useless to have an extremely fine
material mesh if the geometric mesh is very coarse; it is also

useless to have an extremely fine geometric mesh if the experi-

[FRT——

mental measurements used as input can be determined only very
approximately.

In the course of this research numerous material identifica-
tion problems based on the techniques of Sections 3.2-3.4 were
studied. It was found that the sensitivity and physical accuracy
of the governing equations (3.27) are extremely dependent upon
how the experimenter chooses to discretize., Let us examine the

effects of each level of discretization upon the solution of (3.27).

1) Geometric discretization follows the usual practices of linear
elasticity applications of the finite element method. As the
number of elements increases the discretization error decreases,
and in the limit the solution (y,gy) coincides with the continu-

ous solution U,(X,\/) , Uz(X,Y) , and }\(X,y }. 1Inp practice it
is best to keep the number of nodes as small as possible, since
the computational effort to solve (3.27) is proportional to the

; cube of the number of equations. Yet the mesh should be fine

enough that errors in &? will be small compared to errors in the

input measurements é . It is best to design the experiment in

such a way that the strain distribution C;(X,)f) varies smoothly

and without abruptness throughout a specimen with a geometric
i shape easily representable by the finite elements to be used,

The example in Appendix D was quite accurately discretized with



only 36 elements; more than that number will probably be un-

necessary in similar experimental situations.

2) The discretized deseription of the deformed body follows an
intuitively obvious procedure of taking a finite number of measure-
ments at various places on the surface of the body. 1If only a few
measurements are taken it is possible that the discretization will
be too coarse to adequately describe the shape of the loaded body.
Hence, the equations (3.27) may be too flexible; the kinematic
solution (g?,éx) may be very unlike the deformed shape of the
experimental body - especially if there are large inconsistencies
in the input to which the solution (9, 2_\,9) must adiust itself

in order to satisfy equations (3.27). TFor example, the body and

system of measurements below

oy

o

-7

“

-

s

2

z P

2 62 & —]

ot M

= ) [ @] (@] [®) [o]
QLTI ITI T IS YIS TTTETTIY T F T TTT Sy A SIIFTT 77

Fig. 3.19

leaves the leoaded half of the body free to assume any shape it
wishes {that satisfies force equilibrium and incompressibility
constraints), thereby prejudicing the material identification in
that part of the body. fhe locations of the input measurements
must be chosen such that the general shape of the measured specimen
is adequately defined.

The main difficulty with this level of discretization is that



the measurements will contain experimental errors, since they
must be measured in the laboratory with instruments of limited
accuracy. It is impossible to avoid introducing errors and in-

consistencies into the set of equations
q(uﬁg’s) = 6. (3.18)

The inverse boundary value problem is so incredibly sensitive by
its very nature that measurement errors of even a fraction of a
percent can cause equations (3.27) to be unstable and unsolvable.
Therefore, it is extremely important to obtain good measurements
and restrict their locations to places on the body where the
inevitable experimental errors will do the least damage to the
material identification. This problem is examined in detail in
section 2 of Appendix B; the measurement system chosen there mini-
mizes such instabilities. The best safeguard against poor results
due to errors in input measurements is to have a large number of
redundant measurements {every strain state represented by several
elements in é ) and use a least squares method to solve the
indeterminate set of eguations (3.27) which results when diw\§ >
d]n1§; . This procedure is developed in Chapter 1IV.

A thorough analysis of the method's stability when subjected
to input errors is contained in section 2 of Appendix B (for
direct solution of the discrete equations (3.27)) and in sections
1 and 3 of Appendix D {for a least squares solution of the dis-
crete eguations).

it is, of course, possible to simplify the algebra of

equations (3.27) by measuring the displacement at every node in
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the body and the extension ratio of every element, thus completely
defining (9,,X) and simplifying the inverse boundary value problem

to the set of equations
fEQ(g\)= R (3.28)

which will be determinate if dJmeQ = dtmg and indeterminate
if d;nﬁfgg > d§n1§ . In the determinate case {(3.28) is a set of
linear algebraic equations with the elements of ET as independent
variables; hence, the solution E; is directly obtainable by any
standard linear equation solving algorithm. Note that in effect
this approach applies discretization directly to the inverse
problem of Section 2.2, thus avoiding the inverse boundary value
problem.

But this method has its drawback: in any realistic experi-
mental situation the measured U and b contain unavoidable ex-
perimental errors of considerable size compared to the size of
the elements; large strain errors are introduced inteo each ele-

ment and therefore into the equilibrium eguations

fEQ(g) =R, (3.28)

~

making them unstable and the resulting solution gf worthless.
Even least squares and other noise suppressing methods have been
unsuccessful in smoothing out the inconsistencies that inevitably
occur in (3.28). For an application of (3.24¢) to material identi-
fication the reader is referred to [23].

Thus, the system of equations (3.28) lacks the great advan-

tage of the newly developed formulation (3.27) - that most elements
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of (U,A) are unspecified in the imput data and therefore free to
adjust themselves a bit so that a2 solution to the set of eguations
is possible. No strain errors are irrevocably fixed in any element;
in the method of equations (3.28) large strain errors are irrevo-
cably and directly fixed in each element. Also, the fact that an
experimental measurement is defined over a length spanning several
elements ( instead of over just one element as in eguations (3.28))
means that the input errors will give rise to smaller strain

errors and inconsistencies in each element, since the magnitude

of § will be larger {and hence the relative sizes of the rounding
errors of measuring the experiment will be smaller) and the inter-
medjate nodes within the measured area can wander a bit to smooth

out inconsistencies in 6 .
~

3) Material discretization offers remarkably few practical diffi-
culties. It is usually possible to represent the functions
(;;(11‘11) very accurately with very few degrees of freedom and
the errors due to thig level of discretization are minimal.
However, when the material mesh is too coarse or inappropriately
chosen, it may be impoésible to converge teo a good sclution, as

the examples in section 3 of Appendix C show quite clearly. A
mesh that is very fine will not have discretization errors but
could encourage the instabilities inherent in a system of approxi-
mate input measurements, as is discussed in section 3 of Appendix C.
Also, if a part of the material mesh lies in an area of the (I',Il)
domain wherein none of the measurements of é lie, those elements
of E, will be indeterminate and undermine the whele soclution

(fg, A‘CZ) of equation (3.27). TFor example, if the crosshatched
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area in Figure 3.20 is the (Il,lz) domain of a certain experiment,

and the material mesh is as shown, the variable (L4 is indeter-

TRE 2.3

<,

Fig. 3.20

minate. TIf the (I“l1 } domain of the tension tests in the appen-

dices is the line shown below in Figure 3.21

} T2

Cy Ii

Fig. 3.21

then the 4 degree-of-freedom mesh shown is indeterminate, since
the element is free to pivot around the domain i)c; . A one-
dimensional discretization must be chosen instead.

The material mesh must be chosen with the distribution of
experimental measurements in mind in order to get a useful, stable
material identification. See section 2 of Appendix B for a detail-

ed discussion and several examples of this intimate relationship



between the material mesh and the Iocations of the experimental

measurements.

3.6 Solution of Nonlinear Algebraic Equations

Discretization of the material identification inverse
boundary walue problem leads to the system of nonlinear alge-
braic equations (3.27). Solving such a system is a basic problem
of numerical analysis; numerous methods are available [25,26].

In this section we shall develop and apply the method which seems
most suitable for this type of problem -~ the Newton-Raphson
method.

To illustrate the basic ideas behind the methed, let us
examine the single nonlinear algebraic equation with the single

scalar independent variable X :
f(x)= o (3.29)

If an initial guess Xg 1is proposed for the solution X, in-
creasingly better approximations to the solution can be obtained

by use of the Newton-Raphson algorithm

Xiey = X = L2 Ouly2,.... (3.30a)

or equivalently,
. - ‘
Xiey = X; ¢ [Bxf(x;)] (-f(x;)) b2 0,1,2,....  (3.30b)

This process can be represented graphically as im Figure 3.22.
Algorithm (3.30) brings about convergence to the solution X by
the use of the tangents of 4 . The tangents can be calculated

analytically or by a numerical method. Finite differencing 1s a
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particularly straightforward method and finds an approximation

to the gradient 'Bxf by the simple operation

f(x) = ”“2?-{“) (3.3D)

where AX is very small. The procedure indicated by (3.31) can

be vigualized as in Figure 3.23.

“F Ax
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1 l o
////)r X X+AX

Fig. 3.23
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A system of nonlinear equations in the N independent wvari-

ables X , denoted by
f(?ﬁ) = 0, (3.32)

can be solved (if a seclution exists) by the N -dimensional analogus

to (3.30)

X, = Z;*{V f(!;))('f(ﬁ‘.)), (3.33)

-~

an iterative process where ; = 0,1,2,.... This version of the
Newton-Raphson algorithm converges to the solution g by follow-
ing the wvarious n -dimensional tangent hyperplanes defiped in V;f
to the location _)5 which satisfies (3.32). The gradient fo at
any point X can be very simply approximated by the finite dif-

ference relation

. : - £ X%
{ng(l‘)ljk » Kl 8% - §X) (3.34)

DXy

where v;f(f) is an N X N  gradient matrix.

The Newton-Raphson algorithm (3.33) can be directly applied
to the various systems of equations resulting from discretizatiocn
of boundary value problems. For example, geometric discretization
(Section 3.2) of the forward-direction plane stress boundary value

problem (1.75-1.78) leads to the discrete set of equations (3.7),

fm(g*i\) R

. 3.7)
Tumc(L. ) (

Vit

The appropriate form of the Newton-Raphson formula (3,33) which
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solves these equations is

v Y vgft@ vg.fee B - f,ea(?h AD
- * . (3.35)
b ?.\ . ngl»c V.\'flnc A1- {Inc(lj;,i\;\]
i - ] ~ ~

i+
The gradient is approximated very simply by finite difference

operators:

[vufaq(gsé)]-k = {£°3(9+Auk’b) _ {5‘*3(9*5) (3.36a)
i J

Auy
[ V)\ fEQ(gsé)] - {EQJ(Q':_A_* AAK) - ‘FEQ_;(Q,_)__\) (3 36b)
-~ Jk AAk
VU fINC—(ysb)]'k = {!NC‘:‘(Q'!- QUk,é)“' ﬂm_j(g,{\) (3.36¢)
-7 J Do,

(Vafaclo)], = Fod@Ar O fulud) 5560
L O~ jk P W

If the gradient is calculated with the aid of a computer, AUy
and ANy can be made extremely small; hence, actual application
of (3.36) results in a virtually exact determination of the
i gradient at (L, A Y.
The gradient in (3.35) is the "tangent stiffness' of the
structural system modelled by (3.7) at the deformed configuration
(‘..)'* i\ ) . If the tangent stiffness of a structural system is
derived directly from a variaticnal prineiple, it will be a sym~
! metric, positive-definite matrix. However, (3.7) is not based
i directly on the incompressible elastic variational functional
(1.68d), since in the derivation of the plane stress boundary

value problem (1.75-1.78) the hydrostatic pressure was made a
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dependent field variable by merging the plane stress equation

(1.69) into the other field equations. Therefore, the gradient

vyfm ka EQ

~

(3.37)
vgf INC v)_}'(mc

is unsymmetric, and the inversion specified in (3.35) must be
performed on an unsymmetric matrix.

