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1.  Introduction
Temperature perturbations (𝐴𝐴 Δ𝑇𝑇  ) may be induced by injecting fluids through wellbores into deep, relatively hot 
reservoirs or by flowing cold fluids through natural or hydraulic fractures and natural faults (Zhou, Oldenburg, 
Spangler, et  al.,  2017; Zhou et  al.,  2019). Reservoir cooling may cause significant thermal stresses near the 
wellbores and along the natural or hydraulic fractures (Martínez-Garzón et al., 2014; Perkins & Gonzalez, 1984; 
Stephens & Voight, 1982). The thermal stresses either suffice to initiate tensile fractures at the walls of wellbores 
or fractures or reduce fracturing pressures in the cooled region so that injection-induced pressure increase (𝐴𝐴 Δ𝑃𝑃  ) 
can facilitate formation breakdown and initiate such fractures (Perkins & Gonzalez, 1985). The initiated fractures 
propagate away from the walls into the rock matrix as the temperature perturbations transport under heat conduc-
tion in the matrix and heat convection along the newly created fractures and in the permeable matrix. The fracture 

Abstract  Injection of cold fluids through/into deep formations may cause significant cooling, thermal 
stress, and possible thermal fracturing. In this study, the thermal fracturing of low-permeability formations 
under one-dimensional heat conduction was investigated using a plane strain model. Dimensionless governing 
equations, with dimensionless fracture length 𝐴𝐴  , aperture 𝐴𝐴 Ω , spacing 𝐴𝐴  , time 𝐴𝐴 𝐴𝐴 , and effective confining stress 

𝐴𝐴   , were derived. Solution of single thermal fracture was derived analytically, while solution of multiple 
fractures with constant (or dynamic) spacing were obtained using the displacement discontinuity method (and 
stability analysis). For single fracture, 𝐴𝐴 (𝜏𝜏𝜏  ) increases nonlinearly with 𝐴𝐴

√

𝜏𝜏 and then transitions to scaling law 
𝐴𝐴  = 𝑓𝑓 ( )

√

𝜏𝜏 , indicating that late-time fracture length increases linearly with the square root of cooling time. 
For constantly spaced fractures, 𝐴𝐴 (𝜏𝜏𝜏  ,) deviates from the single-fracture solution at a later 𝐴𝐴 𝐴𝐴 for a larger 𝐴𝐴  , 
showing slower propagation under inter-fracture stress interaction. For dynamically spaced fractures, fracture 
arrest induced by stress interaction was determined by the stability analysis; the fully transient solution provides 
evolution of dimensionless fracture length, spacing, aperture, and pattern; a similar scaling law, 𝐴𝐴  = 𝑓𝑓

′
( )

√

𝜏𝜏 
with 𝐴𝐴 𝐴𝐴

′
( ) < 𝑓𝑓 ( ) , obtained shows the effect of both stress interaction and fracture arrest. The solution and 

scaling law provide fast predictions for all reservoir and cooling conditions using (single) model parameter 
𝐴𝐴   . Application to a geothermal site with 𝐴𝐴  = 0.11 demonstrates that thermal fractures reach 0.67, 6.25, and 

78.00 m in length, 0.49, 2.30, and 13.00 m in spacing, and 0.43, 2.09, and 12.19 mm in aperture at 1, 100, and 
10,000 days.

Plain Language Summary  Thermal fracturing of relatively hot rock in the subsurface can be 
caused by fluid circulation/flow through hydraulic/natural fractures. Under significant cooling-induced thermal 
stresses, parallel transverse thermal fractures initiate at the surface of a hydraulic/natural fracture. During their 
propagation, some fractures are arrested due to fracture interaction, leading to a hierarchically ordered pattern 
of fractures with increasing spacing. In this study, we investigated these processes using a plane strain model 
and solved for fracture length, spacing, and aperture in a dimensionless framework. These solutions depend 
only on one model parameter, dimensionless effective confining stress, in the range of (0, 1) that represents 
all rock properties, cooling conditions, fluid pressure, and in situ confining stress. The scaling law obtained 
through fitting the solutions shows that late-time fracture length increases linearly with the square root of 
cooling time. Application to a geothermal site shows that thermal fractures can slowly propagate to ∼80 m, with 
∼10 m spacing and ∼10 mm surface aperture, after 27 years of cold-water circulation under a dimensionless 
effective confining stress of 0.11. The solution and scaling law can be used to efficiently predict short-term and 
long-term thermal fracture propagation with arrest.
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propagation in return decreases the injection pressure at the wellbores (showing enhanced injectivity) and affects 
the convective-conductive heat transport in the 𝐴𝐴 Δ𝑇𝑇  -affected region. This two-way coupling includes complicated 
processes: flow of single-phase or multiphase fluids, heat transport, thermoporoelasticity, and fracture propaga-
tion, as documented in some classic books (e.g., Cheng, 2016; Jaeger et al., 2007).

The fracturing driven by thermal stresses, in the absence or presence of pressure increase, of interest in this 
study is referred to hereafter as thermal fracturing, and the thermally driven fractures are referred to as thermal 
fractures. When initiated, they are densely spaced at the cooling wall or surface. Some of the initiated fractures 
continue to propagate with time, while the others are arrested at different times and distances from the cooling 
surface under strong inter-fracture stress interaction. The fracture propagation and arrest lead to fracture spacing 
that changes with time and distance (referred to as dynamic spacing) and a hierarchical pattern of propagating 
and arrested fractures (referred to as dynamically spaced fractures), which is very different from that of hydraulic 
fracturing (Chen et al., 2021). The second key difference is the fact that the effective spatial scales of the physical 
processes (e.g., propagation of thermal fractures and evolution of 𝐴𝐴 Δ𝑇𝑇  and 𝐴𝐴 Δ𝑃𝑃  plumes) are dramatically different 
during thermal fracturing associated with long-term fluid injection and flow, while the temporal scale of hydrau-
lic fracturing is short. It is the two key differences that lead to great challenges in accurate and efficient modeling 
of the coupled processes during thermal fracturing and to better understand the phenomena of fluid flow, heat 
transport, thermoporoelasticity, and thermal fracturing.

1.1.  Field Phenomena of Thermal Fracturing in the Subsurface

Thermal fracturing associated with cold fluid injection through vertical or horizontal wells has been reported 
from many sites of waterflooding, CO2 storage, unconventional shale gas and oil production, geothermal energy 
utilization, enhanced geothermal systems (EGS), and so on.

Thermal fracturing in subsurface reservoirs was first reported in the late 1970s and early 1980s from the fields 
of waterflooding via injection of cold seawater or produced water from oil and gas fields around the world 
(Detienne et al., 1998; Morales et al., 1986; Svendson et al., 1991; Williams et al., 1987). It was observed that 
fracturing pressure gradients were lowered by temperature reductions in step-rate injection tests, injectivity was 
enhanced by long-term injection of cold water, and injected water preferentially migrated through newly fractured 
perforated/screened intervals of injection wells, a phenomenon of so-called flow focusing. Moreover, further 
propagation of vertical thermal fractures beyond the injection reservoirs was reported to damage the underlying/
overlying seals in some rare cases (Martins et al., 1995). These field observations drove the early development of 
simplified analytical solutions with thermal stresses considered (Koning, 1985; Koning & Niko, 1985; Perkins & 
Gonzalez, 1984, 1985) and late site-specific modeling based on thermoporoelasticity (van den Hoek et al., 1999).

Similar field observations were recently reported at the sites of cold, liquid or supercritical, CO2 injection for 
geological carbon storage (Rangriz Shokri et al., 2019; Zhou et al., 2020). The maximum temperature reduction 
varied from 30°C at Ordos, China to 60°C at Cranfield, Mississippi, USA. The field observations of enhanced 
injectivity and flow focusing were attributed to thermal fracturing induced by high thermal stresses. At these 
reported sites, pressure increase alone could not lead to formation breakdown and fracture initiation and propa-
gation, and fracture propagation was controlled by thermal stresses within the cooled region. Cyclic cooling of 
as high as 125°C was recorded by distributed temperature sensing during multistage hydraulic fracturing of a 
horizontal well in a hot unconventional shale reservoir (Raterman et al., 2018, 2019). Such a strong cooling is 
expected to initiate and propagate thermal fractures from the cased and unperforated well section. These thermal 
fractures could have an interplay with subsequent hydraulic fractures for a perforated well section.

Thermal stimulation via cold-water injection was used to increase well injectivity or productivity in geothermal 
fields with natural fractures of sufficient permeability (e.g., Axelsson et al., 2006; Bradford et al., 2016; Kitao 
et al., 1995; Siratovich et al., 2011). The injectivity/productivity at many geothermal wells reported was enhanced 
by a factor of up to 40. The enhancement was attributed to the cleaning of debris or mineral deposits from open 
fractures intercepted by the wellbore during drilling, the re-opening of natural fractures by thermal contraction, 
and the creation of new fractures from the thermal stress exerted on the reservoir rocks (Axelsson et al., 2006). 
The stimulation duration ranged from several hours to several weeks. Enhanced injectivity was also observed 
in a geothermal reservoir at Raft River, Idaho, USA when cold water was continuously injected over the years 
(Bradford et al., 2015, 2016). The sustainability of fractures observed during and after long-term shut-ins was 
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attributed to the irreversible rock contraction. Enhanced injectivity and fracture sustainability were reported at 
water injection wells used to maintain fluid pressure in geothermal reservoirs.

Short-term thermal fracturing to enhance the permeability of EGS formations with insufficient permeability was 
tested at some sites. The injectivity was increased by a factor of 2 after a 60-hr thermal stimulation at Rittershof-
fen, France as the near-well permeability was enhanced (Vidal et al., 2016). The decrease of compressional and 
shear wave velocities was attributed to thermal fracturing at Fenton Hill, New Mexico (Pearson et al., 1983). 
However, thermal fracturing has not gained much attention at many EGS sites when compared with hydraulic 
fracturing or shearing (e.g., Brown et al., 2012; Evans, 2005; Evans et al., 2005), even though thermoporoelastic-
ity has been recognized when water injection with hydraulic stimulation causes significant cooling (Loret, 2019).

Unlike the short-term and long-term thermal fracturing associated with well injection reported above, long-term 
thermal fracturing was proposed in the 1970s to enhance fracture-matrix heat exchange area during water circu-
lation in EGS operation (Barr, 1980; Demuth & Harlow, 1980; Harlow & Pracht, 1972; Murphy, 1978). Their 
studies focused on the propagation of secondary, transverse thermal fractures initiated from primary hydraulic 
fractures stimulated to form a fracture network for heat extraction. The same concept was proposed to enhance 
unconventional gas/oil production from a hydraulically stimulated field (Enayatpour et al., 2019; Enayatpour & 
Patzek, 2013). This type of thermal fracturing with fracture propagation and arrest is investigated in this study.

1.2.  Experimental Studies on Thermal Fracturing

Thermal fracturing of rock samples has been imaged in laboratory experiments under heating, cooling, or cyclic 
thermal loading (Browning et al., 2016; Chaki et al., 2008; Fredrich & Wong, 1986; Shen et al., 2021; H. F. 
Wang et al., 1989; F. Wang et al., 2019; Wang & Konietzky, 2019). Only a few of these studies focused on cool-
ing-induced fracturing. Browning et al. (2016) and Daoud et al. (2020) found that dense thermal fractures were 
generated around microstructures after single-cycle or multi-cycle heating and cooling with a peak temperature 
difference up to 1,100 oC, and these fractures were mainly created during cooling as shown by the rate and energy 
of acoustic emissions recorded. Experiments with liquid nitrogen were conducted on samples of granite, shale, 
concrete, or sandstone (Cha et al., 2014, 2017, 2018; Wu et al., 2019; S. Zhang et al., 2018), and a few mesoscale 
fractures were identified in the broken samples. The experiments with sudden cooling (with 𝐴𝐴 Δ𝑇𝑇  of 25°C–500°C) 
of gradually heated granite samples and subsequent hydraulic fracturing showed a significant decrease of break-
down pressure with the increase of 𝐴𝐴 Δ𝑇𝑇  , as well as different morphology of hydraulic fractures (Li et al., 2021). 
On the other hand, thermal shock experiments on ceramic (Bahr et al., 1986; Shao et al., 2011) and glass samples 
(Geyer & Nemat-Nasser, 1982) without confining stress applied showed a hierarchical pattern of thermal frac-
tures caused by fracture propagation and arrest. The different fracture patterns revealed in the above experiments 
can be attributed to their setups with varying mechanical and cooling boundary conditions, as well as sample 
sizes and shapes. Of great interest to subsurface engineering applications are those boundary conditions related 
to wellbore injection and water circulation/flow along hydraulic/natural fractures.

1.3.  Modeling of Thermal Fracturing in the Subsurface

Thermal fracturing has been investigated using simplified analytical models. The thermal stresses around a 
cooled wellbore were computed based on either the solutions of one-dimensional radial cooling (Stephens & 
Voight, 1982) or the step cooling in a circular or elliptical cooled region using energy balance (Perkins & Gonza-
lez, 1984, 1985). A highly simplified fracture model was developed by Perkins and Gonzalez (1985) to predict 
the propagation of thermal fractures in the elliptical cooled region. Koning (1985) and Koning and Niko (1985) 
developed an analytical model to estimate the geometry of a waterflood-induced fracture driven by both poroelas-
tic and thermoelastic stresses. These early solutions were limited in terms of relevant theories and computational 
approaches. More rigorous theories (e.g., linear elastic fracture mechanics [LEFMs] and Green's function-based 
elastic relationships) and approaches (e.g., the displacement discontinuity method [DDM]) applied to the theoret-
ical study of hydraulic fracturing in the past two decades (Adachi & Detournay, 2002, 2008; Bunger et al., 2005; 
Chen, Barron, et al., 2018; Lu et al., 2020) have not been employed to theoretically study subsurface thermal 
fracturing.

Many thermo-hydro-mechanical (THM) simulators have been developed and used to model the coupled THM 
effects in the presence of fluid and pressure plumes often on the scale of km to hundreds of km (Goodarzi 
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et al., 2012; Liu et al., 2018; Salimzadeh et al., 2016; Salimzadeh, Paluszny, et al., 2018; Vilarrasa et al., 2014). 
Such general modeling studies focus on long-term effects of thermal stresses and fracturing and may underes-
timate the 𝐴𝐴 Δ𝑇𝑇  plume and fracturing region near injection wells for short-term injection because of strong grid 
effects. The grid effects were shown in Rangriz Shokri et al. (2019) by comparing modeling results with and 
without local mesh refinement around the injection well. In the latter, the simulated 𝐴𝐴 Δ𝑇𝑇  and thermal stresses 
were not sufficient to initiate fracturing, contradicting field observations of thermal fracturing at the Aquistore, 
Canada site. Salimzadeh, Paluszny, et al. (2018) focused on the growth of fracture length and aperture induced 
by cold CO2 injection and found a significant increase in fracture aperture caused by near-well reservoir cooling. 
However, it is still a challenge for THM simulators to efficiently model decameter-scale near-well 𝐴𝐴 Δ𝑇𝑇  plume and 
fracturing region and km-scale fluid and pressure plumes and accurately account for the coupled THM-fracturing 
processes. This is particularly true when interpreting field phenomena (e.g., enhanced injectivity and flow focus-
ing) observed at specific injection sites.

