UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Multipar: A Robust Entity-Oriented Parser

Permalink
https://escholarship.org/uc/item/73w4294d
Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 7(0)

Authors

Fain, Jill

Carbonell, Jaime G.
Hayes, Phillip J.

Publication Date
1985

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/73w4294d
https://escholarship.org/uc/item/73w4294d#author
https://escholarship.org
http://www.cdlib.org/

MULTIPAR: a Rohust Entity-Oricnted Parser’

Jill Fain, Jaime G. Carbonell, Philip J. Hayes and Steven N. Minton
Computer Science Department. Carnegie-Mellon University,
Pittsburgh, PA 15213, USA

1. Objectives

The phenomenon of human language comprehension has posed a considerable number of challenging problems for
linguists, psychologists. philosophers, and artificial intelligence researchers alike. One particularly important aspect is the
robust manner in which people are able o comprehend novel utterances. many of which deviate from the abstract notion
of grammatical correctness. Whereas most linguists and philosophers focus on formulating competence theorics of the
idealized speaker. our objective 1s 10 model human-like performance in robust comprehension of naturally-occurring
utterances. Within thal general objective, this paper presents a concrete computational model of language interpretation
capable of leraling grammatical deviations, approximately to the extent exhibited in human language comprehension.
Unlike the psychological approach that strives to model the fine-structure internal process of a cognilive Lask, we seek
only to match observed human performance. Eliminating the constraint of strict adherence 1o human processing — to the
extent that it can be measured or theorized — enables us o make much more rapid progress in developing an effective
compultational model.

Thus, our objectives can be surmmarized as follows:

e Understand the information processing requirements of robust natural language comprehension, including the in-
tegration of syntactic, semantic and pragmatic knowledge.

e Build an effective computational model for experimentation, refinement, validation, or refutation of our theoretical
precepts. This requires the formulation of flexible conurol strategies and fairly rich knowledge representation
formalisms.

e Apply the robust language interpreter to human-computer natural language interfaces, and investigate the extent to
which such powerful, human-like abilities enhance the communication process.

In order to realize these objectives, we developed an experimental parsing system called MULTIPAR [4] based on
earlier work at Carnegie-Mellon University, such as the CASPAR and DYPAR parsers [3. 9,4, 5]. Unlike previous work
on ATN-based robust parsing [14, 13. 11. 10}, our approach is based on more flexible and interpretive case-frame instan-
tiauon methods. The case-frame approach enables us to integrate diverse syntactic and semantic knowlédge into a
universal data structure, which can be accessed by different parsing strategies. In essence, the computational model
elaborated below consists of finding the best possible parse satisfying all the syntactic, semantic and pragmatic constraints
and expectations. If one fails to find such a parse — perhaps due to missing function words, misspellings, other
grammalical errors, semantic constraint violations, etc. — the constraints are gradually relaxed in a principled manner 10
find the best possible parse(s). A second theme interwoven with the progressive relaxation process, is the notion of
invoking multiple parsing strategies, depending upon expectations of grammatical structure, semantic role, and suspected
deviations from the correct grammar. The bulk of this paper presents the methods and knowledge sources that make
robust parsing an effective computational process. The principles underlying our approach are:

o Grammatical tolerance levels: The search space of possible interpretations of an utterance can grow prohibitively
large if one allows compounding of all possible grammatical and semantic deviations. Therefore, the search is carried
out using a least-deviant-interpretation-first strategy. This requires the postulation of additive tolerance levels. Each
grammatical deviation is assigned a tolerance level, and multiple deviations in the same utterance correspond (o the
sum of the tolerance levels.

e Multiple straregies. Each known deviation from grammatical well-formedness indexes one or more recovery
strategies, as well as the required tolerance level increment. An agenda-based control structure allows strategies (o
post hypotheses of suspected deviations (and their associated recovery strategies), which are examined subsequently

l'I'T'ais research was sponsored in part by the Defense Advanced Research Projects Agency (DOD), ARPA Order No. 3597, monitored by the Air Force
Aviorucs Laboratory under contract F33615-78-C-1551, and in part by the Air Force Office of Scientific Research under Contract F49620-79-C-0143. The
views and conclusions conlained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed
or imphed, of DARPA, the Air Force Office of Saientific Research or the US government.

110

only in the case that no fully grammatical, or less deviunt interpretation is found.

o Lntity-oriented parsing: An cnltity is a generalized cuse-frame. In addition (o storing the semantic roles, headers. and
cuse markers, it may represent decluratively multiple syntactic mappings from the surface input o the semantic
representation.

