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SIGNALS: A HIERARCHICAL MODELING APPROACH

Qian Li1,*, John Shamshoian1, Damla Şentürk1, Catherine Sugar1, Shafali Jeste2, Charlotte 
DiStefano2, Donatello Telesca1,†

1Department of Biostatistics, UCLA Fielding School of Public Health, University of California, Los 
Angeles,

2Department of Psychiatry and Department of Psychiatry and Biobehavioral Sciences, UCLA 
David Geffen School of Medicine, University of California, Los Angeles

Abstract

Functional brain imaging through electroencephalography (EEG) relies upon the analysis and 

interpretation of high-dimensional, spatially organized time series. We propose to represent time-

localized frequency domain characterizations of EEG data as region-referenced functional data. 

This representation is coupled with a hierarchical regression modeling approach to multivariate 

functional observations. Within this familiar setting we discuss how several prior models relate to 

structural assumptions about multivariate covariance operators. An overarching modeling 

framework, based on infinite factorial decompositions, is finally proposed to balance flexibility 

and efficiency in estimation. The motivating application stems from a study of implicit auditory 

learning, in which typically developing (TD) children, and children with autism spectrum disorder 

(ASD) were exposed to a continuous speech stream. Using the proposed model, we examine 

differential band power dynamics as brain function is interrogated throughout the duration of a 

computer-controlled experiment. Our work offers a novel look at previous findings in psychiatry 

and provides further insights into the understanding of ASD. Our approach to inference is fully 

Bayesian and implemented in a highly optimized Rcpp package.

Keywords

EEG; factor analysis; functional data analysis; hierarchical models

1. Introduction.

The human brain and its functional relation to biobehavioral processes like motor 

coordination, memory formation and perception as well as pathological conditions like 

Parkinson’s disease, epilepsy and autism have been a subject of intense scientific scrutiny 

* qianl@ucla.edu;. † dtelesca@ucla.edu. 
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(Broyd et al. (2009), Murias et al. (2007), Uhlhaas and Singer (2010)). An important and 

highly prevalent imaging paradigm aims to study macroscopic neural oscillations projected 

onto the scalp in the form of electrophysiological signals and record them by means of 

electroencephalography (EEG).

Currently, a typical multi-channel EEG imaging study is carried out with a geodesic EEG-

net, composed of up to 256 electrodes. After precise placement on the scalp, electrodes 

collect electrophysiological signals at high time resolution through event-related potentials 

(ERP) or event-related oscillations (ERO). In this setting, endogenous or exogenous events 

can result in frequency-specific changes to ongoing EEG oscillations. The spectral features 

of the resulting time series are often used to quantify such changes. Specifically, in a time-

frequency analysis the spatiotemporal dynamics of frequency-specific power are examined, 

as they relate to sensory, motor and/or cognitive processes (Gou, Choudhury and Benasich 

(2011), Mills, Coffey-Corina and Neville (1993), Scheffler et al. (2020)).

Our work is motivated by a study of language acquisition in young children with autism 

spectrum disorder (ASD), a developmental condition that affects an individual’s 

communication and social interactions (Lord et al. (2000)). It is thought that typically 

developing (TD) infants, as young as 6 months old, start to parse continuous streams of 

speech to actively discern word patterns (Kuhl (2004)). Infants diagnosed with ASD, tend to 

feature late development of linguistic skills (Eigsti et al. (2011)). Because neither verbal 

instructions nor behavioral evaluations can be performed on toddlers, EEG platforms have 

been recognized as an effective and noninvasive functional brain imaging tool.

In an idealized setting, for each study unit we aim to characterize variability in the relative 

log-power of a specific frequency band, recorded at a scalp location s, at time t. This aim is, 

however, made more complex by several estimation- and data-related challenges. Raw EEG 

recordings, in fact, suffer from exogenous contamination and poor spatial resolution as well 

as nonstationarity. To mitigate these issues, several preprocessing and regularization 

strategies have been proposed in the literature (Scheffler et al. (2020)). In this article we 

build on our previous work and couple the characterization of EEG spectral dynamics as 

region-referenced functional data with a Bayesian model for multivariate functional 

observations. Figure 1 illustrates the fundamental nature of the data structure considered in 

our motivating case study by depicting specific band power trajectories through time in trial 

and across three of 11 brain regions in a study of language acquisition. Given this data 

structure, we are interested in region-specific, time-varying differences in band power 

dynamics between diagnostic groups. Crucially, valid inference depends on the correct 

specification of large multivariate covariance functions.

Many approaches to functional data analysis rely on functional principal components 

analysis as a fundamental tool for advanced modeling (James, Hastie and Sugar (2000), Yao, 

Müller and Wang (2005)). Methods for the analysis of multivariate functional data are more 

sporadic but tend to follow similar strategies with specific attention paid to data scales 

(Chiou, Chen and Yang (2014)) or potential heterogeneity in the functional evaluation 

domain (Happ and Greven (2018)). The Bayesian literature on the subject is more sparse, 

with notable exceptions to be found in Baladandayuthapani et al. (2008), who consider 
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nested spatially correlated functional data under assumptions of separability, and the more 

general work of Zhou et al. (2010), who consider similar data structures under more flexible 

covariance models.