1.4.  Modeling of Thermal Shock Fracturing

On the other hand, thermal shock fracturing, a common phenomenon in natural processes and engineered struc-
tures under no confining stress, has been investigated to better understand the initiation and propagation of ther-
mal fractures induced by sudden temperature changes (Bahr et al., 1996, 2010). Critical to propagation of multi-
ple thermal fractures is fracture arrest that results in dynamic fracture spacing and hierarchical fracture patterns. 
The fracture arrest has been investigated using the principle of energy minimization or stability analysis. The 
former solves for fracture length and spacing through minimizing the total energy, the sum of strain energy and 
fracture surface energy, in the system at a given time (Hasselman, 1963; Jiang et al., 2012). The strain energy 
is normally computed using approximation equations (Nemat-Nasser et  al.,  1978; Nemat-Nasser & Oranrat-
nachai, 1979; Tarasovs & Ghassemi, 2014) or numerical methods (Jenkins, 2005), while the fracture surface 
energy is computed by the product of fracture length and energy release rate. The stability analysis was first intro-
duced to study thermal shock fractures by Nemat-Nasser et al. (1978) and Nemat-Nasser et al. (1980). A criterion 
based on the stress intensity factor was used to check whether fracture arrest occurs or not and solve for the 
position of the occurring arrest. The stress intensity factor in the fracture-arrest criterion is normally calculated 
using numerical approaches, such as finite element method (FEM) and boundary element method (BEM) (Bahr 
et al., 1996). With this criterion, Bahr et al. (1996) solved with BEM for the relationship between fracture length 
and spacing in a dimensionless form over a large time range (Bahr et al., 2010). Chen and Zhou (2021) found 
the reactivation of initially arrested thermal fractures and derived a new relationship between fracture length and 
spacing in a dimensionless form.

Various numerical models have also been used for modeling thermal shock fracturing, including damage-based 
models (Tang et al., 2016, 2020), phase-field models (Chu et al., 2017; Miehe et al., 2015), particle-based discrete 
element method (DEM) models (Huang et al., 2016), and BEM models (Tarasovs & Ghassemi, 2014). However, 
most of the simulations (e.g., Chu et al., 2017; Tang et al., 2020) focused on thermal effects and fracturing under 
a specific set of material properties and conditions. Few modeling studies discussed the general mechanisms 
and phenomena of thermal fracturing. For example, the DEM modeling by Huang et al. (2016) showed that the 
maximum length of multiple interacting, propagating thermal fractures is linearly related to the square root of 
cooling time. The BEM modeling with randomly initiated fractures by Tarasovs and Ghassemi (2014) indicated 
an explicit relationship between normalized fracture length and spacing and normalized cooling depth obtained 
through power-law fitting of their numerical results. However, more comprehensive scaling behavior of fracture 
length, spacing, and aperture need to be investigated.

1.5.  Objectives

For the subsurface applications mentioned above, there are different scenarios of thermal fracturing (see 
Figure  1), including (a) secondary, transverse (i.e., half-plane) thermal fractures initiated at the surfaces of 
hydraulic fractures or other fluid channels and driven by heat conduction into the low-permeability rock matrix 
(Enayatpour et al., 2019; Murphy, 1978), (b) radial, transverse thermal fractures initiated at horizontal wells and 
driven by radial heat conduction in the rock matrix in response to constant or cyclic wellbore cooling (Raterman 
et  al.,  2018,  2019), (c) longitudinal fractures initiated at vertical wells and driven by radial heat conduction 
(Brudy & Zoback, 1999), and (d) thermal fractures driven by convective-conductive heat transfer in the newly 
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created thermal fractures and the permeable rock matrix (Rangriz Shokri et al., 2019; Zhou et al., 2020). For the 
first three scenarios, heat convection in the rock and created thermal fractures is negligible for injection through 
cased well sections or injection through/into low-permeability rock (e.g., hot crystalline rock and unconventional 
shale), leading to simplified modeling. In all four scenarios, cooling-induced thermal stress is the dominant driv-
ing force for fracture propagation.

Our objectives are to theoretically address the different types of thermal fracturing in subsurface applications. To 
achieve these goals, we (a) combine the advanced modeling theories and approaches for thermal shock fracturing 
(e.g., the stability analysis) and hydraulic fracturing (e.g., scaling analysis and DDM), (b) obtain dimensionless 
solutions and late-time generic scaling behavior of fracture length, spacing, and aperture, (c) better understand 
the underlying mechanisms (i.e., inter-fracture stress interaction and fracture arrest), by comparing solutions of 
single fractures, constantly spaced multiple fractures (without arrest), and dynamically spaced multiple fractures 
(with arrest), and (d) systematically investigate the propagation and arrest of thermal fractures in deep formations 
under injection/flow conditions. For the first three scenarios with negligible heat convection (see Figure 1), the 
obtained dimensionless solutions are profiles for fracture spacing, length, and aperture, as a function of one to 
three dimensionless model parameters that cover the entire spectrum of rock properties, in situ confining stress, 
fluid pressure, and cooling conditions, as well as wellbore radius. In contrast, numerous simulations using tradi-
tional numerical simulators are needed for different combinations of the properties and conditions.

In this study, we focus on the first scenario (Figure 1a) with one-dimensional heat conduction and negligible 
heat convection using a plane strain model. The study is organized as follows. First, the governing equations for 
heat conduction and thermoelastic deformation and the criteria for fracture propagation and arrest are given and 
converted to their dimensionless counterparts using scaling analysis in Section  2. Second, the dimensionless 
solutions and scaling laws of single thermal fracture (Case A), constantly spaced multiple fractures (Case B), 
and dynamically spaced multiple fractures (Case C) are presented in Section 3. These solutions are compared 
to show the effects of inter-fracture stress interaction and fracture arrest. The associated methodologies for the 
analytical solution for Case A and for the DDM discretization and solution procedures and algorithms for Cases B 

and C are detailed in Appendices. Third, the verification of the dimensionless 
solutions using a FEM-based fracture model and the application of the Case 
C solution to a real-world geothermal reservoir to predict the evolution and 
pattern of thermal fractures are given in Section 4. Finally, the validity of the 
assumptions and simplifications used in the theoretical analysis is discussed 
in Section 5.

2.  Problem Formulation and Governing Equations
We are interested in the thermal fracturing of a 2-D half-plane bounded by 
a surface that represents a primary hydraulic fracture or fluid channel in a 
low-permeability reservoir (Enayatpour et al., 2019; Murphy, 1978). In the 
plane strain model shown in Figure 2, the half-plane extends infinitely in the 

Figure 1.  Different scenarios of thermal fracturing in deep formations: (a) half-plane thermal fractures driven by heat 
conduction from a cooling surface (e.g., a hydraulic fracture or fluid channel), (b) radial thermal fractures, and (c) 
longitudinal thermal fractures driven by radial heat conduction around a wellbore. The directions of fluid flow are indicated 
by black arrows.

Figure 2.  Schematic of propagation and arrest of thermal fractures of length 
𝐴𝐴 𝐴𝐴 , spacing 𝐴𝐴 𝐴𝐴 , and aperture profile 𝐴𝐴 𝐴𝐴 , initiated at the surface with a cooling of 
𝐴𝐴 Δ𝑇𝑇𝑠𝑠 and fluid pressure of 𝐴𝐴 𝐴𝐴𝑓𝑓 in a half-plane, under in situ confining stress of 𝐴𝐴 𝐴𝐴0 

and pore pressure of 𝐴𝐴 𝐴𝐴0 (modified from Chen and Zhou [2021]).
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𝐴𝐴 𝐴𝐴 direction and sufficiently long in the 𝐴𝐴 𝐴𝐴 direction parallel to the surface and is subject to a uniform, in situ confin-
ing stress (or far-field stress), 𝐴𝐴 𝐴𝐴0 , in the 𝐴𝐴 𝐴𝐴 direction. Initially, the half-plane is of uniform in situ pore pressure 𝐴𝐴 𝐴𝐴0 
and temperature 𝐴𝐴 𝐴𝐴𝑟𝑟 . A lower temperature of 𝐴𝐴 𝐴𝐴𝑤𝑤 is instantaneously introduced at the surface (𝐴𝐴 𝐴𝐴 = 0 ) at time 𝐴𝐴 𝐴𝐴 = 0 
and maintained constant over 𝐴𝐴 𝐴𝐴 ≥ 0 . This boundary condition represents a fluid of temperature 𝐴𝐴 𝐴𝐴𝑤𝑤 and pressure  

𝐴𝐴 𝐴𝐴𝑓𝑓 (𝐴𝐴 ≥ 𝑝𝑝0 ) circulates through the primary hydraulic fracture or flows through the fluid channel, while the temper-
ature at 𝐴𝐴 𝐴𝐴 = ∞ remains at 𝐴𝐴 𝐴𝐴𝑟𝑟 . We are interested in strong surface cooling (𝐴𝐴 Δ𝑇𝑇𝑠𝑠 = 𝑇𝑇𝑟𝑟 − 𝑇𝑇𝑤𝑤 ) so that high ther-
mal stresses can initiate multiple thermal fractures at the surface. As observed in laboratory experiments (Bahr 
et al., 1986; Geyer & Nemat-Nasser, 1982; Shao et al., 2011), the thermal fractures commonly initiate and prop-
agate in the direction perpendicular to the cooling surface due to more significant contraction along the direction 
of the surface. With heat transfer in the half-plane, some of the initiated fractures (referred to as propagating 
fractures) continue to propagate, while the others (referred to as arrested fractures) are arrested at different time 
and distance from the surface, leading to dynamically spaced multiple fractures and a hierarchical fracture pattern 
(Bahr et al., 1986; Geyer & Nemat-Nasser, 1982; Shao et al., 2011). This fracture pattern can be attributed to 
stress interaction between propagating fractures. (Note that the thermal fractures are hydraulically connected with 
the hydraulic fracture/channel at the surface, all with fluid pressure 𝐴𝐴 𝐴𝐴𝑓𝑓 .) The solutions of the problem include the 
evolution of the length (𝐴𝐴 𝐴𝐴(𝑡𝑡) ), spacing (𝐴𝐴 𝐴𝐴(𝑡𝑡) ), and aperture profile (𝐴𝐴 𝐴𝐴(𝑥𝑥𝑥 𝑥𝑥) ) of all thermal fractures, as well as the 
pattern of arrested and propagating fractures at different times.

The coupled problem with fracture propagation and arrest, thermoporoelasticity, heat transfer (convection and 
conduction), and fluid flow in the fractures and reservoir can be solved numerically only. To make the problem 
tractable theoretically, we make the following assumptions:

1.	 �The rock matrix is assumed to be impermeable with no fluid flow. Heat convection by fluid flow in the 
thermal fractures is negligible in comparison with heat conduction through the rock matrix from the cooling 
surface. (As shown by Salimzadeh, Nick, et al. [2018], heat convection has a negligible effect on the tempera-
ture distribution for rock permeability less than 10 −17 m 2.) The reservoir is homogeneous and isotropic for heat 
conduction, not affected by thermal fractures (because of the difference between their aperture and spacing); 
the analytical solution of temperature available can be used to calculate thermal stress. This assumption of 
homogeneity and isotropy is commonly used for deriving analytical solutions in subsurface hydrology (Cihan 
et al., 2011; Zhou et al., 2019).

2.	 �In the 2-D plane strain model used (not fully 3-D), propagating thermal fractures are equally spaced at any 
time and fracture arrest occurs alternately, leading to the mode-I propagation. Fracture propagation and 
arrest are controlled only by the stresses in the mechanically homogeneous half-plane assumed by neglect-
ing microscale rock heterogeneities and mesoscale joints. These lead to an idealized hierarchical pattern of 
dynamically spaced thermal fractures that is not far from those observed in laboratory experiments of thermal 
shock fractures. This plane strain assumption is commonly used for analyzing thermal shock fracturing (Bahr 
et al., 2010; Murphy, 1978).

3.	 �Only thermal fractures under cooling-induced thermal stress and fluid pressure 𝐴𝐴 𝐴𝐴𝑓𝑓 in the fractures are modeled. 
The pressure is not sufficient to create new hydraulic fractures so that the thermal stress is the driving force 
of thermal fracturing. The hydraulic fracture (i.e., the cooling surface), considered as a symmetric boundary, 
is not modeled.

4.	 �The reservoir is a porous medium saturated with water. The initial stress state with in situ confining stress 
𝐴𝐴 𝐴𝐴0 , fluid pressure 𝐴𝐴 𝐴𝐴0 , and temperature 𝐴𝐴 𝐴𝐴𝑟𝑟 before fluid circulation and reservoir cooling can be described by 

far-field effective stress 𝐴𝐴 𝐴𝐴𝑒𝑒 = 𝜎𝜎0 − 𝑝𝑝0 at the two side boundaries using Terzaghi's effective stress principle 
(Cheng, 2016; Terzaghi, 1936). This boundary condition of 𝐴𝐴 𝐴𝐴𝑒𝑒 is used in our modeling.

5.	 �During fluid circulation and reservoir cooling, the fluid pressure in the hydraulic fracture and thermal frac-
tures 𝐴𝐴 𝐴𝐴𝑓𝑓 (≥�0 ) is constant with time and uniformly distributed (because of the large time scale of thermal frac-
turing and small flow rate through the thermal fractures) (Brudy & Zoback, 1999; Rummel & Hansen, 1989), 
leading to a pressure increase in thermal fractures 𝐴𝐴 Δ𝑝𝑝 = 𝑝𝑝𝑓𝑓 − 𝑝𝑝0 . By neglecting the effects of thermoporoe-
lasticity (Rummel & Hansen, 1989), we define an effective confining stress 𝐴𝐴 𝐴𝐴𝑒𝑒𝑒𝑒 = 𝜎𝜎𝑒𝑒 − Δ𝑝𝑝 = 𝜎𝜎0 − 𝑝𝑝𝑓𝑓 . It is 
this effective confining stress, along with thermal stress and inter-fracture stress interaction, that controls the 
propagation and arrest of thermal fractures.