It is possible to reformulate the plane stress boundary value
problem in a way that preserves the symmetry of the tangent stiff-
ness. Let both extension ratio )\(X,Y) and hydrostatic pressure
n{X, Y ) be retained as independent field variables, and estab-

1ish the functional

H(u, A, h) = S.BE\:/AV - § (et -1)hay

b

-~

'815 Pﬁ\z.udv -LBI-E“. gas-SBPB)\cN. (3.38)

Note that this functional includes the incompressibility constraint

condition
det C(X,y) =1 ViXy) € B  (3.39)
and the plane stress condition

Py(X) = © VX € By, (3.40)

-~ ~

Finite element geometric discretization (as in Section 3.2) and
differentiation with respect to each discrete nodal variable

produce the algebraic equations that describe the boundary value
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{(3.41a)

(3.41b)

{3.41c)

system of equations is related to the dis-

(3.42)

The set of eguations that defines the discretized version of

the plane stress inverse boundary value problem (2.3-2.6) is

{ (U.)\,g)

~E@ ~'~
fac(u, M)

9(u. M

as derived in Section 3.4.

tion algorithm is
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(3.43)

The appropriate Newton-Raphson solu-
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where the elements of the gradient are approximated by finite

differencing as in (3.36). For example,

vcfsq(‘ﬁ,{\,e)}.ké feyluadiconc) - feaylud ) . (3.45)
- 4 DCy

Note that each iteration of the Newton-Raphson method involves
solving the system of linear algebraic equations (3.44). Gauss
elimination [25] or any other standard method of solving a gen-
eral unsymmetric set of equations is suitable. TIf the forward-
direction boundary value problem equations (3.35) can be ex—
pressed in terms of a symmetric gradient, a time-saving symmetric
equation-solving algorithm could be used. However, the gradient
(3.44) of the inverse problem is always unsymmetric - even if the
tangent stiffness is symmetrie,

To start the Newton-Raphson iteration some initial guess for
the solution, (':_Jo, 50* gc,) » 15 necessary. The most consistent
method of choosing this starting value is teo estimate C:.( I.,'I;)
and C3(1,,1,) - preferably on the basis of some simple, crude
experiment, such as the uniaxial tension test discussed in Section
2.3. Then these approximate material functions are used to solve
the forward-direction boundary value problem (3.8) in order to
obtaln Qo and 2_\0 . Expressing the estimated Ci(L,Iz) in terms
of the finite element material coordinate functions determines

Co. Some criterion based on a norm

(g - el

could be used to stop the iteration when convergence occurs.



A computer program utilizing this methed of solving the in-
verse boundary value problem equations (3.43) was developed and
all the material identification examples in Appendices A through
D are solved by means of it. Note that very rapid convergence
occurs in all but the most poorly designed problems - even if a
very rough guess for (Qo, &\o,go) is used to start the itera-
tion process. If convergence problems arise, the cause is usually
that the governing equations (3.43) have no solution, rather than
difficulties in applying the Newton-Raphson algorithm (3.44).

Nonlinear equations present a host of problems not encoun-—
tered with linear equations. The existence and uniqueness of a
solution is not assured - even with a "determinate" system of n

equations in n unknowns., That is, a general system of nonlinear

equaticns

f_()_&) (3.32)

can have no solution, a unique solution, or many solutions.

However, the equations
flu, M) P
g(u.2

(3.27)

\/
1O

will always have a physically meaningful solution (if they contain
no discretization or modelling errors) since they are based on a
real physical situation which obviously has a solution U( 5 Y,
)\( 5.) and (:i(l;, Iz) . However, any error at all in any part
of the formulation of the equations can introduce enough incon-

sistencies that no value of (9, ?;_\.(_;) will satisfy equations

82
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(3.27); hence, the Newton-Raphson iteration process will diverge,
This situation is encountered very frequently (see Appendices A
and B) and is one of the reasons the least squares approach of
Chapter 1V is developed, since it is capable of finding a "best"
solution when no exact solution ewists.

Another difficulty is that often more than one solution to
equations (3.27) exist., If the initial guess for (Q., ?_\, g) is
too far from the physically meaningful solution, the Newton-
Raphson algorithm may converge to some other value (Q., ?}, g)
that satisfies the algebraic equations but is physically meaning-
less. However, this phenomenon has not been encountered in the
examples tested in the appendices - even though very crude guesses
for the material functions were often used to start the iterative
process. Examples so poorly discretized that no physically

[ 3
meaningful solution existed that could solve (3.27) responded to
identification attempts either by diverging or by converging to

a get (Q,Z_\,g) that solves the equations but is unrelated to

the experiment.

83
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IV, IDENTIFICATION BY THE LEAST SQUARES TECHNIQUE

4.1 Introduction

The material identification algorithms studied in the previous
chapters are not suitable for use in real experimental situations.
All involve a determinate system of equations in which the dimen-
sion of the material discretization is the same as the number of
observations on the specimen. If there are any experimental
errors in the input measurements poor identification or divergence
usually results. The examples in Appendix B point out this short-
coming very clearly. It is the extreme sensitivity of the inverse
boundary value problem of nonlinear elasticity that causes such
instability in the algebraic equations resulting from discretiza-
tion, rather than any instabilities inherent in the choice of a
finite element approach.

Therefore, in this chapter we shall develop methods of
describing and solving the inverse problem which will be stable
for any physically reasonable set of experimental measurements.

Let the vector of exact errorless measured dispiacements
be denoted by § and the vector of actually measured displacements
be denoted by é‘ . The "noise" in §‘ causes the corresponding
solution (Lﬂg . b . g)* of the system of equations

flu.A. ) p
- (4.1)

1

#®

9(u,A) &

to differ from the solution (y, A ,C.) of the system of

equations defined by the exact 8§. Since, as already mentioned

~



earlier in this section, the system of equations (4.1) ig extremely
sensitive, even very small amounts of noise in §* will cause a very
poor solution (g':l ’f..\ - € )* if (4.1) is solved directly. To
effect a solution closer to the true solution ( v, é., S ) a
method must be developed to suppress the noise in the input data
§*. This is a well-known basic problem of signal processing;
mumerous methods are available. In this chapter we shall develop
one of the simpler methods - the least squares method.

The basic idea of the least squares method is that cﬁnwé* is
made very large, so that the system of equations (4.1) is over-

determined. Then the solution (t}, é , € ) which most closely

satisfies the indeterminate version of (4.1} is sought.

4,2 Derivation of Least Squares Method

The egquations considered in the previous chapters,

H

s (4.2)

are a determinate system of equations, with d;mg equal to cﬂmé .
If more measurements are added to the system without increasing the
complexity of the material discretization, diﬂﬁg' becomes less

than d‘\mé and the system of equations (4.2) is indeterminate.
These equations cannot be solved exactly, but a 'best' solution
that most nearly satisfies the system of equations can be deter-
mined through the well-known least squares techmique. This
approach finds the combination of independent variables that

minimizes the error norm of the system; that is, it finds the



value of (9, /:_\, - ) such that

(£.a. - P+ l(gcu,a) - 811 = min. (4.3)

~

The norm referred to here is the Ly -norm defined by

hxil = \/(XT*X7{+---+X“;)'. (4.8)
Physically, by the least squares method we find the displacement
and material solution that comes closest to satisfying the
equilibrium equations, incompressibility equations, and experi-
mental measurement constraint equations that describe the inverse
problem. The measure of "closeness to the solution" is defined
by the norm in equation (4.3).

To find the set (9., ?..‘* - ) which minimizes this norm,
we convert the indeterminate set of equations to a determinate
system of equations. It is possible to derive the set of non-
linear equations which minimizes the error norm; however, it is
vastly simpler analytically to find the least squares set of
determinate equations for each step of Newton-Raphson iteration
applied to the natural set of equations. That is, if the indeter-
minate linear system of equations which constitutes the iEg
Newton-Raphson iteration is the m x n system (where m equals

&m£+'&m9 ,mdne@ﬂs&mf+&mg}
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then the linear system of equations which defines the best solu-

tion in the least squares sense to equatiens (4.53) is given by

P ¢ 7] PR o " 7]

v et gl [T B S
AEAY (on) = |9 99 - (8.0
V v o T N 6" uh

| < : J; Lo ;

This is an n x n system of symmetric linear equations (where n
equals d]mf_ + d‘m\g) and is equivalent to the it_h‘ iteration
Newton-Raphson equations of the nonlinear least squares equations
had they been derived at the onset. The application of eguations
(4.6) (for i = 1, 2, 3,... ) is equivalent to minimizing a non-
quadratic functional QF(_(;J, 2'\, - ) with respect to each
variable in ( Y, b » C )} and supplies the best solution - in

the least squares sense - to the indeterminate set of m equations

in n variables,

£lu.2.¢) P
= . (4.2)
g(w,A) 6

1f the equations (4.2) are determinate (i.e., m = n) the least
squares method will converge to the same solution as the direct
solution technique. The direct solution method {as developed in
Chapter III) can be considered a special case of this more

general least squares approach.



4.3 Weighted Least Squares Technique

In the direct solution of the determinate set of equations

w, $(u,0,0) G - P

it

(4.7)

~

Wz g{u,A) tog- &

the weighting factors ), and ¢ can take any values (other

than zero) without affecting the solution. But if the systen

is indeterminate and is to be solved by the least squares method,
the relative sizes of b, and G4y will greatly affect what wvalue
of ( Y, i\ s C )} is the "best" solution to the system. In
other words, the value of (9, _..o\', < ) which minimizes the

fl o (£ - P+ Hea (9(e ) - 81 (4. 8)

will depend on the values of &)y and Wy .

The three most obvious weighting combinations for the

equations (4.7) illustrate this point well.

Cagse 1: Let I, »7 (U3, such that the magnitude of the equilib-
rium equations and incompressibility equations (the equations
w‘-f_ = @, P ) is several orders of magnitude greater than

' that of the input measurement constraint equations (the equa-~

tions Wy Q = uzsé }. Consequently, the component

i
i
i
i

of the total error norm (4.8} will be very large relative to

the component
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if there is any error at all in satisfying the equilibrium and
incompressibility equations - even if the input measurement con-
straint equations are very poorly satisfied. The effect, there-
fore, is that in the limit as w,/w,;+ 00 the equilibrium and
incompressibility equations will be satisfied exactly and the
input measurement constraint equations will be satisfied to the
maximum extent possible in the least squares sense. If the
inverse problem to be solved has a very fine geometric mesh and
very accurately determined boundary conditions and loading, but
has input measurements of uncertain exactness, this weighting
choice will yield the best material identification since only
the part of the problem likely to contain inconsistencies (the

equations - & ) will be solved in a least squares sense. The
9

~~

remainder will be solved exactly. See the second section of

Appendix C for experimental verification of this expectation.

Case 2: Let (J,>» &), , such that
o Cg-6)11 » Hw-(£-2) (4.9)

if there is any error at all in satisfying the experimental
measurement constraint equations. As w;[w,-—'-co, this type
of weighting choice will force the material identification
algorithm to satisfy exactly all the input measurements, no
matter how inconsistent and full of experimental error they may
be. The force equilibrium and incompressibility equations will

be satisfied to the maximum extent possible - in the least

89



squares sense, This weighting choice is suitable for the solu-
tion of an inverse problem with very accurate input measurements
but a coarse finite element mesh or boundary conditions of

uncertain accuracy.

Case 3: Adjust &, and @ such that
” Gy (i - E‘)l'

is about the same magnitude as

Il oz - (?" '§)u

This forces the algorithm to choose a (LU, A, C ) that best

~

satisfied all the equations defining the inverse problem.

