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Abstract

Social scientists characterize social life as a hierarchy of environments, from the micro level of an 

individual’s knowledge and perceptions to the macro level of large-scale social networks. In 

accordance with this typology, individuals are typically thought to reside in micro- and macro-

level structures, composed of multifaceted relations (e.g., acquaintanceship, friendship, and 

kinship). This article analyzes the effects of social structure on micro outcomes through the case 

of regional identification. Self identification occurs in many different domains, one of which is 

regional; i.e., the identification of oneself with a locationally-associated group (e.g., a “New 

Yorker” or “Parisian”). Here, regional self-identification is posited to result from an influence 

process based on the location of an individual’s alters (e.g., friends, kin or coworkers), such that 

one tends to identify with regions in which many of his or her alters reside. The structure of this 

paper is laid out as follows: initially, we begin with a discussion of the relevant social science 

literature for both social networks and identification. This discussion is followed with one about 

competing mechanisms for regional identification that are motivated first from the social network 

literature, and second by the social psychological and cognitive literature of decision making and 

heuristics. Next, the paper covers the data and methods employed to test the proposed 

mechanisms. Finally, the paper concludes with a discussion of its findings and further implications 

for the larger social science literature.

Introduction

Social scientists characterize social life as a hierarchy of environments, from the micro level 

of an individual’s knowledge and perceptions to the macro level of large-scale social 

networks. In accordance with this typology, individuals typically are thought to reside in 

micro- and macro-level structures, composed of multifaceted relations; e.g. 

acquaintanceship, friendship, and kinship (Mayhew and Levinger 1976). In this paper, we 

treat self identification as occurring when an individual chooses to associate him or herself 

with a given label (e.g., Sam’s mother). Self-identified groups occur when each of two or 
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more individuals choose to identify with a label (or category) that exists a priori as a result 

of a consensus (e.g., “I am black, ” and/or “I am a mother”). Thus, in this context self-

identified groups arise from micro-level processes of individual decision making.

While this article focuses on the particular case of regional self-identification, self-

identification, more broadly, is of special concern to social scientists because it determines 

racial/ethnic, sexual, gender, class, and other identities (Howard 2000). Self-identified 

groups also are of particular interest to the subfields of social psychology, social boundaries, 

and gender relations (see Howard 2000; Jenkins 2000; Turner et al. 1987). Howard (2000) 

argues that these subfields view identity (self identification) as a product of modern society 

and as a core issue, especially when compared to societies with rigidly imposed identities. 

Specifically, this paper proposes that the basic underlying mechanisms for self identification 

is a cognitive system, where an individual selects his or her identification from within a set 

of salient items (e.g., cities) and employs a heuristic – or set of rules – for choosing among 

those items.

The main hypothesis of this work, here dubbed the Social Network Hypothesis of Regional 

Self-Identification (SNH), is that individuals choose the region with which they identify 

based on the salience of the relations of the social networks in which they are embedded 

(e.g., friends, acquaintances, coworkers, kin; for a visualization of a spatial network see 

Figure 1). In other words, individuals choose to identify with the region in which they have 

the most alters (e.g., friends or kin; see Almquist (2012)). We contrast this hypothesis with a 

series of alternatives that are motivated by, arguably intuitive, salient components of modern 

life (e.g., maps, advertisements, schools, postal codes). For example, one might argue that 

the region that is most salient to an individual is the one that is most proximal, more so even 

than the one in which he or she has the most social relations.

To date, social scientists primarily have studied regional identification in the context of 

national identification (see Gould and White 1986; Tan 2005), with a few studies about 

urban/rural identification (see Fischer 1982; Wirth 1938). More recently, new developments 

in online data processing and management allow for larger-scale and higher quality 

geographic data collection by nonprofessionals, what the Geographic literature has dubbed 

volunteered geographic information (VGI) (Goodchild 2007). VGI data are detailed 

Geographic data (e.g., latitude and longitude coordinates) collected by nonprofessionals, 

employing modern geographic information software (GIS; e.g. Google maps). One of the 

more famous of these collection efforts is the Common Census Internet Project (Baldwin 

2010; Flanagina and Metzger 2008), the data source for this paper.

