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Deep Learning Approaches Predict Glaucomatous Visual Field 
Damage from Optical Coherence Tomography Optic Nerve Head 
Enface Images and Retinal Nerve Fiber Layer Thickness Maps

Mark Christopher1, Christopher Bowd1, Akram Belghith1, Michael H. Goldbaum1, Robert N. 
Weinreb1, Massimo A. Fazio2, Christopher A. Girkin2, Jeffrey M. Liebmann3, Linda M. 
Zangwill1

1.Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, 
UC San Diego, La Jolla, CA, United States

2.School of Medicine, University of Alabama-Birmingham, Birmingham, AL, United States

3.Bernard and Shirlee Brown Glaucoma Research Laboratory, Edward S. Harkness Eye Institute, 
Department of Ophthalmology, Columbia University Medical Center, New York, NY, United States

Abstract

Purpose: To develop and evaluate a deep learning system for differentiating between eyes with 

and without glaucomatous visual field damage (GVFD) and predicting the severity of GFVD from 

spectral domain optical coherence tomography (SDOCT) optic nerve head images.

Design: Evaluation of a diagnostic technology

Participants: 9,765 visual field (VF)–SDOCT pairs collected from 1,194 participants with and 

without GVFD (1909 eyes).

Methods: Deep learning models were trained to use SDOCT retinal nerve fiber layer (RNFL) 

thickness maps, RNFL enface images, and confocal scanning laser ophthalmoscopy (CSLO) 

images to identify eyes with GVFD and predict quantitative VF mean deviation (MD), pattern 

standard deviation (PSD), and mean VF sectoral pattern deviation (PD) from SDOCT data.

Main Outcome Measures: Deep learning models were compared to mean RNFL thickness for 

identifying GVFD using area under receiver operating characteristic curve (AUC), sensitivity, and 

specificity. For predicting MD, PSD and mean sectoral PD, models were evaluated using R2 and 

mean absolute error (MAE).

Results: In the independent test dataset, the deep learning models based on RNFL enface images 

achieved an AUC of 0.88 for identifying eyes with GVFD and 0.82 for detecting mild GVFD, 

significantly (p < 0.001) better than using mean RNFL thickness measurements (AUC = 0.82 and 

0.73, respectively). Deep learning models outperformed standard RNFL thickness measurements 
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in predicting all quantitative VF metrics. In predicting MD, deep learning models based on RNFL 

enface images achieved an R2 of 0.70 and MAE of 2.5 dB compared to 0.45 and 3.7 dB for RNFL 

thickness measurements. In predicting mean VF sectoral PD, deep learning models achieved high 

accuracy in the inferior nasal (R2 = 0.60) and superior nasal (R2 = 0.67) sectors, moderate 

accuracy in inferior (R2 = 0.26) and superior (R2 = 0.35) sectors, and lower accuracy in the central 

(R2 = 0.15) and temporal (R2 = 0.12) sectors.

Conclusions: Deep learning models had high accuracy in identifying eyes with GFVD and 

predicting the severity of functional loss from images. Accurately predicting the severity of GFVD 

from SDOCT imaging can help clinicians more effectively individualize the frequency of VF 

testing to the individual patient.

Precis

Deep learning algorithms applied to OCT enface optic nerve head images achieved high diagnostic 

accuracy for differentiating between eyes with and without glaucomatous visual field damage and 

predicting severity of visual field damage (mean deviation).

Introduction

Glaucoma is a leading cause of blindness that is characterized by retinal ganglion cell death 

along with associated structural changes of the optic nerve head (ONH) and macula and loss 

of visual function.1 Early detection and monitoring of glaucoma is critical to prevent 

irreversible loss of vision.2 Over the past decade, spectral domain optical coherence 

tomography (SDOCT) imaging has become the standard modality for evaluating 

glaucomatous structural damage of the ONH and parapapillary region because it can provide 

clinicians with objective, quantitative measurements of glaucoma-related retinal structures. 

Commonly, circumpapillary retinal nerve fiber layer (RNFL) thickness is used by clinicians 

to diagnose glaucoma and estimate the rate of disease progression. Standard automated 

perimetry visual field (VF) testing is the standard of care for monitoring visual function in 

glaucoma. However, the subjectivity of the test, variability of results, and the confounding 

effect of age-related changes in visual function can limit the utility of VF testing to detect 

glaucoma and accurately measure functional loss.3–5 In addition, administering VF tests can 

be a time-consuming process in which patient fatigue and inattention can contribute to 

unreliable results and the need for additional testing.6

Over the past several years, the application of deep learning techniques to prediction tasks in 

ophthalmology has led to advances in automated disease detection. These include the 

development of models to detect diabetic retinopathy and glaucoma using fundus images.
7–10 There have also been a number of recent reports describing the application of deep 

learning models to SDOCT in diagnosis and segmentation tasks.11–14 There is little work, 

however, in applying deep learning models to predict function from structure in glaucoma. 