In a real experimental situation the best choice of weight-~
ing factors is probably that which forces a fairly accurate
solution to the equilibrium and incompressibility equations but
allows some imbalance if large incomsistencies in the boundary
conditions or loading approximations demand it. The input
measurement constraint eguations are weighted much more lightly
than the others, since this is the part of the characterization
of the inverse problem most likely to be in error. Careful
design can avoid most modelling errors, but the measuring of
the deformation of a lsboratory specimen cannct be achieved
without some inconsistency. For the examples of Appendices C
and D it happens that the natural weighting of the system of
equations (%4, = Wa = 1) gives excellent results. However,

for problems of different dimensions or mesh size or type of

90
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strain measure used as input, it is possible that different
weighting factors would be needed to produce good material
identifications.

A more consistent appreach to specifying the numerical
values of weighting factors is to normalize the system of
equations (4.7) before weighting them, since the magnitudes
of the various elements of f. will depend on the units chosen
to measure force, the type of geometric mesh chosen, and many
other factors - factors which influence the magnitude of Wy oo, .
If (4.7) is normalized such that the average magnitude of the
elements of E? is equal to the average magnitude of the elements
of é » and if the weighting factors for this normalized system
of equations are denoted by 55, and C;, the weighting of the
discrete inverse problem can be expressed by 63,1632 » & ratio
unaffected by the dimensioning of any particular problem.

Of course, the vector equation we symbolize by
flu.n,e) =9 (4.10)

is actually composed of two different types of scalar equations:
2 force equilibrium equations for each node and an incompressi-
bility condition equation for each element. Theoretically, a
different weighting factor should be chosen for each type of
equation. That is, for the incompressible, isotropic plane
stress examples considered in this dissertation the equations

defining the problem are



("‘)0. fgc(ymbag) wo * B

{, £, (u ) ? = { w, - 1], (4.11)
| W 9(y,})) |z 8
-~ /

In section 2 of Appendix C the sensitivity of the solution of
this set of equations to different choices of (Wo,w,,0,) is
carefully examined. The results (Table C.2 and Figure C.8) show
that the solution is quite stable for any reasonably well-
designed experimental situation. That is, all three cases
described on pages 88-90 result in reasonable material identifi-
cations. The best identification - and theoretically the most
sound balancing of equations (4.11) - was obtained from the

choice
{(Woas i, ) = (1,100,1), (4.12a)

or {expressed in terms of weighting factors for a normalized

system of equations)
(o G0y, 2) = (1,1,6.01), (4.12B)

since the magnitude of the incompressibility equations was much
smaller than that of the force equilibrium equations (note case E
in Table €.2). All the examples in section 3 of Appendix C and
in Appendix D are solved with this choice of weighting factors.

It is possible to exert even more control over the solution
by using a different weighting factor for each experimental

measurement. That is, we could let the input measurement con-
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straint equations be

(- 9] [ s,

Wi+ g (v, 3) G2z 62
< . ) = { . ) (4.13)
kCJzn' en(gab)J ‘Cdzn'énj

where the weilighting factors are largest for measurements most
likely to have been accurately determined. For example, in

the specimen and measurement system below

-— 40” I

2H

Fig. 4,1

6, can be measured fo extreme accuracy, but 52 and 63 are
measurements of very small displacements and will probably contain

errors of several percent. Hence the weighting of the equation

%t(g,b) = 65 (4.14)

should be greater than the weighting of the equations
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g, (v.2) b, (4.15)

9;(v.A)

i

53 (4.16)

if we want the material identification to reflect the superior
credibility of measurement 6,.

This refinement has not been exploited in the examples in
the appendices, except in the very difficult 2 degree-of-freedom
example in section 3 of Appendix C. It could be, though, a very
important and useful modification of the least squares program

presented here when it must be applied to actual experiments.

4.4 Analysis of Effectiveness of Least Squares Technique

Appendices C and D contain numerous examples of the behavior
of the least squares technique when applied to test identification
problems. Particularly noteworthy characteristics of the method

are summarized in this section.

1} Lleast squares is a very powerful approach when very poocr
input data must be deglt with. The imbalance term

q(u.A) — &

shows quite explicitly how each piece of input was received by
the algorithm., If the system of equations was unable to use

any particular measurement a large imbalance appears in the
appropriate equation. In Appendix D a extremely large perturba~
tion (207%) was introduced into one of the input measurements;
the least squares algorithm immediately located it and showed

how the material identification was being hurt by it (Figure D.12).



This is a wital feature of any method usable in practical experi-
ments, where there will always be some poor measurements and

often a good chance of a blunder in the input data.

2} Material identification is very little affected by reasonable
experimental errors and inconsistencies in the input data, since
there are many more measurements than material degrees of freedom.
Only the average, overall information contained in the system of
measurements is used, and measuring errors tend te cancel out

each other if there are enough items of input, Even if some

bias in the measuring method causes a non-Gaussian error distribu-
tion, the least squares algorithm is stable enough to find a
material identification that reflects the bias - even if there

are many physically illogical inconsistencies in the measurements.
Note particularly the excellent stability of the examples of
sections 1 and 3 of Appendixz C - even with severely perturbed

and inconsistent input - as contrasted with the instability of

the examples in Appendix B solved by the direct solution of a

determinate system of equations.

3} Divergence is not possible; there is always some value of

( v, A, C )} that minimizes the error norm (4.3). 0f course,
if the input data are absurd the solution (Q.A, ¢} will

be physically meaningless. But in practice no imaginable
experiment should give data so poor that a meaningless identifica-
tion results. Tt is nonetheless necessary to choose a reason-
able first approximation to the material functions as the start-

ing point for the Newton-Raphson iteration, since the method

35
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will seek out a local minimum in the area of the initial guess of
the material solution. If the initial guess is too far from the
true material properties, the algorithm may converge to the wrong
minimum of the error functional, ané hence the wrong sclution
(v.A,C) . However, in the applications studied in the
appendices this behavior was never encountered, even when very
crude initial guesses were used., In real situations it should be
possible to perform some kind of crude experiment to cbtain the
initial guess for the material functions.

Note in Appendix B the inferior stability of identification

methods based on determinate systems of equations; the slightest

inconsistency in input could cause divergence.

4) For very accurate input measurements the finer the material
discretization, the better the material identification - as long
as there are enough redundancies in the experimental measure-
ments so that individual rounding errors cannot influence the
sclution much. 1In practice, best results are with d;nmg at
least two or three times greater than d;nxg . Of course, once
the material discretization is fine enough to duplicate very
clesely the continuous material functions there is no further
improvement in the identification. However, for input measure-
ments with experimental errors and inconsistencies, fine
material meshes tend to become much more unstable than coarse
meshes. The best identification comes from using the coarsest
discretization that is capable of reasonably representing the
continucus material functions. Discretizations with more degrees

of freedom than this give the system of equations unnecessary



freedom to adjust the material solution to experimental errors.
This is a critical problem in experimental setups governed by

an extremely sensitive inverse boundary value problem, such as
the plane stress examples studied in the appendices. It requires
much intuition to choose the best discretization to represent

an unknown material. Too rigid a mesh may so poorly represent
the material functions that only a very unreasonable material
solution can best satisfy the equations describing the problem,
while too fine a mesh can be too sensitive to experimental
inaccuracies in input.

From experience with the examples in the appendices it has
been found that an initial discretization of 2 degrees of freedom
fer a function suspected of being constant or fairly linear over
the strain range of the experiment, and 31 degrees of freedom
for functions suspected of having some curvature, is quite
stable. From the information contained in the identification
based on this first discretization choice, a more appropriate
second discretization can be chosen and the problem sclved
again. This process can be repeated until the shapes and magni-
tudes of the material functions are understood. This is
precisely the strategy used to solve the example discussed in
Appendix D,

Secticn 3 of Appendix C examiunes a large number of tvpes of
material discretization and analyzes the stability of each.
Reasonably stable identifications resulted from every material
discretization choice, even the extremely peoor ones.

No examples were tested with two-dimensional material



discretizations, but it is to be expected that great care would
have to be taken to ensure stability. It may be easier in actual
practice tc choose experimental configurations with strain
invariant ranges that permit a one-dimensional discretization.
Superposing the results of several such experiments will give

the material characterization over the entire (1. I;) plane.

5) The weighted least squares method gives the experimenter
much freedom in emphasizing whatever aspects of the experimental
situation seem most reliably describable; equations in the
system likely to be inaccurate can be given smaller welghting
factors. This idea could be internalized into the computer
program. For example, the material identification problen

could be solved with a constant weighting factor for all experi-
mental measurements to determine 31(9)"6; for each measure-
ment +. This shows where measurement errors were most probable
and permits the choosing of a new set of weighting factors in
order to obtain an identification that ignores the worst
inconsistencies in the input measurements,

Also important is the capability to deemphasize any incon-
sistencies that turn up in certain parts of the geometric or
material mesh. For example, if the algorithm finds that the
idealized boundary conditions of the finite element model very
poorly approximate the clamped boundaries of the actual experi-
ment and are causing large imbalances in the force equilibrium
equations, it is possible to decrease the weighting factor for

the force equilibrium equations at those particular nodes close
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to the boundary, thus exempting those equations from having to
satisy equilibrium as closely as the other force equilibrium
equations in the body. This protects the solution (gg,§, Q)
from the adverse effects of being forced to satisfy equations

derived from inaccurate modelling.

£} The material identification is not very sensitive to the

exact location of the nodes of the material mesh relative to the
strain invariant ranges covered by the various measurements. The
pivoting problem discussed in section 3 of Appendix B cannot occur,
since there are many more measurements than degrees of freedom in
the material mesh., Tt is, of course, necessary that measurements
exist somewhere in the range of each material degree of freedom

to prevent that material variable from being indeterminate. The
best stability seems to result from a fairly even distribution of
measurements {as done in the example of Appendix D), since in this
case all parts of the material identification's strain range are
emphasized equally. If in a certain strain range it is particu-
larly vital to obtain an exact identification of the material
functions one can concentrate the experimental measurements in the
parts of the specimen experiencing that magnitude of strain. This
will force the algorithm to adjust the identified material func-
tions in other less important strain ranges to account for
experimental errors - leaving a virtuall- perfect material

identification in the most important strain range.

7) Using the least squares method does not increase unreasonably

the computational effort needed to identify a material. The
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rectangular gradient matrix is foungd in exactly the same way

as the square gradient matrix of Chapter III. The matrix multi-
plications (4.6) are straightforward and not too costly. The
resulting system of equations is symmetric (unlike the determi-
nate system of equations) and can be economically solved with a
symmetric equation solving algorithm, thus largely compensating
for the matrix multiplications necessary to obtain the least
squares system of equations. The least squares examples in
Appendix € cost on the average 407 more computational effort
than the corresponding examples solved with a determinate set of

equations.



V. GENERALIZED THERMOMECHANTCAT MATERIAL IDENTIFICATION

5.1 Introduction

The detailed development of this material identification
technique has made use of the particular case of isotropic, in-
compressible elastic materials in a state of plane stress, since
the inverse boundary value problem (2.3-2.6) associated with this
particular case is relatively simple and permits a clear and in-
tuitive explanation of the technique. However, the method is
completely general and in this chapter we shall briefly indicate
how it might be used to identify general thermomechanical mate-
rials. Also, the method's application to a few important special
situationsg - such as compressible elastic materials in states of

plane stress - will be discussed in some detail.