The power of the MULTIPAR system lics in the integration of these principles into a cohesive computational model.
The cenlral objective of the system is (0 comprehend less-than-perfect ullerances much as humans would, rather than 10
hallucinate all possible nonsensical interpretations. The first stage is 10 develop the general computational model. and the
second is (o wne it to find only those interpretations corresponding to human-tolerable grammatical deviations. Afler
oulining the continuation-passing control structure and Lhe entity-based knowledge representation. we present in some
detail one example of parsing a plausible but imperfect utterance.

The MULTIPAR approach differs from earlier inference-intensive systems thal sought 1o complele a parse in the
presence of an unknown word [7, 2] in that it provides a uniform computational framework to recover from all gram-
matical difficulties and deficiencies. Moreover, it differs from lext-scanning approaches in that it does not reson to
ignoring large segments of input it judges either incomprehensible or uninteresting [12, 6].

2. MULTIPAR Control Structure

Like most natural language parsers, MULTIPAR operates by searching through a virtual space of possible parses for a
given input. The size of the search space depends on the number of local ambiguities that are encountered during the
parsing process. Because MULTIPAR is expected to parse ungrammatical inpul, it is typically confronted with a search
space that is much larger than that explored by conventional parsers. Unlike ils more conventional predecessors,
MULTIPAR cannot simply reject a partial parse when a grammatical constraint is violated. Instead, various recovery
techniques are applied.

If the best parse is o be found in a timely manner, the exploration of alternative paths in the search space must be
carefully conurolled. For example, spelling correction should be tried before hypothesizing a missing word, and
hypothesizing one word is preferable to hypothesizing five. Moreover, if a strategy fails to find a correct parse for some
inpuL. it does not mean that the recovery actions should be invoked immediately. It may be that some other strategy will
find a grammatical and semantically consistent parse. If so, that other strategy should be given its chance before any
recovery actions are attempled.

To control the exploration of the search space. compeling alternatives within a strategy are explicitly specified using
SPLIT statements. When a SPLIT statement is encountered, the computation divides into separate branches; each branch
has a flexibility increment indicating the additional degree of ungrammaticality tolerated by the associated continuation. A
partial parse is generated along each branch, and each computation may proceed from the SPLIT statement indepen-
dently of the others.?

(Sp1it (+0 continuationA)
(+1 continuationB)
(+3 continuationC)...)

Thus, a SPLIT statement such as the one above produces a three-way branch in the search tree. Continuation A does
not result in a gain in flexibility of the associated parse (implying that this continuation requires no additional relaxation
from grammatical correctness). Continuations B and C, if they are ever pursued, will result in gains of one and three
respectively (implying that different degrees of additional relaxation from grammatical correctness are required to
continue each parse).” All continuations in a SPLIT statement are posted in a global agenda, indexed by their global
Jlexibility level (explained below). The structure of a global agenda looks like:

[Agenda: (0 Continuation-A Continuation-B ...)
(1 Continuation-C ...)
(4 Continuation-D ...) ...]

2MULTIPAR is implemented in Common Lisp.

]Thenm-demninimpmﬁdedbyhmﬂmmmisd:aﬂphmdbrhlﬂmmmhigumaWhenamlm finds that a parse is
ambiguous, a separate branch is created for each alternative parse. +0 flexibility increments are used for each locally-ambiguous continuation.

111

MULTIPAR starts with an agenda containing one or more top-level strategies at the O-flexibility level, and a global
flexibility level set 1o 0 (i.e. full grammaticality). As each strategy is applied it can post additional continuations in the
agenda at the 0 or higher flexibility levels. Continuations are posted when SPLIT statements are ¢ncountered. and the
flexibility levels at which they are posied correspond (o the sum of the global flexibility level and the flexibility increment
of the continuation. When a continuation compleles execution it is removed from the agenda.

MULTIPAR pursues all the continuations at the 0-flexibility level. Ideally. exacly one of these yields a complete and
consistent parse. indicating that the inpul was grammatical and unambiguous. If more thal one parse is generated, we
have true ambiguity, which must be resolved by external means. If no parses are generated at the O-flexibility level, the
input is ungrammatical (or semantically inconsistent). and MULTIPAR goes on to the next-lowest flexibility level in the
agenda. selecting this one as the new global flexibility level. The process is repeated at this flexibility level (perhaps
resulling in more continuations being posted on the agenda). and if. again. no parses are found. the global flexibility level
is once more augmented. In this fashion. the search for a possible parse continues, seeking the least deviant interpreta-
tions first. If the global flexibility level reaches some preset threshold. MULTIPAR judges the inpul to be incomprehen-
sible and abandons its parsing attempts.