Given their success in identifying disease from fundus and SDOCT imaging, deep learning 

approaches may help to improve our understanding of the relationship between structure and 

function in glaucoma. Previous work has investigated models that predict function from 

structure. However, the accuracy has been limited and model performance can be highly 

dependent on model assumptions about the linearity of the relationship.15–22 Further, deep 
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learning-based techniques that accurately predict the severity of VF loss from SDOCT 

would also help clinicians more effectively target the frequency of VF testing to the 

individual patient with the possibly of reducing unnecessary and time consuming VF testing 

in eyes which are predicted to be stable.

The aim of this study is to develop and evaluate a deep learning system to identify eyes with 

glaucomatous visual field damage (GFVD) and predict the severity of GFVD using SDOCT 

imaging of the parapapillary retina. With a large database of SDOCT images and VF testing, 

we trained deep learning models to use SDOCT imaging to (1) identify eyes with GFVD and 

(2) estimate the severity of glaucomatous damage as measured by mean deviation (MD), 

pattern standard deviation (PSD) and sectoral pattern deviation (PD).

Methods

Data Collection

The cohort included 1081 eyes from 665 participants without repeatable glaucomatous 

visual field damage (GVFD-) and 828 eyes from 529 participants with repeatable 

glaucomatous visual field damage (GVFD+). Participants were followed over the course of 

several years with semiannual visits that included SDOCT imaging and visual field testing. 

Study participants were selected from two longitudinal studies designed to evaluate 

structural and functional changes in glaucoma: The African Descent and Glaucoma 

Evaluation Study (ADAGES clinicaltrials.gov identifier: NCT00221923) and the University 

of California, San Diego (UCSD) based Diagnostic Innovations in Glaucoma Study (DIGS, 

clinicaltrials.gov identifier: NCT00221897).23 All participants gave written informed 

consent and institutional review boards at all sites approved the study methods. All methods 

adhere to the tenets of the Declaration of Helsinki and to the Health Insurance Portability 

and Accountability Act. Inclusion in DIGS and ADAGES required that participants met the 

following criteria at study entry: 20/40 or better best corrected visual acuity, at least two 

consecutive reliable standard automated perimetry VF tests, and intraocular pressure < 22 

mmHg for healthy participants.23 For this analysis, inclusion in the GVFD+ group was 

based on reliable, repeated abnormal VF results with PSD ≥ 5% of normal or glaucoma 

hemifield test outside of normal limits. GVFD+ participants were required to have three 

consecutive abnormal results in 24–2 standard automated perimetry testing. The GVFD- 

group consisted of participants without repeated abnormal VF results. Table 1 summarizes 

the dataset characteristics.

At each visit, ONH-centered cube and circle scans were collected using a Spectralis SDOCT 

(Heidelberg Engineering GmbH, Heidelberg, Germany). The cube scans consisted of 73 B-

scans comprised of 768 A-scans each captured in a 4.5 × 4.5mm square centered on the 

ONH. Images were processed and RNFL segmentation was performed using our custom-

designed San Diego Automated Layer Segmentation Algorithm (SALSA) tool.24,25 Using 

the SALSA segmentations, RNFL thickness maps and RNFL enface images were extracted 

from each scan. While the RNFL does not exist within the optic disc, SALSA does compute 

a segmentation within this region (see Figure 1). For this analysis, we opted to retain the 

optic disc region rather than masking it in order to avoid errors or artificial biases that could 

be introduced by automated optic disc masking and to allow the deep learning models to 
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determine which regions of the RNFL thickness maps and enface images were informative. 

Confocal scanning laser ophthalmoscopy (CSLO) images captured during SDOCT imaging 

were also extracted. Each SDOCT scan resulted in a set of three two-dimensional images: an 

RNFL thickness map, an RNFL enface image, and a CSLO image. Figure 1 provides 

example images for a GVFD+ and GVFD- eye. For comparison, high resolution RNFL 

circle scans consisting of 1536 A-scans around a 3.5mm circle centered on the ONH were 

processed using standard Spectralis software (version 6.8.1) and evaluated for quality by the 

Imaging Data Evaluation and Analysis (IDEA) Reading Center according to standard 

protocols.23

VF testing was performed at each visit for all participants using the Humphrey Field 

Analyzer II (Carl Zeiss Meditec, Inc., Dublin, CA, USA) standard 24–2 testing pattern using 

the Swedish interactive thresholding algorithm. Tests that had more than 33% fixation 

losses, 33% false negative errors, or 15% false positive errors were excluded. VFs were 

processed and evaluated for quality according to standard protocols by the UCSD Visual 

Field Assessment Center.26 Quantitative VF metrics including MD, PSD, and sectoral PD 

were exported for all visual fields using standard Humphrey Field Analyzer software. The 

sectors considered here were based on the Garway-Heath map and consisted of the central, 

inferior, inferior nasal, superior, superior nasal, and temporal VF sectors.27 Figure 2 details 

these VF sectors.