The use of typical spatial assumptions is, however, problematic in the analysis of region-

referenced EEG data. Namely, Euclidean distances between electrodes may not accurately 

characterize functional dependency of within-subject, relative log-power readings. 

Therefore, instead of relying on prespecified covariance structures (e.g., conditionally 

autoregressive models) to describe within-subject correlation, we propose to estimate them 

through functional factor analysis.

In particular, this article introduces a probabilistic framework for multivariate functional 

data regression which hinges on two ideas: (1) the constructive definition of Gaussian 

processes through basis expansions and (2) the modeling of covariance operators through 

functional factor analysis (Montagna et al. (2012)). While neither approach is new, we 

highlight the application of these concepts to functional brain imaging though EEG. In the 

process we discuss important consequences associated with specific implementation choices 

as they relate to transparent assumptions on the structure of multivariate covariance 

functions. Our proposal seeks to develop a general framework for automatic shrinkage and 

regularization through infinite factor models (Bhattacharya and Dunson (2011)). The 

resulting methodology is suitable for nonparametric estimation with any projection methods 

which is amenable for use in a broad range of applications.

The article is organized as follows. In Section 2 we outline a conceptual framework for 

region-referenced band powers dynamics. A hierarchical functional model for region-

referenced functional data is introduced in Section 3. We assess the performance of the 

proposed model on engineered datasets in Section 4 and apply our work to a neurocognitive 

study on auditory implicit learning in Section 5. We conclude with a critical discussion of 

our work in Section 6.

2. Time-dependent, region-referenced band-power.

EEG signals, measured through high-resolution geodesic networks of electrodes, allow for 

highly localized interrogation of cortical functions throughout the duration of a computer-

controlled experiment. In large studies the high-dimensional nature of the resulting time 

series poses potential modeling and computational challenges.

Due to spatial proximity, neighboring electrodes collect signals likely to be highly 

multicollinear. In this context the analysis of EEG data is often preceded by a dimension 

reduction exercise, aimed at discarding redundant information and aid interpretation through 

the definition of region-level summaries. Specifically, electrodes are partitioned according to 

anatomical regions on the scalp. Subsequently, region-level summaries are defined by 

averaging power spectra or by selecting the power spectrum of a single electrode within the 

region. Alternatively, given that multicollinearity of signals defines similarity in their 

spectral features, spectral PCA (Brillinger (1981)) has been proposed to pool information 

within anatomical regions with minimal loss of information. Applications to EEG data have 
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been recently proposed by Ombao and Ho (2006) and Scheffler et al. (2020). Our approach 

follows closely the development in Scheffler et al. (2020), who perform spectral PCA on 

nonoverlapping EEG segments. Our target summaries, however, focus on specific frequency 

bands, as opposed to the entire power spectrum.

We outline and define basic concepts used in our work and defer details to Section 2 of the 

Supplementary Material (Li et al. (2020a)). Let Xij (s, t) denote the raw EEG recording, 

conceptualized as a locally stationary, zero-mean qj -dimensional random process observed 

on subject i, i = 1, … , n, within anatomical region j, j = 1, … , p, for segment t, t 1, … , m, 

at a sampling rate U across discretized time s, (s = 0, ±1, … , ±U/2) assuming a 1s analysis 

window. For each observation Xij (s, t), FFT is performed to obtain Fourier coefficients 

dij(ω, t) = U−1/2 ∑s Xij(s, t) exp{−i2πωs}, at frequency ω. The raw periodogram matrix 

Iij(ω, t) = dij(ω, t)dij(ω, t)′ is computed, where dij(ω, t)′ is the transpose of the complex 

conjugate of dij(ω, t). Following Ombao and Ho (2006), we define kernel smoothed spectral 

density matrices Iij(ω, t), by smoothing Iij (ω, t) across ω, using a Daniell kernel with band-

widths selected through generalized cross validation (GCV). Crucially, smoothing 

bandwidth are held fixed within region, resulting in Iij(ω, t) being Hermitian and 

nonnegative definite.

A one-dimensional, region-level summary may be obtained by defining the principal power 

powerλij*(ω, t) ≔ cij−1(t)max|z | = 1z′Iij(ω, t)z, as the normalized leading eigenvalue of Iij(ω, t),

with cij(t) = ∫ λij*(ω, t)dω. Within region the principal power summarizes common frequency-

level variation across electrodes along the direction of the leading eigen-vector. In contrast to 

Scheffler et al. (2020), who consider region-referenced, longitudinal-functional 

representations, we adopt a simplified view and focus on specific frequency bands. 

Specifically, for a frequency range (ωa,ωb) this article emphasizes modeling the time-

varying principal band power γij(t) ≔ ∫ωa
ωbλij*(ω, t)dω.

In adults, typical frequency bands and their spectral boundaries are delta (<4 Hz), theta (4–8 

Hz), alpha (8–15 Hz), beta (15–32 Hz) and gamma (32–50 Hz). This view is motivated by 

traditional approaches in neurocognitive science which differentiate functionally distinct 

frequency bands as they are thought to target distinct neurocognitive and biobehavioral 

processes (Saby and Marshall (2012)).