3. MULTIPAR Entities

MULTIPAR is an entity-oriented parser. As described in [8]. entity-oriented parsing is an approach to restricted
domain natural language processing in which the parser is driven by a set of definitions of domain entities (objects,
operations, and states). The entities are defined at a high level of abstraction, primarily in terms of other component
entities. This approach (o parsing is well adapted Lo dealing with ungrammatical input; it allows a parser to interpret the
abstract enlity definitions in a variety of ways so that it can look for the entity components in places other than the
syntactically correct ones.

A simplified example of an entity definition used by MULTIPAR is:

(EntityName MoveCommand
SemanticCases (
Object (FileObjDesc or DirectoryObjDesc)
Source (DirectoryObjDesc or LogicalDeviceObjDesc)
Destination (FileObjDesc or DirectoryObjDesc)
Location (DirectoryObjDesc or LogicalDeviceObjDesc))
Constraints (

(Destination FileObjDesc > Object FileObjDesc)
(Object DirectoryObjDesc > Source LogicalDeviceObjDesc) ...
(Required Object Destination))
SurfacefForms (
(SFName Icf-Canonical

Head <movehead>
DirectObject Object
Cases (

(Preposition <sourcepreps>
Bind Source) ...)))
InstanceTemplate (

Action 'MOVE

Deviations Deviations

Source (
IsA (IsA in Object)
Name (Name in Object)
Extension (Extension in Object)
Directory (Directory in Object or ... or Directory in Location)
LogicalDev (LogicalDev in Object or ... or LogicalDev in Location)
ObjDesc (Description in Object)
SourceDesc (Description in Source)
LocDesc (Description in Location))

Destination (
IsA (IsA in Destination)
Name (Name in Object or Name in Destination)
Extension (Extension in Object or Extension in Destination)
Directory (Directory in Destination or Directory in Location)
LogicalDev (LogicalDev in Destination or LogicalDev in Location)
DestDesc (Description in Destination)

112

LocDesc (Description in Location))))
This defines the "move™ command for an operaling system interface. Like all entity definitions, it has four main parts:

e SemanticCases: this defines the basic structure of the entity in terms of the other entities that are its components.
MoveCommand. for instance. has an object (the file* or directory to be moved). a source (the directory or logical
device to move it from). a destination (the file or direclory 10 move it L0). and a location (the directory or logical device
in the context of which the move takes place). ese semantic cases (collectively constituting a case-frame) do not tell
MULTIPAR how 1o recognize the entily in an input utterance. they just define what other entities may or must be
found in the input as part of finding the entily defined. The general formal is a list of case names and filler types.

o Constraints: For any specific instance of an enlity. the constraints specify both relations that are required to hold
between cases. and predicates on individual cases. The first constraint for MoveCommand says that if the Destination
case is filled by a file. then the Object case musl also be filled by a file. Many conslraints of this kind may be needed to
fully specity an enuty. The final constraint says that the Object and Deslination cases are required Lo be present for
any instance of MoveCommand. MULTIPAR enforces constraints of both Lypes insofar as it can. In other words, it
prefers parses in which the constraints are sausfied, but will accepl (as a deviation) inputs in which the constraints are
violated.

@ SurfaceForms: This component of an entity definition tells MULTIPAR how an entity can be described in English.
That is, it tells where in the input to find words identifying the entity itself (e.g. "move” or "transfer” in our example),
as well as where 1o find fillers for the SemanticCases. The information about where 1o look for the SemanticCases is
implicit in the specific parsing strategies associated with the SurfaceForm name (Icf-Canonical, or "imperative case
frame canonical,” above). Although there is a 1-to-1 mapping between SurfaceForm and strategy in the current
implementation. it is not necessary that this be the case. A strategy can know how Lo parse more than one surface form
and a SurfaceForm can be used by more than one strategy.