For each eye, the SDOCT images and VF tests acquired within 30 days were identified and 

resulted in a set of 9,765 SDOCT-VF pairs. This dataset was used to perform all subsequent 

analyses of predicting visual function from SDOCT imaging.

Preprocessing and Data Augmentation

The RNFL thickness maps extracted from each ONH cube scan consisted of a 73 × 768 

matrix where each numerical value indicated the distance between the inner limiting 

membrane (ILM) and RNFL at the corresponding location in the SDOCT scan. The RNFL 

enface image also consisted of a 73 × 768 matrix, but the numerical values in this case were 

computed by averaging the intensity values of voxels between the ILM and RNFL in the 

corresponding SDOCT location. The CSLO images were captured during image acquisition 

and were simply extracted from the raw image data.

After extracting each of these image types, preprocessing steps were applied to prepare them 

for application of the deep learning model. In the transfer learning approach adopted here, 

the deep learning model was pre-trained on a general image dataset containing images of a 

canonical size and pixel values scaled to a given numerical range. Each RNFL thickness 

map, RNFL enface image, and CSLO image was resized to 224 × 224 pixels and had its 

pixel values rescaled to the range of 0 – 255 to better match the expected model input.

An augmentation procedure in the form of horizontal mirroring was applied to the RNFL 

thickness, RNFL enface, and CSLO images. This mirroring was performed to mimic both 

OD and OS orientations for each image.
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In addition to the extracted images, the mean RNFL thickness (mRNFLt) in the ONH region 

was computed for each cube scan and the mean circumpapillary RNFL thickness (cpRNFLt) 

was utilized for each circle scan.

Deep Learning Models and Training

The deep learning architecture used here was ResNet50.28 A transfer learning approach was 

adopted by initializing model weights by training on a large, general image recognition 

dataset (ImageNet).29 Model weights were then further trained and fine-tuned on the 

SDOCT-VF training dataset. A binary classification model was constructed to distinguish 

between GVFD+ and GVFD- eyes using each image type (RNFL thickness map, RNFL 

enface image, CSLO image). In addition, deep learning models were constructed to predict 

quantitative VF measurements (MD, PSD, central, temporal, inferior, inferior nasal, 

superior, and superior nasal PD) from each image type. To construct independent datasets 

for training, validation, and testing, the cohort was randomly divided by participant in an 85 

– 5 – 10 percent split. Splitting by participant (instead of by image) meant that the validation 

and testing sets did not contain images from any eyes or individuals that were used to train 

the model. Training consisted of a total of 50,000 iterations with a batch size of 25. Model 

selection was performed by evaluating the models on the validation set after every 1,000 

iterations. For each of the three image types, the model with the best validation set 

performance was selected as the final model for evaluation on the testing set.

Caffe tools were used to define the model architecture and to perform model training and 

evaluation. Training and evaluation were performed on a machine running CentOS 6.6 using 

an NVIDIA Tesla K80 graphics card.30

Model Evaluation

Evaluation of the models was performed on the independent test dataset. Performance in 

distinguishing between GVFD+ and GVFD- eyes was evaluated using sensitivity, specificity, 

and area under the receiver operating characteristic curve (AUC). To evaluate the models in 

detecting different severities of GVFD, we defined eyes with an MD > −6.0 dB as mild 

GVFD and those with MD <= −6.0 as moderate-to-severe GVFD. For each model, AUCs for 

detecting any GVFD, mild GVFD, and moderate-to-severe GVFD were computed. AUCs of 

different models were statistically compared using the method described by DeLong et al to 

control for multiple images collected from the same participant / eye.31 To help evaluate 

clinical utility, the sensitivity of each model at fixed levels of specificity (80%, 85%, 90%, 

and 95%) was also evaluated. Performance in predicting quantitative measurements (MD, 

PSD, sectoral pattern deviation) was performed using R2 and mean absolute error (MAE). In 

all cases, mRNFLt and cpRNFLt measurements were used as a basis for comparison.

In addition to quantitative performance metrics, model inputs and outputs were also 

evaluated to help understand the model decision making process. This was done through the 

use of deep learning visualization techniques (occlusion testing) and qualitative review of 

images resulting in correct and incorrect model predictions. The occlusion testing process 

placed a blank window (20 × 20 pixels) over a small region of an input image before 

applying the model. The effect of blanking each image region on model predictions could 
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then be quantified. By repeating this process for all locations, the impact on model 

predictions could be mapped across the entire input image. Using 100 randomly selected test 

set images, average occlusion testing maps were generated for each trained deep learning 

model.