3. Hierarchical models for region-referenced functional data.

3.1. Data projections.

Given a frequency band of interest, let Yij (t) = log {γij(t)} be the logarithm of the principal 

band power for subject i, anatomical region j, evaluated at time t. In practice, for each 

subject only a finite number of observations are collected discretely at ti = ti1, ti2, …, timi . 

However, for ease of notation and without loss of generality, we assume t ∈ T = [a, b]. 
Collecting all region-level log band-power measurements into p-dimensional vector Yi (t) = 

{Yi1(t), … , Yip(t)}′, we characterize subject-level observations as possibly contaminated 

multivariate functional data. Specifically, let fi (t) = {fi1(t), … , fip(t)}′ be a set of p-
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dimensional random functions with each fij (t), j = 1, … , p in ℒ2(T), a Hilbert space of 

square integrable functions with respect to the Lebesque measure on T. We assume

Y i(t) = fi(t) + ϵi(t), ϵi(t) Np 0, Σϵ , (3.1)

with residual covariance Σϵ = diag σϵ1
2 , …, σϵp2  Given f i (t) at time t, Yi (t) is assumed to arise 

from independent realizations of a heteroscedastic multivariate Gaussian distribution.

We characterize the random functions f i (t) through finite-dimensional projections onto q 

cubic B-spline bases b(t) = {b1(t), … , bq (t)}′. Specifically, let Θi = θijk ∈ ℝp × q be a 

matrix of random basis coefficients; we express 3.1 as follows:

Y i(t) = Θib(t)′ + ϵi(t) . (3.2)

The representation above is readily available for hierarchical modeling. Given priors on Θi 

and Σϵ, standard posterior inference and computation applies to the seemingly challenging 

problem of modeling multivariate functional data. Crucially, if the elements of Θi are 

assumed Gaussian, given b(t), the simple construction in 3.2 implies that f i (t) follows a p-

dimensional Gaussian process, with second-order properties fully determined by covariance 

assumptions on the random basis coefficients.

In the following sections we develop an overarching structure for prior specification, 

including possible dependence on covariate information and discuss modeling strategies and 

their implications for flexibility and efficiency in estimation.

3.2. Hierarchical priors and dependence on covariates.

A typical study of functional brain imaging aims to relate subject-level, time-stable covariate 

information wi = (wi1, … , wid)′, with a region-referenced, dynamic outcome Yi (t). We 

focus on the conditional expectation E{Yi (t) | wi} = E(Θi | wi)b(t)′ as the principal measure 

of association between covariates and brain function outcomes. Let M(wi) := E(Θi | wi); a 

familiar modeling framework for Θi relies on the following matrix-mixed effects 

construction:

Θi = M wi + Zi, vec Zi Npq 0, Σz , (3.3)

where Zi ∈ ℝp × q captures subject specific regional and functional variation. Assuming wi is 

organized as a regression design vector, let Ψl ∈ ℝp × q, l = 1, …, d, be regression 

coefficients; a matrix linear model defines M wi = ∑l = 1
d Ψlwil. In this setting the 

regression functions, μℓ(t) := Ψℓb(t)′ , are p-dimensional varying coefficients to be 

interpreted in relation to the design structure encoded in wi (Zhu, Li and Kong (2012)).

Given a basis projection, the second-order behavior indexing functional and region-level 

dependence for the the multivariate Gaussian process f i (t) is fully determined by the 

covariance matrix Σz. While finite-dimensional, this matrix is likely high-dimensional, as it 
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spans both the number of regions p and a potentially large number of basis functions q. We 

discuss three modeling approaches, aimed at regularization through shrinkage and 

simplifying structural assumptions, namely: a naïve-Bayes (NB) prior, a separable sandwich 

(SS) prior and a regularized nonseparable (NS) prior.

Naïve-Bayes (NB) prior.—This construction exploits two simplifying assumptions: (1) 

the random coefficients matrix Zi is assumed to follow a Matrix Gaussian distribution, and 

(2) covariance along time is parametrized through Bayesian P-splines smoothing penalties 

(Lang and Brezger (2004)). Let S ∈ ℝp × p be a deterministic penalty matrix and Ω0 ∈ ℝq × q

be a covariance matrix indexing dependence between anatomical regions. The NB prior 

assumes

Zi ℳN 0, S, Ω0
−1 , S−1 W v, S0

−1/v . (3.4)

The prior above structures Σz = S ⊗ Ω0
−1, implying separability of covariation between 

regions and time of points. The matrix S serves both the purpose of modeling dependence 

between brain regions through its of-diagonal elements and the purpose of establishing 

region-level adaptive smoothing through its diagonal elements as they multiply Ω0
−1. More 

details about this matrix and the choice of hyperparameters are discussed in Web Appendix 

C. While greatly simplified, when compared to a completely unstructured Σz, this 

construction is potentially problematic, as it hinges on a relatively rigid parametrization for 

the time-covariance while enforcing only mild Wishart regularization of S.