The SFName is the only attribute common to all SurfaceForms. The other attributes are specific to particular surface
forms. In the above example, the Head attribute defines the imperative verb to be used o identify the MoveCom-
mand. the DirectObject attribute indicates which SemanticCase is the syntactic direct object of the imperative verb,
and the Cases attribute defines which prepositions are used o mark Lhe other SemanticCases in English input
Symbols like <movehead> are non-terminals in a grammar used by DYPAR [3, 1] (our pattern-matcher) and expand in
the course of computation (e.g. <movehead> -> move | Lransfer). SurfaceForm slot fillers that are not surrounded by
{>'s are SemanticCase names and tell the stralegy which SemanticCase to bind the information to. Consider the
DirectObject case of the Icf-Canonical SurfaceForm in the MoveCommand. The strategy that knows how 1o parse this
kind of surface form will be passed an instance of the MoveCommand entity definition and an input segment to work
on. When it finds a noun phrase unmarked by prepositions, it will check the surface form to find out what
SemanticCase it should be trying to fill. Since the Object SemanticCase can be filled by either a FileObjDesc or
DirectoryObjDesc, it will try to parse the unmarked segment as each of these. This will result in calls Lo strategies that
know how to handle the SurfaceForms in the entity definitions of FileObjDesc and DirectoryObjDesc respectively. In
general, an entity may have more than one surface form corresponding to different forms of surface expression for the
same underlying semantic cases. The entity definition for FileObjDesc, for example, has two SurfaceForms:
Ncf-Canonical® and Nef-System. The former is designed for recognition of input like "the files with extension Isp in
directory [c410jf90],” while the latter is used for recognition of descriptions that include proper names, such as "foo.lsp
in [c410j90]".

® InstanceTemplate: This information is used when a strategy has finished parsing an entity. It tells MULTIPAR the
final representation to use for the entity instance thus produced. It is essenually a method for reformatting,
"canonicalizing,” and pulling information out of subordinate entty instances to compose the current one. The slot
fillers in the InstanceTemplate act as directions to a routine that uses the bindings to the SemanticCases produced by
the strategy. A single word means the value of the slot is exactly what is bound to the SemanticCase. A list without
"or" means the value of the slot is whatever is found in the slot with that name in the InstanceTemplate bound to the
SemanticCase. (e.g. IsA in Object says look at the IsA field in whatever kind of entity is bound to Object — if the field
is not found, the slot = nil). Finally, directions that have one or more “ors” act as deterministic disjuncts. Each

4 FileObiDesc means file object description; other abbreviations are similar

3Ncf is an abbreviation for NominalCaseFrame

113

instruction is followed unul a non-nil value is found. In this way, "move [¢410j1%0}foo w0 my directory” produces the
same Instance Template as “move foo from [c410j190] 1o my directory.” In the former, the directory name for Lhe
source of the move is found in the FileObjDesc Instance Template bound o0 the Object SemanticCase. In the latter,
the directory name for the source of the move 1s found in the DirectoryObjDesc Instance Template bound o the
Source SemanticCase. Finally, each Instance Femiplate has a special slot called “deviations™ which has no correspond-
ing SemanticCase. This slol acts as a repository of information about the recovery actions Laken by strategies.

4. An Annotated Example

To make clear how all the components of MULTIPAR combine and interact to parse both well-formed and ungram-
matical input. we present the following extended example. Readers are advised Lo refer frequently to the figures in this
section. and to the entity definition shown in section 3. In the discussion that follows, function calls and strategy names
are written in boldfuce type: entity slots and values are given in italics. The notation "wnrd]...word“" refers to the portion
of the input utlerance starting with wnrdl and ending with wordn.

Consider the behaviour of the system when the user types:

Move the accounis directory the file Data3.°

Myltipar Control
(a)

Step 1. Initialization.
SPLIT

Before any part of the input is examined, the -
control tree is initialized as in Figure 1, label

(a)’. Here, MULTIPAR sets up a branch for

0O +0

each Of the commands in ils current (b) ParseEntity (@) ParseEntity (§) ParseEntity ... ParseEntity
vocabulary. Note that no flexibility increment DelateCommand MoveCommand ListCommand EditCommand
. ot "Move...Datad" “Move.. Datad” “Move...Data3" “Move. . .Datald”
is added Lo the initial value of zero because no T (FAIL] [FAIL]
deviation has occurred. The control chooses (=) l l
the first level 0 branch on the agenda for con- ICF-Strat (F) ICF-Strat/ICF-Cases
. - DeleteCommand MoveCommand
Unuation. “Move .. .Datad" "Move...Datal”
(a)[FAIL]

Step 2. Try to parse "Move...Datal” as a & o (\

DeleteCommand. |

ParseEntity (Figure 1.(b)) is a function that
maps entity types to strategies. A request for a
command entity could result in the tral of a

(9

unmarked case 1st (1) marked cases 1st
Object=File0bjDesc

(ses Figure 2)

(h) unmarked case 13t
O ject=
DirectoryObjDesc
(ses Figure 3)

Figure 1.

number of different strategies. At present, ApFeTeves Exmple; Suapy 4

only top-down versions of the parsing

strategies exist. and calls to ParseEntity that look for commands are always mapped into calls to the imperative caseframe
strategy (Figure 1,(c)). ImperativeCaseFrame-Strat will be unable o find an appropriate verb for the DeleteCommand
entity and will fail without scheduling any alternate branches (i.e. this can be viewed as a non-recoverable error for the
top-down strategy). Failure means that processing is continued by the control structure which eliminates this branch
(Figure 1,(d)) and chooses another (Figure 1,(e)). Of course, the new branch also contains a call to ParseEntity; this call is
mapped as above (Figure 1,(f)).