Results

Table 1 provides a summary of the study population included in the analysis. The 665 

GVFD-participants (1,081 eyes) had an average age of 54.8 years, similar to the average age 

of 58.0 years for the 529 GVFD+ participants (828 eyes) (p = 0.02). The GVFD+ eyes had a 

mean ± standard deviation VF MD of �� 5.2 ± 6.5 dB compared to −0.04 ± 1.6 dB for the 

GVFD- eyes (p < 0.001).

Identifying Glaucomatous Visual Field Damage

Table 2 and Figure 3 summarizes the performance of the deep learning models in identifying 

GVFD eyes. Individually, deep learning models based on the RNFL enface image achieved 

an AUC of 0.88 (95% CI: 0.86 – 0.90), the RNFL thickness map achieved 0.82 (95% CI: 

0.80 – 0.95), and the CSLO image achieved 0.81 (95% CI: 0.79 – 0.84). The best 

performing deep learning model (RNFL enface image) significantly (p < 0.001) 

outperformed the global RNFL thickness measures mRNFLt (AUC = 0.82, 95% CI: 0.79 – 

0.84) and cpRNFLt (AUC = 0.80, 95% CI: 0.77 – 0.83) in detecting eyes with any level of 

GVFD. Table 3 summarizes the performance of the models in identifying eyes with different 

severities of GVFD. The RNFL enface image deep learning model also achieved an AUC of 

0.82 (95% CI: 0.79 – 0.85) in detecting mild GVFD and 0.97 (95% CI: 0.95 – 0.99) in 

detecting moderate-to-severe GVFD. The RNFL enface image deep learning model 

significantly (p < 0.05) outperformed both other deep learning models both in identifying 

any GVFD and mild GVFD.

Table 4 provides the full results showing the sensitivity of each model at fixed levels of 

specificity. At 90% and 95% specificity, the RNFL enface image model achieved 

sensitivities of 0.72 and 0.68, respectively, the RNFL thickness map model achieved 0.64 

and 0.5, respectively, and the CSLO image model achieved 0.58 and 0.48, respectively. The 

RNFL thickness and enface models achieved better sensitivities at all specificity levels than 

mRNFLt and cpRNFLt.

Predicting Quantitative VF Measurements

The performance results of the deep learning models in predicting global quantitative VF 

measurements (MD and PSD) are presented in Table 5. In predicting MD, the best deep 

learning model was based on RNFL enface images (R2 = 0.70, 95% CI: 0.64 – 0.74) 

followed by deep learning models using RNFL thickness maps (R2 = 0.63, 95% CI: 0.57 – 

0.68) and CSLO images (R2 = 0.48, 95% CI: 0.41 – 0.54). The best performing deep 

learning model (RNFL enface images) significantly (p < 0.001) outperformed RNFL 

thickness measure predictions mRNFLt (R2 = 0.40, 95% CI: 0.35 – 0.44) and cpRNFLt (R2 

= 0.45, 95% CI: 0.40 – 0.50). The MAEs in predicting MD for the deep learning models 

based on RNFL enface, thickness map, and CSLO images were 2.5 dB (95% CI: 2.3 – 2.7), 

Christopher et al. Page 6

Ophthalmology. Author manuscript; available in PMC 2021 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.8 dB (95% CI: 2.6 – 3.0), and 3.1 dB (95% CI: 2.9 – 3.4), respectively. In all cases, the 

errors were significantly (p < 0.05) lower than those of mRNFLt (3.8 dB, 95% CI: 3.6 – 4.1) 

and cpRNFLt (3.7 dB, 95% CI: 3.4 – 3.9).

In predicting PSD, the enface deep learning model (R2 = 0.61, 95% CI: 0.55 – 0.66) again 

outperformed deep learning models based on thickness maps (R2 = 0.56, 95% CI: 0.48 – 

0.62) and CSLO images (R2 = 0.48, 95% CI: 0.42 – 0.54). The best performing deep 

learning model was significantly (p < 0.05) better than predictions based on mRNFLt (R2 = 

0.49, 95% CI: 0.44 – 0.54) and cpRNFLt measurements (R2 = 0.51, 95% CI: 0.46 – 0.56). 

The MAEs in predicting PSD for the deep learning models based on RNFL enface, thickness 

map, and CSLO images were 1.5 dB (95% CI: 1.4 – 1.6), 1.5 dB (95% CI: 1.4 – 1.6), and 

1.9 dB (95% CI: 1.8 – 2.0), respectively and were significantly (p < 0.05) lower than those 

based on mRNFLt (2.1 dB, 95% CI: 2.0 – 2.2) and cpRNFLt (2.1 dB, 95% CI: 2.0 – 2.2).