5.2 General Thermomechanical Material

The inverse boundary value problem associated with the
identification of general thermomechanical materials was out-
lined in Section 2.2 (pages 31-32). Discretization of this in-
verse boundarv value problem was discussed in Section 3.1 (pages
43-45) ., Let finite element discretization of the kinematic
variables —x (Z\,‘i’) and 9(2‘(,‘?’) be indicated by the same

notation used previously in (3.1):

XD = Ead(x.) (510
K61 f o\;cP;({\;l-) (5.1b)
X300 = 5 ik, 1) (5.10

't: Tipged
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a4
O(x,1) = - o, (x,1). (5.1d)

131
Subsztitution of (5.1) into the general variational principle and
field equations that define the general thermomechanical forward-
direction boundary value problem results in a set of (r\3+lﬂ4:)

nonlinear algebraic equations

~

{(9,@)-—’?. (5.2)

A more detailed discussion of the types of variational functicnals
which lead to (5.2) when discretized and minimized can be found
in [1,10,27,28].

The observed motion and temperature histeory (2.1) are dig-
cretized by specifying (%; measured deformations and tempera~
tures {(at various space-time points ( 5 ,?’) } and expressing
these observed measurements in terms of the generalized coordi-
nates g\ and ? defined by (5.1). That is, conditions {Z.1)

are expressed by the Cll discrete equations

g(a,®)=6. (5.3)

L
—

The general thermomechanical material operator (1.28) can

be discretized as previously indicated in (3.2), i, e.,
A

(,L'(C,G) = ZZ'C£¢;(Q,9) (5.4a)

~

'F}(Q,@) = fc;cﬁ;((;,@) (5.4b)

izm+

f c, p;(c.e) (5.4¢c)

T mgrl

QRlc.ee) = 3% cdilc.e.0). (5.0

5:m;+t

il
P
N
0
1]

H
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Applying this parameterization to the continuous material opera—
tors in equations (5.2}, we obtain the set of (n3+n*¢g,) algebraic
equations that fully discretizes the inverse boundary wvalue

problem,

c)=P"P

(5.5)

f(a,8,
9(e,©) = 6.

Sclution of (5.5) follows directly from the methods developed
in Chapters III and IV.

Note that the usual difficulties of solving an inverse
problem are encountered. The domain (g,@,@) of the material

Y A A
response operators 4), 77, 9, and (3 must be known before dis-

cretization is possible. And the large number of degrees of
freedom in € makes the algebraic equations (5.5) very semsitive.
Moreover, including the time variable in (5.1) makes it necessary

that the dimension of & and @ be very large -~ prebably too

large for an economically feasible solution of (5.5).

5.3 Compressible Materials in a State of Plane Stress

The physical experiments described in the appendices are
suitable for the identification of compressible materials as well
as incompressible materials. But a different set of equations
will describe the system. The three-dimensional boundary value
problem for elastic compressible materials (1.57-1.59) can be
transformed into a two-dimensional boundary value problem by
means of the plane stress assumptions (1.69) if the body is =

thin planar sheet unloaded on its surfaces. A new set of field



equations can be derived by direct substitution of these plane

stress assumptions into the three-dimensional field equations

(1.57) expressed in terms of Lagrangian strain and displacement:

((lefﬁlu)i?)? + PK{B = O (5.
C - 2E-] 8
E =3[+ T+ W w] s

p = 2C.(I.le3)[; “:]

Cll*);l (2 C}z)& "Cn)\l

6a)

6b)

.He)

+2C,(1,1,,1 +2C5(1,1,.1 5.6d
2( tad2, }) 'Cu C“,’)\l Indnag, 3) "C.H_)\z C“>\2 ( )
2
2{ C (1) + (Cu+r C22)Ca (1) + (CuCa- c.z)c3(zo}=o, (5.6¢)
where the last equation represents the plane stress condition
P33 = (. All the field equations are defined over the two-
dimensional domain BK , with appropriate boundary conditions
defined on ‘BBK. The plane stress assumption also results din
the following simplified forms for the strain invariants and
strain tensor:
I| = Cu+ Cyy + >\1 (5.7a)
2 2 -
I,-= (Csi"' C—n))\ +C,Cy-Cha (5.7b)
2 2 -
13 = )\ (C."sz“' CIZ) {5.7c)
CH CII O
C = Ciz Cx © (5.8)

o o M
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where A is the extension ratio in the z-direction. Intro-
duction of the minimum potential energy theorem replaces (5.6a)
and the traction boundary condition. Therefore, the inverse
boundary wvalue problem for a compressible material in a state of
plane stress is as follows: for a body represented by domain '6,5 ,
with body force Q(!) and a description {(through a finite set of

experimental measurements) of the deformed configuration

UIx.y) = Q(X,Y) (5.9a)
ANXy) = R(x.y), (5.9%)

find the material functions C.;(In 12.13) s CI(IH Iz, I}) »
C1(1,,1,,I3) and the mechanical state R(x,y) : { U, £, ,C_- s
j R IO S N E} that satisfy at all {X,¥) in “85 the

field equatiocns

1 T ¥
E =3[ Vor vl (5.10a)
C = 2e+1 (5.10b)

p - 21‘(1;7[; ‘T}

o~~~

R Can -CaN
+ 2Cz(1}){cu A C“}n:c:;(l;)l i : } 5.10¢)

~Cia Cu"’ >‘1 ‘C—tzxl Cu)\1
25C.(1;) (704 Ca )Y 1) + (€ Caam sz)c_«,(l;)}:o (5.104)
I, = Cu+Cap+ N (5.10e)

I,= (C-u+c-zz)>\2* C-nczz"C::z (5.10f)
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2 2
Iy= >\(CuC11’Cu_ . (5.10g)
satisfy the boundary condition
A 1
vix,y) = U(x.y) V(x,y)e 3B, .,  (5.10n)

and satisfy the minimum potential energy theorem
8B(v) = 4| Precav
135 ™
b £
- Sudv "J - &udS = o, 5.10;

When a two-dimensional fimite element discretization

ZQ;CP;(X,\/) (5.11a)

Z )\i(;bi(x,)’) (5.11b)

is chosen and substituted into the field equations (5.10a~g) and

-

v{x.y)

it

A(X,Y)

the virtual work equation (5.10i), a2 nonlinear system of algebraic

egquations results:

f{q(g,'}}) = 8 {(5.12a)
‘fPLST(g) =&, (5.12%)

with each variable representing an x- or y—-component of nodal
displacement or an element extension ratio. For the elements
illustrated in Figure 3.2, the system (5.12) is composed of two
force equilibrium equations for each node of the finite element
mesh and one plane stress assumption equation for each element,

and can be represented more compactly by the single vector
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equation

flu,A) =P, (5.13)

If a number of experimental measurements are taken and the mate-
rial functions discretized by means of the finite element ex—

pansions

C“(lte‘ilgl}) ::-" Z-C-tq-’;(}mlul?) (5.15«}&)

i

p
Zc-lq)u(lnla.si}) (5.14h)

1Oy

5= (1,1, (5.160)

;:pfi

C‘l(zmluly,)

{i-

C}(It112513)
the final form of the discrete inverse boundary value problem is

flu.2,¢)

0

H

3 (5.15)

on

3(v. )

the same type of algebraic system dealt with throughout this
dissertation and hence solvable by exactly the same methods
developed in Chapters ITII and IV.

However, the finite element discretization of the material
functions is considerably more complex, since there are now
three functions of three independent variables. Considerable
ingenuity must be exercised to choose an experimental situation
that will involve only a small portion of the total three~
dimensional (I‘,11,13) demain, so that a one-dimensional or two-
dimensional discretization of each function is possible. For
example, with a compressible material the tension experiment of

Appendix D will probably have a strain invariant distributicn
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which 1s a curved line in the ( La11913) space, and will probably
resemble a three-dimensionalized Figure D.5. Hence, a 7 degree-
of-freedom, one-dimensional discretization (shown below in Figure

5.1 with I, as the independent variable) would be a good possi-

{Ci } Ca | Ca
Cy
C
bl ‘E;\\\\\\\‘\\
s Cq Cs Ce
Il I‘ Il
- P F—
Fig. 5.1

bility to start the identification process. Fully general
three-dimensional finite element material discretizations are
theoretically possible, of course, but stability could be a
problem if the experimental measurement locations are not evenly
distributed throughout the domain covered by the material mesh.
Virtually nothing is known about the shapes and relative magni-
tudes of the compressible material functions or about the sensi-

tivity of the continuous inverse boundary value problem itself.

5.4 Compressible Materials in Three-dimensional States of Stress

1f a more complicated experimental specimen which cannot be
adequately represented by means of a two-dimensional plane stress
model is tested, analysis must be based on the fully general
three-dimensional field equations for a compressible elastic body

(1.57-1.60). A three-dimensional finite element mesh is chosen,
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1%

2 U2 Pi(xy.E) (5. 160)

L |

U (X, Y.2) = n Ui Pi(X.Y,2) (5.162)

n-

U2(X.Y.2)

H-

U3(x,y,z)

PIREY CP}(X,)LZ), (5.16¢)

Iy
and the discrete system of equations derived by direct substitu-
tion into the field equations (1.57a), (1.60) and the virtual
work thecrem (5.10i). This global system is composed simply of
three force equilibrium equations for each node in the three-

dimensional geometric mesh and can be represented by
f(v) = P. (5.17)

Measurements can be taken anywhere on the surface of the body.
The finite element material mesh (5.14) is chosen as in Section
5.3. The final set of equations describing the discretized
inverse problem are

flu.) P

——

9(v) S

(5.18)

and can be solved with the same methods discussed in previous
chapters.

A three-dimensional problem does not force a more complica-
ted algebraic situation or a more complicated material discreti-
zation. The main difficulty with three-dimensional experimental
situations is that a very large number of elements and nodes is
needed to adequately represent the geometry and displacement

patterns of the experiment; as a result, the solution time often
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increases prohibitively.

5.5 Incompressible Materials in Three-dimensional States of Strain

To identify material functions very accurately over their
complete (I,, Iz) domain it may be necessary to conduct some ex-
periments with very complicated strain states and geometric
shapes. This will necessitate using the general incompressible
elastic field eguations and variational principle {(1.68) and
setting up a three~dimensicnal finite element displacement dis-

cretization

ZUHCPi(X,y,Z) (5.19a)
2w @i(x,y.2) (5.19b)
usxy.2) 2 iusi@;(x.y,i), (5.19¢)

U (X, Y.2)

-

Uz(x,y,i)

& hydrostatic pressure finite element discretization

2
h{x,y.2) = ?:h;qJ;(X,y,?.), (5.194)

and the same material discretization used previously in the

plane stress problem

"

C(1.n) = 2 ad(1.1) (5.202)

[ ]

P
,Z.'CiCP;(I.,IQ. (5.20b)

HE

CZ(Ii sll)

Substituting the finite element approximations (5.19) into the
field equations (1.68) forms a global system of three eguations
for each node of the three-dimensional geometric mesh and one

incompressibility constraint equation for each element:



fealun)
frc(v)

o)

= (5.21)

T

Or more compactly
flu,h) = P, 5.22)

BExperimental measurements can be taken anywhere on the surface of

the specimen. The final set of discrete equations for the in-

verse problem is

f(u.h,e) |P
q(e) s

—

3)

o~
(W3]
(o]

-~

and is sclved in the usual wav, as described in Chapter IV, No
complications result except the usual increase in the number of

nodes needed to effect a sufficiently accurate geometric dis-

cretization.