Background: Social Networks and Geography

Spatially embedded social networks have a long history in the geography literature (e.g., 

gravity models; Haynes and Fortheringham 1984; Phillips et al. 1976) and the social 

network literature (for a review, see Barabàsi and Frangos 2002; Butts 2002; Butts and 

Acton 2011). In the geography literature, a historical and recent revival of formal network 

models has taken place that builds on graph theory, statistics, and machine learning 

literatures (Gahegan 2000; Gopal and Fischer 1996; Griffith 2011; Rogerson 1997; Tinkler 
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1972). Related extensions within this context include clever optimization and uses of point 

process models (Almquist and Butts 2012; Boots 1977; Okabe and Yamada 2001; Schneider 

2005; Serra and ReVelle 1999; Shiode 2008; Yamada and Thill 2007) and the application 

and inclusion of network autocorrelation models in the geographic literature (Farber et al. 

2009; Páez et al. 2008; Peeters and Thomas 2009; Townsley 2009). Possibly the longest 

running literature about spatially embedded networks is that for roads (e.g., Bentley et al. 

2013; Black 1992; Hudson 1969; Morley and Thornes 1972; Okabe and Yamada 2001; 

Okabe et al. 1995; Osleeb and Ratick 1990; Peeters et al. 1998; Xie and Levinson 2009; 

Zemanian 1980). More recent developments in the network and geography literature include 

developments concerning the problem of small worlds (e.g., Rogerson 1997; Xu and Sui 

2009) originally introduced by Travers and Milgram (1969) and Milgram (1967), and later 

extended by Watts and Strogatz (1998). Other important examples of empirical spatial 

networks include those for cities (Neal 2012; Portugali et al. 1994; Taylor 2001), drainage 

networks (Werner 1972), and t-communities (Grannis 2009; Whalen et al. 2012), and the 

use of networks in cognitive models and spatial thinking problems (Mirchandani 1980; 

Morley and Thornes 1972; Smith et al. 1982).

Regional Identification as a Cognitive Process

The definition of self identification employed in this paper (i.e., individual y identifies with 

object x) is that of a behavior requiring an individual to match him or herself with a label 

that is drawn from a set of potential labels (or categories) that exist in his or her cultural 

repertoire (e.g., doctor or Asian). In this sense, a component of self identification exists that 

requires a decision from an actor, and which can be further described as a choice. This 

choice, at least at some level, must involve the act of information processing, if only for the 

actor to allocate him or herself to some default option (see Gigerenzer and Todd 1999; 

Hutchinson and Gigerenzer 2005).

In the case of regional identification, these assumptions imply that an individual has a 

mechanism for identifying the set of potential geographic categories (e.g., towns, cities, or 

other culturally recognized places) at the situationally relevant scale, and a way to choose an 

item from within a given set (e.g., Irvine) with which he or she identifies. This process can 

be seen in everyday life in a variety of contexts; for example, when an individual proclaims 

“I am a Persian, ” or “I am a New Yorker” therefore regional identification can be 

characterized by the combination of (1) a choice set and (2) a heuristic. Much of the 

following discussion is dedicated to describing potential mechanisms which are competing 

for the “best” (i.e., most predictively accurate) choice set and heuristic in a model of 

regional identification, including mechanisms involving social structures.

Scale and Regional Identification

As implied by the proceeding discussion, an individual is potentially able to identify him or 

herself with a preferred geographical unit at multiple scales; each scale is defined by a 

culturally relevant set of geographical units (e.g., neighborhoods or local communities, 

towns or cities, states or provinces, nations), which constitutes the choice set for an 

identification decision. (Meaningful scales for such identification are themselves culturally 

defined.) Thus, We may envision the regional identification process as producing for each 
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individual a “cone” of valid identities x0 ⊆ x1 ⊆ …, each having the property that individual 

y associates more strongly with region xi than any other region  at the same scale in his or 

her cultural repertoire. This is depicted schematically in figure 2.

Our focus in this paper can be viewed as follows: given a uniform “slice” through the cones 

of regional identities in a population at a given scale, what predicts the units with which 

each individual will identify? In particular, we here consider identification for local 

communities among residents of the United States, at a scale that corresponds to “places” 

designated by the United States (US) Census.

Mechanisms of Regional Identification

We may hypothesize a variety of processes by which regional identification may occur at a 

given scale. The mechanisms we consider here are divided into two key subgroups, the 

SNH, and the Geography and Prominence Hypotheses. The first of these hypotheses is 

based on social structure in which individuals are embedded; the subsequent competing 

hypotheses are based on particularly salient properties of modern life.