Step 3. Try to parse the input as a MoveCommand.

ImperativeCaseFrame-Strat knows how to use the Icf-canonical SurfaceForm to interpret the input. In the
MoveCommand entity definition shown in section 3, this is the only SurfaceForm. As linguistic coverage is extended to
include, for example, declaratives and interrogalives, new SurfaceForms must be defined. ImperativeCaseFrame-Strat
could be expanded to interpret all top-level forms or each form could be provided with its own “expert”.

The first action that ImperativeCaseFrame-Strat takes is 1o use the Head field in the SurfaceForm to search for a legal

6‘1‘!1: grammatically correct version of this sentence is "Move to the accounts directory the file Data3.”

"Hereafer, simply Figure L(a).

114

verb It finds "Move™ and the unparsed segment is reduced Lo "the accounts directory the file Data3”. The next step is o
call a routine o fill the SemanticCases of the MoveCommand.

Step 4. Use ImperativeCase Frame-Cases (o [ill MoveCommand's SemanticCases.

ImperativeCaseFrame-Cases (Figure 1.(f) is nol a strategy itself but only a part of the top-down imperative caseframe
strategy. The distinction is important because the responsibility of a strategy is 10 return an “instance list,” i.e. one or more
instantiated /nstanceTemplates. ImperativeCaseFrame-Cases will return lists of consistent SemanticCase bindings which
ImperativeCaseFrame-Strat will use o fill in [nsianceTemplates when building its instance list Even if
ImperativeCaseFrame-Cases fails to fill any cases, ImperativeCaseFrame-Strat may return a non-emplty instance list.

When filling cases we impose no order on their appearance in the utterance, nor do we fill required cases first (doing so
would eliminate possible parses at flexibility levels greater than 0). As we try to expand a partial parse the still-unfilled
cases may be constrained in the kinds of values they can Lake on by the values bound o those cases already filled. The
Constraints field of the entity definition specifies the requirements. Of course. at this point no cases have been filled and
no constraints apply. The unparsed segment, "the accounts directory the file Data3", is examined in lwo ways:

a. The first case we try 1o fill is the direct object which is unmarked. (Figure 1.(g) and (h))
b. The first case we try Lo fill is one of the marked cases. (Figure 1.(i))

Consider step 4.a. We are atlempting to interpret some portion of the segment as the Object SemanticCase of the
MoveCommand. Since the entity definition shows that an Object can be an instance of either a FileObjDesc or a
DirectoryObjDesc, we will try each of these in turn (Figures 2,(a) and 3,(a)).

Step 5. Continue step 4.a.; try to parse
Object as a FileObjDesc. {see Figure 1(g))

ImperativeCaseFrame-Cases wants to find a ti) Parankwtity

FileObjDesc in "the accounts directory the file sl ol
Data3". To do so, it must call ParseEntity with I\

a request for a noun phrase that can be inter- et
preted as a FileObjDesc. Since there are two +0 N ro f .

. . (c) NCF-Strat-Canonical/NCF-Cases
SurfaceForms for parsing nominal caseframes, F11a0bjDesc

each with its own associated strategy, this call FR R ERARES

to ParseEntity results in a SPLIT (Figure [FAIL] D
2(b)) We will examine only the path labelled / LN

NominalCaseFrame-Strat-Canonical (Figure (8) Parsatatity (0) ParseEntity
2(5]) DirectoryObjDesc FilaDesc
. * “accounts...the™ “Datald”
Step 6. Find the Head and Quantifier of the ; :
noun phrase.
As with imperative caseframes, the first ac- :ffz:::'.vm"smt
tion taken to fill a nominal caseframe is to "Data3”
locate the Head. NominalCaseFrame-Strat- Figure 2.

Direct Object as FtleQbjlesc

Canonical finds "file" as a possible head and
breaks the remainder of the input into
prenominal and postnominal segments. The strategy then looks for a quantifier or determiner at the left end of the
prenominal segment and finds “the”. "Accounts directory the”™ now constitutes the prenominal segment and “Data3,” the
postnominal segment. We call NominalCaseFrame-Cases, a sub-routine of NominalCaseFrame-Strat-Canonical, 1o begin
filling cases from the prenominal segment (Figure 2,(c)).

