Lawrence Berkeley National Laboratory

 Recent Work
Title

Imaging of magnetic metals using x-ray magnetic linear dichroism

Permalink

https://escholarship.org/uc/item/73t7x08g

Author

Stohr, Joachim
Publication Date
2002-11-26

CONTROL ID: 18259
CONTACT (NAME ONLY): Andreas Scholl
CONTACT (TELEPHONE ONLY): 5104864867
CONTACT (FAX ONLY):
CONTACT (E-MAIL ONLY): a_scholl@1bl.gov
Abstract details
CATEGORY: III. Computational Magnetics and Imaging
SUBCATEGORY: D. Magnetic Microscopy and Imaging
PRESENTATION TYPE: Poster
TITLE:
Imaging of Magnetic Metals Using X-ray Magnetic Linear Dichroism
AUTHORS (ALL): Scholl, Andreas ${ }^{1}$; Doran, Andrew ${ }^{1}$; Ohldag, Hendrik ${ }^{1,2}$; Stohr, Joachim ${ }^{2}$
INSTITUTIONS (ALL): 1. Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA, USA;
2. Stanford Synchrotron Radiation Laboratory, Stanford, CA, USA;

Abstract

BODY: We have shown earlier [1,2] that magnetic linear dichroism in x-ray absorption is a valuable tool for the study of antiferromagnetic oxides, such as NiO and LaFeO 3 , and of their coupling to ferromagnets. Here, we will present new results, showing that magnetic linear dichroism contrast also arises from magnetically ordered metal films and can be used in domain imaging with X-ray Photoemission Electron Microscopy (X-PEEM). The figure below shows XMLD (left) and XMCD (right) images of 3 nm Fe grown on $\mathrm{NiO}(001)$. Different domain orientations are visualized by different colors. Note the correspondence of bright domains in the XMLD image and black/white domains in the XMCD image. This finding opens the door for the investigation of the magnetic structure of technologically important, metallic antiferromagnets, such as Mn alloys.

References:: [1] H. Ohldag et al., Phys. Rev. Lett. 86 (2001) 2878.
[2] A. Scholl et al., Science 287 (2000) 1014.
(No Table Selected)