A Social Network Hypothesis of Regional Self-Identification

One potential mechanism for regional identification is based on the social context in which 

individuals are embedded (e.g., friendship, co-worker, and kinship networks). In such a case, 

regional identification might be an individual performing a search over his or her personal 

networks (Dodds et al. 2003), and selecting the region which contains within it the largest 

number of alters. Tying this notion back to the concept of salience will be important 

throughout this paper, this hypothesis can be rephrased as an argument that regions 

containing the maximal number of an individual’s alters are the most salient regions to that 

individual for this type of identification.

SNH—Individuals choose to identify with the region in which they have the largest number 

of alters.

Different processes (or combinations thereof) potentially could underlie the ultimate 

mechanism of regional identification and inform the SNH. Intuitively, we might suspect this 

hypothesis to be plausible for many reasons. For example: (1) individuals search over their 

alters and select the region to identify with based on a plurality heuristics; (2) individuals 

have more exposure to the places they have more alters, and thus such an area is more 

salient; and (3) individuals mimic their peers and thus choose to identify with the area with 

which they view the bulk of their peers as identifying. As the data does not allow us to 

distinguish between these micro-level processes, we view the SNH as a representing a class 

of mechanisms (one or more of which may be active at once), which we collectively 

distinguish from other classes of identification mechanisms.

Geography and Prominence Hypotheses

The SNH involves one class of mechanisms for regional identification, but others can be 

entertained. The first alternative hypothesis proposed here is dubbed the Proximity 

Hypothesis. The Proximity Hypothesis is based on the intuitive salience of certain 
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geographies to an individual, particularly those that are the closest (most proximal) to an 

individual (e.g., one lives near Irvine, CA and identifies with Irvine).

Proximity Hypothesis—Individuals choose to identify with the region that is most 

proximal (closest) to them, given their current geographic location of residence.

An alternative hypothesis – although, one which is related to the Proximity Hypothesis – is 

one in which the most salient region is not simply the most proximal, but is a balance of 

being both the most prominent (salient given some characteristics/threshold) and also most 

proximal to an individuals location. In this case, one assumption is that an individual limits 

his or her choice-set to only those regions that meet a particular prominence characteristic/

threshold (e.g., presence of National Football League team/population threshold; see 

Gigerenzer and Todd 1999), and subsequently selects the most prominent region within this 

limited set.

Prominence Hypothesis—Individuals choose to identify with the closest prominent 

region to their geographic locations.

One also might propose the reverse of the aforementioned hypothesis, where an individual 

first limits his or her choice-set by the saliency criterion of distance, and then chooses a 

region to identify with based on some prominence characteristic/threshold.

Distance Hypothesis—Individuals choose to identify with the most prominent region 

within a given distance radius.

The Prominence and Distance Hypotheses are motivated, first, by the elimination heuristics 

that have been shown to be fast and frugal, as well as accurate in judgement making 

(Berretty et al. 1997), and second, by the vetting models in the fields of population biology 

and public health (Handcock and Jones 2004).

Elimination models in the cognitive science literature were conceived for choice tasks; in 

these models, an object is chosen by repeatedly eliminating subsets of objects from further 

consideration, thereby whittling down the set of remaining possibilities (Tversky 1972). 

These heuristics have been extended to include categorization tasks such as length and 

widths of flower parts by Berretty et al. (1997). Similarly the Prominence and Distance 

Hypotheses may be perceived as a series of elimination heuristics (i.e., limiting the choice 

set by one criterion after another until a single item remains).

The vetting models were conceived as a two-stage process model for how individuals form 

sexual partnerships: (1) individuals generate a list of acquaintances, and (2) choose their 

sexual partners (Handcock and Jones 2004). Similarly the Prominence and Distance 

Hypotheses may be defined as a two-stage process model in which an individual first limits 

his or her choice set (e.g., only cities greater than 50,000), and then selects an item in his or 

her choice set (e.g., the closest remaining city).
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The Case of Community Identification

The regional identification processes outlined in the previous section are hypothesized to 

predict the identification within a scale-induced choice set; to test these hypotheses, it 

suffices to consider a set of identification decisions (1) made on a common scale, for which 