The strongest sectoral associations for predicting VF PD from SDOCT were found for the 

enface deep learning models in the VF superior nasal (R2 = 0.67) and inferior nasal sectors 

(R2 = 0.61) (Table 6). Moderate associations were achieved by the enface deep learning 

models for the VF superior (R2 = 0.35) and inferior (R2 = 0.26) sectors. Weaker associations 

were achieved by enface deep learning models in the central (R2 = 0.09) and temporal (R2 = 

0.12) sectors. In all cases, the deep learning models outperformed mRNFLt and cpRNFLt in 

predicting sectoral PD. In all but one sector, the enface deep learning model had the highest 

performance; the CSLO deep learning model achieving the highest performance in 

predicting the central sector PD (R2 = 0.15).

Visualizing Models

Occlusion maps highlighted the regions that had the greatest impact on model predictions. 

An average occlusion map is shown for each image type and VF measurement pair (Figure 

4). In the case of RNFL thickness maps, the models predicting MD, PSD, and glaucoma 

seemed to focus on regions surrounding superior and inferior nerve fiber bundles. In the case 

of RNFL enface images, models also focused on these regions. In the enface images, 

however, models seemed to give more weight to inferior regions. For CSLO images, models 

tended to give weight to inferior regions in glaucoma classification, superior regions in MD 

prediction, and to the entire ONH region in PSD prediction. For all image types, model 

predictions of individual sector PD seemed to be based on known structure-function 

relationships - inferior ONH region predicted superior VF PD, superior ONH region 

predicted inferior VF PD, etc.

Qualitative review of correct and incorrect model predictions was also performed to help 

understand model performance. Example RNFL thickness maps, RNFL enface images, and 

CSLO images for example correct and incorrect predictions of GVFD are shown in Figure 5. 

In the case of the example correct prediction of GVFD+ (Figure 5A), the images show very 

clear thinning / loss of RNFL in the ONH region that could have led to the correct 

prediction. In the false positive case (Figure 5C), the images show some asymmetry in the 

RNFL thickness (thinner RNFL in the superior vs. inferior sector) that may have contributed 

to the incorrect prediction in this case. In the false negative example, there did appear to be 
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diffuse thinning, however, no clear focal loss was present. This may have contributed to the 

model failing to detect GVFD.

Discussion

These results show that deep learning models applied to SDOCT data accurately identifies 

GVFD+ eyes as well as predicting global and sectoral VF quantitative measurements. The 

deep learning model based on RNFL enface images had a diagnostic accuracy of 0.88 for 

differentiating between eyes with and without GVFD, which was significantly better than 

mRNFLt and cpRNFLt measurements (AUCs of 0.82 and 0.80, respectively) and had 

consistently higher sensitivity at fixed specificities. For detection of mild GVFD, the 

diagnostic accuracy of the RNFL enface image deep learning model (AUC of 0.82) was also 

significantly (p < 0.001) higher than mRNFLt and cpRNFLt measurements (AUCs of 0.73 

and 0.70, respectively). Moreover, the SDOCT deep learning models explained a large 

proportion of the variation in VF MD and PSD with R2 values of 0.70 and 0.61, respectively, 

with relatively small errors. Here again, the deep learning models significantly outperformed 

predictions based on mRNFLt and cpRNFLt measurements.

The ability of these deep learning models to accurately predict the severity of VF damage 

from SDOCT scans suggests that deep learning models may be utilized to better 

individualize the frequency of VF testing to each patient. In some cases, this personalized 

medicine approach may result in a reduction in the frequency of VF testing while in other 

cases it may lead to more frequent monitoring of visual function. For example, if the 

SDOCT deep learning algorithm predicts VF damage to be similar to a patient’s last visual 

field test, then the clinician may opt to postpone VF testing to a later visit to save patient / 

technician time and expense. Postponing VF testing in even a small proportion of patients 

can lead to large savings for the health care system. Alternatively, if the SDOCT deep 

learning algorithm predicts VF damage to be worse than the patient’s last visual field test, 

then the clinician may opt to have VF testing done more frequently, thereby increasing the 

likelihood of detecting progression and adjusting treatment sooner.

The relationship between structure and function in glaucoma has been extensively studied.
15–20,32,33 Previous results have found anywhere from no relationship to moderate-high 

correlation between SDOCT-based structural measurements and VF metrics. These previous 

results include approaches that use machine learning techniques and sophisticated structure-

function models defined a priori.34,35 These approaches also predict VF measurements 

based on SDOCT segmentations, but do not utilize deep learning approaches we have 

described here. These approaches often include assumptions about the linearity of the 

structure/function relationship while the deep learning methods make no such assumptions. 