Step 7. Parse the prenominal segment, "accounts directory the”™.
The only FileObjDesc case we will be able to fill from this segment of the input is FileDirectory, an instance of a
DirectoryObjDesc. Afier a sequence of calls (Figure 2,(d)) a sub-invocation of NominalCaseFrame-Strat-Canonical will

return an instance list with a single instance;
(IsA DIRECTORY

n'l‘he reader should keep in mind that at each step it is possible 10 have more than one interpretation of the input Thus, if our input had been, "Move the
file called transfer 1o dskb,” the initial scan for a verb would have resulted in two partial parses — one catching "move” and the other catching "transfer”.

115

116

Name (accounts))®
Thus. we return Lo step 6 (Figure 2,(c)) with one case filled and the word "the™ unused.
Step 8. Parse the postnominal segment, "Data3".

We are interested in extending any partial parses created in step 7 by using the postnominal segment to fill any
unbound SemanticCases. Figure 2,(e) shows that a succession of calls results in filling the FileName using the Allribute-
Value strategy.

Step 9. Return to step 4, Figure 1,(g).

Steps 7 and 8 produced one consistent set of bindings for two SemanticCases in the MoveCommand with one word
leflover. Although there are unfilled cases. we have run out of input on the right. Thus, the instance list of FileObjDescs
returned by the call 1o ParseEntity in Figure 2,(a) has only one element:

(IsA FILE
Name (Datal)
Directory (accounts)
Description (
Quantifier (the)))

Referring to step 4.a. (Figure 1,(g)), the pos-
sible interpretations of the input such that the
Object is a FileObjDesc have been exhausted.

It remains to examine what happens when we (sse Figurs 1(h))
look for an Object that is a DirectoryObjDesc.
Again, we will call ParseEntity, split and (a) Parsetatity
suspend one of the calls. and examine the Diesdtarsiuitess
branch labelled NominalCaseFrame-Strat- () sy
Canonical (Figure 3,(a) through (c)). % V1o
Step 10. Continue step 4.a.; try to parse the - e p s eRICHIARE LRSS
Obyject as a DirectoryObjDesc. "the...Oatal"
We pick up the head, “directory,” and the gran)

quantifier/determiner case as in step 6. This
leaves the word "acoounts” in the prenominal
segment and “the ﬁ]e Dau}" I.'I] thc Dirsct M}o::‘::.oi;umrywjnlu
postnominal segment The Attribute-Value
strategy finds “accounts” as the Name. No
other DirectoryObjDesc cases can be filled, so
this step returns:
(1sA DIRECTORY
Name (accounts)

Description (
Quantifier (the)))

Step 11. Retumn to step 4.

Consider Figure 4,(a) which correspcrds to the "OR™ in Figure 1(f). The computations shown in Figures 2 and 3 have
given us two partial parses with the direct object filled; once by a FileObjDesc with the word "the" leflover and no input
lefl o fill the other cases of the MoveCommand (Figure 4.(b)), and once by a DirectoryObjDesc with “the file Data3"”
lefiover (Figure 4,(c)). As we try 1o extend this second partial parse, we have only marked cases remaining in the
SurfaceForm. Since there is no marker at the beginning of the remaining segment we have encountered our first violated
expectation. The recovery action associated with this failure is to hypothesize the existence of the missing case marker.
Thus, for each of the three remaining SemanticCases we schedule a continuation that charges three flexibility points for
the deviation (Figure 4,(d)). Note that if some other branch of the search tree with cumulative flexibility less than three
succeeds in consuming the entire input segment, the branches just spawned will never be reactivated.

9The InsianceTemplate has many more fields in it; only those with & non-nil value are shown.

Step 12. Return Lo step 4.b. (Figure 4.(e)) (vee Figure 1(e))

Consider whal happens when we Lry filling Tl
the marked cuses of the MoveCommand first (2) :E:;:;::;:”"'—"“
(Figure 1.(i) corresponding o Figure 4.(¢)); “Move...Datad"
the situation is identical 1o the one just out-
lined. For all cases other than the direct object.
the segment “the accounts directory the file

Datal” must have a lefl marker. Since it has

none, we hypothesize a4 branch for each 3 3 ﬂEmu.] +3
marked case at the current flexibility level plus e EF::;:;:(:;],{,,! STted/ete]
three (Figure 4.¢)). ro i o ata
Step 13. All the possibilities for the (™) ; Crasea
MoveCommand have been examined. m“:“ oio CFALL]
We have succeeded in finding two ways 1o D'"E::::;' cane 4 +3
fill the cases of the MoveCommand. Before we continue w/o 'frr::'i‘:::.l::;:nu
can return the partial parses from o.“E::::T Case ...Data3"
ImperativeCaseFrame-Cases o
ImperativeCaseFrame-Strat we must check
whether the Required cases, as specified by the o Bt o
Constraints field, have been filled. Indeed,
each of the partial parses is missing the re- Figure 4.
quired Destination case, a violated expectation. B i iy Bl O

The recovery action associated with this error

is to suspend each of these partial parses and charge two flexibility points per missing required case for their continuation
(Figure 4,(f) and (g)). Since no parses had all the required cases, the level 0 continuation of ImperativeCaseFrame-Cases
returns a failure signal (o ImperativeCaseFrame-Strat.