Separable sandwich (SS) prior.—A more balanced approach to the prior in 3.4 retains 

the assumption of separability but implements adaptive regularized estimation of both the 

time and region covariance. In particular, we extend the approach of Montagna et al. (2012) 

and propose a two-way Bayesian latent factor model for Zi. Let ϒ = vjr ∈ ℝp × k1 and 

Γ = γvs ∈ ℝq × k2 be two loading matrices. Also, let Hi = ℎrs ∈ ℝk1 × k2 be a random 

matrix with hrs ~iid N(0, 1), r = 1, … , k1, s = 1, … , k2; we write

Zi = ϒ HiΓ′ + Ri  with Ri ℳN 0, Σp, Σq , (3.5)

where Σp and Σq, both are diagonal with anisotropic components. This construction, implies

Σz = ϒ ϒ′ ⊗ ΓΓ′ + Σp ⊗ Σq .

Typically, as in latent-factor models, a truncation k1 < p and k2 < q is selected to define a 

low-rank representation of the region and time covariances. Rather than selecting the 

number of latent factors, we consider the multiplicative shrinkage prior of Bhattacharya and 

Dunson (2011), so that:

vjr ϕjr, τr N 0, ϕjr−1τr−1 , ϕjr Ga v1/2, v1/2 , τr = ∏
u = 1

r
δu,
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δ1 Ga a11, 1 , δu Ga a12, 1  when u > 1;

γvs ∣ ρvs, κs N 0, ρvs−1, κs−1 , ρvs Ga v2/2, v2/2 , κs = ∏
l = 1

s
πv,

π1 Ga a21, 1 , πv Ga a22, 1  when l > 1.

When a11 > 1, a12 > 1, this prior defines stochastically increasing precisions as more 

columns are added to ϒ and Γ. Specific details about this shrinkage strategy and choice of 

hyperparameters are reported in the Supplementary Material (Section 3) (Li et al. (2020a)). 

In what follows, we build on latent factor representations and forego the assumption of 

separability altogether.

Nonseparable (NS) prior.—As noted in Cressie and Huang (1999), the class of separable 

models ((3.4), (3.5)) is severely limited since it cannot capture region-time interaction. The 

cross-covariance functions between the time series at any region has the same shape, 

regardless of region location. Separable structures are often chosen for convenience rather 

than for their ability to fit the data well. These limitations make the separability approach 

difficult to justify in the setting of functional neuroimaging. A simple approach, which 

foregoes this assumption while still defining a regularized representation of Σz, involves 

dealing with vec(Zi) directly. Specifically, let Ξ = ξcs ∈ ℝpq × k, be a loading matrix and ηi 

~ Nk(0, Ik); we write

vec Zi = Ξηi + ri  with ri Npq 0, Σr , (3.6)

with Σr = diag σr1
2 , …, σrpq2 , implying Σz = ΞΞ′+ Σr. This formulation leads to a probabilistic 

version of the multivariate FPCA of Chiou, Chen and Yang (2014), with normalization 

handled through explicit assumptions of heteroscedasticity through Σr. Echoing the approach 

used in the sandwich prior, the model is completed with a shrinkage prior on the loading 

matrix Ξ, so that:

ξ(s)
(c) ∣ Ωs, τc N 0, Ωs−1τc−1 , Ωs W v, Ω0/v , τc = ∏

l = 1

c
δl,

δ1 Ga a1, 1 , δl Ga a2, 1  when l > 1,

where ξ(s)
(c) indicates the sth p-dimensional block, s ∈ {1, … , q}, of the cth column of Ξ, c = 

1, … , k.
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It is easy to show that the vectorized model in 3.6 encompasses both the separable sandwich 
prior in 3.5 and the naïve-Bayes prior in 3.4. We examine the finite sample properties of 

these modeling strategies under several simulation scenarios in the Section 4.

The three priors listed above span a broad range of model flexibility. We recognize, however, 

that several other nuanced configurations have been considered in the literature, particularly, 

when sampling schedules allow for design-driven structural assumptions. For example, in 

the context of longitudinal functional data, methodological simplifications to multivariate 

functional data include both functional random effects models (Greven et al. (2010)) and 

simplified multivariate functional principal components representations (Park and Staicu 

(2015)). Weakly separable covariance structures have been characterized in Chen and Lynch 

(2017), bridging the complexity of SS and NS models, by expressing a multiway covariance 

as the linear combination of rank-one, strongly-separable terms. This idea has found several 

applications and extensions in the context of longitudinal functional data literature (Lynch 

and Chen (2018), Scheffler et al. (2020), Shamshoian et al. (2019)). While a comprehensive 

comparison is out of scope for this work, in the context of our case study and through 

simulations, we aim to assess how a general NS model can avoid losses in efficiency through 

adaptive regularization.

3.3. Posterior inference.

Posterior inference is based on Markov chain Monte Carlo simulations from the target 

measure. All prior models discussed in Section 3.2 are amenable to simple Gibbs sampling 

implementations. A highly-optimized R package for data manipulation and inference is 

freely available from github at https://github.com/Qian-Li.

The MCMC transition schedule implemented in our package is optimized to marginalize out 

subject by region coefficients whenever possible, therefore limiting the degree of auto-

correlation between posterior draws. As is the case with GP-type regression, in applying our 

method beyond EEG data some care is needed, as the scalability of simple posterior 

sampling schemes could be an issue in high dimensions (large n or p). In these cases, 

specialized approximation strategies are, however, applicable, as described in Nishimura and 

Suchard (2018).