The validity of the first two assumptions is discussed in Section 5. The last two assumptions are valid for a 
porous but impervious formation with uniform pore pressure, as used for estimating the breakdown pressure in 
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a wellbore (Hubbert & Willis, 1957; Jaeger et al., 2007; Schmitt & Zoback, 1989a, 1989b). For example, the 
Terzaghi effective stress 𝐴𝐴 𝐴𝐴𝑒𝑒 = 𝜎𝜎0 − 𝑝𝑝0 at the far field and 𝐴𝐴 Δ𝑝𝑝 = 𝑝𝑝𝑓𝑓 − 𝑝𝑝0 on the internal boundary of a wellbore 
were used (Hubbert & Willis,  1957; Zoback,  2007). For a porous and permeable formation, there are ther-
moporoelastic effects on fracture propagation and arrest that need to be considered. The 𝐴𝐴 Δ𝑝𝑝 -induced poroelastic 
effect around a drilled wellbore was estimated analytically using the Biot's theory of poroelasticity (Detournay 
& Cheng, 1988, 1993). Such a poroelastic effect on hydraulic fractures was also shown by comparing numerical 
results with semi-analytical solutions developed based on the linear elasticity (Gao & Ghassemi, 2020; Salimza-
deh et al., 2017). The cooling-induced poroelastic effect includes a pressure decrease caused by more contrac-
tion of water than solid grains (with a smaller thermal expansion coefficient) (Cheng, 2016; McTigue, 1986). 
The two poroelastic effects (i.e., injection-induced pressure increase and cooling-induced pressure decrease) are 
compensated to a certain degree in a thermoporoelastic rock mass. These effects depend on rock properties, such 
as porosity, permeability, the Biot coefficient for poroelasticity, and thermal properties (Cheng, 2016; Jaeger 
et al., 2007; McTigue, 1986; Salimzadeh, Nick, et al., 2018; Schmitt & Zoback, 1989b). The thermal properties 
do not vary considerably among different rocks. However, the wide ranges of rock porosity (less than 1%–40%), 
permeability (10 −21 to 10 −9 m 2), and the Biot coefficient (0–1) can have critical influences on the thermoporoe-
lastic effects (Salimzadeh, Nick, et al., 2018). We limit our study to a low-permeability, low-porosity crystalline 
rock, or low-permeability unconventional shale that are of interest to many applications; in the cases, the Biot 
coefficient is often small and the resultant thermoporoelastic effect is expected to be relatively small.

2.1.  Governing Equations

For the problem with the above assumptions shown in Figure 2, the coupled thermo-mechanical-fracturing (TMF) 
processes are governed by the heat conduction equation, the elastic equilibrium equation for stresses induced by 
cooling and fracturing (as well as the effective confining stress), and the criteria for fracture propagation and 
arrest. The following governing equations differ from those in Chen and Zhou (2021) by introducing the effective 
confining stress 𝐴𝐴 𝐴𝐴𝑒𝑒𝑒𝑒 for subsurface applications as discussed above.

2.1.1.  Heat Conduction and Thermal Stress

The governing equation for one-dimensional heat conduction (Carslaw & Jaeger, 1959) is written

𝜕𝜕
2
𝑇𝑇

𝜕𝜕𝜕𝜕2
=

1

𝐷𝐷

𝜕𝜕𝜕𝜕

𝜕𝜕𝜕𝜕
� (1)

where 𝐴𝐴 𝐴𝐴 is the distance from the cooling surface, 𝐴𝐴 𝐴𝐴 is the thermal diffusivity calculated by 𝐴𝐴 𝐴𝐴 = 𝜆𝜆∕𝜌𝜌𝜌𝜌 , 𝐴𝐴 𝐴𝐴 is the 
thermal conductivity, 𝐴𝐴 𝐴𝐴 is the rock density, and 𝐴𝐴 𝐴𝐴 is the specific heat capacity at constant pressure.

The solution of Equation 1 for the transient temperature change, 𝐴𝐴 Δ𝑇𝑇 (𝑥𝑥𝑥 𝑥𝑥) , in the half-plane, with initial condition 
𝐴𝐴 Δ𝑇𝑇 (𝑥𝑥𝑥 0) = 0 and boundary conditions 𝐴𝐴 Δ𝑇𝑇 (0, 𝑡𝑡) = Δ𝑇𝑇𝑠𝑠 and 𝐴𝐴 Δ𝑇𝑇 (∞, 𝑡𝑡) = 0, is available in the literature (Carslaw & 

Jaeger, 1959). 𝐴𝐴 Δ𝑇𝑇 (𝑥𝑥𝑥 𝑥𝑥) is calculated by

Δ� (�, �) = Δ������
�

2
√

��� (2)

where 𝐴𝐴 erfc() is the complementary error function.

The thermally induced stress in the 𝐴𝐴 𝐴𝐴 direction in the half-plane (Bažant et al., 1979; Tarasovs & Ghassemi, 2011, 
2014) is calculated by

𝜎𝜎Δ𝑇𝑇 (𝑥𝑥𝑥 𝑥𝑥) =
𝐸𝐸

(1 − 𝜈𝜈)
𝛽𝛽Δ𝑇𝑇 (𝑥𝑥𝑥 𝑥𝑥)� (3)

where 𝐴𝐴 𝐴𝐴 is the Young's modulus of the rock, 𝐴𝐴 𝐴𝐴 is the Poisson's ratio, and 𝐴𝐴 𝐴𝐴 is the linear thermal expansion coef-
ficient. The thermal stress is applied on the surfaces of thermal fractures in the elasticity equation according to 
the superposition principle.
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2.1.2.  Elasticity Equation

In addition to the cooling-induced thermal stress (𝐴𝐴 𝐴𝐴Δ𝑇𝑇  ), as well as the effective confining stress (𝐴𝐴 𝐴𝐴𝑒𝑒𝑒𝑒 ), we have 
to consider the stress induced by the fracture of interest, located at the center of the plane (𝐴𝐴 𝐴𝐴 = 0 ) and referred 
to as the center fracture, and stress interaction between the center fracture and all other fractures located at 

𝐴𝐴 𝐴𝐴 = ±𝑘𝑘
′
𝑑𝑑 (𝑘𝑘

′
= 1,…∞) . We can write the elastic equilibrium equations for this fracture (X. Zhang et al., 2009; 

Z. Zhang et al., 2015):
∞
∑

𝑘𝑘=1
∫

𝑙𝑙𝑘𝑘

0

[𝑔𝑔𝑁𝑁𝑁𝑁 (𝑥𝑥𝑥 𝑥𝑥)𝑢𝑢(𝑠𝑠𝑠 𝑠𝑠) + 𝑔𝑔𝑁𝑁𝑁𝑁 (𝑥𝑥𝑥 𝑥𝑥)𝑤𝑤(𝑠𝑠𝑠 𝑠𝑠)] 𝑑𝑑𝑑𝑑 = 𝜎𝜎Δ𝑇𝑇 (𝑥𝑥𝑥 𝑥𝑥) − 𝜎𝜎𝑒𝑒𝑒𝑒� (4a)

∞
∑

𝑘𝑘=1
∫

𝑙𝑙𝑘𝑘

0

[𝑔𝑔𝑆𝑆𝑆𝑆 (𝑥𝑥𝑥 𝑥𝑥)𝑢𝑢(𝑠𝑠𝑠 𝑠𝑠) + 𝑔𝑔𝑆𝑆𝑆𝑆 (𝑥𝑥𝑥 𝑥𝑥)𝑤𝑤(𝑠𝑠𝑠 𝑠𝑠)] 𝑑𝑑𝑑𝑑 = 0� (4b)

where 𝐴𝐴 𝐴𝐴 is the fracture index that ranges over all the fractures, subscripts 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 denote the normal direction 
(the 𝐴𝐴 𝐴𝐴 direction) and the shear direction (the 𝐴𝐴 𝐴𝐴 direction) respectively, gNS, gNN, gSS, and gSN are the hyper singular 
Green's functions (Crouch & Starfield, 1983), 𝐴𝐴 𝐴𝐴 is the shear displacement and 𝐴𝐴 𝐴𝐴 is the normal displacement (i.e., 
fracture aperture).

The fracture pattern of interest in this study is always symmetric along any thermal fracture (see the second 
assumption above). Therefore, the shear displacement is zero, leading to a simplified form of Equations 4a and 4b 
as follows

∞
∑

𝑘𝑘=1
∫

𝑙𝑙𝑘𝑘

0

𝑔𝑔𝑁𝑁𝑁𝑁 (𝑥𝑥𝑥 𝑥𝑥)𝑤𝑤(𝑠𝑠𝑠 𝑠𝑠)𝑑𝑑𝑑𝑑 = 𝜎𝜎Δ𝑇𝑇 (𝑥𝑥𝑥 𝑥𝑥) − 𝜎𝜎𝑒𝑒𝑒𝑒� (5)

2.1.3.  Criterion for Fracture Propagation

It is assumed that fracture propagation is quasistatic and governed by the LEFM. Since the LEFM theory cannot 
simulate fracture initiation in intact rock, initial fractures with very small length are needed to start the analysis of 
this study. The fracture propagation criterion is that the stress intensity factor (𝐴𝐴 𝐴𝐴I ) equals the rock toughness (𝐴𝐴 𝐴𝐴Ic ):

𝐾𝐾I = 𝐾𝐾Ic� (6)

For multiple thermal fractures, the stress intensity factor for each fracture is computed according to the asymp-
tote of fracture aperture near the fracture tip. Based on the LEFM theory, the following condition (Lecampion & 
Detournay, 2007; Rice, 1968) holds

𝑤𝑤(𝑥𝑥) →

√

32

𝜋𝜋

(

1 − 𝜈𝜈
2
)
√

𝑙𝑙 − 𝑥𝑥𝑥𝑥I

𝐸𝐸
, for 𝑥𝑥 → 𝑙𝑙� (7)

Although the elasticity equation, Equation 5, and the fracture propagation criteria, Equations 6 and 7, are static 
or quasistatic, they are coupled with the transient temperature solution in Equation 2 through thermal stress given 
in Equation 3. This observation is useful for deriving scaling laws for late-time fracture propagation using vari-
able separation. In addition, Equations 6 and 7 need to be solved together with Equation 5 at each time step for 
computing the fracture aperture and length, both of which depend on effective confining stress 𝐴𝐴 𝐴𝐴𝑒𝑒𝑒𝑒 and thus fluid 
pressure in the fractures.

2.1.4.  Stability Analysis for Fracture Arrest

In addition to fracture propagation, we also need to consider fracture arrest caused by inter-fracture stress inter-
action. For multiple fractures with a specific spacing, a condition of instability, under which some fractures are 
arrested, occurs during fracture propagation. The stability analysis (Bahr et  al.,  2010; Hofmann et  al.,  2011; 
Nemat-Nasser et al., 1980) is used to find the critical fracture length corresponding to the fracture arrest. We 
divide equally spaced fractures with identical length into two fracture subsets: subset A with length 𝐴𝐴 𝐴𝐴𝐴𝐴 for every 
other fracture remaining propagating and subset B with length 𝐴𝐴 𝐴𝐴𝐵𝐵 for other fractures to be arrested. The instability 
condition (Bahr et al., 2010; Chen & Zhou, 2021; Hofmann et al., 2011; Nemat-Nasser et al., 1978, 1980) in the 
case of 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 > 0, 𝑑𝑑𝑑𝑑𝐵𝐵 = 0 is expressed by
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𝜕𝜕𝜕𝜕𝐴𝐴

𝜕𝜕𝜕𝜕𝐴𝐴
−

𝜕𝜕𝜕𝜕𝐵𝐵

𝜕𝜕𝜕𝜕𝐴𝐴
> 0� (8)

where 𝐴𝐴 𝐴𝐴𝐴𝐴 and 𝐴𝐴 𝐴𝐴𝐵𝐵 are the stress intensity factors of fractures in subset A and subset B, respectively.

This instability condition implies that a minimum extension of fractures in subset A facilitates their propagation 
and retards fractures in subset B. (In reality, such an unequal fracture length may be caused by a perturbation due 
to rock heterogeneity or non-uniform fracture spacing.) The condition is checked in the modeling by artificially 
extending subset A fractures by a certain length (e.g., 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴 ≈ 0.01𝑙𝑙𝐴𝐴 ) while fixing the thermal stress field, and then 
solving for 𝐴𝐴 𝐴𝐴𝐴𝐴 and 𝐴𝐴 𝐴𝐴𝐵𝐵 . Note that the stability analysis provides an efficient way to theoretically model dynami-
cally spaced thermal fractures and the assumption of equally spaced fractures is needed to facilitate the analysis. 
In addition, for a large number of equally spaced fractures, the selection of propagating and arrested fractures 
does not affect the fracture pattern predicted because of their alternating nature.

2.2.  Dimensionless Governing Equations

To focus on the scaling behavior of thermal fractures, we introduce dimensionless variables that group diverse 
rock properties, in situ conditions, and boundary conditions shown in Equations 2 through 8. A similar scal-
ing analysis has been extensively used for semi-analytical modeling of hydraulic fractures (Adachi & Detour-
nay, 2002; Bunger et al., 2005; Chen, Barron, et al., 2018; Lecampion & Detournay, 2007; Lu et al., 2017).

For a single thermal fracture in the half-plane, the stress intensity factor (Chen, Barron, et al., 2018; Lecampion 
& Detournay, 2007) is computed by

𝐾𝐾I = 2

√

𝑙𝑙

𝜋𝜋 ∫

𝑙𝑙

0

𝜎𝜎Δ𝑇𝑇 − 𝜎𝜎𝑒𝑒𝑒𝑒

√

𝑙𝑙2 − 𝑥𝑥2

𝑑𝑑𝑑𝑑� (9)

Substituting Equations 2,  3, and 6 into Equation 9 leads to the governing equation for propagation of single 
thermal fracture:

(1 − 𝑣𝑣)𝐾𝐾Ic

2𝐸𝐸𝐸𝐸Δ𝑇𝑇𝑠𝑠

=

√

𝑙𝑙

𝜋𝜋 ∫

1

0

1
√

1 − 𝜉𝜉2
erfc

(

𝜉𝜉𝜉𝜉

2

√

𝐷𝐷𝐷𝐷

)

𝑑𝑑𝑑𝑑 −
(1 − 𝜈𝜈)𝜋𝜋𝜋𝜋𝑒𝑒𝑒𝑒

2𝐸𝐸𝐸𝐸Δ𝑇𝑇𝑠𝑠

√

𝑙𝑙

𝜋𝜋
� (10)

where 𝐴𝐴 𝐴𝐴 = 𝑥𝑥∕𝑙𝑙 .

Following a preliminary analysis of Equation 10, we introduce dimensionless fracture length 𝐴𝐴 () , dimensionless 
distance (𝐴𝐴  ), dimensionless time (𝐴𝐴 𝐴𝐴 ), and dimensionless effective confining stress (𝐴𝐴   ) for their corresponding 𝐴𝐴 𝐴𝐴 , 
x, 𝐴𝐴 𝐴𝐴 , and 𝐴𝐴 𝐴𝐴𝑒𝑒𝑒𝑒 , respectively:

 = 𝑙𝑙

(

𝐸𝐸𝐸𝐸Δ𝑇𝑇𝑠𝑠

(1 − 𝜈𝜈)𝐾𝐾Ic

)2

,  = 𝑥𝑥

(

𝐸𝐸𝐸𝐸Δ𝑇𝑇𝑠𝑠

(1 − 𝜈𝜈)𝐾𝐾Ic

)2

𝜏𝜏 = 𝐷𝐷𝐷𝐷

(

𝐸𝐸𝐸𝐸Δ𝑇𝑇𝑠𝑠

(1 − 𝜈𝜈)𝐾𝐾Ic

)4

,  =
𝜎𝜎𝑒𝑒𝑒𝑒(1 − 𝜈𝜈)

𝐸𝐸𝐸𝐸Δ𝑇𝑇𝑠𝑠

� (11)

After the introduction of these dimensionless variables, Equation 10 is rewritten

√

4

𝜋𝜋

(

∫

1

0

1
√

1 − 𝜉𝜉2
erfc

(



2
√

𝜏𝜏

𝜉𝜉

)

d𝜉𝜉 −
𝜋𝜋

2


)

= 1� (12)

For multiple fractures, we also introduce dimensionless fracture spacing (𝐴𝐴  ) (scaled in the same form as 𝐴𝐴  )

 = 𝑑𝑑

(

𝐸𝐸𝐸𝐸Δ𝑇𝑇𝑠𝑠

(1 − 𝜈𝜈)𝐾𝐾Ic

)2

� (13)

and dimensionless fracture aperture profile (𝐴𝐴 Ω( , 𝜏𝜏) )

Ω = 𝑤𝑤
𝐸𝐸

2
𝛽𝛽Δ𝑇𝑇𝑠𝑠

(1 − 𝜈𝜈2) (1 − 𝜈𝜈)𝐾𝐾
2

Ic

� (14)
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Note that 𝐴𝐴 Ω is easily defined according to Equations 6 and 7 and 𝐴𝐴  in Equation 11 with constants not included.