3.6 Incompressible Materials in a State of Plane Strain

If all defeormation in an experiment is limited to the (X-Y)
plane, the boundary wvalue problem can be simplified by use of

the plane strain assumption

Cyw Cpp ©
C = |cCa Ca O, (5.24)
©c o |

which when substituted into the three~dimensional field equations

(1.64) results in a new system of field equations defined over a



two-dimensional domain, i. e.,

(1-9)0)- ¥+ p

—_—

b = O (5.255)

X

C=2E+1 (5.250)

T A1
£ o= é!ﬁ;ﬁ;1~§7u + ‘Z? 'Qﬁ)] (3,25)

fC oy -y
— 12 B

" Cix -Cn2
C,;Cll“(:fl “CIZ Cy (5,250

P33 = 2C (1,104 2C1(I|.11)[Cn + C-n]'h (5,250
3,
detC = C,Cy-Cis = (5.256)
with strain inveariants given by

Il = C_" + C.Zj. + (3.:_—/“_'

2
Iz = Cp+ Cqa +CuCar- Cyy . (5,254}

Uy (x,y) = L ui@ilxy) (

Ua(X.y) = i‘uz}@j'(?\»‘/) (5.26%)
X
hix,y) = Z h;(.};‘;(x.,y) (5.260)

are substituted into field equations (5.25h-e) and the general-

ized minimum potential energy theorem (1.68d4), there results the



system of algebraic equations
fEQ(Qs‘.’J)

fre (0) 1

10

L1

- (5.27)

composed of two force equilibrium equations for each node of the
two-dimensional geometric mesh and one incompressibility con-
straint equation for each element. This is usually condensed to

the form
f(&:’»b): ED (5.28)
With the usual incompressible material mesh

P
c (1,1 = Zf;;c’;’p;(l.,lﬂ (5.2%a)
T (1.1 (5.29%)

I:PO}

H-

C—Z(lh Iz)

and a system of experimental measurements, we have the discrete

inverse boundary value problem in the familiar form

= (5.30)

which is sclvable by the methods developed in Chapters I1I and IV.
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APPENDICES

To test the methods developed in this dissertation a number
of material identification experiments were simulated by com-
puter. Rather than breaking the flow of the main body of the
dissertation with lengthy descriptions of these experiments and
analysis of the results derived from them, we have put off de-
tailed discussion until the appendices. Many of the conclusions
already mentioned stem directly from observing the behavior of

these experiments.

Appendix A: Identification of an isotropic, incompressible
elastic material by means of a spatial finite element discreti-

zation
Cilxy) 2 2 C;@i(x.y)

igs examined. The material discretization has one degree of

freedom for each experimental measurement used as input.

Appendix B: Use of a direct finite element material discreti-

zation

Ci(1,1,) 2 2 o @i(1.T,)

in situations where there is one material parameter for each ex-
perimental input measurement is examined. That is, the method
of Chepter III is used; no effort is made to suppress noise in

the input measurements § .

Appendix €: Several applications of the least squares technique

of Chapter IV are examined in great detail. Effects of different

116
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types of noise in § » different weighting schemes for the al-
gebraic equations, and different tvpes of material meshes are

studied.

Appendix D: An identification experiment using geometric and
material meshes fine enough to be effective in am actual phvsical
experiment is developed. The precise procedure an experimenter
must follow when applying this identification methed is fullw

described.



APPENDIX a

Chapter 111 developed materizl identification techniques

based on the direct solution of the determinate set of equations

flon ol - JPL (5. 1)
9(¥.2) ¢

That is, the equations contained one experimental measurement
{equation in g ) for sach material degree of freedom (element
of € }. In this appendix we shall examine some examples in which

the material functions are discretized with respect to spatial

variables; that is, we shall let

Gl 2 T Play) - h.2)

In Appendix B we shall examine several exampies in which the

material is discretized with respect to strain invariants:

4
c(n.Ln) = z: C; 4)3(1n13)= (A.3)
Jz)

For this experiment a sheet of isotropic, incompressible
elastic material was subjected to the loading and boundarv con-

diticns shown below in Figure A.1.

specimen 1" thick

BOO 1bs.

ERR.
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The experiment was modelled using the plane stress assumptions and

a 16 element finite element mesh, as shown in Figure A.2,

SIS,

(&)

100 1bs,

—e e 200 1bs,

200 1bs.
— g

e 200 1bs.

. 100 1bs.

/7////‘/k/////////777977///r//VV/V)//VJJA/////A///////77////////7////////////////

e e T A I R A S AL A

Fig. A.2

The experimental measurements used as input were obtained by

solving this 16 element model in the forward direction using

o

0.25{1,- 3} (A.4a)

BOe psi.

H

<, (1,1,)

and

1

Cl(InIz) 20  psi. {A.4b)

and choosing the 18 measurements diagrammed inm Figure A.3. There-
fore, all errors due to the coarseness of the finite element mesh
are automatically avoided in this test example. However, a com-
parison of the & element solution with the 16 element solution
shows a maximum difference in displacements of 0.02 inch, so even
this simple 16 element model is very close to the continuous

sclution,



& - and y-displacement

specified,

@B  x-displacement specified.

§ v-displacement specified.

Fig. A.3

The material mesh indicated in Figure A.4 was chesen for both
Ci(x,q) and Cz(gg) tc best utilize the 18 degrees of freedom

permitted by the 18 measurements specified. In Figure A.5 the

Fig. A.4

undeformed and deformed shapes of the experiment are compared.

ﬁ%ﬂ lbs.

WA o)
2 Y/ AL LT i f///// ////// i/ /////// V274

Fig. A.S
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Strains vary from almost zero to 54%. The strain invariants I,
and 11 vary from 3.01 to 3.46, as shown in Figure A.6.

To start the iterative solution process an inirial guess

C,{(1..1;) = 10O psi
C2(1,1,) = O psi

was used. Then the forward-direetion solution required the
inversion of a system of 75 nonlinear equations to get a starting
voint ﬁgo and EQ for the inverse problem. This inverse problem
required 5 Newton-Raphson iterations upon a set of 93 nonlinear
equations. Almost a minute of CBC 6400 computer time was needed.

For the first solution attempt the 18 input measurements
were exact and without experimental error. Nevertheless, the
sensitivity of this method of sclution was so great that conver-
gence was not obtained; apparently no sclution {g,é,g} was
capable of satisfying al1 93 equaticns. However, both the second
and third iterztes almost balance the eguations, so the resulting
identifications are plotted in Figures A.7 and A.8. When the
datz from both iterations are combined (Figure A.9) and a curve
passed through the distribution by some averaging process (such
as a least sguares technique ), it is pessible to identifyv the
two material functions with reasonable accuracy.

Two other attempts were made to solve the problem. One used
input measurement data rounded off to 0.01 inch, and the other
used input data rounded off to 0.001 inch. Immediate divergence
was the result in both cases and absclutely no information about

the material functions was obtained.
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Although it is true that the spatial discretization technique
could be tested on less sensitive examples and perhaps good iden-
tifications somehow obrtained, the conclusion reached by comparing
the results of this appendix with the results in Appendix B is
that spatial discretization leads to unstable solutions and is
net as promising an approach to material identification algorithms
as the direct discretization of (;;(I&,Il) . This isg especially
apparent when experimental errors are introduced into the input

data.
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APPENDIX R

In this apvendix we shall examine a number of examples of
material identification in which the material functions are dis-
cretized with respect to strain invariants. All the examples here
lead to a determinate set of equations which are solved directlw

without benefit of z least Squares algorithm.

B.1 16 Element Example

Let us resolve the example of Appendix A (discretization
applied tc C;(X-,‘y’) ) by discretizing Cl(I;,Il) . Refer to
Figures A.1 and £.2 for the description of the geometrv of the
preblem.  Figure A.6 shows that only a very limited portion of
the strain invariant space comes to be used in this particular
experiment. Hence a one-dimensional discretization will suffice.
For the first material function choose the 4 degrees of freedom

indicated in Figure B.1.

i C(1.,1)

50 t 351 —

CDQ E 3-3‘§'/ / f

<
I / ) g
o+ 3a7 o
[
I
0 o
~ 3.7 3.34 3.514

Fig. B.1

]
et



That is, the nodes of the discretization for each materia]
function are chesen as follows:

p, set at (I,,I;) =

3 set at (I,,Il) -

py sec at (L, 1)) = (3.340,3.275,

I
o8]
o
]
o
2
]
Q

Z

¥
~~
(W)
L
o
-~
[
Fomd
o
(&3]
—

pa set ar (I, 1;) = 3.510,3.305),
with the finite element interpclation functions linear in Il and

congtant in IZ - Let us graphically represent this tvpe of dis-

cretization as shown below in Figure B.Z.

C.; A C—)_

00 Ca c4 oo
&, Cz
5o 5 b
Cs Ce Cy Cg
I, Tt
o ~ . [»] ; L . e
3.00 347 3.34 3.5 3.00 3.7 3,34 3.5
Fig. B.2

Choose the 8 measurements indicated in Figure B.3 to serve

as input.

o X-displacement specified

| y-displacement specified
— 20 * x- and y-displacements
specified

Fig. B.3



The first solution attempt used exact measurements as input
data; the resulting identification is plotted in Figure B.4. The
second solution attempt used measurements rounded off to 0.001
inch; the resulting identification is plotted in Figure R.5. The
third sclution attempt used measurements rounded off to G.01 inch
and resulted in divergence; no worthwhile information about the
material functions was chtained.

A comparison of Figure B.4 with Figure A.9 shows the super-
iority of technigues utilizing the direct discretization of
C;(I,,ll) - This approach guarantees continuity in the material
functions and requires fewer material degrees of freedom to
closely approximate the material functions. Hence it is far
more stable, especially when there is noise in the input data,

as there will always be in anv real exXxperimental situation.

B.2 36 Element Example

In this section we shall studv how different types of disg-
Ccretization choices and different degrees of accuracy in measuring
the input data affect the algorithm's ability to identifv the

material. But to do this an experimental setup less sensitiwve

jat]

than the one in Section B.1 must be chosen. We shall use the
36 element rubber sheet described in Appendix D, as illustrated
in Figures D.1 threugh D.3. This experiment avoids the worst
sensitivities of the 16 element experiment for the following

reasons:

1 The geometric mesh is larger and permits several elements

to be located between measurement points, permitting the svstem

]
o)
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more freedom to adjust itself to experimental inaccuracies in the

input data.

2 The measurements used as input are not taken relative to any
clamped boundary, but are the relative displacement changes
between pairs of nodes far enough away from the clamps to avoid

their complications.

3) The whole experiment is in a higher strain range, making the
inverse problem less sensitive. No measurements are specified

in low strain areas, since any experimental noise in such measure-
ments would give rise to large errors in strain, as was encoun-

tered in the 16 element example.

Also, to further stabilize the solution, only one degree of
freedom will be permitted in (:,(I,,Iz). Two different 3 degree-

of-freedom discretizations will be tested:

c;iﬁ (;lA
C| Cz_
<3
Cy Cs
I, I,
‘_h_
%0 33 37 44 4.5
Discretization A
<, C,
C3
C4_ Cs
I, I,
.. .
4.0 3z 3.5 4.1 45

Discretization B

Fig, B.§
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Four different input accuracies will be tested:

1) A1l 5 measurements are exact. This serves as a test of the

adequacy of the 5 degree~of-freedom mesh chosen.

23 All 5 measurements are rounded off tco the nearest hundredth
of an inch. This simulates the kind of input accuracy obtainable

from a well conducted experimental situation.

3) One 0,01 inch perturbation is introduced into one of the 5
measurements; the other 4 are rounded off to the nearest hundredth
of an inch. This tests the method's sensitivity to larger errors

in experimental measuring.

43 Twe 0.01 inch perturbations are introduced. This causes even

greater inconsistencies in the input data.