We note that the loading matrix Ξ in (3.6) as well as ϒ and Γ in (3.5) are not likelihood 

identified due to invariance to orthogonal rotations. Crucially, however, ΞΞ′, ϒϒ′ and ΓΓ′ 
are all uniquely identified, leading to likelihood-identifiability of Σz. Given posterior 

samples from the model parameters, Monte Carlo estimates of all quantities of interest, 

including simultaneous credible bands are obtained in a relatively straightforward fashion 

(Baladandayuthapani, Mallick and Carroll (2005)). Detailed calculations, including full 

conditional distributions are reported in the Supplementary Material (Li et al. (2020a)).

4. Experiments on engineered data.

To evaluate the finite sample performance of the hierarchical model and priors described in 

Section 3, we carried out an extensive Monte Carlo study considering data generated under 

several dependence structure (separable, non-separable), dependence strength, sample size 
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and signal-to-noise ratio scenarios. The signal-to-noise ratio is defined by 

SNR = 1
n

1
p ∑i = 1

n ∑j = 1
p ∫Tfij(t)2dt/σϵ2. Intuitively, SNR in this context can be intended as an 

inflation quotient for the error-variance σϵ2. The general goal of these experiments aims to 

assess how well the mean M(wi) and covariance Σz are recovered under different priors and 

simulation truths. Further details regarding the data generation scheme are available in Web 

Appendix (Section 4).

Let μl(t) and Σz denote posterior mean estimates for their parametric counterparts (Section 

3.2). To quantify the quality of estimates, we consider relative squared errors, defined as 

follows:

• Mean: Average relative squared error across regions and covariates, s.t.

RSE(M) = 1
dp ∑

l = 1

d ∫t μl(t) − μl(t) 2   dt

∫tμl(t)2   dt

′
1p;

• Covariance: Relative squared Frobenius error, st.

RSE Σz =
Σz − Σz F

2

Σz F
2 .

In relation to these metrics, we observe the following behavior:

Sample size and SNR.

For each of 100 datasets, we simulate n = 10, 20, 50 individuals in each of three diagnostic 

groups, with functional observations collected over six anatomical regions. Each data-set is 

considered under two signal-to-noise ratio scenarios, SNR = 0.2, 1.0. We assume 

observations are defined on a common time-grid ∈ [0, 1] with random missing patterns, 

where between zero and 80% of the time-points are discarded to mimic observed data. 

Results are summarized in Table 1.

All three priors recover the mean structure equally well under both SNR scenarios. 

Independently of the generating dependence structure, average relative squared errors 

improve as more subjects are included for analysis. More meaningful differences are 

observed when we consider recovery of the covariance structure. When data are generated 

under separable covariance, SS priors exhibit the best performance, with improved accuracy 

for larger sample sizes. Some loss in efficiency is observed when considering NS priors. 

However, even with only 10 subjects the loss in efficiency is estimated to be only about 

30%, reducing to about 4% when sample size escalates to n = 50. When data are generated 

from nonseparably covarying processes, NS priors exhibit the highest efficiency and are the 

only model improving meaningfully in accuracy as sample size increases. In all simulation 

settings, NB priors seem to perform poorly in relation to other alternatives.

In summary, our findings agree with well-known results in multivariate and longitudinal data 

analysis (Wakefield (2013)). Consistent recovery of the mean function seems to be relatively 
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insensitive to the covariance model. Inference and uncertainty quantification about the mean, 

however, requires correct recovery of the dependence structure encoded in Σz. While 

meaningful gains in efficiency can be achieved if separability assumptions are warranted in 

applications, the encompassing regularized prior (NS) leads to a generally more flexible and 

efficient modeling framework without the need for stringent structural assumptions.

Extended results, including sensitivity to model specification are reported in the 

Supplementary Material (Li et al. (2020a)). While theoretical large sample results are not 

examined in the manuscript, all simulation results can be reproduced and extended with our 

R package and supplementary documentation.

5. EEG and language acquisition in TD and ASD infants.

5.1. Study background.

We consider a functional brain imaging study carried out by our collaborators in the Jeste 

laboratory at UCLA. The study aims to characterize differential functional features 

associated with language acquisition in TD and ASD children. EEG data were recorded for 

144s using an 128 electrode HydroCel Geodesic Sensor Net for nine TD, 32 ASD children 

ranging between 4 and 12 years of age. The EEG data is divided into nonoverlapping 

segments of 1.024 seconds, producing a maximum of 140 observable segments for each 

subject at each electrode. Details about data preprocessing are deferred to Web Appendix A. 

Individual sensors were partitioned between 11 anatomical regions made up of four to seven 

electrodes; left and right for the temporal region (LT and RT) and left, right and middle for 

the frontal, central and posterior regions (LF, RF, MF, LC, RC, MC, LP, RP and MP, 

respectively). Region-level power dynamics were estimated as outlined in Section 2. Figure 

1 illustrates a sample of smoothed power trajectories within the alpha and gamma frequency 

bands for both TD and ASD children. ASD children were further classified as verbal ASD 

(vASD—14 children) and minimally verbal ASD (mvASD—19 children) in relation to their 

verbal developmental quotients (vDQ).