The dimensionless elasticity equation for multiple thermal fractures is derived by substituting Equations 2 and 3 
into Equation 5 and applying the dimensionless variables in Equations 11, 13, and 14, and written:

∞
∑

𝑘𝑘=1
∫

𝑘𝑘

0

[𝐺𝐺𝑁𝑁𝑁𝑁 ( ,)Ω( , 𝜏𝜏)] 𝑑𝑑 = erfc

(



2
√

𝜏𝜏

)

− � (15)

where 𝐴𝐴   is the additional term compared to the dimensionless elasticity equation in Chen and Zhou (2021) for 
non-confinement applications.

Similarly, the dimensionless fracture propagation criterion is derived by substituting Equation 6 into Equation 7 
and applying the dimensionless variables, and written:

Ω →

√

32

𝜋𝜋

√

1 − 𝜉𝜉𝜉 for 𝜉𝜉 → 1� (16)

For fracture arrest, the instability condition, Equation 8, is converted to its corresponding dimensionless form 
(see Equation C4 in Appendix C) after numerical discretization using the above dimensionless variables.

3.  Dimensionless Solutions and Scaling Laws
We are interested in the dimensionless solutions of dynamically spaced multiple thermal fractures (Case C) to 
predict transient fracture length, spacing, and aperture for real subsurface problems. A better understanding of 
the effects of inter-fracture stress interaction and fracture arrest is also of interest; the dimensionless solutions 
of single thermal fracture (Case A) and constantly spaced multiple thermal fractures (without arrest; Case B) 
are thus developed. The solution comparison between Cases A and B shows the effect of fracture spacing (i.e., 
different degree of inter-fracture stress interaction) on the evolution of fracture length, while that between Cases 
B and C shows the effect of fracture arrest on all fracture properties (length, spacing, aperture, and pattern). 
These transient solutions and related scaling laws for late-time fracture propagation are detailed in Section 3.2. 
The corresponding solution approaches are briefly summarized in Section 3.1, while the details of the theoretical 
developments are given in the Appendices.

3.1.  Solution Approaches

The thermal fracturing in Cases A through C is solved using an analytical or numerical approach depending on 
their complexities. In Case A, the propagation of single fracture is solely governed by Equation 12. The transient 
solution of dimensionless fracture length 𝐴𝐴 (𝜏𝜏𝜏  ) for a given dimensionless effective confining stress 𝐴𝐴   is derived 
analytically (see Appendix A1). In Case B, the propagation of constantly spaced multiple thermal fractures is 
governed by Equations 15 and 16 that are coupled through 𝐴𝐴 (𝜏𝜏𝜏  ,) and 𝐴𝐴 Ω(𝜏𝜏𝜏  ,) . The two equations are 
discretized using DDM and solved iteratively during each time step (see Appendix B). The corresponding solu-
tions depend on two model parameters, 𝐴𝐴   and 𝐴𝐴  .

In Case C, an additional equation (Equation C4 in Appendix C), the dimensionless counterpart of Equation 8, is 
needed to determine the critical state of fracture arrest. Equations 15, 16, and C4 are coupled, and two special 
algorithms are developed to model fracture propagation and arrest that lead to the classic hierarchical fracture 
pattern (see Figure 2), by following the theoretical development for the case of no confinement in a previous 
study (Chen & Zhou, 2021). The first algorithm is used to determine the critical states at fracture arrests (arrest 
line, denoted as (𝐴𝐴 𝐴𝐴𝑎𝑎,𝑎𝑎,Ω𝑎𝑎,𝑎𝑎 )) for any given values of fracture spacing, as well as the approximate solution with 
continuous fracture spacing assumed (central line, denoted as (𝐴𝐴 𝐴𝐴𝑜𝑜,𝑜𝑜,Ω𝑜𝑜,𝑜𝑜 )), where subscripts 𝐴𝐴 𝐴𝐴 and 𝐴𝐴 𝐴𝐴 represent 
the solutions at the arrest line and the central line, respectively, and 𝐴𝐴 Ω𝑎𝑎 and 𝐴𝐴 Ω𝑜𝑜 are the vectors of the discre-
tized dimensionless aperture along the thermal fracture at the states of arrest line and central line, respectively 
(see Appendix C). The arrest and central lines provide fast predictions of evolution of fracture length, spacing, 
and aperture. The second algorithm is used to obtain the fully transient solution with stepwise fracture spacing 
(𝐴𝐴 0, 20, 40,… ) and continuous fracture length, as well as fracture pattern, with 𝐴𝐴 0 being a specified initial 
spacing (see Appendix C).
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The transitions from Case A solution to Case B solution and to Case C solu-
tion are clearly illustrated when putting all solutions together in Figure C1b. 
The computer codes used for all the modeling for a given 𝐴𝐴   value are availa-
ble in the data (see Acknowledgments).

3.2.  Results of Solutions and Scaling Laws

This section focuses on the results of single thermal fracture (Section 3.2.1), 
multiple constantly spaced thermal fractures (Section  3.2.2), and multiple 
dynamically spaced thermal fractures (Section 3.2.3). The results are general 
profiles of fracture properties (e.g., dimensionless fracture length) as func-
tions of dimensionless time 𝐴𝐴 𝐴𝐴 and dimensionless effective confining stress 𝐴𝐴   , 
which represents various reservoir and cooling conditions.

3.2.1.  Single Thermal Fracture

Figure 3 shows the evolution of dimensionless fracture length 𝐴𝐴  with dimen-
sionless time 𝐴𝐴 𝐴𝐴 during stable propagation for five different 𝐴𝐴   values, calcu-
lated using the developed analytical solution (Appendix A1). For a given 𝐴𝐴   , 

𝐴𝐴  starts from the critical state [τc, 𝐴𝐴 c], increases nonlinearly with 𝐴𝐴

√

𝜏𝜏 , and 
transitions to a linear increase with 𝐴𝐴

√

𝜏𝜏 . 𝐴𝐴  also decreases with the increase 
in 𝐴𝐴   at any 𝐴𝐴 𝐴𝐴 , indicating that single thermal fracture propagates at a slower speed under higher dimensionless 
effective confining stress.

For late-time fracture propagation under finite dimensionless effective confining stress (i.e., 𝐴𝐴  > 0 , 𝐴𝐴 𝐴𝐴 → ∞ and 
𝐴𝐴  → ∞ ), the dimensionless governing equation for single thermal fracture, Equation 12, can be further simplified 

to Equation A1. As derived in Appendix A2, the late-time dimensionless fracture length 𝐴𝐴  satisfies

 = 𝑓𝑓 ( )
√

𝜏𝜏� (17)

where 𝐴𝐴 𝐴𝐴 ( ) is the scaling coefficient dependent only on 𝐴𝐴   . In this scaling law, 𝐴𝐴  is linear with 𝐴𝐴

√

𝜏𝜏 , with the effect 
of 𝐴𝐴   fully separated from that of 𝐴𝐴 𝐴𝐴 .

The asymptotic solutions of scaling coefficient 𝐴𝐴 𝐴𝐴 ( ) in the limiting cases 𝐴𝐴  → 0 and 𝐴𝐴  → 1 are also derived

𝑓𝑓 ( ) =

⎧

⎪

⎨

⎪

⎩

4∕
(

𝜋𝜋
3∕2

)

 → 0

𝜋𝜋
3∕2

(1 −  )∕2  → 1

� (18)

For an arbitrary 𝐴𝐴 0 <  < 1 , 𝐴𝐴 𝐴𝐴 ( ) is obtained by solving Equation A1 (see 
Figure  4). The obtained 𝐴𝐴 𝐴𝐴 ( ) approaches to the solution in Equation  18 
for 𝐴𝐴   close to 𝐴𝐴 1 or 0. Indeed, the asymptotic solution for 𝐴𝐴  → 0 is valid for 

𝐴𝐴 0 <  < 0.25 with a maximum error less than 10%, and the asymptotic solu-
tion for 𝐴𝐴  → 1 is valid for 𝐴𝐴 0.5 <  < 1 with a maximum error less than 10%. 
Figure 4 clearly shows that dimensionless fracture length is more sensitive to 

𝐴𝐴   for a smaller 𝐴𝐴   , as shown by the change of scaling coefficient 𝐴𝐴 𝐴𝐴 ( ) with 𝐴𝐴   .

Indeed, the scaling law in Equation 17, with the 𝐴𝐴 𝐴𝐴 ( ) value directly calcu-
lated using Equation 18 or interpolated from the solution of Equation A1 in 
Figure 4, can be used for fast prediction of dimensionless fracture length at 
late time for any given dimensionless effective confining stress. Moreover, 
the transition from the transient solution to the scaling law occurs relatively 
early (e.g., at 𝐴𝐴 𝐴𝐴 = 10

6 for 𝐴𝐴  = 3∕4 ), as shown in Figure 3.

Using the definitions of dimensionless variables in Equation 11, Equation 17 
can be rewritten

𝑙𝑙 = 𝑓𝑓 ( )
√

𝐷𝐷𝐷𝐷� (19)

Figure 3.  Evolution of dimensionless fracture length 𝐴𝐴  of single thermal 
fracture with dimensionless time τ for different dimensionless effective 
confining stress 𝐴𝐴   .

Figure 4.  Dependence of scaling coefficient 𝐴𝐴 𝐴𝐴 ( ) on dimensionless effective 
confining stress 𝐴𝐴   for late-time propagation of single thermal fracture, 
compared with the coefficient of thermal penetration distance.
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This scaling law shown in Equation 17 or 19 indicates that (a) fracture length 𝐴𝐴 𝐴𝐴 linearly increases with the square 
root of cooling time 𝐴𝐴 𝐴𝐴 and (b) fracture length increases with the decrease in dimensionless effective confining 
stress in a more complicated way (see Figure 4) during the late-time propagation of single thermal fracture. It is 
of interest to observe that thermal penetration distance, defined here as the distance with thermal stress equal to 
effective confining stress (i.e., 𝐴𝐴 erfc(∕2

√

𝜏𝜏) =   ), and the cumulative heat flux from the cooling surface to the 
half-plane (Zhou, Oldenburg, Rutqvist, et al., 2017; Zhou, Oldenburg, Spangler, et al., 2017) are also linear with 

𝐴𝐴

√

𝐷𝐷𝐷𝐷 . As shown in Figure 4, the corresponding coefficient of thermal penetration distance is smaller than 𝐴𝐴 𝐴𝐴 ( ) , 
especially for small 𝐴𝐴   , and cannot be used to simply estimate fracture length, even though thermal stress is the 
driving force for fracture propagation. This indicates that the fracture front influenced by 𝐴𝐴   and rock toughness 
needs to be solved as a fracture propagation problem instead of simply following the thermal front.

3.2.2.  Constantly Spaced Thermal Fractures

The program in Appendix B is used to calculate the evolution of dimensionless fracture length with dimension-
less time for a given pair of (𝐴𝐴 ,   ). Figure 5 shows the transient solutions of 𝐴𝐴  for 15 pairs of (𝐴𝐴 ,   ) with three 
different 𝐴𝐴   values. For a given 𝐴𝐴   , the 𝐴𝐴 (𝜏𝜏𝜏) solution deviates from the 𝐴𝐴 (𝜏𝜏) solution for single fracture at a 
later 𝐴𝐴 𝐴𝐴 for a higher 𝐴𝐴  . After the deviation time, the 𝐴𝐴 (𝜏𝜏𝜏) solution is smaller than the 𝐴𝐴 (𝜏𝜏) solution, indicating 
that the stress interaction between fractures slows down fracture propagation. The smaller 𝐴𝐴  is, the stronger the 
stress interaction becomes, and the smaller 𝐴𝐴 (𝜏𝜏𝜏) is. Before the deviation time, each of the multiple fractures 
behaves like a single fracture as stress interaction is negligible. In addition, the higher 𝐴𝐴   is, the shorter 𝐴𝐴 (𝜏𝜏𝜏) is 
for a given 𝐴𝐴 𝐴𝐴 (see Figure 5d). This indicates that multiple fractures propagate at a slower speed under a higher 𝐴𝐴   .

As shown in Figure 5d, the transient solution for a pair of (𝐴𝐴 ,   ) always approaches to a linear relationship 
between 𝐴𝐴  and 𝐴𝐴

√

𝜏𝜏 . Following the scaling law for single thermal fracture, Equation 17, we propose the following 
scaling law for the late-time propagation of multiple fractures with constant spacing:

 = 𝑓𝑓 (,  )
√

𝜏𝜏� (20)

Figure 5.  Evolution of dimensionless fracture length 𝐴𝐴  with dimensionless time τ for the propagation of multiple thermal 
fractures with different spacing 𝐴𝐴  under (a) 𝐴𝐴  = 1∕4 , (b) 𝐴𝐴  = 1∕2 , and (c) 𝐴𝐴  = 3∕4 , as well as (d) comparison between 
solutions with different 𝐴𝐴   for 𝐴𝐴  = 1000 .
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where 𝐴𝐴 𝐴𝐴 (,  ) is the scaling coefficient dependent on 𝐴𝐴  and 𝐴𝐴  .

We fit the late-time transient solutions shown in Figure 5 against Equation 20 
to obtain the value of the scaling coefficient for each pair of 𝐴𝐴 (,  ) . Figure 6 
shows the dependence of the scaling coefficient on 𝐴𝐴  and 𝐴𝐴   . Clearly, 𝐴𝐴 𝐴𝐴 (,  ) 
decreases with the increase in 𝐴𝐴   and the decrease in 𝐴𝐴  . More importantly, 

𝐴𝐴 𝐴𝐴 (,  ) for a large 𝐴𝐴  is not as sensitive to 𝐴𝐴  as a smaller 𝐴𝐴  . (This feature 
is used in analyzing the late-time propagation of dynamically spaced multi-
ple fractures in Section 3.2.3.) These discrete coefficient values can be used 
to interpolate for the 𝐴𝐴 𝐴𝐴 (,  ) value for any given (𝐴𝐴 ,   ) and the scaling 
law in Equation  20 can be used to estimate dimensionless fracture length 
for late-time propagation. Note that the difference between the 𝐴𝐴 𝐴𝐴 (,  ) for 
constantly spaced multiple fractures and 𝐴𝐴 𝐴𝐴 ( ) for single fracture is still large 
for 𝐴𝐴  = 10, 000 , especially for low 𝐴𝐴  .