ImperativeCaseFrame-Strat returns an instance list with a single instance whose Source and Destination fields are nil.
This signifies that the only part of the strategy that succeeded at level 0 was finding the verb. Since there is unused input,
the top-level of MULTIPAR interprets this instance as a failure and signals this to the control.

Step 14. Exhaust level 0 of the agenda looking for a non-deviating parse.

The control structure takes over and continues in turn each branch suspended at level 0. Those containing requests for
imperatives (Figure 1,(j)) fail immediately as in step 2. The other level 0 branches were left suspended by the SPLITs in
Figures 2 and 3; these also fail.

Step 15. Exhaust levels 1 and 2 of the agenda.

Having tried all the branches in level 0 without success, the flexibility level is incremented and the control structure tries
to choose a path suspended at level 1. Our example did not spawn any level 1 branches (single spelling corrections), so the
flexibility level is incremented again. There are two branches at level 2, both in the same predicament (Figure 4, (f) and
(2)); each has a missing required case and leflover input. If there had been no leflover input (as in "Move foo"), they
would have succeeded at this level.'® However, since no further recovery actions apply, each of these branches fails
without adding to the control tree.

Step 16. The control increments the flexibility level to 3.

There are two sets of branches at this level:

a. The Objec! case is filled and the missing marker has been
hypothesized before "the file Data3”. (Figure 4,(d))

b. No cases are filled and the missing marker has been hypothesized
before "the accounts directory the file Data3”. (Figure 4.(¢))

mAlLImu;h consumning the entire input would have guaranteed success, note thal if some branch with cumulative flexibility of 0 or 1 had succeeded, these
branches would never have been retried.

117

Step 17. Conunue 16.a. (Figure 4.(d))

The Object case of the MoveCommand has been bound 0 a DirectoryObjDesc with the Name field bound to
"(accounts)”. Hypothesizing the appropriate kind of marker for each of the remaining cases gives:

a. Source: Move Lhe accounts directory [from] the file Data3.
b. Destination: Move the accounts directory [lo] the file Data3.
c. Location: Move the accounts direclory [in] the file Data3.

The single recovery action of hypothesizing a missing marker is not enough for any of these branches to succeed. Each
would be rescheduled al least one more time. If MULTIPAR allowed the control structure to search the space in-
definitely, 17.a. would eventually succeed at flexibility level 8 (3 points for a missing marker, 3 points for a constraint
violation'!, and 2 points for a missing required case). 17.b. would eventually succeed at level 6 (1 missing marker, 1
constraint violation) and 17.c. at level 8 (1 missing marker. 1 missing required case and 1 constraint violation).

Step 18. Continue 16.b. (Figure 4.(¢e))

There are three branches remaining. one for each of the marked cases in the MoveCommand, with no cases yet filled.
Allowing indefinite expansion, the following would occur:

Source:
a Move [from] the accounts directory the file Data3.
eventually succeeds at +5; 3 for missing marker, 2 for missing case
b. Move [from] the accounts directory [to] the file Data3.
eventually succeeds at +8; 2 missing markers, 1 required case
¢. Move [from] the accounts directory [in] the file Data3.
eventually succeeds at + 13; 2 missing case markers, 1 constraint
violation and 2 missing required cases

Destination:
a. Move [1o] the accounts directory the file Data3.
++* SUCCEEDS at this level (level 3) ***
b. Move [to] the accounts directory [from] the file Data3.
eventually succeeds at +8; 2 missing case markers and 1 missing required case
¢. Move [to] the accounts directory [on] the file Data3.
eventually succeeds at + 13; same as Source c.

Location:
a Move [in] the accounts directory the file Data3.
eventually succeeds at + 5, 1 missing marker and 1 missing case
b. Move [in] the accounts directory [to] the file Data3.
eventually succeeds at + 8, 2 markers, 1 case
c. Move [in] the accounts directory [in] the file Data3.
eventually succeeds at + 13, same as Source c.

Step 19. A successful path is found at level 3.