The broad scientific goal of this study aims to understand the functional underpinnings 

associated with language acquisition through the human ability to parse otherwise 

continuous speech streams into meaningful words. In order to replicate this natural 

phenomenon, children were exposed to continuous synthetic speech constructed through a 

collection of 12 phonemes. By defining phoneme triplets (e.g., pa-bi-ku, da-ro-pi) as 

deterministic pseudowords and exposing children to random continuous permutations of 

pseudowords, study subjects were given the opportunity for implicit statistical learning of 

word segmentation. During this process we seek to detect differential neurophysiological 

response across anatomical regions and oscillation frequencies.

5.2. Group mean trajectory analysis.

Our analysis focuses on time-varying, region-referenced differences among diagnostic 

groups (TD, vASD, mvASD) in relation to two frequency bands, namely, alpha (8–15 Hz) 

and gamma (32–50 Hz). Specifically, alpha waves are thought to play an active role in 

network coordination and communication (Fink and Benedek (2014)), while gamma waves 
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are thought to index conscious perception and tend to correlate with implicit learning 

processes (Gruber and Müller (2002)).

Our analyses are based on the nonseparable model in (3.6), with 10 latent factors, and data 

projected on 12 B-splines basis functions. Main findings across four of 11 regions are 

summarized graphically in Figure 2 for alpha waves and in Figure 3 for gamma waves. In 

both models the varying coefficients, representing the mean structure in 3.3, take as input a 

simple factorial covariate indexing diagnostic group membership and yield group-level 

means across anatomical regions. For each time-varying mean we also represent 

simultaneous credible bands by probability shading to include a gradient of 0.2, 0.6 and 0.9 

posterior coverage. A brief discussion about sensitivity to the prior model, number of latent 

factors and projection methods is deferred to Section 6.

Starting with a group-by-region analysis of the alpha frequency band in Figure 2, we note 

that, for all three groups and across all 11 brain regions, there is no discernible time-varying 

pattern in the average relative alpha frequency which is maintained relatively flat across 

time-in-trial. The TD and vASD groups are, essentially, indistinguishable with minor 

differences likely due to sampling variability. Crucially, meaningfully lower levels in the 

average relative alpha frequency are observed for the mvASD group. While we fall short of 

considering formal notions of statistical significance, we highlight potentially meaningful 

findings in the RT region, where 90% simultaneous bands fail to overlap for some of the 

time-on-trial. More importantly, the lower level in relative alpha frequency is consistent 

across most brain regions, suggesting a potential role of alpha waves in distinguishing brain 

functional characteristics in the minimally verbal ASD group. Finally, within group, for all 

diagnostic groups we confirm a well-known phenomenon, known as left-right alpha 

asymmetry, which is significant over time at frontal regions, diminished at temporal regions 

and negligible at central and posterior regions.

Replicating the same analysis for gamma frequencies in Figure 2, we note that, while alpha 

waves seem to isolate the mvASD group, gamma waves tend to separate TD children from 

the vASD and mvASD groups. More precisely, the TD group exhibits significantly higher 

average gamma band power than vASD and mvASD, especially at the early stages of the 

experiment. This pattern is most evident at temporal regions, both left and right (LT, RT). 

Furthermore, the average gamma band power for TD children exhibits a sharp increase at the 

beginning of time-on-trial, followed by a decreasing trend through the end of the 

experiment. This finding suggests that, differently from the ASD groups, TD children 

consciously perceive the beginning of the speech stream as a stimulus. Compatible findings 

by Gruber and Müller (2002) report a decreased response when stimuli recur, which they 

projected to be linked to a “neural savings” mechanism within a cell assembly representing 

an object, that is, a word in our case. As observed for alpha band power, we note significant 

frontal asymmetry throughout the study and across diagnostic groups. While previous 

studies, for example, Rojas and Wilson (2014), pointed out left-dominant asymmetry as a 

discriminative feature between TD and ASD cohorts, our findings do not replicate this 

observation within the context of a language acquisition experiment.
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We compared the NB, SS and NS prior models, by computing their expected log pointwise 

predictive density leave-one-out cross-validation (elpd-loo)(Vehtari, Gelman and Gabry 

(2017), Watanabe (2013), Vehtari, Gelman and Gabry (2015)). In the context of our case 

study, let p{Yi(t) | Y−i(t)} be the leave-one-out predictive density for subject i (i = 1, … , n). 

The elpd-loo is computed as follows:

elpdloo = ∑
i = 1

n
log p Y i(t) ∣ Y −i(t) . (5.1)

Treating gamma band power as the response, NB has elpdloo = −11,586 (SE = 947), SS with 

six latent factors for the time and spatial domains has elpdloo = −10,981 (SE = 911) and NS 

with 10 latent factors has elpdloo = −10,951 (SE = 910). Treating alpha power as the 

response, NB has elpdloo = −14,260 (SE 1214). For both the gamma and alpha power bands, 

SS and NS tend have a relatively similar performance, while NB seems to underperform in 

both settings. Our analyses are therefore based on the NS prior, as it is more general and 

does not seem to induce any loss in predictive power for this case study.