3.2.3.  Dynamically Spaced Thermal Fractures

As described in Section  3.1, the solutions of dynamically spaced thermal 
fractures include: (a) the critical states at fracture arrest (i.e., the arrest line 
separating the stable and unstable states), (b) the approximate solution with 
continuous fracture spacing assumed (the central line), and (c) the fully 
transient solution with stepwise spacing increased from a specified initial 

spacing. Only the arrest-line solution is discussed in this section, while the other two solutions are presented in 
Section 4.2.

Figure 7 shows the solutions (arrest lines) of dimensionless fracture length 𝐴𝐴  , spacing 𝐴𝐴  , and surface aperture 
𝐴𝐴 Ω0 (aperture at the cooling surface). A monotonic increase of 𝐴𝐴 () for a given dimensionless effective confining 

stress is observed (Figure 7a). For 𝐴𝐴  ≥ 5∕16 , 𝐴𝐴  increases with 𝐴𝐴   for any 𝐴𝐴  . For 𝐴𝐴  < 5∕16 , 𝐴𝐴  increases with 

Figure 6.  Dependence of scaling coefficient 𝐴𝐴 𝐴𝐴 (,  ) on dimensionless 
effective confining stress 𝐴𝐴   and fracture spacing 𝐴𝐴  for late-time propagation of 
multiple constantly spaced thermal fractures.
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Figure 7.  Evolution of dimensionless fracture spacing 𝐴𝐴  , length 𝐴𝐴  , and surface aperture 𝐴𝐴 Ω0 under different dimensionless 
effective confining stress 𝐴𝐴   : (a) 𝐴𝐴 () , (b) 𝐴𝐴 (𝜏𝜏) , (c) 𝐴𝐴 (𝜏𝜏) , and (d) 𝐴𝐴 Ω0(𝜏𝜏) .
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increase in 𝐴𝐴   for 𝐴𝐴  < 100 and with decrease of 𝐴𝐴   for 𝐴𝐴   > 100. Note that a 
specific 𝐴𝐴  (i.e., 𝐴𝐴  ) is reached at earlier time for a smaller 𝐴𝐴   (see Figure 7c). 
In addition, it is observed that 𝐴𝐴  is up to 1 order of magnitude larger than 𝐴𝐴  
for large 𝐴𝐴 𝐴𝐴 , while they are on the same order of magnitude for small 𝐴𝐴 𝐴𝐴 . This 
means propagating fractures tend to have a fracture length longer than spac-
ing during late-time propagation. Figure 7b shows the monotonic increase 
of 𝐴𝐴 (𝜏𝜏) with 𝐴𝐴 𝐴𝐴 for different 𝐴𝐴   values so that we can compare dimensionless 
fracture spacing with the same thermal stress at a given time but different 
effective confining stress.

As shown in Figure  7c, the dimensionless length of propagating fractures 
increases with dimensionless time and approach to 𝐴𝐴  = 𝑓𝑓

′
( )

√

𝜏𝜏 with 
� ′( ) = � (,  )|→∞ for late-time propagation, for which the dynamic effect 
of 𝐴𝐴 (𝜏𝜏) on 𝐴𝐴 𝐴𝐴 (,  )|→∞ is negligible for large 𝐴𝐴 (𝜏𝜏) (see Figure 6). Before 
this stage, the effect of dynamic spacing decreases with increase in 𝐴𝐴 𝐴𝐴 , and 

𝐴𝐴 (𝜏𝜏) increases with 𝐴𝐴

√

𝜏𝜏 in a nonlinear form. For any given time with the same 
thermal stress distribution, dimensionless fracture length decreases with the 
increase in dimensionless effective confining stress. Compared with the solu-
tions of a series of constant spacing, the dynamic-spacing solution for a given 

𝐴𝐴   shows faster fracture propagation after each arrest than the constant-spac-
ing solution (with the spacing just before the arrest; Figure C1b). After the 
arrest, fracture spacing is doubled, leading to weaker fracture interaction 
and increased fracture length.

A similar conclusion can be made for dimensionless surface aperture of propagating fractures (see Figure 7d). 
The surface aperture increases with dimensionless time in a quasi-power law, with the exponent (i.e., the slope) 
slightly decreasing with time and similar for relatively high 𝐴𝐴   values. At a given time, the surface aperture 
decreases with the increase in 𝐴𝐴   , which is understandable in the point of view of geomechanics. The exponent 
for a very small 𝐴𝐴   is higher than that for higher 𝐴𝐴   values, indicating that cooling can produce a larger fracture 
aperture in very shallow subsurface formations.

4.  Validation and Application of the Developed Solutions
The analytical solution of single fracture and the dimensionless solutions of constantly and dynamically spaced 
multiple fractures presented in Section 3 (referred to hereafter as theoretical solutions) are first validated using 
a FEM-based fracture model. The solution of dynamically spaced fractures is then applied to several cases with 
elevated fluid pressure. For the validation and application, the rock properties and in situ conditions of pressure, 
temperature, and stresses from a geothermal site are used.

4.1.  The FORGE EGS Site

Detailed site characterization has been conducted at the Milford, Utah EGS site dedicated for the Frontier Obser-
vatory for Research in Geothermal Energy (FORGE) (EGI, 2019). Table 1 lists the rock properties acquired from 
the Utah FORGE site and used in our modeling analyses. The in situ rock temperature measured at the depth of 
2,297 m is 197°C. The in situ minimum horizontal stress at the depth measured using different methods is around 
32.2 MPa. Two horizontal wells will be drilled as an injector and a producer and their laterals will be placed at 
the depth of ∼2,300 m. Hydraulic fracturing of the two wells will be conducted to create parallel hydraulic frac-
tures, and water will be circulated between these wells. Our modeling focuses on secondary, thermal fractures 
from the hydraulic fractures. In our modeling analyses, we use a reservoir temperature of 200°C, a confining 
stress of 32.2 MPa, and a fluid pressure of 22.5 MPa to represent the in situ conditions at the depth of interest. 
A fluid temperature of 50°C at the reservoir depth is used to represent a significant cooling of 150°C by fluid 
injection and circulation. The corresponding dimensionless effective confining stress is 𝐴𝐴  = 0.1088 for in situ 
fluid pressure.

Properties and initial conditions Labels Values

Young's modulus 𝐴𝐴 𝐴𝐴 55 GPa

Poisson's ratio 𝐴𝐴 𝐴𝐴 0.26

Density 𝐴𝐴 𝐴𝐴 2,750 kg/m 3

Fracture toughness 𝐴𝐴 𝐴𝐴𝐼𝐼𝐼𝐼
2.48 MPa·m 1/2

Thermal conductivity 𝐴𝐴 𝐴𝐴 3.05 W/(m·K)

Specific heat capacity 𝐴𝐴 𝐴𝐴 790 J/(kg·K)

Thermal diffusivity 𝐴𝐴 𝐴𝐴 1.40 × 10 −6 m 2/s

Linear thermal expansion coefficient 𝐴𝐴 𝐴𝐴 8.0 × 10 −6 K −1

Reservoir temperature 𝐴𝐴 𝐴𝐴𝑟𝑟
200°C

Boundary temperature 𝐴𝐴 𝐴𝐴𝑤𝑤
50°C

Confining stress 𝐴𝐴
[

𝜎𝜎𝑥𝑥, 𝜎𝜎𝑦𝑦

]

[40.0, 32.2] MPa

Fluid pressure 𝐴𝐴 𝐴𝐴𝑓𝑓 22.5 MPa

Table 1 
Rock Properties and In Situ Conditions at the Utah FORGE Site 
(EGI, 2019; Robertson, 1988)
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4.2.  Solution Validation

For the FEM analyses, rock deformation is governed by the linear elasticity 
theory and fracture propagation is governed by the LEFM. The stress inten-
sity factor is computed according to the interaction energy integral method 
(Chen, Cen, et  al.,  2018; Menouillard & Belytschko,  2010). The thermal 
effects are represented by tractions along the surface of thermal fractures. A 
uniform stress equal to the effective confining stress, 𝐴𝐴 𝐴𝐴𝑒𝑒𝑒𝑒 = 32.2 − 22.5 = 9.7 
MPa, toward the fractures is applied on the fracture surface to present an 
equivalent boundary condition. A sufficiently large model domain (10 m in 
width and 20 m in length) is used for the case of single thermal fracture (Case 
A) to approximate the infinite domain and discretized with 5,321,656 linear 
triangular elements. In the case of multiple fractures with constant spacing 
(Case B), a fracture spacing of 𝐴𝐴 𝐴𝐴 = 0.0773 m, which corresponds to a dimen-
sionless fracture spacing of 𝐴𝐴  = 100 , is used. Considering the symmetry of 
the problem, a half model domain with 0.0387 m in width and 20 m in length 
is used and discretized with 213,169 linear triangular elements. In the case 
of multiple fractures with dynamic spacing (Case C), a model domain with 
a width of 20 m and a length of 20 m is used and discretized with 2,127,997 
linear triangular elements. An array of 200 initial fractures with a length of 
0.1 m and an average spacing 𝐴𝐴 𝐴𝐴0 = 0.1 m is employed. (Note that the initial 

length only has an influence at the beginning of the simulation.) A perturbation [𝐴𝐴 − Δ𝑑𝑑 , 𝐴𝐴 Δ𝑑𝑑 ] with 𝐴𝐴 Δ𝑑𝑑 = 0.1𝑑𝑑0 
is randomly applied to the average fracture spacing (0.1 m) to have initial fractures with non-uniform spacing 
in range of [𝐴𝐴 𝐴𝐴0 − 2Δ𝑑𝑑 , 𝐴𝐴 𝐴𝐴0 + 2Δ𝑑𝑑 ], as used in Tarasovs and Ghassemi (2014). For validation, the same mode-I 
fracture propagation is considered in the FEM modeling while the effect of fracture curvature is discussed in 
Section 5.2. A sufficiently small, dynamic time step is used to ensure that a few fractures propagate in each time 
step to accurately model fracture arrest.

For the theoretical solutions, the site-specific dimensionless effective confining stress 𝐴𝐴  = 0.1088 is used to 
calculate the dimensionless fracture length, spacing, and surface aperture in the three cases. The same initial 
fracture length and spacing (0.1 m) are used to start the fully transient solution in Case C. These dimensionless 
solutions are converted to their dimensional values using the site-specific parameters for comparison.

Figure 8 shows excellent agreement of fracture propagation for Cases A and B between the theoretical and FEM 
results. The fracture length calculated is 0.0116, 0.0497, 0.1906, 0.6772, 2.2899, and 7.5225 m in Case A and 
0.0103, 0.0287, 0.0685, 0.2000, 0.6210, and 1.958 m in Case B at 10, 10 2, 10 3, 10 4, 10 5, and 10 6 s, respectively. 
The profile of fracture length in Case B deviates from that in Case A at around 10 s, and their late-time separation 
is by a factor of 3.840. The difference of time-dependent fracture length between Cases A and B shows the effect 
on fracture propagation of strong stress interaction between multiple closely spaced fractures. A similar agree-
ment is achieved for Case B with different fracture spacing (not shown).

Figure 9 shows the fracture patterns predicted by the fully transient, theoretical solution and the FEM-based 
fracture model for Case C. Good agreement between the two solutions is achieved. First, the initial fractures start 
to propagate at a half hour in both solutions. The maximum length of propagating fractures by the theoretical 
and FEM solutions is 9.20 and 8.86 m at 150 days, respectively. Second, the overall fracture patterns between 
the two solutions are similar in terms of the number of propagating fractures and arrested fractures at different 
times (see Figure 10a for more quantitative comparison). Finally, the times of arrests are also similar between the 
two solutions. The main difference is between the sharp transitions from stable propagation to unstable arrest in 
the theoretical solution and the wider transitions between different arrested fractures in the FEM solution. These 
wide transitions are caused by the initial fractures with non-uniform spacing and the absence of the restriction on 
uniform spacing used in the theoretical solution.

To conduct a more quantitative validation, we calculate the average fracture spacing for different distance from 
the cooling surface from Figure 9b and compare it with three theoretical spacing solutions (i.e., the stepwise spac-
ing with sharp transitions at fracture arrests from the initial spacing of 0.1 m and the continuous central line and 
arrest line of fracture spacing). As shown in Figure 10a, good agreement between the average fracture spacing 

Figure 8.  Comparison of the evolution of fracture length with cooling time 
between the theoretical and FEM solutions for single and constantly spaced 
thermal fractures.
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in the FEM solution and the uniform fracture spacing in the theoretical central-line solution is observed, while a 
slight deviation of the FEM solution is likely caused by the randomness of initial and dynamic fracture spacing. 
The central-line solution is more appropriate than the stepwise solution to represent numerical solutions with 
non-uniform initial fracture spacing.

In addition, we select four individual fractures (#13, #21, #47, and #86 marked in Figure 9b) and compare the 
evolution of their length and surface aperture with the theoretical solutions (central and arrest lines) of propa-
gating fractures. As shown in Figure 10b, each selected fracture propagates by exactly following the theoretical 
profile (the arrest line) until it is arrested, after which fracture length remains unchanged with time. The excellent 
agreement indicates that the theoretical solution can accurately predict the length of individual fractures during 
their propagation. The propagating fractures reach 0.14, 0.67, 6.25, and 78.00 m in 1 hr, 1 day, 100 days, and 
10,000 days. (The result for 10,000 days is obtained by extending the profile based on the scaling law.) The 
corresponding theoretical fracture spacings are 0.16, 0.49, 2.30, and 13.00 m. This indicates that the length-to-
spacing ratio is close to 1 at early time, increases to around 6 at 10,000 days, and keeps increasing for longer-term 
propagation.

As shown in Figure 10c, good agreement of the surface aperture (at the cooling surface) during fracture prop-
agation is achieved between the theoretical and FEM solutions. The FEM surface aperture of the four selected 
fractures evolves by following the theoretical solution (the arrest line) until their arrest, after which their surface 
aperture (#21, #47, and #86) keeps decreasing significantly with time. Such a significant difference in fracture 
aperture between propagating and arrested fractures may be measurable in the field and used as an indicator of 
fracture state (propagating vs. arrested). The theoretical surface aperture of propagating fractures reaches 0.12, 

Figure 9.  Comparison of propagation of thermal fractures for 150 days between (a) the fully transient theoretical solution and (b) the FEM solution. Each fracture 
is colored by cooling time (days) to show the dynamic evolution of fracture length and the arrest time can be seen at the tip of arrested fractures. The features of four 
selected individual fractures (#13, #21, #47, and #86) are shown in Figure 10.
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0.43, 2.09, and 12.19 mm at 1 hr, 1 day, 100 days, and 10,000 days. The result for 10,000 days is obtained by 
extending the arrest line based on the scaling law.