These measurements and their locations on the body are shown
in Table B.1. The resulting identifications {using an initial
guess of (= 25.0 psi. and 4= 7.0 psi.) are tabulated in
Table B.2 and plotted in FTigures B.7 through B.11. Note that
the identificaticns based on exact input data are not plotred,
since they correspond almost exactly to the true material func-
tions. Note also that for discretization A the fourth input
case resulted in divergence, but to show the kind of information
obtainable from such a situation, the first four iterates are
shown in Figure B.9. The third iteration comes closest to
satisfying the system of equations, so it would serve best as a
material identification.

Both discretizarion schemes result in good identifications



[P

Numbered points identify nodes

4o of 36 element gecometric mesh.
41
a7 &2 43
84
45 4 47

T :B é& 022 oZ! 52

4 9o
i _2 3 ,4 5 & 7 B % K ¢ i i3

53 52 wm*ml ; T

6. = 013 - UIZ 61 - U;Q - Ue 63 = U&; - US
Case 1: Exact Measurements Used as Input Data.
Case 2 Measurements of 0.01" Accuracy Used as Input Data.
Case 3: One 0.01" Perturbation (at &3 )} in Input Data.
Case 4: Two G.01" Perturbations (at &a and bHs )} in Input Data.
Input Measurements Used to Obtain Solution
Measurement
Location case 1 case 2 case 3 case 4
&, 4,26483 4.26 4.26 4.26
&, 3.52194 3.52 3,52 3.52
53 1.59771 1.60 1.61 1.61
64 -0.68358 -0.68 -0.68 -0.68
S5 -0.58296 -0.58 -0.58 -0.59

INPUT DATA FOR 36 ELEMENT EXAMPLE

Table B.1
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if accurate input data are used.

However, if any significant in-

accuracies exist in the measurements discretization B is much

less 1likely to give unstable sclutions.

of this

vicinity of

&a
&3

63

Compare the

To understand the cause

instability, examine the strain invariant range in the

each input measurement, as shown in Figure B,1Z2.

3.5

4.0

Fig. B.12

average value of each of these strain invariant

ranges (which represent the five places in the I, domain where

information about the material properties is given the algorithm)

with the nodal points of the discretizations for Cs:

5,

A% A
Fa
C.q, Cs
1,
3.00 330 A7To 4.0 4.5
Discretization A
Cz
&5
Cz &3 5, &4 8,
c X% X
3 Cq Cs
I,
3.00 3.z0 3.50 £.10 450

Discretization B

Fig.

B.

i3



Note that much vacillation is possible in the solutions of dis-
cretization A, since the nodes corresponding to parameters 3z
and C3 are not close to the areas where input data pins down
the material solution. Hence considerable changes in the values
of €, and C3 are possible without much affecting the value the
material function assumes at the points where data from the
exnperimental measurements exists. This brings about an unstable
situation; the svstem is too flexible and tends to diverge or
find a physically unreascnable sclution if it tries to adjust
itself to inconsistencies in the input data. Biscretizarion
scheme B is much more appropriate for this particular svstem of
input measurements; stable solutions result, as in Figure E.10,
even for the poorest input data case.

Note how sensitive the identified material functions are
to verv small errors in input data, especially when there is
just one item of input for each degree of freedom in the materizl
discretization. Figure B.11 shows the identification for the
third data case (5.0l inch perturbation introduced at 63 ) ob-
tained by averaging the results from both discretization schemes,.

The I, range of measurement &3 is 3.35 - 3.65. The perturbed
measurement is slightly larger than the actual measurement;

hence it would be expected that in the range 3.35 ¢ I, € 3.65 the
identification would indicate a less rigid material, The curve
in Figure EB.11 confirms this expectation. This behavior is a
result of the extreme sensitivity of this type of inverse problem

and can be overcome only by extremely accurate input measurements

or the use of a method which reduces noise in the input data.
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APPENDIY €

C.1 Sensitivitv of Least Sguares Method to Experimental Errors

In Chapter IV was discussed a material identification algo-
rithm based on & least squares sclution to the nonlinear equations
describing the discretized problem. In this appendix this least
squares algorithm will be tested on a large group of identifica-
tion problems.

The experimental body to be considered is a rubber shest

loaded and supported as shown below in Figure C.1.

ry

4

y

b .

7 1.0" thick

A

Vs

Vy

o

Vs

4

2

2 7.5 -

y .

4 2.813" 240 1bs,
,/‘ it P

Yy 10

/T o S T DI & B > T - S M - S

¥ T L T it i LI Errid

Fig. C.1

To describe this experiment the plane stress finite element model
shown in Figure C.2 is used. To generate input data a Riviin-
Saunders material description is assumed. The particular materi-

al functions used are

C/(I.1,) = 25 pa

Co(1,L) = 10(1- 319 +5(L-3)) psi

(c.1}
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Fig. C.2

Solving the forward—direction boundary value problem using mate-
rial functions (C.1) determines the full set of nodal displace~
ments. From this the displacement which would be measured
experimentally between any twe nodes can be determined. TFor the
first series of tests the eight measurement locations indicated

in Figure €.3 were chosen.

17

Fig. C.3
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That is,

where (U

placement of node 1.

6| E Vg~ s
5, = vs-v,

83 = Uz~ Uy,

£

V21~V

&
1"

Va4~V

ol

Yar- Ve

On
-3
H

Yan~ Vi

éa = Vig'vz

fout
I
Lt

= 2,5415 in,

1.5896 4in.

= 2.7963 in.

1.4641 in.

E]

(C.2)
= -0.6363 ino.

= ~0.6537 in.

= -0.5833 in,

it

-0.4126 in,

is the x-displacement of node i and ¥V, is the y-dis-

Note that in an actual experimental

situation Wi~ V; is simply the x-coordinate of the measured

distance between node i and node j on the loaded test gpecimen

minus the x~coordinate of the measured distance between node i

and node j on the unloaded test specimen.

A four degree-of-freedom discretization was chosen for the

material functions, as shown below in Figure C.4.

!

C,

Fig.

G

3.z 3.5 &1

C.4



Hence this example results in the nonlinear equations

flu.2,¢)
§(ys2)

a system of 60 equations (48 equilibrium equations, 14 incom-

1D

{C.3)

f

th g

pressibility equations, 8 input measurement equaticns) in 56
independent variables (48 in Y, lbdn A, 4 in€ ). An approx-
imation of C,(I,,1I,} = 25 psi. and Cl(lul;) = 7 psi. was used
to start the Newton-Raphson iteration procedure.

The material identification problem was solived with three
different sets of input data:
Case A The input measurements § are the exact values deter-
mined by solving the forward-direction problem using the finite
element mesh in Figure C.2 and the material functions {(C.1).
This eliminates the possibility of noise in the input measure-
ments; therefore, this input case will test the adequacy of the
four degree-of-freedom material discretization.
Case B The input measurements § are rounded off to the nearest
hundredth of an inch. This will determine the type of material
identification possible using measurements of feasible experi-
mental accuracy as input.
Case C Several large perturbations are introduced into the
true value of § . Use of this perturbed S5 will test the
algorithm's capability to identify tf.: material when very poor
experimental measurements are used as input.

For purposes of comparison, this same test problem was

solved without the least squares option. Of course, to avoid



overdetermining the system of equations only four observed input
measurements could be used. Two cases were studied:

Case D Input § is rounded off to the nearest hundredth of an

inch.

Case E Input § contains the same perturbations as in case C.

The numerical input data and the material identificarion
output for these 5 cases are summarized in Table C.1.

The discretized material functions identified for cases B
and C are plotted in Figure C.5. These results clearly show that
the least squares approach gives an excellent identification even
with very roughly measured input data.

Figure C.6 compares the material identification resulting
from a least squares solution with § experimental measurements
{case B) with the material identification resulting from direct
solution with 4 experimental measurements {case D). In both
cases the measurements are accurate to 0.01 inch and the identi-
fications are good enough for practical engineering purposes.
However, the plot shows that the least squares method gives a
far more accurate identification; as is to be expected from the
discussion in Chapter IV, the least squares solution is less
sensitive to disturbance by rounding errors in the input data.

In Figure C.7 the same two methods are compared using even rough-
er experimental data - rougher than what might be expected from

a real experimental situation - and the superiority of the least
squares approach is dramatically pointed out. 1In the direct
solution approach (4 measurements, & degrees of freedom in the

material discretization) any error in any of the 4 experimental

L~

~J
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30

25

20

5

Exact Material Functions Indicated by Dashed Lines
case B
¢, (
h
-or
C Lcase C
§
Case B: Input Data of 0.01 Inch
i
Accuracy
Case C: Input Data with Large
Measurement Errors
Solution by Least Squares Method
I
o
3.0 3.2 3.5 4

14 ELEMENT MATERIAL IDENTIFICATION EXA}IPLE

INPUT DATA CASES B AND C

Fig. C.5
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3c

<5

20

i5

Case B: Least Squares Solution
i
with 8 Measurements
!
{
Case D: Exact Solution
with 4 Measurements
case D “hx\
’ -
.
c, /‘
C! case B
Exact Material! Functions
i
Indicated by Dashed Lines
— ]
1o 32 3.5 4.

14 ELEMENT MATERIAL IDENTIFICATION EXAMPLE

INPUT DATA OF 0.0l INCH ACCURACY

Fig. C.6
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Case C: Least Squares Solution
with 8 Measurements
3o t
Case E: Exact Solution
with A'Measurements
25 — x —"'I -
¢ AL .
case
C,
{frcase E
-
20 \
. /
case E
D
g
Exact Material Functions Indicated by Dashed Lines
I,
o -
3.0 3.2 3.5 4.4

14 ELEMENT MATERIAL IDENTIFICATION EXAMPLE

INPUT DATA WITH LARGE MEASUREMENT ERRORS

Fig. C.7
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i52

measurements must be reflected in the material and displacement
solution converged upon; hence an error in even one measurement
can be sufficient to ruin the identification. But, as Figure C.7
shows, the least Squares identification (8 measurements, 4 degrees
of freedom in the material discretization) can ignore the effects
of measurements that seem unreasonable or inconsistent with the
rest of the measurements, For case ¢ let us examine how closely
the convergent sclution satisfied the experimental measurements

used as input:

( 3\
0.006
-0.010
~0.003
J 0.003 ?
0.016 :
-0.009
-0.025
0.007

(C.4)

4

This corresponds quite closely with the error introduced into the

input data, which is

0.011
-0.030
~-Q0.004

0.004
§2n?u+- ég:nd = \J 0.014 ? (€.5)
~-0.004
-0.023

-0.003
\ /

Thus exactly what was predicted in Chapter IV has occurred: the
least squares algorithm has smoothed out the worst errors in the
input data and has thereby protected the very delicate inverse
problem from the shock of having to force its solution to account

tor all errors in the input data.



-

C.2 Weighting of Least Squares Equations

In Section 4.3 it was noted that the least squares solution

to the equations

(o - fealor,c) [ w, - R

J g -fw-(':.’s?.‘) ? = ¢ w, 1) (C.6)
Wy * 3(}3,5) W, . é)

\ ~ J {

will depend on the relative sizes of the weighting factors o,
Wy, and Wy . To complement the theoretical discussion in
Chapter IV, let us reexamine case C of the previous section,
using a number of different welghting schemes. Case C is a 14
element rubber sheet identified by taking 8 measurements and
solving with a 4 degree-of-freedom material discretization.
Large errors have been introduced into the 8 items of input data
{as in Table C.1) so that poor choices of weighting factors will
have a significant effect on the solution.