To assess goodness of fit, we compute 90% pointwise and simultaneous (grouping by 

subject and region) posterior predictive credible bands treating gamma power as the 

response (Gelman, Meng and Stern (1996)). Simultaneous bands are obtained as in 

Crainiceanu et al. (2007). Figure 4 displays four random, subject-region gamma power 

dynamics accompanied with maximum a posteriori fit and 90% pointwise posterior 

prediction bands. The figure illustrates adequate fit and predictive coverage for all four 

subjects. Over all subjects, the interquartile range (IQR) of predictive coverage rate is 

(78.4%, 88.5%) and (97.1% to 100%) using pointwise prediction bands and simultaneous 

prediction bands, respectively. Similar IQR coverage rates are obtained when considering 

alpha power dynamics, indicating that the model is reasonably well calibrated (Dawid 

(1985)).

A frequentist test for goodness of fit was applied using the framework developed by Yuan 

and Johnson (2012). Although standardized residual means are consistently close to zero, 

the p-values for different quantile thresholding scenarios suggest some evidence of lack-of-

fit with the residual variance model. A detailed analysis at two levels of the model hierarchy 

is reported in the Supplementary Material (Li et al. (2020a)). We note that, while these 

findings are unlikely to influence inference on population summaries, some care would be 

needed in predictive settings, where a scale mixture extension of the residual model would 

likely account for the observed overdispersion with respect to Gaussian sampling.

5.3. Effects of age and verbal-DQ.

Rather than considering a coarse classification of subjects into TD, vASD and mvASD, we 

examine how alpha and gamma band power trajectories change as a function of age and 

verbal DQ. Due to the relatively small-sized sample, the distribution of subjects’ 

demographics among three groups is somewhat unbalanced. To be specific, the TD cohort is 

significantly older (94.7 ± 28.8, in months) with hider vDQ (120.6 ± 11.4), the v-ASD 

cohort are younger (67.1 ± 58) with medium vDQ (89.3 ± 22.7) and mv-ASD has a wide age 
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range (85.6 ± 24.0), however, significantly lower by vDQ (23.6 ± 10.9). Our analysis is 

therefore not perfect but still warranted under the assumption of generalized additive effects. 

In particular, the mean structure in 3.3 is represented as the additive combination of time-

varying coefficients, including an intercept function, a coefficient function for the main 

effect of age and a coefficient function for the main effect of vDQ.

Our results are summarized graphically in Figure 5. We display the varying coefficients for 

age and vDQ for both the alpha and gamma band power, across all 11 brain regions. For 

each curve we include probability shading for simultaneous 0.2, 0.6 and 0.9 credible bands. 

The effects of age and vDQ on alpha band power is consistent across all brain regions. 

While age does not seem to be associated with the outcome, higher vDQ levels are 

consistently and significantly associated with higher alpha band power levels. This finding is 

consistent with the group-level analysis in Section 5.2, where mvASD children were found 

to exhibit significantly lower alpha levels, when compared to TD and vASD children. On the 

other hand, the relationship between vDQ and gamma band power is highly heterogeneous 

across brain regions, with vDQ positively associated with higher gamma band power in 

temporal regions (LT and RT) and negatively associated with the outcome in the right frontal 

regions (RF). The effect of age on gamma power is more consisted across brain regions, 

with older children exhibiting higher gamma in some regions and significantly so in LF.

6. Discussion.

We introduced a hierarchical modeling framework for the analysis of region-referenced 

functional data in the context of functional brain imaging through EEG. Our work hinges on 

two classical ideas, namely, the constructive definition of Gaussian processes through basis 

functions and a flexible representation of regularized dependence within and across 

anatomical regions through latent factor expansions. Our proposal is implemented within a 

high-performance computation R package, supporting three prior models, which include 

both separable and nonseparable covariance structures for region-referenced functional 

observations. We showed that the proposed approach has satisfactory operating 

characteristics under extensive numerical experiments as well as appealing inferential 

properties due to straightforward handling of posterior functionals.

The application of our method relies on projections into the space spanned by basis 

functions. This feature is engineered into our proposal in order to ensure expert knowledge 

can be included in the analysis by not limiting the applicability of our method to B-spline 

projections but, potentially, including functional spaces spanned, for example, by wavelets 

or periodic functions which may be more appropriate in some applications of multivariate 

functional data analysis. Specific modeling choices, like the number and placement of spline 

knots, can be based on straightforward calculation of information criteria (Gelman, Hwang 

and Vehtari (2014)). Similar considerations apply to the choice of prior model, including 

restrictions on the structure of large covariance oparators. Our implementation depends on 

choosing the number of latent factors encoding regularized estimation of covariance 

operators. From our simulation experiments and data analysis, we conclude that 

regularization through product Gamma priors yields results which are robust to this specific 

choice. In practice, the number of latent factors included in the analysis can be compared to 
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the number of principal component functions included in a standard FPCA analysis. A 

crucial difference in our modeling approach is that we interpret regularized estimation 

through continuous penalization rather than discrete truncation to a specific number of 

principal components. Therefore, we recommend relative overparametrization by selecting a 

larger number of latent factors in default analyses or by performing formal Bayesian model 

selection for the number of latent factors (Vehtari, Gelman and Gabry (2017)).