Hypothesizing the existence of a marker for the Destination enables ImperativeCaseFrame-Strat to continue the second
branch of Figure 4,(e). Now "the accounts directory” can be picked up as the Destination and "the file Data3" as the
unmarked direct object. Since both reguired cases are bound and no input remains, MULTIPAR return the following
instance as its representation of the input:

(Action MOVE
Deviations (MissingMarker Destination)
Source (
IsA FILE
Name (Data3)
Description (
Quantifier (the)))

1, Constraints:(Object DirectoryObjDesc > Source LogicalDeviceObjDexc)

118

Destination (
IsA FILE
Name (Datal)
Directory (accounts)
Description (
Quantifier (the))))"?

5. Conclusion

MULTIPAR is not a detailed cognitive model of human language processing. [t is an attempt to emulate the
performance of humans in comprehending natural language utlerances that deviate from strict grammatical standards.
MULTIPAR uses multiple parsing strategies, and is driven by a “grammar" of descriptions of entities relevant to the
domain of discourse. The multiple stralegies are :ible to interpret the entity definitions in a variety of ways. Some of the
ways depend on the surface language constituenis being in the grammatically correct place. Other ways, though more
computationally expensive, relax the grammatical constraints, and are thus able (0 handle grammatically deviant input
To control the potential for exponential growth in the search space of a parser that accepts ungrammatical as well as
grammatical input, MULTIPAR incorporates a control mechanism that allows possible parses to be explored in order of
increasing degree of ungrammaticality. All of these features of MULTIPAR ure essential to its performance as a robust
natural language parser.

References

L Boggs, W.M. and Carbonell, J. G.. Monarch, 1., and Kee, M., “The DYPAR-I Tutorial and Reference Manual,” Tech. report, Camegie-Mellon

University, Computer Science Department, 1985,

Carbonell, J. G., “Towards a Self-Extending Parser,” Proceedings of the 17th Meeting of the Association for Computational Linguistics, 1979, pp. 3-7.

Carbonell, J. G. and Hayes, P.], “Dynamic Strategy Selection in Flexible Parsing,” Proceedings of the 19th Meeting of the Association for Computational

Linguistics, 1981

4, Carbonell, J. G. and Hayes, P. J., “Recovery Strategies for. Parsing Extragrammatical Language,” American Journal of Computational Linguistics, Vol. 9,
No. 3-4, 1983, pp. 123-146.

5. Carbonell, J. G. and Hayes, P. H_, “Robust Parsing Using Multiple Construction-Specific Strategies,” in Natural Language Parsing Systems, L. Bol, ed.,
Springer-Verlag Publishers, 1985.

6. Dejong. I.F., Skimming Stories in Real Time: An Experiment in Integrated Understanding. PhD dissertation, Yale University, May 1979.

7. Granger, R, “FOUL-UP: A Program that Figures Out Meanings of Words from Context," Proceedings of [JCAI-77, 1977, pp. 172:178.

8. Hayes, P. I, "Entity-Oriented Parsing,” COL/NGS4, Stanford University, July 1984,

9. Hayes, P.J. and Carbonell, J. G., “Multi-Stralegy Parsing and its Role in Robust Man-Machine Communication,” Tech. report CMU-CS-81-118,
Camnegie-Mellon University, Computer Science Department, May 1981

10. Kwasny, S.C. and Sondheimer, N. K., “Ungrammaticality and Extra-Grammaticality in Natural Language Understanding Systems,” Proc. of I7th
Annual Meeting of the Assoc. for Comput. Ling. August 1979, pp. 19-23. '

11. Kwasny, S.C. and Sondheimer, N. K., “Relaxation Techniques for Parsing Grammatically Il-Formed Input in Natural Language Understanding
Systems,” American Journal of Computational Linguistics, Vol. 7, No. 2, 1981, pp. 99-108.

12. Lebowitz, M., Generalization and Memory in an Integrated Understanding System. PhD dissertation, Yale University, Oct. 1980.

13. Weischedel, R. M. and Sondheimer, N. K., “Mets-Rules as a Basis for Processing 11l-formed Input,” Computational Linguistics, Vol. 10, 1984,

14. Weischedel, R. M. and Black, J., “Responding to Potentially Unparsesble Sentences,” American Journal of Computational Linguistics, Vol. 6, 1980, pp.
97-109.

o

D'l‘he reader may have noticed that the directions for filling in the MoveCommand's InstanceTemplate would give different values for the Destinasion
fields. The InsanceTempiaie shown in section 3 has been simplified for illustrative purposes. The real /nstanceTemplate has considerably more complex
directions for filling the felds; from those directions (which include conditionals that test other fields) the instance shown above would be constructed.

119

	cogsci_1985_110-119