In the case of Guo et al., multilayer segmentations of wide-field SDOCT data were used as 

input to traditional machine learning classifiers to predict individual VF test points. Specific 

classifier features were also informed by a priori knowledge of spatial relationships between 

structure and function data.35 Even given these advantages (additional layer segmentations, 

wide-field SDOCT data, incorporation of existing domain knowledge), their results were 

similar to ours in terms of R2 (Guo et al. R2 = 0.74 vs. our R2 = 0.70), while our model 

resulted in much lower mean error across sectors (Guo et al. MAE = 5.24 dB vs. our MAE = 
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2.5 dB). In fact, the performance of our approach (as measured by R2) is higher for our deep 

learning models than the majority of previous reports.15,18,32,33 Our deep learning models 

resulted in significant (p < 0.05) associations with global VF metrics (MD, PSD) and all VF 

sectors (central, temporal, inferior, inferior nasal, superior, superior nasal). The approach 

described herein also has an additional advantage compared to previous models – fewer 

assumptions about the relationship between structure and function are needed. Structure-

function models commonly make assumptions about what structural measurements are 

relevant (e.g. global vs. local RNFL thicknesses) and the form of the relationship between 

structure and function (e.g. linear, piece-wise, logarithmic, etc.).15,21 Our deep learning 

approach does not require these assumptions, rather, it identifies informative features and 

learns their relationship to visual function through training.

Compared to SDOCT imaging, VF testing is a time-consuming and subjective process that 

often generates noisy, highly variable results.5,6 Variability in VF testing can mean that 

multiple testing appointments over the course of several years should be routine to diagnose 

and monitor glaucoma.36 Our approach uses deep learning to directly model structure-

function relationships and identify eyes with likely functional loss. Because we have built 

our models using data collected as part of standard glaucoma care (SDOCT imaging and VF 

results), our tools provide clinicians with predictions of familiar visual field metrics (e.g. 

MD, PSD). These tools can enhance clinicians’ understanding of the deep learning 

predictions and how to incorporate them into their workflow. Tools to estimate visual 

function from SDOCT scans may be especially relevant because the rate of VF testing on 

glaucoma patients and suspects has substantially decreased while the rate of SDOCT 

imaging has substantially increased over the past several years.37

It is interesting to note that the deep learning models based on RNFL enface images 

outperformed models based on RNFL thickness maps and CSLO images in most cases for 

identifying both VF defects and predicting quantitative VF measurements. A possible 

explanation for the performance of the enface images is the additional information provided 

by the intensity information – enface images are computed by averaging the voxel intensity 

values within the RNFL. These images encode information the is not available through 

thickness alone. Previous work has shown that features based on SDOCT voxel intensity and 

texture features can aid in identifying glaucomatous damage.38–42 These results show that 

going beyond thickness measurements which includes both neural and non-neural tissue and 

incorporating voxel intensity and texture measurements can help improve a model’s ability 

to identify glaucomatous damage and predict function.

The finer scale predictions of visual function produced by training models to predict average 

PD in individual sectors based on the Garway-Heath map varied greatly depending on the 

sector under consideration. It is not surprising that predictions for sectors with relatively few 

VF testing points (central and temporal) were poor (R2 0.12 – 0.15) while predictions for 

sectors with more testing points and in areas in which GFVD is more likely to occur 

(inferior nasal, superior nasal) were more accurate (R2 0.60 – 0.67). This discrepancy is 

likely due to noisier mean sectoral PD in sectors with few VF test points. For all VF sectors, 

though, deep learning models again outperformed mRNFLt and cpRNFLt predictions (Table 
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6). Altering the test pattern to include more test points or including another program such as 

the 10–2 along with the 24–2 program would likely enhance our results.

Occlusion testing of the deep learning models confirmed some expected sectoral 

relationships between structure and function (Figure 4). For example, to predict function in 

the inferior and inferior nasal VF sectors, the models relied on structure in the superior ONH 

region. Similarly, inferior ONH regions were used by deep learning models to predict 

superior and superior nasal VF sectors.

This study does have some limitations. One issue is the unknown generalizability of the 

results presented here to other populations. The study population collected as part of 

ADAGES and DIGS, may not be representative of other datasets in terms of age, race, 

recruitment / collection protocols, or some other unknown confounding variable and the 

models may have learned structure-function relationships that are specific to these data. The 

control participants were recruited using many commonly-used methods (advertisements, 

staff referrals, non-related family member, etc.) and this may not represent the same 

population from which cases were recruited. The ADAGES and DIGS participants do 

however represent a relatively diverse population largely of individuals of European and 

African descent recruited from 3 different geographic locations in the United States, (San 

Diego, California; New York City, New York and Birmingham, Alabama). This training set 

diversity should aid the models in generalizing well to other datasets. Although it is unlikely 

that the relative performance of the various ONH images used as input to the deep learning 

will be differentially effected by this possible confounding, we cannot rule out the 

possibility that the models are basing their predictions on some unmeasured confounder that 

may affect the estimate of the diagnostic performance. Replication on external data will 

allow us to determine the generalizability of these methods. Another issue is that the input to 

the models consisted of RNFL thickness maps and enface images extracted from ONH cube 

scans. The particular ONH scans used for this work were collected as part of ADAGES and 

DIGS to capture three-dimensional measurements from across the entire ONH region. 