Our case study, considering region-referenced EEG data, shows how complex data structures 

may be analyzed within the familiar hierarchical modeling framework, coupled with varying 

coefficient models. Our work focused on inference for the mean structure of region-

referenced functions. However, important strides can be made in a formal characterization of 

mean and covariance dependence on predictors. This is notably relevant in the field of 

functional brain imaging, where large levels of subject heterogeneity are often observed. We 

note that, for the covariance structure, simple group comparisons are indeed possible within 

the proposed framework by simply running separate analyses. Several questions involving 

regional and functional correlation are, therefore, easily answered from a straightforward 

examination of posterior summaries. A promising, perhaps more principled approach would, 

for example, include a formal representation of covariance heterogeneity through differential 

subspace structures (Franks and Hoff (2019)).

Finally, our work discusses statistical significance only informally through pairwise 

comparisons of simultaneous credible bands within anatomical regions. Within the context 

of multivariate functional data analysis, more work on the meaning and construction of 

uncertainty bounds is, however, needed with formal considerations of multiplicity within 

structured dependence settings.

A user-friendly R implementation, with examples, is available in the Supplementary 

Materials (Li et al. (2020b)) and online as an Rcpp package at https://github.com/Qian-Li/

HFM.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Power dynamics in language acquisition. Log-power dynamics both raw and smoothed, in 

three of 11 anatomical regions: left temporal (LT), right temporal (RT) and right frontal 

(RF). For each region we plot the principal component power for two frequency bands 

(Alpha, Gamma) during time on trial. We select three subjects from each of the three 

diagnostic groups: typically developing (TD), verbal ASD (vASD) and minimally verbal 

ASD (mvASD).
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Fig. 2. Alpha power dynamics.
Average log power dynamics stratified by diagnostic group: Typically developing (TD), 

verbal ASD (vASD) and minimally verbal ASD (mvASD). Four of 11 anatomical regions 

are represented, namely: Left frontal (LF), right frontal (RF), left temporal (LT) and right 

temporal (RT). In each region we display the posterior mean, accompanied by simultaneous 

credible bands, shaded to include 0.2, 0.6 and 0.8 of all posterior samples.
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Fig. 3. 
Gamma power dynamics. Average log power dynamics stratified by diagnostic group: 

typically developing (TD), verbal ASD (vASD) and minimally verbal ASD (mvASD). Four 

of 11 anatomical regions are represented, namely: left frontal (LF), right frontal (RF), left 

temporal (LT) and right temporal (RT). In each region we display the posterior mean, 

accompanied by simultaneous credible bands, shaded to include 0.2, 0.6 and 0.8 of all 

posterior samples
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Fig. 4. 
Gamma power goodness of fit. Posterior mean trajectory (solid line) for four random subject 

region responses. We report pointwise (dot-dash lines) and simultaneous (dotted lines) 90% 

posterior predictive credible bands. Top left: subject 21 (mvASD), region 7. Top right: 

subject 18 (ASD), region 11. Bottom left: subject 42 (mvASD), region 2. Bottom right: 

subject 15 (ASD), region 5.
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Fig. 5. 
Varying coefficients for age and vDQ. Varying coefficients associated with age and verbal 

DQ across all anatomical regions for the gamma and alpha frequency bands. Each varying 

coefficient is accompanied by simultaneous credible bands, shaded to include 0.2, 0.6 and 

0.9 of all posterior samples.
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Table 1

Simulation study. Mean and covariance recovery under naïve-Bayes (NB), separable-sandwich (SS), and 

nonseparable (NS) priors. Relative errors are reported under separable and nonseparable simulation truths, 

sample size escalation (n = 10, 20, 30) and two signal-to-noise ratio scenarios (SNR = 0.2, 1.0)

n = 10 n = 20 n = 50

Mean Cov. Mean Cov. Mean Cov.

Separable (SNR = 0.2)

NB 0.0346 0.3255 0.0248 0.3150 0.0162 0.3120

SS 0.0384 0.3192 0.0272 0.3004 0.0174 0.2806

NS 0.0386 0.3380 0.0272 0.3117 0.0174 0.2900

(SNR = 1.0)

NB 0.0277 0.5146 0.0195 0.5126 0.0124 0.5180

SS 0.0272 0.1987 0.0192 0.1817 0.0122 0.1677

NS 0.0272 0.2595 0.0192 0.2294 0.0122 0.1915

Nonseparable (SNR = 0.2)

NB 0.0382 0.4217 0.0276 0.4189 0.0183 0.4226

SS 0.0413 0.3633 0.0289 0.3547 0.0185 0.3470

NS 0.0415 0.3427 0.0290 0.3188 0.0185 0.2892

(SNR = 1.0)

NB 0.0339 0.6601 0.0236 0.6110 0.0153 0.6164

SS 0.0340 0.3412 0.0235 0.3357 0.0152 0.3321

NS 0.0338 0.2721 0.0234 0.2433 0.0151 0.2101
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