(2) a consensus choice set is readily available. In this paper, we employ data on 

identification with local communities collected by the Common Census Project (CCP; 

Baldwin 2010). As discussed further subsequently, CCP respondents overwhelmingly 

(>95%) selected regions of identification that correspond to Census Designated Places 

(CDPs) as defined by the year 2000 US Census (US Census Bureau 2001). CDPs are 

constructed to correspond to towns, cities, or other well-defined local population aggregates 

with a commonly identified name, and thus serve as an effective operationalization of 

culturally recognized “communities”; respondents readily selecting CDPs when describing 

the local community or area with which they identify (despite being given the opportunity to 

enter alternative labels) further validates the intelligibility of this geographical unit to the 

study population. Henceforth, we employ CDPs as our geographical unit of interest, using 

the term community’ as an intuitive shorthand to describe what these units represent.

Our subjects identifying with units at the community scale does not preclude them from 

identifying with units at other scales. Rather, the community scale serves as a uniform slice 

through a respondents’ regional identification cones, giving us a basis for systematic 

prediction across respondents. We do not, in particular, require that respondents’ strength of 

identification of the community scale be stronger or more salient, than for example their 

identification at larger scales. What we do require is that each respondent identify more 

strongly with the community he or she selects than any other available community, an 

assumption that is consistent with the nature of the CCP data.

Of particular use to researchers investigating regional identification (of cities or other 

geographical levels) is the body of spatial and geographic data from the 2000 US Census 

(Almquist 2010; US Census Bureau 2001) and data from the Common Census internet 

project (Baldwin 2010), each of which is readily available, detailed resource of geographic 

and identification data. Next are a detailed descriptions of the necessary US Census and the 

Common Census data sets. Before proceeding to a description of our analysis techniques, we 

provide an overview of these data sets.

US Census Demographic and Geographic Data

The 2000 US Census Summary File 1 (SF1) data consists of population counts and other 

basic demographics at five geographic resolutions: blocks, block groups, tracts, counties, 

and states (for detailed definitions, see, the US Census Bureau 2001), each of which 

exhaustively covers the land mass of the US. The US Census data also contain geographic 

and demographic data for what it calls census designated places (CDPs), which shall be 

referred to as communities in the remainder of this article.

As noted previously, the US Census Bureau’s definition of CDPs closely approximates what 

most individuals of the US would consider communities. This linage is reinforced by 

analysis of the CCP data, for which 96 percent of respondents’ reports of identification are 
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found to coincide with places as they are defined by the US Census Bureau (e.g., a 

respondent might choose Irvine for his or her identification). This outcome occurs even 

though respondents were both given the option of choosing items outside the category of 

places, and provided the option of writing-in their own preference. There are a total of 

24,670 places ranging in population size from zero to eight million (there is no minimum 

population requirement for a place (US Census Bureau 2001)), with most corresponding to 

towns, cities, or well-defined and commonly named areas within larger urban areas. CDPs 

also can include military installations or other areas that are well-recognized (and which 

may have a residential population), but that are not captured by conventional definitions of 

“city, ” “town, ” or the like.

Our analysis employs a GIS implementation of the 2000 US Census data by Almquist 

(2010), implemented in the R statistical computing environment (R Development Core 

Team 2010). R’s spatial tools (Bivand et al. 2008) were used for associated data 

manipulation and analysis.

Common Census Internet Project

The Common Census internet project is a website started in 2005 by Baldwin (2010) to 

develop a “natural” (perceptual consensus) mapping of the US such that the borders of/

within an area emerge from a consensus among the individuals who reside in that area. In 

practice, the CCP data are a convenience sample from 2005-present that consists of five 

questions related to one’s geography, several of which focus on regional identification. In 

this work, responses to three of the five questions are used to test the hypotheses proposed in 

this paper. The proceeding analysis also utilizes data from the first of the five questions from 

the online questionnaire, which elicits a respondent’s address and automatically geocodes 

his or her location (after which these results were anonymized to the census geography of 

the block).1

Given that respondents may answer any of the Common Census questions at idiosyncratic 

geographic levels, we limit our analyses to those respondents who supply at least one answer 

at the community (CDP) level. The first2 and third3 questions pertain largely to community-

level identification, and approximately 96% of respondents supply an answer corresponding 

to a CDP.