Table C.2 summarizes the results of solving the identifica-
tion problem with 6 promising combinations of weighting factors.
Shown are the material identification € and how closely the
least squares algorithm allowed each of the three different types
of equations to be satisfied. That is, the largest element in

each of the vectors

Cton-1 )
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Exact Material Functions

i

i
3¢ !
Indicated by Dashed Lines
C‘ / IT & TIT
25 L ——
c, 1-"
2o I: case a
case D
case E
case F
II: case B
5 I1T: case C

( See Table

c.2 )

3.0

EFFECT OF VARIOUS WEIGHTING SCHFMES UPON SOLUTION

3.2

3'5

Fig. C.8

4.

14 ELEMENT MATERIAL IDEFTIFICATION EXAMPLE
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at the convergent solution (9,1\,9) is shown in the last three
columns of Table C.2. These identifications are plotted in
Figure C.8.

The results confirm the theoretical predictions of Chapter
IV: the best identifications result when the equations are weight~
ed such that the measurement constraint equations are smallest
and hence take up most of the experimental error introduced into
the system. Cases 4, D, E, and F are examples of this situation.
In cases B and € the equilibrium or incompressibility equations
are not weighted heavily enough and the resulting inaccuracies in
satisfying those equatioms {and the accompanying overstrictness
in satisfying the erroneous input measurements) disturb the

excellence of the material identification.

C.3 Stability of Material Mesh

The accuracy and stability of the identification algorithm
will depend very much on the number of nodes in the material mesh.
In this section we shall reexamine the 14 element experiment
used previously in this appendix using a large number of different
material meshes and compare the resulting identifications. 19
measurements are used as input, as shown in Figure C.9. Two
levels of experimental accuracy are considered: input to 0.01
inch accuracy (good data) and input with large perturbations
(poor data), as shown in Figure C.10. Eight different material

discretizations are tested:

1) 6 degrees of freedom (3 in C, , 3in Ca ) as shown in

Figure C.11, a very rich and general mesh. It would probably
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Small numbers refer to nodes of 14 element mesh.

62 L 6i -
- 6, -
54 -
6,7 Ug- Us &g = Va4 -Vg
627 Us-0U, Siw= V23~V
i1 = Vie- Uz etc.

14 ELEMENT MATERIAL IDENTIFICATION EXAMPLE

LOCATIONS OF 19 EXPERIMENTAL MEASUREMENTS USED AS INPUT DATA

Fig. C.9
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.54
.59
.19
.88
. 80
46
L4l
.95
.64
.67
.65
.62
.58
.53
W41
.60
.59
.25
.90

!

ﬁ
i
<
_——
—

.002 2.53
0.000 1.62
~0.004 2,19
0.005 1.85
0.004 2.80
~0.004 1.45
-0.003 2,44
0.000 1.95
-0.002 -0.65

> §§:< 0.004 ) é:{~0ﬁ5} €=
0.004 -0.65
0.001 -0.61
0.003 -0.58
~0.002 -0.55
0.003 -0.41
~0.002 2.63
0.000 1.59
0.005 2,24
\ 0.@02) 1.91)

Input Measurements of 0.01 Inch Accuracy

Rounding Errors in 6

Input Measurements with Large Perturbations

A

Total Error (Rounding & Perturbation} in O

14 ELEMENT MATERIAL IDENTI. ICATIMN EXAMPLE

INPUT DATA AND INPUT DATA ACCURACY

Fig. C.10

012
.030
.004
.025
.016
.014
0.027
0.000
.014
0.024p
0.004
0.011
0.003
.022
.003
0.028
0.000
.005
012,
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be too rich for use in a first attempt to identify a material,
but might be needed if both material functions show possibility

of considerable curvature,

.“Cl | CZ

C| cl

Ca
Cs

:ﬂ
H

32 35 4.1 32 35 4.

Fig. C.11

2) 6 degrees of freedom (2 in C,;, 4 in C3) as shown in
Figure C.12Z, a good mesh to use when nothing at all is known
about the shape of the material functions, It permits repre-
sentation of a highly nonlinear material with both material

functions showing considerable variation with strain.

JIC‘ ACI
- N
C. 4
C5 Ce
L L
35 4 1 3.2 35 38 4

Fig. C.12

3 5 degrees of freedom (2 in C:;, 3 in C:Z}, as shown in

Figure C.13.



.

'.""‘

35 4.1

Fig., C.13

4) 4 degrees of freedom (1 in C,, 3 in C;) as shown in
Figure C.14, a very stable discretization since C:; is held
constant. It is a wise choice when the input data are of un-
certain accuracy and the material is such that Ch is probablyv
mere or less constant. It is not necessary that:(:; be exactly

constant, since(Zz will adjust somewhat to compensate.

‘Cl ﬂCz

C. Ca

Cs

=4
r—-!

37 3.2 3.5 4|

Fig. C.14

5) 3 degrees of freedom (1 in C,, 2 in C3) as shown in
Figure C.15, a very rigid mesh that gives a good representation
only if both material functions are quite linear. It is,
however, extremely stable (if not accurate) and could be used
to wring some sort of identification out of extremely poor

experimental measurements,
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llC}

C

6)

Figure C.16, an extremely coarse mesh that is unsuitable for

37

Fig. C.15

anything except a truly Mooney-Rivlin material.

mesh is a way to find the best approximation to the real mate-
rial behavior over the strain range of the experiment in terms

of two Mooneyv-Rivlin constants.

i C,

G

7)

Figure C.17, a very inappropriate material mesh for the example
being considered.

rithm's behavior when it must work with an unsuitable material

37

disecretization.

Fig, C.16

2 degrees of freedom (1 in C, , 1 in €3 ) as shown in

3 degrees of freedom (2 in C:,, 1 in C:z } as shown in

It is included only as a test of the algo-

._IF
35 41
Use of this
k C,
C,
I,
3.7
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3.5 4.4 7

Fig. C.17

8) 4 degrees of freedom (2 in C¢, 2 in C2) as shown in
Figure C.18, suitable only for a material with linear material
functions, since this mesh cannot account for any curvature in

either material function.

A CI ‘Ca

P

35 4.\ 3.5 4\

Fig. C.18

The material identificatiomns for each of these material
meshes are displayed in Table C.3 and plotted in Figures C.19-
C.27. TNote that the 2 degree-of-freedom case has been solved
using two different weighting schemes.

A number of conclusions are immediately evident from

these plots:

1) Figures C.19-C.22 show that accurate input data (case I in
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1 Ci

Exact Material Functions Indicated by Dashed Lines

3¢

le f/’ I1
25 C‘i )

2o
1: Input Data of
0.01 Inch Accuracy
II: Input Data with
5 Large Perturbations
10
5
I,
O .
3.0 3.5 4.,

TEST OF MATERIAL MESH #5

1 DEGREE OF FREEDOM IN C;, 2 DEGREES OF FREEDOM IN C,

Fig. C.19
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Exact Material Fun

ctions Indicated by Dashed Lines

30
(: 11
) ,/
25 =+
c, /
I
20
I: Input Data of
0.01 Inch Accuracy
I1: Input Data with
i5 Large Perturbations

3.0

3.2

3.5

TEST OF

MATERIAL MESH #4

1 DEGREE OF FREEDOM IN (:|, 3 DEGREES OF FREEDOM IN C:z

Fig. €.20

165



Exact Material Functions Indicated by Dashed Lines

30

(:l )’/f"I C2

C,
/(
I1

25

20
I: Input Data of
0.01 Inch Accuracy
II: Input Data with
15 Large Perturbations
_— II
Ca
10
Cq
1 CS
5
Cs
I
Lo} o
3.0 3.2 3.5 4.\

TEST OF MATERIAL MESH #3

2 DEGREES OF FREEDOM IN C,, 3 DEGREES OF FREEDOM IN C,

Fig. C.21
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1 Ci

Exact Material Functions Indicated by Dashed Lines
3o
Cg (I C:
25 o
Cy
/ 11
/
20
I: Input Data of
0.0l Inch Accuracy
II: Input Data with
15 P Large Perturbations ———
Cs
to
5
L &
3.0 3.2 3.5 3.8 4.1

TEST OF MATERIAL MESE {2

2 DEGREES OF FREEDOM IN C,, 4 DEGREES OF FREEDOM IN C,

Fig. C.22



Exact Material Functions Indicated by Dashed Lines

3o

11

C,
C
Ci 3
- y
ff””‘.E:’;— I
20 \
I: Input Data of
0.01 Inch Accuracy
I1: Input Data with
15 Large Perturbations
o] €4
\
~—
I
F
_ C,
5
Cs
N -
11
L
O P
3.0 3.2 3.5 4.

3 DEGREES OF FREEDOM IN C,, 3 DEGREES OF FREEDOM IN Co

TEST OF MATERIAL MESH #1

Fig. C.23
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Exact Material Functions Indicated by Dashed Lines

30

C

20

Heavy lines indicate identified
material functions resulting from
a very high degree-of-freedom
material discretization (assumed
15 stable, unlike Fig. C.23 and like
Figs. C.20-22},

3.0 3.5 4.

LIMITING MATERIAL IDENTIFICATION FOR

INPUT DATA OF 0.01 INCH ACCURACY

Fig. C.24
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Ca
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Dashed Lines Indicate Exact
Material Functions
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Ca
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O P
3.0 3.5 4.

TEST OF MATERIAL MESH #7

2 DEGREES OF FREEDOM IN C,, 1 DEGREE OF FREEDOM IN C,

Fig. C.25
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| .
C t !
WeightingB®: Best Weighting,
(o, w,,02) = (1,100,10)
with y-measurements in %)
10 weighted heavily.
Weighting A : Worst Weighting,
(Lo, Ly, w,) = (1,100,1)
with all equations in )
25 equally weighted. -
G,
Weighting 8
20 ' \‘
CiIC;
Weighting A —<
<y
i5 = ’//; o
Weighting
o
\
\
\\
~— C
— 2
~—
5 ——m
Exact Material Functions Indicated by Dashed Lines
1,
(o] ——
3.0 3.7

TEST OF MATERIAL MESE #6

1 DEGREE OF FREEDOM IN C,, 1 DEGREE OF FREEDOM IN

Fig. C.26
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5 C Ca
C,
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Dashed Lines Indicate Fxact
Material Functions
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Input Data of 0.01 Inch Accuracy
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L
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3.0 3.5 4.\

TEST OF MATERIAL MESH #8

2 DEGREES OF FREEDOM IN C:‘, 2 DEGREES OF FREEDOM 1IN (:1

Fig, C.27



the plots) effect an accurate identification with all the varicus
material meshes tested. As the meshes become finer and more
capable of very closely representing the curved shape of C:z(Iz),
the respective identificaticns apprcach the identification which
would result from using an infinitely fine material mesh. This
limiting value is shown in Figure C.24. As expected, it is
different from the exact material functions, since the 19 measure-
ments it is based on contain rounding errors which, when analyzed
in the least squares sense, cause some error in the identified
material functions no matter how fine the material mesh is. Of
course, as the number of degrees of freedom in the material mesh
approach the number of input measurements some instability of the
type encountered with determinate systems of equations results.
Figure C.23 shows the beginnings of this type of behavior.

An entirely different situation is encountered if the input
measurements contain errors and inconsistencies. A mesh that is
finer than necessary tends to give the system of equations excess
freedom and the material identification suffers. Figures C.21-23
show this clearly. And a mesh that is too coarse, as in Figure
.26, is incapable of effecting good results. The best material
identifications come from using the meshes in Figures C.19 and
C.20, since there are as few material nodes as possible; the
minimum number that can reasonably represent the continucus mate-
rial functions is used and a very stable system of equations

results.