The above validation for dynamically spaced fractures can be summarized: (a) the central-line theoretical solu-
tion can accurately predict the evolution of dynamic fracture spacing, (b) the arrest-line solutions can accurately 
predict the evolution of fracture length and surface aperture (as well as aperture profile along thermal fractures) 
for propagating fractures, and (c) the fully transient solution can predict the time-dependent pattern of propagat-
ing and arrested thermal fractures. When fracture pattern is not of interest, the profiles of central-line spacing and 
arrest-line length and surface aperture (prepared for different values of dimensionless effective confining stress) 
can be used directly for fast prediction.

4.3.  Solution Applications

For the in situ fluid pressure at the Utah FORGE site used above, the fracture length, spacing, and surface aper-
ture at 150 days of cooling predicted by our theoretical solutions are 9.2, 3.1, and 4.0 mm, respectively. These 
values are significant to field applications. When multiple parallel hydraulic fractures are created in a cluster 
of a stage during multistage hydraulic stimulation, the secondary thermal fractures initiated from neighboring 
hydraulic fractures are likely connected in the cooling zone to form a well-connected fracture zone for this cluster. 
With time, the multiple fracture zones associated with a stimulation stage are connected by the secondary thermal 
fractures. This thus enhances fracture-matrix heat exchange area (Harlow & Pracht, 1972; Murphy, 1978) and 
changes the fluid circulation system during EGS operation.

In addition to the base case (see Section  4.2), two additional fluid pressures (27.0 and 32.2  MPa) are used 
to investigate thermal fracturing under elevated pressure induced by water circulation. The effective confining 
stresses are 𝐴𝐴 𝐴𝐴𝑒𝑒𝑒𝑒 = 5.2 and 0 MPa, respectively. The fracture length in both cases is obtained using our theoretical 

Figure 10.  (a) Comparison between the uniform fracture spacing by the theoretical solution (stepwise, arrest, and central 
lines) and the average spacing by the FEM solution, comparison of (b) fracture length and (c) surface aperture between the 
theoretical solutions of propagating fractures and the FEM solutions of four selected fractures, and (d) spacing comparison for 
two FEM cases with different degrees of initial spacing nonuniformity.
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arrest-line solution with 𝐴𝐴  = 0.0583, 0.0 and compared with the base-case 
solution (Figure 11). Fractures propagate in a similar way under the same 
thermal stress in all the cases. The smaller the effective confining stress is, 
the longer fracture length is. The ratios of the fracture length, spacing, and 
surface aperture for 𝐴𝐴 𝐴𝐴𝑒𝑒𝑒𝑒 = 9.7, 5.2 and 0 MPa at 150 days are 1:1.18:1.74, 
1:1.35:2.26, and 1:1.40:3.63. This means during EGS operation with pres-
sure increase, the length, spacing, and surface aperture of thermal fractures 
can be as large as 16.0 m, 7.0 m, and 14.5 mm at 150 days for the highest 
fluid pressure at which the effective confining stress is exactly zero.

Note that for 𝐴𝐴  = 0 , thermal stress is still needed for fractures to propagate 
because of the non-zero fracture toughness (see Table  1). For a pressure 
higher than 32.2 MPa, fracture propagation is no longer driven by thermal 
stress, and the fluid-driven propagation (i.e., hydraulic fracturing) is out of 
the scope of this study.

5.  Discussion
The effects of several assumptions used in developing the theoretical solutions 
are discussed using additional FEM modeling and calculations, followed by 
how to use these solutions.

5.1.  Effect of Non-Uniform Initial Fractures

The first assumption is the uniform spacing of thermal fractures, which helps solve the critical fracture length for 
a specific spacing and assemble the critical values into the dimensionless solutions, as used in previous studies 
(Bahr et al., 2010; Nemat-Nasser et al., 1978). In addition to perturbation 𝐴𝐴 Δ𝑑𝑑 = 0.1𝑑𝑑0 in the base case, we add 
two additional cases with 𝐴𝐴 Δ𝑑𝑑 = 0.2𝑑𝑑0 and 𝐴𝐴 0.3𝑑𝑑0 in the FEM-based simulation, while other parameters are kept 
unchanged from the base case. The results of average fracture spacing in the two cases (Figure 10d) are also in 
good agreement with the theoretical one in the base case. In addition, the fracture patterns in the three cases (not 
shown) are similar. All these comparisons indicate that the effect of non-uniform initial spacing is secondary to 
the effect of inter-fracture stress interaction and fracture arrest.

5.2.  Effect of Fracture Curvature

The second assumption (that is also used in the above FEM modeling) is mode-I fractures without fracture curva-
ture. To investigate this effect, we extend the FEM-based fracture model to account for mixed-mode fractures 
and thus fracture curvature. Three different cases with 𝐴𝐴 𝐴𝐴𝑥𝑥 = 24.4, 32.2, and 40 MPa are used while 𝐴𝐴 𝐴𝐴𝑦𝑦 is fixed at 
32.2 MPa. The same values for rock properties and cooling conditions, as well as the randomly distributed initial 
fractures (𝐴𝐴 𝐴𝐴0 = 0.1 m, 𝐴𝐴 Δ𝑑𝑑 = 0.1𝑑𝑑0 ), as the base case are used. Mesh refinement is used to ensure that grid effects 
are negligible.

Figure 12 shows the simulated fracture patterns in the three cases with fracture curvature. The overall fracture 
curvature is the strongest in the case with the lowest 𝐴𝐴 𝐴𝐴𝑥𝑥 (24.4 MPa), with a stress ratio of 1.32 higher than that 
(1.24) at the Utah FORGE site. Local fracture curvature of a propagating fracture occurs immediately after a 
neighboring fracture is arrested. Despite of local curvature, the overall trend for fractures to propagate in the 
direction perpendicular to the cooling surface is obvious. In addition, the fracture curvature tends to average 
fracture spacing and thus forms a hierarchical pattern instead of breaking it. For the other two cases, local fracture 
curving is nearly negligible. Moreover, the maximum length of propagating fractures at 150 days in the three 
cases is 9.10, 9.55, and 9.76 m, respectively, which are close to the theoretical value (9.20 m) in the same time 
period.

Figure 13 shows the comparisons of fracture spacing and length between the theoretical solution and the FEM 
solution for the case with the strongest curvature. More variations in the average fracture spacing are observed 
in Figure 13a than the mode-I results in Figure 10a. This is because fracture curvature leads to a more uniform 
fracture spacing and fracture arrests occur in a narrower distance window. Similar to the base case, the fracture 

Figure 11.  Evolution of fracture length under different fluid pressure in 
thermal fractures.
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spacing still follows the central line, indicating that the theoretical solution of fracture spacing is valid for mixed-
mode fractures. The length of propagating fractures is less affected by fracture curvature than fracture spacing 
and pattern, and an excellent agreement is obtained between the theoretical fracture length and the numerical 
length of four selected fractures during their propagation.

The effect of the no-curvature assumption is further investigated using the numerical solution in Tarasovs and 
Ghassemi (2011), in which mixed-mode fractures were modeled. The dimensionless effective confining stress 𝐴𝐴   
corresponding to the rock properties and cooling condition (for a confining stress of 20 MPa) given in Tarasovs 
and Ghassemi (2011) is 0.25. Our solutions of fracture spacing and length are converted from the dimensionless 

Figure 12.  Transient fracture patterns with mixed-mode propagation of thermal fractures in 150 days under stress condition: (a) [24.4, 32.2] MPa, (b) [32.2, 32.2] 
MPa, and (c) [40, 32.2] MPa. Two red arrows in (a) show examples of fracture curvature induced by the arrest of a neighboring fracture. The features of four selected 
individual fractures (#39, #98, #170, and #182) are shown in Figure 13.
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solutions for  = 0.25 . As shown in Figure 14, excellent agreements are observed for fracture spacing and length 
and their typical fracture pattern has characteristics similar to that shown in Figure 12.

In summary, mixed-mode fracture propagation has negligible effects on average spacing and length of propagat-
ing fractures, even though fracture curvature occurs under favorable stress conditions when neighboring fractures 
are arrested. Therefore, the effect of fracture curvature induced by non-uniform fracture spacing is believed to 
be secondary in forming a hierarchical fracture pattern. It is stress shadowing (i.e., inter-fracture stress interac-
tion) that governs fracture arrest and thus the hierarchical fracture pattern. The stress shadowing is accurately 
accounted for in our theoretical solutions and its effect is clearly illustrated by comparing solutions of single 
fractures, and multiple constantly and dynamically spaced fractures.

5.3.  Effect of Heat Convection

The third assumption is negligible heat convection in fractures and low-permeability reservoirs (compared to 
heat conduction through the rock matrix from the cooling surface). To investigate this effect, we quantitatively 
compare the total heat exchange through fracture surfaces and the cooling surface per unit width of the model in 
the 𝐴𝐴 𝐴𝐴 direction (with a unit of J/m 2). By assuming the fluid flowing into the fractures neither leaks into the matrix 
nor flows back to the main fluid channel, the upper limit of the former (𝐴𝐴 𝐴𝐴𝑓𝑓 ) is calculated by assuming all the fluid 
in the fractures is cooled by 𝐴𝐴 Δ𝑇𝑇𝑠𝑠 and estimating the fracture volume by a half of the product of fracture length and 
surface aperture. The latter (𝐴𝐴 𝐴𝐴𝑐𝑐 ) is computed by integrating the conductive heat flux through the cooling surface 
with time (Carslaw & Jaeger, 1959). The ratio of the two is expressed by

Figure 13.  (a) Comparison between the uniform fracture spacing by the theoretical solution (arrest and central lines) and the 
average spacing by the FEM solution, and (b) comparison of fracture length between the theoretical solution and the FEM 
solutions for fractures #39, #98, #170 and #182 (marked in Figure 12a) in the case of mixed-mode fractures with 𝐴𝐴 𝐴𝐴𝑥𝑥 = 24.4 
MPa.
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Figure 14.  (a) Comparison between the uniform fracture spacing by the theoretical solution (arrest and central lines) and the 
average spacing by the numerical solution in Tarasovs and Ghassemi (2011), and (b) comparison of fracture length between 
the two solutions.
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where 𝐴𝐴 𝐴𝐴𝑤𝑤 and 𝐴𝐴 𝐴𝐴𝑤𝑤 are the density and specific heat capacity of the fluid, respectively, and 𝐴𝐴 𝐴𝐴0 is the surface aperture.

It can be proved that the first part of 𝐴𝐴 𝐴𝐴𝑟𝑟 , 𝐴𝐴 Ω0(𝜏𝜏)(𝜏𝜏)∕4(𝜏𝜏)
√

𝜏𝜏 , is smaller than 1 over a reasonable range of time 
for a finite 𝐴𝐴   . The second part has a typical order of magnitude of O(10 −3) considering water properties, boundary 
conditions, and rock properties in Table 1. The calculated 𝐴𝐴 𝐴𝐴𝑟𝑟 of ∼0.1% indicates that the heat exchange through 
thermal fractures is negligible for impervious reservoirs compared to heat conduction through the rock matrix 
from the cooling surface. In addition, the heat convection induced by the fluid flow from the cooling surface is 
usually assumed to have a negligible effect on the temperature distribution for a low-permeability rock, as shown 
by the numerical simulation for a rock permeability from 10 −17 to 10 −22 m 2 (Salimzadeh, Nick, et al., 2018).

When rock permeability is moderate or high, leakoff induced by injection-induced pressure increase (𝐴𝐴 𝐴𝐴𝑓𝑓 > 𝑝𝑝0 ) 
occurs from the thermal fractures (and the cooling surface) to the rock matrix, leading to non-negligible convec-
tive heat transfer in the fractures and rock matrix. This is the fourth scenario of thermal fracturing driven by heat 
conduction and convection (see Section 1.5), and numerical modeling is needed to capture the fully coupled 
THM-fracturing processes.

Recently, the coupled THM-fracturing processes have been simulated numerically for large-scale single and 
multiple vertical natural fracture(s) embedded in formations under thermal gradient (Patterson & Driesner, 2021; 
Stefansson et al., 2021). Initially, there is no water flow under hydrostatic pressure that corresponds to variable 
water density with in situ temperature variation in the vertical direction. The variable water density triggers 
convective flow within the fractures that develops, with upflow of lighter, warmer water, and downflow of cold 
water. The cold water flow cools the rock near the fractures, leading to high thermal stress and downward fracture 
growth. The coupled processes of natural convection and thermal fracturing may take a long time, depending 
on the magnitude of thermal gradient and the aperture, thickness, and spacing of the natural fractures (Patterson 
& Driesner, 2021). For a subsurface engineering application, the buoyancy effect and injection-induced forced 
convection may have different impacts on half-plane thermal fractures of interest in this study and need to be 
simulated numerically.

5.4.  Effect of Rock Heterogeneities, Joints, and Natural Fractures

Rock is generally not a homogeneous material as assumed in our theoretical and numerical models. Rock hetero-
geneities, joints, and natural fractures may lead to the curvature of thermal fractures at different scales and induce 
fracture arrest. Thermal fractures likely initiate at these macroscale discontinuities or microscale inter-grain 
boundaries (e.g., Browning et al., 2016), and propagate along them when these discontinuities approximately 
align with the direction of thermal diffusion. A thermal fracture may be arrested when it intersects with such a 
discontinuity. When the approaching angle is small and the interaction from neighboring fractures is small, ther-
mal stress is sufficient to reactivate the discontinuity, leading to a local fracture curvature. Other discontinuities 
between thermal fractures may have a minimum impact on the stress field and thus do not directly influence ther-
mal fracturing. Once the length and spacing of thermal fractures become significantly larger than the size of these 
discontinuities, fracture propagation and arrest are mainly controlled by the macroscale stress distribution, while 
fracture arrest and local curvature induced by these discontinuities are secondary. Therefore, it is expected that 
discontinuities may affect the early propagation and arrest of thermal fractures but may not significantly alter the 
hierarchical fracture pattern shown in Figures 9 and 12 during long-term cooling. This is true for hot dry rock for 
EGS or unconventional shale with only microcracks (Murphy, 1978). In contrast, the pattern of thermal fractures 
may be significantly influenced by the well-connected network of dense natural fractures in hydrothermal fields. 
Further numerical studies are needed to give a guidance on when these discontinuities need to be considered in 
modeling thermal fracturing, like in the case of hydraulic fracturing (Chen et al., 2020; Gudmundsson, 2011).
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5.5.  Use of the Theoretical Solutions

The dimensionless solutions of dynamically spaced thermal fractures can be used for fast prediction of fracture 
properties (i.e., length, spacing, and surface aperture) for the entire spectrum of reservoir properties, in situ condi-
tions, and circulation and cooling conditions. These solutions, with one model parameter (𝐴𝐴   ), present the tran-
sient profiles (referred to as type curves) of dimensionless fracture properties for a number of 𝐴𝐴   (see Figure 7). 
(Type curves have been often used to represent analytical solutions of groundwater flow with one or two dimen-
sionless parameters (Gringarten, 1984; Hantush, 1960).) As shown in the validation, the central-line solution of 
dimensionless spacing and the arrest-line solutions of dimensionless length and surface aperture for different 𝐴𝐴   
can be used to accurately approximate their fully transient solutions (see Figures 7 and 10). A solution table or 
contour for uniform increments of logarithm dimensionless time and effective confining stress can be created 
for each fracture property. For a site-specific application, the dimensionless solution of each fracture property 
can be obtained through interpolation of the corresponding table using the site-specific 𝐴𝐴   , leading to a single 
transient profile as shown in Figure 10. In addition, for long-term prediction, extrapolation can be performed 
based on the scaling law, with the scaling coefficient determined by fitting the late-time profile. In these cases, no 
computer runs are needed. Only when the fully transient solutions with stepwise fracture spacing are of interest 
for a specific initial fracture spacing, does the developed algorithm in Appendix C2 need to be run. Note that the 
dimensionless solution of single fracture and constantly spaced fractures cannot be used for predicting fracture 
properties of a site-specific application because they cannot capture the actual hierarchical fracture pattern.