Collected from 2009–2015, a large number of scans were available for the data-intensive 

deep learning approach described here. These scans, though, have relatively large spacing 

between B-scans (~61 μm). Using SDOCT scans with higher density imaging and more 

densely packed B-scans would likely further improve predictions. In addition, the SDOCT 

scans require segmentation of the SDOCT volume prior to model application. The result is 

that the models can be sensitive to segmentation failures. If the models are presented with 

poor quality RNFL images, they may not produce accurate estimates of visual function. We 

have previously validated the accuracy of SALSA compared to other segmentation tools.
24,25 However, no tool is perfect and segmentation errors also exist in commercial 

instrument software. These errors will continue to be an issue for any approach that relies on 

these segmentations. Training deep learning models on appropriate datasets (i.e. those that 

look like real-world clinical data) may help make the models less sensitive to these 

segmentation errors. The occlusion testing maps (Figure 4) help provide some insight into 

how these deep learning models make predictions, but much about the model decision 

making remains unclear. Visualization of deep learning models is an active, ongoing area of 

research.43,44 Applying newly developed visualization methods could help reveal detailed, 

fine-scale information about structure-function relationships on an individual patient basis.
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In conclusion, the deep learning models based on SDOCT images had high accuracy in 

identifying eyes exhibiting GFVD and in predicting global VF metrics to estimate the 

severity of functional loss. The deep learning model based on RNFL enface images did 

particularly well in both identifying GVFD and predicting VF summary metrics. Their high 

accuracy suggests that these models may help clinicians estimate visual function from 

SDOCT imaging and individualize the frequency of VF testing to the individual patient. By 

predicting VF loss from SDOCT scans, deep learning approaches may also help clinicians 

continue to reduce their reliance on highly variable VF testing. The adoption of SDOCT 

imaging has transformed the clinical care of glaucoma. Deep learning techniques provides 

an opportunity to continue this transformation by enhancing the extraction of clinically-

relevant information from objective, reproducible SDOCT scans.
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Figure 1: 
Examples images for an eye with glaucomatous visual field damage and an eye without this 

damage. A single B-scan from the ONH cube scan is shown with the SALSA RNFL 

segmentation illustrated (top). The RNFL thickness map, RNFL enface image, and CSLO 

image are also shown (bottom).
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Figure 2: 
An illustration of the VF sectors used in this analysis (left) and their corresponding mapping 

on the ONH (right). These sectors are taken from Garway-Heath et al.27

Christopher et al. Page 16

Ophthalmology. Author manuscript; available in PMC 2021 April 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
Receiver operating characteristic curves in identifying GVFD eyes. The deep learning model 

based on RNFL enface images achieved the highest AUC of 0.88, significantly (p < 0.05) 

higher than the any other model.
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Figure 4: 
Heat maps created by occlusion testing that highlight informative image regions are shown 

for deep learning models based on RNFL thickness maps (A), RNFL enface images (B), and 

CSLO images (C). Color intensity indicates the amount of contribution to model 

classification of GVFD, prediction of global VF metrics (MD, PSD), and sectoral VF PD 

(central, temporal, inferior, inferior nasal, superior, superior nasal.
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Figure 5: 
Example RNFL thickness maps, RNFL enface images, and CSLO images for which the 

deep learning models produces predictions resulting in a true positive (A), true negative (B), 

false positive (C), and false negative (D).
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Table 1.

Characteristics of the participants with glaucomatous visual field damage (GVFD+) and without glaucomatous 

visual field damage (GVFD−).

Parameter GVFD− GVFD+ P-value

Number of participants 665 529 -

Number of eyes 1,081 828 -

Number SDOCT-VF Pairs 4,261 5,504 -

Visual Field Mean Deviation (dB) −0.04 ± 1.6 −5.2 ± 6.5 <0.001

Age (years) 54.8 ± 20.6 58.0 ± 26.1 0.02

Race n (%) <0.001

   European descent 442 (67) 293 (55)

   African descent 173 (26) 203 (38)

   Other 40 (6) 33 (6)

VF: visual field, SDOCT: spectral domain optical coherence tomography
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Table 2.

Diagnostic accuracy of deep learning model performance in identifying eyes with glaucomatous visual field 

damage.