2) 1In Figures C.25-27 are plotted the material identificaticns

resulting when three very unsuitable choices of material meshes
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are chosen. Note that the least squares method exerts such a
stabjilizing influence on the system of equations that reasonable
results are possible. Note 1in Figure C.25 how the first material
function is made to vary much like the second function would have
if the material mesh had permitted it to, thus effecting a mate-
rial identification quite usable for stress analysis. In Figure
C.26 two different weighting schemes are used in an attempt to
obtain a good solution (as discussed on pages 92-94) ~ one that
weights all input data equally and one that weights the more
delicate y-direction measurements more heavily to avoid excess
drifting in that direction. (Much adjustment in (ﬁg, é-) is
needed to compensate for so coarse a material mesh.) The second

choice gave the better solution.

3) VNote that in each material identification that shows signi-
ficant erreor in g; (Figures C.21-23), the errors are greatest

in the low strain invariant raage. This is to be expected since
measurements taken in a low strain area tend to be more sensitive
to measuring errors. In addition, the elastic field equations
tend to be very sensitive when Il < 3.5. Another contributing
factor is the shape of the specimen, which results in high strains
over most of the area of the loaded specimen. Thus, the majority
of the 19 inbut measurements lie in the high I, range, and the
algorithm emphasizes the part of the identification within this

high It range.

4) Figures C.28 and C.29 compare the material identifications

resulting from the use of different numbers of measurements in é;.

e



USING 4, 8 & 19 INPUT MEASUREMENTS OF 0.01

j Ci
Exact Material Functions Indicated by Dashed Lines
30
(:l Case 1—5}7 ’r-Case I11
25 = -
Case 11—’/
INPUT DATA OF 0.01 INCH ACCURACY
20 Case I; dﬁn§ = 19
C = (25.13 8.81 7.08 5.16)
Case II: dimb = 8
i5 C = (25.03 8.94 7.29 5.32>
Case III: dim& = 4
g = (25,65 8.39 6.23 4.29)
o
Case IT
5 Case I CZ
Case III—--.:;?--“““1
i
o o
3.0 3.2 3.5 4.1

IDENTIFICATION WITH 4 MATERIAL DEGREES OF FREEDOM

Fig. C.28

INCH ACCURACY
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INPUT DATA WITH LARGE PERTURRATIONS

Case T1: dhn§ = 19
C = (25.46 8.15 6.63 4.54)
Case II: dim§ = 8
3o t
C = (24.71 16.02 6.82 5.97)
Case IT1:  dimd = 4
Case Iw € = (20,91 23.92 7.28 12.93)
25 s N
I
Case I c:'
2 \ —F
— Case 111
10
\
e CZ rCaSE i1
Case I k“““-::::::zf‘“'*-, —
° T
Exact Material Functions Indicated by Dashed Lines
I
o o
3.0 3.2 3.5 4.1

IDENTIFICATION WITH 4 MATERIAL DEGREES OF FREEDOM

USING 4, 8 & 19 INPUT MEASUREMENTS WITH LARGE FERTURBAT LONS

Fig. C.29



A large § » with many redundancies in measuring, tends to sta-
bilize the system of equations, especially when the system is

based on poor input data as in Figure C.29.
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APPENDIX D

In this appendix we will look at an example large enough
to be suitable for an actual experimental situation. A rubber
sheet subjected to nonhomogeneous stresses in the plane of the
sheet is the experiment chosen, The shape of the sheet and itsg

means of support are as shown in Figure D.1. For purposes of

“L\ |
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e
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Fig, D.1

analysis this experimental setup can be represented by the two-

dimensional plane stress model in Figure D.2.
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The sheet is discretized into 36 quadrilateral finite elements

as shown in Figure D.3. This mesh and the material funections

C(1,1,) = 25 psi.
Ca{I.L) = 10(1F§(1,-3)« 3(L-3)) psi.

(D.1)

are used to solve the forward direction problem with the specified
loading, and the deformed configuration thereby obtained is the
basis for the measurements used as input in this simulated exper—
imental situation. Solving this same problem with a 20 element
mesh shows that a 36 element geometric discretization results in
displacement errors of less than 0.005 inch and therefore is
sufficiently accurate for this experiment. Figure D.4 plots by
means of contours the value of I, at every point on the sheet;
this information is needed to choose the best places in the body
to take measurements. Figure D.5 shows the values of the vari-
ables I, and 1; in each element of the body and tells us &

priori which part of the I;Il plane is involved in the types

of strain states encountered in this particular experiment. This
indicates the domain of the material operator and makes pessible
the selection of an appropriate discretization for CH(I;,I,)
and Cll(I.,I;)

Of course, in an actual experiment we would have to determine
the information in Figures D.4 and D.5 by solving the forward
direction 36 el:ment problem with an approximate Cw(Iq,lz) and
C:zci.,iz) - In this particular case a simple uniaxial tension
test would be able to give a good approximation to the material

functiens. Even an extremely crude guess at (;;(1“11) will

1758
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give the experimenter a good idea of the strain invariant distri-
bution to be expected in the experiment. And even a verv crude
guess at C;{1,,1;) will permit testing of the mesh to see if
it's fine enough for the accuracy needed.

Twenty experimental measurements are to be used to identify
the material, chosen as shown in Figure D.6. That is, the dis-
placement changes between the 20 pairs of points indicated in
Figure D.6 are computed from the forward direction solution of
the 36 element model using the material functions (D.1). In an
actual experiment, of course, these 20 items of input would be
obtained by direct measurement of the deformed configuration of
the test specimen.

The locations of these 20 measurements are chosen so that
they guite evenly cover the strain range for which we want the
identification to be valid. The strain range spanned by each
input measurement is shown in Figure D.7 and is based on the I,
spatial distribution plotted in Figure D.4. This particular set
of measurements is suitable for a real experiment for the

following reasons:

1) The effects of boundary conditions (which are difficult to
calculate exactly because of the irregular action of the clamps)
should not disturb the accuracy of the measurements., All
measurements are somewhat away from the clamps and no item of
input is based on the absolute location of any point in the

body, but only upon relative distances between points.

2) All measurements are taken over as large a distance as
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possible so that experimental errors in measurement will be small
relative to the magnitude of the input data. That is, care has
been taken so that small experimental measurement errors will not
give rise to sizeable errors in strain and hence introduce large
errors into the identified material functions.

Figure D.5 shows that the domain of the material functions
C.,(I.,L_) and CZQI,,II) involves only a very limited part of
the full two-dimensional strain invariant space, A one-dimen-
sional discretization with either Il or Il chosen as the in-
dependent variable is adequate for this experiment. A 6 degree-
of-freedom discretization in II is chosen, as shown below in

Figure D.8:

A(:I Ac:a

\1'\‘ Cq s e

Y

I,
—P-
3.5 4,1 3.2 35 4. 4.5

Fig. D.8

In a real experimental situation a great deal of intuition
is needed to choose a good material discretization. There should
be encugh degrees of freedom to approximate closely the material
functions; otherwise the algorithm may be forced to converge upon
a very poor solution in order to best satisfy the 20 input

measurements. And yet the mesh should not be much finer than



necessary, lest the solution become very sensitive to small ex-
perimental errors in the input data, as was discussed in Section 3
of Appendix C. Often a number of different discretizations must
be attempted if no information about the shape of the material
functions is available from earlier experiments,

These discretization cheices lead to 160 nonlinear equations
with 146 variables. The Newton-Raphson iteration is started with
an estimate of €, = 25.0 psi. and C,= 7.0 psi. The weighting
scheme used is {&%,Lﬁﬂd;} = {1,100,1} . The algorithm effected
convergence after four iterations to the material parameters

{
25.20
25.82
4 3;32 2 (D.2)
4.01
2.05

g
1

and this identification is plotted in Figure D.9. Six minutes of
CDC 6400 computer time was needed for this identification.

The resulting material characterization is quite good -
certainly good enough for use in any kind of stress analysis
problem. The results, however, are not as accurate as those of
the 6 degree-of-freedom example in Appendix C (Figure c.21),
probably because the roundoff errors in the input measurements
have a distribution that is less Gaussian than those of the ex-
ample in Appendix C. Note that the total stiffness measure - the
term (C.*’l)‘Cl) - is very little in error; it is only the rela-
tive sizes of {, and C, that tend to be somewhat in error.

However, this example shows that the least squares approach is
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far more stable and gives infinitely more useful results than any
method based on the direct solution of the equations governing
the inverse problem.

The determining of the relative sizes of C, and C, is an
extremely sensitive problem in an experiment with these particular
states of strain. But conversely the forward direction solution
of a stress analysis problem with these types of strain states is
extremely insensitive to errors in the relative sizes of (, and
C2 5 it is only the total stiffness measure (Ctﬁ'icz) that is
really important. Hence the material functions identified will
give virtually perfect results in boundary value problems within
the strain invariant range over which the experiment was measured.

An excellent example of how considerable errors in the
proportioning of the total stiffness between C, and C, will
result in virtually no errors when the functions are used in
solving stress analysis problems is the simple uniaxial stress

state shown in Figure D.10,

hAAAARVMATINNY
L ALRACARE

AL ~8
x

Fig. D.10

The stress constitutive equation governing this situation is

(D.3)
T“ = Z(A-!X;)(C,-l-ic.z)



and the relation between extension ratio and the first strain
invariant is

2
I, = M+5 . (D.4)

Assuming an extension ratio of 1.85 (and hence an Il of 4,50)
the stress calculated using the exact material functions and the
stress calculated using the approximate material functions just

identified are charted below:

Material Functions Used To

Solve for Stiress: C. Ca Ty
Exact 25.00 psi | 4.32 psi |[85.1 psi

Identified (Figure D.9) 25,82 psi { 2.05 psi 183.9 psi

That is, a 53% error in identifying the magnitude of C; 1ed to
only a 1.4% error in solving a stress analysis problem with it,
and we can conclude that the material identification is quite
sufficient for practical purposes,

In an actual experiment upen a specimen with unknown proper-
ties, the experimenter would use the results shown in Figure D.G
to optimize the material discretization. In this particular
case Figure D.Y9 shows that (:. is essentially a constant: hence
a discretization with {; held constant might give better results.
Figure D.11 illustrates the identification resulting from a
6 degree-of-freedom discretization ( 1 degree of freedom in C,
and 5 degrees of freedom in Ca) using the same input data
described in Figure D.6. This improved material mesh pérmits a

virtually perfect identification of both material functions.
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It would be useful to know how stable this identification
technique is when a very large error or blunder accidentally
occurs in the measured input data. To test for this, introduce
an error of -0.33 inch in 55 {an error of 20%), leaving the
other 19 measurements correct te the nearest hundredth inch. The
resulting identification is shown in Figure D.12. A very for-
tunate buffering effect has been obtained by using a least squares
averaging of the 20 items of input data to determine the & mater-
ial degrees of freedom. The solution is quite reascnable: the
only really significant error is in the range I' { 3.50, the
strain range of the blundered measurement. An examination of
how closely the least squares displacement solution corresponds
to each of the 20 measurements used as input will pinpeoint the

location of the blunder. That is,

0.00
0.00
-0.01
0.00
-0.16
0.00
0.00
0.00
0.06

0. 14

0-9(w.A) = ¢ 0.00 ? (0-5)
0.00
0.00
0.00
0.01
0.01
0.01
-0.01
~0.03
-0.04
\

shows the experimenter that there is some irregularity in the
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