No reactivation of arrested fractures in subsurface applications is found in this study and fracture reactivation 
is thus not considered. Chen and Zhou (2021) found that fracture reactivation is possible under no confining 
conditions, and affects fracture spacing and pattern; they considered fracture reactivation (in addition to fracture 
propagation and arrest) in their modeling. In that study, no model parameter is involved in dimensionless solu-
tions (i.e., 𝐴𝐴  = 0 ) and the solution of fracture length is simply a single profile or type curve.

6.  Summary and Conclusions
Cooling-induced thermal fracturing has been observed in many field applications associated with fluid injec-
tion and circulation in deep subsurface reservoirs. Critical to the accurate modeling of thermal fracturing is the 
fundamental understanding of (a) the temperature plume and thermal stresses that are the driving force of thermal 
fracturing, (b) stress interaction between multiple thermal fractures, and (c) fracture propagation and arrest. In 
this study, we consider the thermal fracturing of a confined two-dimensional half-plane, bounded by a hydraulic 
fracture (or other fluid channel) that is cooled by circulating (or flowing) fluid, using a plane strain model. The 
propagation and arrest of multiple dynamically spaced fractures are investigated using the stability analysis, with 
stress interaction computed using the DDM technique. Two simpler cases: propagation of multiple fractures with 
constant spacing (no fracture arrest) and of single fracture (i.e., with infinite spacing) are considered to better 
understand the mechanisms of fracture arrest and stress interaction. For the three cases, dimensionless transient 
solutions and late-time scaling laws are obtained from the dimensionless governing equations derived in terms 
of dimensionless fracture length 𝐴𝐴  , spacing 𝐴𝐴  , and aperture 𝐴𝐴 Ω , as well as dimensionless time 𝐴𝐴 𝐴𝐴 and effective 
confining stress 𝐴𝐴  . The solutions of single fracture and dynamically spaced multiple fractures depend solely on 
one model parameter, 𝐴𝐴  .

For single fracture, the analytical solution is developed based on (a) directly calculating thermal stress using the 
analytical solution of one-dimensional heat conduction and (b) calculating the stress intensity factor and compar-
ing it with rock toughness based on the LEFM theory. The solution shows that for a given dimensionless effective 
confining stress 𝐴𝐴   , dimensionless fracture length 𝐴𝐴  starts from a critical initial length, increases nonlinearly with 
square root of dimensionless time 

(

√

�
)
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for 𝐴𝐴  → 1 , showing the effect of dimensionless effective confining stress. The scaling law shows that late-time 
fracture length increases linearly with the square root of cooling time.

For constantly spaced multiple thermal fractures, the coupled elastic equilibrium equation and the fracture- 
propagation criterion are solved iteratively for dimensionless fracture length, 𝐴𝐴 (𝜏𝜏𝜏), and the profile of dimen-
sionless fracture aperture. For a given 𝐴𝐴   , the 𝐴𝐴 (𝜏𝜏𝜏) solution deviates from the single-fracture solution 𝐴𝐴 (𝜏𝜏) at 
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a later 𝐴𝐴 𝐴𝐴 for a higher spacing 𝐴𝐴  . After the deviation time, 𝐴𝐴 (𝜏𝜏𝜏) < (𝜏𝜏) , indicating that the stress interaction 
between fractures slows down fracture propagation. The smaller 𝐴𝐴  is, the stronger the stress interaction becomes, 
and the smaller 𝐴𝐴 (𝜏𝜏𝜏) is. A similar scaling law of 𝐴𝐴  = 𝑓𝑓 (,  )

√

𝜏𝜏 , with scaling coefficient 𝐴𝐴 𝐴𝐴 (,  ) tabled 
for (𝐴𝐴 ,   ) pairs, is observed for late-time propagation, showing that the effects of effective confining stress and 
fracture spacing are separated from the effect of cooling time.

For dynamically spaced multiple fractures, their propagation is considered as a combination of a series of stable 
propagation (with constant fracture spacing) and unstable arrest (with spacing doubled at fracture arrest) that 
is determined by the stability analysis. The dimensionless solutions of fracture length, spacing, and aperture at 
the critical states of fracture arrests (i.e., arrest lines) for different 𝐴𝐴   are obtained. The following features of the 
solutions are observed: (a) dimensionless dynamic fracture spacing increases with dimensionless time, with a 
small effect of 𝐴𝐴  , (b) both dimensionless fracture length and surface aperture increase with dimensionless time, 
with a stronger effect of 𝐴𝐴  , (c) the ratio of 𝐴𝐴  to 𝐴𝐴  is around 1 at small 𝐴𝐴 𝐴𝐴 and increases with 𝐴𝐴 𝐴𝐴 , and (4) the scaling 
law 𝐴𝐴  = 𝑓𝑓

′
( )

√

𝜏𝜏 is valid at late time. (The coefficient 𝐴𝐴 𝐴𝐴
′
( ) is smaller than 𝐴𝐴 𝐴𝐴 ( ) for single fracture.) Finally, 

the fully transient solutions of fracture properties are obtained by time-stepping of fracture propagation and arrest 
with stepwise fracture spacing.

The three analytical/dimensionless solutions are validated using a FEM-based fracture model (with mode-I frac-
tures) for the settings of a real geothermal site. Excellent agreements are achieved for the evolution of fracture 
length for single fracture and constantly spaced multiple fractures. For dynamically spaced fractures, excellent 
agreements are also achieved for the evolution of fracture length, average spacing, and surface aperture, as well 
as fracture patterns, at all times. This validation shows that the developed dimensionless solutions can be used to 
rapidly predict the propagation of interacting thermal fractures under practical geological and engineering condi-
tions at real geological sites (without time-consuming model construction and computation in general numerical 
modeling). The scaling law can be used to estimate long-term fracture properties. The applications to the Utah 
FORGE site for both in situ and elevated fluid pressures indicate that tens-meter long thermal fractures are 
created. These transverse thermal fractures can link parallel hydraulic fractures, created in multistage hydraulic 
stimulation, to form well-connected fracture zones in the cooling region, and thus enhance fracture-matrix heat 
exchange area and impact water circulation during EGS operation.

The theoretical solutions are reliable under certain conditions, such as low-permeability, low-porosity crystalline 
rock, or low-permeability unconventional shale. The two key assumptions of (a) uniform fracture spacing and 
(b) mode-I fractures used in developing the solutions have negligible effects on the solutions, as demonstrated 
by additional FEM modeling with non-uniformly distributed fractures and mixed-mode fracture propagation. 
Fracture curvature may occur under favorable stress conditions when neighboring fractures are arrested but has 
negligible effects on the average fracture spacing and length of propagating fractures. It is stress shadowing that 
governs fracture arrest and thus the hierarchical fracture pattern. The stress shadowing (i.e., inter-fracture stress 
interaction) is accurately accounted for in our theoretical solutions using the DDM and its effect is clearly illus-
trated by comparing solutions of single fractures, and multiple constantly and dynamically spaced fractures. The 
influences of heat convection, rock heterogeneities, joints, and natural fracture are also discussed.

Appendix A:  Solution Approach for Single Thermal Fracture
A1. Analytical Transient Solution for Single Fracture

The propagation of single thermal fracture is governed by Equation 12, with one model parameter, dimension-
less effective confining stress 𝐴𝐴   . The analytical, transient solution of dimensionless fracture length is derived. 
Equation 12 is inspected and found to have a complicated integral. For better discussion, we use  (, �,  ) to 
denote the left-hand side of Equation 12. We calculate 𝐴𝐴  as a function of 𝐴𝐴  at different 𝐴𝐴 𝐴𝐴 . Figure A1a shows the 
profiles of 𝐴𝐴  at different 𝐴𝐴 𝐴𝐴 for 𝐴𝐴  = 0.5 . Each profile has an ascending limb and a descending limb and fracture 
propagation occurs when 𝐴𝐴  > 1 . There exists a critical dimensionless time 𝐴𝐴 𝐴𝐴𝑐𝑐 that ensures the existence of the 
solution for 𝐴𝐴  = 1 . For 𝐴𝐴  = 0.5 and 𝐴𝐴 𝐴𝐴𝑐𝑐 = 10

1.56 , the corresponding solution for 𝐴𝐴  = 1 is 𝐴𝐴 𝑐𝑐  = 2.99. For 𝐴𝐴 𝐴𝐴 >�� , 
two solutions of 𝐴𝐴  are obtained. The smaller one is the minimum length required for the initial fracture to be 
activated at current 𝐴𝐴 𝐴𝐴 . The larger one represents the length of the stably propagating fracture. Evolution of the 
two solutions for 𝐴𝐴  = 0.5 is shown in Figure A1b.
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The initial fracture with a length 𝐴𝐴 𝑖𝑖𝑖𝑖𝑖𝑖  ≥ 𝐴𝐴 𝑐𝑐 or 𝐴𝐴 𝑖𝑖𝑖𝑖𝑖𝑖 < 𝑐𝑐 has different behavior after initiation. For the former, the 
fracture is activated at some time and starts to propagate in a stable mode. For example, with 𝐴𝐴 𝑖𝑖𝑖𝑖𝑖𝑖  = 9.12 at the 
leftmost solid circle in Figures A1a and A1b, the fracture starts to propagate at 𝐴𝐴 𝐴𝐴 = 100 and the fracture length 
increases gradually with time. With 𝐴𝐴 𝑖𝑖𝑖𝑖𝑖𝑖  ≤ 𝐴𝐴 𝑐𝑐 (e.g., 𝐴𝐴 𝑖𝑖𝑖𝑖𝑖𝑖  = 1.63 at the rightmost hollow circle in Figure A1a or the 
leftmost hollow circle in Figure A1b), the fracture also starts to propagate at 𝐴𝐴 𝐴𝐴 = 100 but instantaneously reaches to 

𝐴𝐴   = 9.12 in an unstable mode since 𝐴𝐴  > 1 is always satisfied in the range 1.63 < 𝐴𝐴   < 9.12 at 𝐴𝐴 𝐴𝐴 = 100 and continues 
to propagate in a stable mode (see Figure A1b). The similar unstable behavior of single thermal fracture free of 
confining stress has been discussed in the literature (Bahr et al., 1993; B. Wang et al., 2015). In this study, we focus 
on the stable fracture propagation by specifying a reasonable initial fracture length equal to or larger than the critical 
fracture length. The instant initiation of thermal fractures in intact rock is beyond the scope of this study.

A2. Derivation of Scaling Law for Late-Time Propagation of Single Fracture

For late-time fracture propagation under finite effective confining stress (i.e., 𝐴𝐴  > 0 , 𝐴𝐴 𝐴𝐴 → ∞ and 𝐴𝐴  → ∞ ), the 
dimensionless governing equation for single thermal fracture, Equation 12, degrades to
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The left-hand side term of Equation A1 has a maximum value of π/2. For an arbitrary 𝐴𝐴 0 <  < 1 , 𝐴𝐴 ∕
√

𝜏𝜏 is a 
constant and can be solved from Equation A1.

For 𝐴𝐴   close to 𝐴𝐴 1 , we use the Taylor expansion for 𝐴𝐴 erfc(𝜔𝜔) at 𝐴𝐴 𝐴𝐴 = 0 and obtain
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Combining Equations A1 and A2, we have
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For 𝐴𝐴   close to zero, 𝐴𝐴 ∕
√

𝜏𝜏 approaches to infinity according to Equation A1. The left-hand-side term of Equa-
tion A1 can be rewritten:
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Figure A1.  Propagation of single thermal fracture for 𝐴𝐴  = 0.5 . (a) Profiles of function  (, �,  ) (solid lines) and the actual 
solutions of dimensionless fracture length in the descending limbs (blue solid circles) with 𝐴𝐴  = 1 (dashed line) at different 
times, as well as the solutions in the ascending limbs (red hollow circles). The solid arrow represents stable propagation while 
the dashed arrow indicates unstable fracture propagation. (b) Length of stably propagating fracture and the minimum length 
of initial fracture (as a function of dimensionless time τ).
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The infinite 𝐴𝐴 ∕(2
√

𝜏𝜏) leads to a very small range of 𝐴𝐴 𝐴𝐴 , out of which 𝐴𝐴 erfc

(



2
√

𝜏𝜏
𝜉𝜉

)

 is essentially zero. The second 
term in Equation A4 is thus negligible, and we have
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From Equation A1, we have


√

𝜏𝜏

=
4

𝜋𝜋3∕2
� (A6)

Appendix B:  Solution Approach for Constantly Spaced Thermal Fractures
For propagation of an infinite number of parallel thermal fractures with constant spacing, we use a large number 

𝐴𝐴 (2𝑛𝑛 + 1) of fractures to approximate the infinite fracture condition (see Figure B1a), each of which has an actual fracture 
at 𝐴𝐴 𝐴𝐴 ≥ 0 and an image fracture at 𝐴𝐴 𝐴𝐴 ≤ 0 to form a symmetric problem along the cooling surface. (This boundary condi-
tion is used to simplify the hydraulic fracture or fluid channel with possible contraction in the 𝐴𝐴 𝐴𝐴 direction neglected. 
This simplification only affects the early time solution of fracture length.) All the (actual) fractures have equal length 
and identical profiles of normal stress and dimensionless aperture. Each actual (or image) fracture is discretized into 𝐴𝐴 𝐴𝐴𝑥𝑥 
displacement discontinuity (DD) elements of identical length, with element 𝐴𝐴 𝐴𝐴𝑥𝑥 closest to the fracture tip and element 1 
next to the cooling surface. 𝐴𝐴 𝐴𝐴𝑥𝑥 needs to be sufficiently large to accurately capture the stress interaction between neigh-
boring fractures. Both 𝐴𝐴 𝐴𝐴𝑥𝑥 and n are set to 𝐴𝐴 500+ Round(50𝐴𝐴 ∕ ), where Round() returns the rounded integer.