Model AUC (95% CI) p-value

Deep Learning Models

     RNFL Thickness Map 0.82 (0.80 – 0.85) 0.59

     RNFL Enface Image 0.88 (0.86 – 0.90) <0.001*

     CSLO Image Deep 0.81 (0.79 – 0.84) 0.70

RNFL Thickness

     mRNFLt 0.82 (0.79 – 0.84) -

     cpRNFLt 0.80 (0.77 – 0.83) 0.26

*
Significantly (p<0.05) better than mRNFLt AUC

AUC: area under receiver operating characteristic curve, mRNFLt: mean retinal nerve fiber layer thickness, cpRNFLt: circumpapillary retinal nerve 
fiber layer thickness, CSLO: confocal scanning laser ophthalmoscopy
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Table 3.

Diagnostic accuracy of deep learning models and retinal nerve fiber layer thickness for identifying with 

glaucomatous visual field damage (GVFD) by severity of functional loss. Mild was defined as GVFD+ eyes 

with a mean deviation (MD) > −6.0 and moderate-to-severe was defined as GVFD+ eyes with MD ≤ −6.0.

Model
AUC in Detecting GVFD

All (n = 948) Mild (n = 735) Moderate-to-Severe (n = 595)

Deep Learning Models

     RNFL Thickness Map 0.82 (0.80 – 0.85) 0.74 (0.70 – 0.77) 0.97 (0.95 – 0.98)

     RNFL Enface Image 0.88 (0.86 – 0.90) 0.82 (0.79 – 0.85) 0.97 (0.95 – 0.99)

     CSLO Image Deep 0.81 (0.79 – 0.84) 0.75 (0.72 – 0.79) 0.92 (0.89 – 0.94)

RNFL Thickness

     MRNFLt 0.82 (0.79 – 0.84) 0.73 (0.69 – 0.76) 0.97 (0.96 – 0.98)

     cpRNFLt 0.80 (0.77 – 0.83) 0.70 (0.66 – 0.74) 0.97 (0.96 – 0.98)

p-value compares to mRNFLt AUC;

*
Significantly (p<0.05) better than mRNFLt AUC

AUC: area under receiver operating characteristic curve, mRNFLt: mean retinal nerve fiber layer thickness, cpRNFLt: circumpapillary retinal nerve 
fiber layer thickness, CSLO: confocal scanning laser ophthalmoscopy
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Table 4.

Sensitivity of deep learning models and retinal nerve fiber layer thickness for identifying eyes with 

glaucomatous visual field damage (GVFD) at fixed levels of specificity.

Model
Sensitivity in Detecting GVFD

80% Specificity 85% Specificity 90% Specificity 95% Specificity

Deep Learning Models

     RNFL Thickness Map 0.71 0.68 0.64 0.57

     RNFL Enface Image 0.80 0.78 0.72 0.68

     CSLO Image Deep 0.69 0.64 0.58 0.48

RNFL Thickness

     mRNFLt 0.71 0.69 0.62 0.53

     cpRNFLt 0.69 0.63 0.60 0.54

mRNFLt: mean retinal nerve fiber layer thickness, cpRNFLt: circumpapillary retinal nerve fiber layer thickness, CSLO: confocal scanning laser 
ophthalmoscopy
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Table 5.

Performance of deep learning models and retinal nerve fiber layer thickness for predicting global visual field 

mean deviation (MD) and pattern standard deviation (PSD) measured by R2 and mean absolute error (MAE).

MD PSD

Model R2 (95% CI) MAE (dB) (95% CI) R2 (95% CI) MAE (dB) (95% CI)

Deep Learning Models

     RNFL Thickness Map 0.63 (0.57 – 0.68) 2.8 (2.6 – 3.0) 0.56 (0.48 – 0.62) 1.5 (1.4 – 1.6)

     RNFL Enface Image 0.70 (0.64 – 0.74) 2.5 (2.3 – 2.7) 0.61 (0.55 – 0.66) 1.5 (1.4 – 1.6)

     CSLO Image 0.48 (0.41 – 0.54) 3.1 (2.9 – 3.4) 0.48 (0.42 – 0.54) 1.9 (1.8 – 2.0)

RNFL Thickness

     mRNFLt 0.40 (0.35 – 0.44) 3.8 (3.6 – 4.1) 0.49 (0.44 – 0.54) 2.1 (2.0 – 2.2)

     cpRNFLt 0.45 (0.40 – 0.50) 3.7 (3.4 – 3.9) 0.51 (0.46 – 0.56) 2.1 (2.0 – 2.2)

mRNFLt: mean retinal nerve fiber layer thickness, cpRNFLt: circumpapillary retinal nerve fiber layer thickness, CSLO: confocal scanning laser 
ophthalmoscopy
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