In the case of multiple thermal fractures with equal length, the discretization of Equation 15 using DDM leads to

1

4𝜋𝜋
𝐌𝐌𝐌𝐌 = 𝚷𝚷� (B1)

where 𝐴𝐴 𝐌𝐌 is the dimensionless influence matrix that reflects the resultant effect of all the fractures on the center 
fracture, 𝐴𝐴 𝛀𝛀 is the dimensionless aperture vector, and 𝐴𝐴 𝚷𝚷 is the normal stress vector. More specifically, we have

𝐌𝐌 = 𝐌𝐌0 + 2

𝑛𝑛
∑

𝑘𝑘′=1

𝐌𝐌𝑘𝑘′� (B2a)

Figure B1.  Diagram of DDM discretization of 𝐴𝐴 (2𝑛𝑛 + 1) parallel (actual and image) fractures, and contribution to the 
influence matrix from the stress interaction between element 𝐴𝐴 𝐴𝐴 in the center fracture and element 𝐴𝐴 𝐴𝐴 in the 𝐴𝐴 𝐴𝐴

′ th (𝐴𝐴 𝐴𝐴
′
= 1 ) 

fracture: (a) multiple fractures with equal length and (b) multiple fractures in subsets A and B with different length (reused 
from Chen and Zhou [2021]).
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where 𝐴𝐴 𝐌𝐌𝑘𝑘′ (𝐴𝐴 𝐴𝐴
′
= 0, 1, 2, …, 𝑛𝑛 ) represents the influence of the 𝐴𝐴 𝐴𝐴

′ th fracture located at 𝐴𝐴 𝐴𝐴 = 𝑘𝑘
′
𝑑𝑑 on the center 

fracture and 𝐴𝐴 𝑖𝑖 is the dimensionless distance at the midpoint of element 𝐴𝐴 𝐴𝐴 . 𝐴𝐴 𝐌𝐌𝑘𝑘′ is given by the dimensionless 
influence matrix 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 with element 𝐴𝐴 𝐴𝐴 on the center fracture and element 𝐴𝐴 𝐴𝐴 on the 𝐴𝐴 𝐴𝐴

′ th fracture (see Appendix A in 
Chen and Zhou [2021]). Note that 𝐴𝐴 𝐌𝐌 is a function of 𝐴𝐴  and 𝐴𝐴  and 𝐴𝐴 𝚷𝚷 is a function of 𝐴𝐴   and 𝐴𝐴 𝐴𝐴 .

Similarly, the dimensionless fracture-propagation criterion in Equation 16 can be rewritten:
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where 𝐴𝐴 𝐴𝐴𝑁𝑁𝑥𝑥
= 𝑁𝑁𝑥𝑥

∕ , C is the coefficient used to correct the stress intensity factor computed with constant DD 
elements, and 𝐴𝐴 Ω𝑁𝑁𝑥𝑥

 is the fracture aperture of the 𝐴𝐴 𝐴𝐴𝑥𝑥 th DD element. 𝐴𝐴 𝐴𝐴 = 0.798 is used according to Mériaux and 
Lister (2002).

Equations B1 and B3 are coupled by two unknowns: 𝐴𝐴  and 𝐴𝐴 𝛀𝛀 , and are solved iteratively in each time step (𝐴𝐴 𝐴𝐴 ), for 
which the normal stress vector is known. 𝐴𝐴 𝛀𝛀 is first obtained by solving Equation B1 with the 𝐴𝐴  value in the last 
time step (an initial 𝐴𝐴 𝑖𝑖𝑖𝑖𝑖𝑖 needs to be specified for the first time step). With 𝐴𝐴 Ω𝑁𝑁𝑥𝑥

 known, 𝐴𝐴  is then updated using 
Equation B3. The iteration is repeated until the convergence of 𝐴𝐴  , and the solutions of 𝐴𝐴  and 𝐴𝐴 𝛀𝛀 are obtained. Then 
the program moves to the next time step. The time stepping is repeated from the initial time to a large 𝐴𝐴 𝐴𝐴 to obtain 
the transient solution of dimensionless fracture length (as well as the aperture profile at each time). The iterative 
procedure with time stepping is the same as that often used in numerical simulators for coupled problems.

Appendix C:  Solution Approach for Dynamically Spaced Thermal Fractures
The fracture propagation with dynamic spacing can be considered as a combination of a series of stable propa-
gation (with constant spacing) and unstable arrest (with fracture spacing doubled at fracture arrest). Figure C1a 
shows the path of the change in dimensionless fracture spacing, as a function of dimensionless distance from 
the cooling surface (𝐴𝐴  ), for a given initial spacing 𝐴𝐴 0 , along with the lower and upper envelopes of the solution 
path. At the lower envelope (referred to as the arrest line), the instability condition of fracture arrest occurs, and 
propagating fractures can only propagate with some fractures arrested. The arrest line 𝐴𝐴 𝑎𝑎 (𝑎𝑎) is the separator 
between the stable state and the unstable state.

Figure C1.  (a) A schematic fracture solution path consisting of stable propagation and unstable arrest of multiple fractures, 
bounded by the upper envelope and the lower envelope (i.e., the arrest line separating the stable and unstable regions), 
illustrated for 𝐴𝐴  = 0.5 . The central line shows an approximate solution assuming a continuous fracture spacing. (b) 
Determination of the arrest line for 𝐴𝐴  = 0.5 by linking the critical states (hollow circles) for 𝐴𝐴  = [25, 50, 100, 200, 400, 1000, 
2000, 5000, 10000], along with the constant-spacing solutions for four 𝐴𝐴  values and the single-fracture solution.
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The procedure of solving for the properties of dynamically spaced thermal fractures includes: (a) determina-
tion of the critical states at fracture arrest (arrest lines) by calculating the critical dimensionless fracture length 

𝐴𝐴 𝑎𝑎 (𝑖𝑖) , time 𝐴𝐴 𝐴𝐴𝑎𝑎 (𝑖𝑖) , and aperture 𝐴𝐴 𝛀𝛀𝒂𝒂 (𝑖𝑖) (𝐴𝐴 𝛀𝛀𝒂𝒂 is the vector of the discretized dimensionless aperture along the 
thermal fracture at the arrest line and has a length of 𝐴𝐴 2𝑁𝑁𝑥𝑥 ) at the unstable condition using the stability analysis 
for a series of dimensionless spacing 𝐴𝐴 𝑖𝑖 , (b) determination of the approximate solutions (central line), and (c) 
determination of fully transient solution of fracture properties with stepwise fracture spacing.

C1. Determination of the Arrest Lines and Approximate Solutions

The algorithm for determining the arrest lines is described in Figure C2. For a series of given spacing 𝐴𝐴 𝑖𝑖 , we 
record 𝐴𝐴 𝐴𝐴𝑎𝑎 (𝑖𝑖) , 𝐴𝐴 𝑎𝑎 (𝑖𝑖) , and 𝐴𝐴 𝛀𝛀𝒂𝒂 (𝑖𝑖) and link them to form a continuous solution (𝐴𝐴 𝐴𝐴𝑎𝑎,𝑎𝑎,𝛀𝛀𝑎𝑎,𝑎𝑎 ) at the arrest lines. 
Figure C1 shows an example (black dashed line) of arrest line 𝐴𝐴 𝑎𝑎 (𝑖𝑖) by linking the hollow circles of nine differ-
ent dimensionless fracture spacing in the case of 𝐴𝐴  = 0.5 . With the arrest lines known, the fracture pattern after 
arrests for a specified initial spacing can be predicted by following the fracture path shown in Figure C1a. In this 
case, only the solutions at the arrest times are known, which are sufficient for most cases as shown in Section 4.2.

For the details of stability analysis, we divide the 𝐴𝐴 2𝑛𝑛 + 1 fractures into subsets A and B alternately (see Figure B1b). 
Without loss of generality, we define subset A fractures as propagating fractures and subset B ones as fractures to 
be arrested, and artificially extend the former by 𝐴𝐴 ∼ 0.01 (i.e., 𝐴𝐴 𝐴𝐴 ≈ 1.01 , 𝐴𝐴 𝐵𝐵 =  ). The subset B fractures are 
discretized by 𝐴𝐴 𝐴𝐴𝑥𝑥 DD elements and the subset A fractures are discretized by 𝐴𝐴 𝐴𝐴𝑥𝑥 + 𝛿𝛿 DD elements, with identical 
length for all elements. Note that the center fracture can be in subset A or B. The discretized form of Equation 15 
for subset A with the center fracture (see Figure B1b) can be written

1

4𝜋𝜋

(

𝐌𝐌
𝐀𝐀𝐀𝐀
𝛀𝛀

𝐀𝐀 +𝐌𝐌
𝐁𝐁𝐁𝐁
𝛀𝛀

𝐁𝐁
)

= 𝚷𝚷
𝐀𝐀� (C1)

The discretized form of Equation 15 for subset B with the center fracture can be written

1

4𝜋𝜋

(

𝐌𝐌
𝐀𝐀𝐀𝐀
𝛀𝛀

𝐀𝐀 +𝐌𝐌
𝐁𝐁𝐁𝐁
𝛀𝛀

𝐁𝐁
)

= 𝚷𝚷
𝐁𝐁� (C2)

where 𝐴𝐴
(

𝛀𝛀
𝐀𝐀
,𝚷𝚷

𝐀𝐀
)

 and (𝐴𝐴 𝛀𝛀
𝐁𝐁
,𝚷𝚷

𝐁𝐁) are the vector pairs of the dimensionless fracture aperture and normal stress for 
subsets A and B, respectively. 𝐴𝐴 𝐌𝐌

𝐀𝐀𝐀𝐀 , 𝐴𝐴 𝐌𝐌
𝐁𝐁𝐁𝐁 , 𝐴𝐴 𝐌𝐌

𝐀𝐀𝐀𝐀 , and 𝐴𝐴 𝐌𝐌
𝐁𝐁𝐁𝐁 are the influence matrices between subsets A and B. 

𝐴𝐴 𝐌𝐌
𝐀𝐀𝐀𝐀 and 𝐴𝐴 𝐌𝐌

𝐁𝐁𝐁𝐁 , reflecting the resultant effect of fractures in subsets A and B on the center fracture in subset A, 
are computed by

𝐌𝐌
𝐀𝐀𝐀𝐀

= 𝐌𝐌0 + 2

∑

𝑘𝑘′∈[1,𝑛𝑛] 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 A

𝐌𝐌𝑘𝑘′� (C3a)

𝐌𝐌
𝐁𝐁𝐁𝐁

= 2

∑

𝑘𝑘′∈[1,𝑛𝑛] in 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 B

𝐌𝐌𝑘𝑘′� (C3b)

Similarly, 𝐴𝐴 𝐌𝐌
𝐁𝐁𝐁𝐁 and 𝐴𝐴 𝐌𝐌

𝐀𝐀𝐀𝐀 that include the resultant effect of fractures in subsets A and B on the center fracture in 
subset B are computed.

Figure C2.  Algorithm for solving for critical fracture properties for a specific dimensionless confining stress and fracture 
spacing using the stability analysis.
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With 𝐴𝐴 𝛀𝛀
𝐀𝐀 and 𝐴𝐴 𝛀𝛀

𝐁𝐁 solved from Equations C1 and C2, the discretized, equivalent dimensionless form of the insta-
bility condition in Equation 8 turns into

Ω
𝐴𝐴

𝑁𝑁𝑥𝑥+𝛿𝛿
> Ω

𝐵𝐵

𝑁𝑁𝑥𝑥
� (C4)

where 𝐴𝐴 Ω
𝐴𝐴

𝑁𝑁𝑥𝑥+𝛿𝛿
 and 𝐴𝐴 Ω

𝐵𝐵

𝑁𝑁𝑥𝑥

 are the fracture aperture of the 𝐴𝐴 (𝑁𝑁𝑥𝑥 + 𝛿𝛿) th DD element in subset A fractures and the 𝐴𝐴 𝐴𝐴𝑥𝑥 th 
DD element in subset B fractures. Equation C4 is used to determine whether fracture arrest occurs during fracture 
propagation with time for a given fracture spacing.

The fracture path in Figure C1a can be approximately represented by the central line denoted by (𝐴𝐴 𝐴𝐴o,o,𝛀𝛀o,o ) 
with 𝐴𝐴 𝑜𝑜 =

√

2𝑎𝑎 and 𝐴𝐴 𝑜𝑜 = 𝑎𝑎 . 𝐴𝐴 𝛀𝛀o is the vector of the discretized dimensionless aperture along the thermal frac-
ture at the central line and has a length of 𝐴𝐴 2𝑁𝑁𝑥𝑥 . τo and 𝐴𝐴 𝛀𝛀o need to be solved from Equations B1 and B3 by setting 

𝐴𝐴 𝑜𝑜 =
√

2𝑎𝑎 and 𝐴𝐴 𝑜𝑜 = 𝑎𝑎 . The solutions at the central line provide approximate solutions of multiple thermal 
fractures with dynamic spacing assuming a continuous change of fracture spacing. The results of the arrest lines 
of (𝐴𝐴 𝐴𝐴𝑎𝑎,𝑎𝑎,𝛀𝛀𝑎𝑎,𝑎𝑎 ) for different 𝐴𝐴   are given in Section 3.2.3 while both the solutions at the arrest line and the 
central line are given in their dimensional manner in Section 4.2.

C2. Fully Transient Solutions of Fracture Properties

The solutions of the arrest line (𝐴𝐴 𝐴𝐴𝑎𝑎,𝑎𝑎,𝛀𝛀𝑎𝑎,𝑎𝑎 ) and the central line (𝐴𝐴 𝐴𝐴o,o,𝛀𝛀o,o ) provide continuous solutions 
of fracture properties, which are sufficient to capture the evolution of fracture length, spacing, and aperture as 
shown in the solution validation and application in Section 4. In some rare cases, fully transient solutions of 
fracture properties with stepwise fracture spacing 𝐴𝐴 (0, 20, 40,…) are of interest, in particular, for fracture 
pattern. These solutions can be solved through following steps. To start the modeling, we pick up an arbitrarily 
small fracture spacing 𝐴𝐴 0 and a sufficiently large number of fractures (𝐴𝐴 2𝑚𝑚 ). The initial fracture length (𝐴𝐴 𝑖𝑖𝑖𝑖𝑖𝑖 ) is 
determined by satisfying � (���) < 0 to ensure the initial state (𝐴𝐴 𝑖𝑖𝑖𝑖𝑖𝑖 , 𝐴𝐴 0 ) is in the stable region above the arrest 
line (see Figure C1a). We then perform the fracture propagation by solving for 𝐴𝐴  and 𝐴𝐴 𝛀𝛀 from coupled Equations 
B1 and B3 until fracture length for current spacing reaches the arrest line. At the unstable arrest, every other 
propagating fracture (subset B fracture) is arrested and the rest of propagating fractures (subset A fractures) with 
a doubled spacing continue to propagate until the next arrest event. Note that the selection of subset A and B does 
not affect the fracture pattern because of the alternating nature of propagating and arrested fractures considered. 
This process is repeated until the final modeling time is reached. The fully transient solutions provide stepwise 
fracture spacing (Figures 10a and C1a), continuous fracture length, and fracture pattern (see Figure 9a) as func-
tions of time. Note that as long as the arrest line is available, no stability analysis is further needed in the solution 
procedure.

Data Availability Statement
The modeling data of our developed analytical/dimensionless solutions and the computer code for obtaining these 
solutions are available on the website of Open Science Framework (https://osf.io/u3bcz/). No field or laboratory 
data are involved in this study.
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