1As a volunteered, self-reported/administered survey, the CCP is necessarily limited by both the design of the instrument and 
informant inaccuracy. Although error from such sources can never be ruled out, we did not observe evidence suggestive of data 
quality problems, and we note that our findings are robust to fairly large perturbations in the data set.
2Question two states: Many Americans have addresses that say they live in one town or neighborhood, have a government or police 
force of another name, and fall in the school district of yet another area. For this question, forget about what all “official” sources have 
told you and answer whatever you feel you identify with most.
What do you consider to be your local community? Don’t confuse this with your whole local area; that will be in the next step. This is 
about the single local community you most feel you live in.
3Question three states: This step asks for you to identify with a slightly larger area. Again, please ignore all “official” boundaries like 
counties, telephone area codes or zip codes, and answer what you feel you identify most with.
We need a way to identify your local area–the local community you just specified, together with the local communities that 
immediately surround it.
So, please choose the name of the local community that you feel is the natural cultural and economic center within your local area.
Or, if you feel a general name (i.e. “Hope Valley”, “Pleasant Lake Area” or “Midway-Fairview Area”) is more descriptive of your 
local area culturally than the name of a single central community, then please give what you feel to be the best commonly accepted 
name for your local area.
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Crucially, both questions request that a respondent ignore any official boundaries and 

answer only with the region he or she feels that he or she identifies with, which should elicit 

the processes of regional identification this work is interested in, rather than simply a report 

of the geographic location of individuals.

Responses collected after 2007 were omitted from analysis as a result of the faulty 

geocoding of respondents’ locations; this elimination left a total 51,655 respondents, of 

which 45,167 answered with a CDP for the second question; this number increases to 49,769 

when results of the second and third question are combined. By using a combination of 

questions two and three, this analysis utilized a sample of 49,769 respondents, which is 96 

percent of the total surveyed population (2005–2007). Figure 3 visualizes the location of 

each respondent. The resulting sample includes individuals who identify with 10,325 

different places, where approximately 20% of these individuals selected out-of-state places.

Because the Common Census is an internet-based self-selected sample, it contain systematic 

biases4. We would expect that these biases would follow those commonly found in internet 

surveys (e.g., respondents are younger, wealthier, and more educated people5).

Methodology

In order to utilize the Common Census data to evaluate the previously discussed hypotheses, 

these hypotheses must first be operationalized for a specific level of regional identification 

(here, the community level). What follows is a series of model proposals, each of which 

represents one of the aforementioned hypotheses in an analytical framework. The first of 

these proposals is for a baseline model, here dubbed the Uniform Choice Model. This 

baseline model provides a comparison point for all other models, assuring a reader that the 

regional identification data of interest here does, in fact, contain structure (is non-random).

The Uniform Choice Model

The Uniform Choice Model is a family of parameterized models that, given a respondent and 

his or her geographic location, map each respondent’s location to a randomly-chosen item 

(place) from within the choice-set (P). The location of a respondent is coded, using an 

anonymization procedure, in terms of the centroid longitude and latitude coordinates of the 

US Census block in which the respondent resides. Consequently, multiple respondents can 

have the same coordinates, although they do not live in the same household. The choice-set 

of locations available to individuals for identification is the set of all CDPs in the continental 

US (24,670 places).

In effect, the Uniform Choice Model is a mapping of respondents’ locations to a CDP 

randomly drawn from a uniform probability distribution, and is implemented using the 

4It is not obvious that this should be a problem for this article as the mechanisms proposed should be largely universal; however, one 
might be concerned that the geography/population of the respondents could be systematically different than most “Americans. ” This 
however does not appear to be the case as far as can be tested with the anonymized data. We used the block level data of each 
individuals home as proxy for their neighborhood and calculated the racial composition of each respondents neighbored as compared 
to the city, county, and state over series of common demographics and detected only minor variations from what would be expected 
from a random sample of individuals.
5The Pew Internet & American Life Survey, December 2010, http://www.pewinternet.org.
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following algorithm: (1) map all CDPs onto the Natural numbers, (2) select each 

respondent’s place of identification by drawing a random number from a uniform 

distribution and (3) map that number back to the corresponding place (e.g., if a respondent 

with a location (−108.62, 44.97) selects Ardmor, AL, the model predicts this respondent 

identifies with Ardmor, AL).

Tie Volume and the Social Network Hypothesis of Regional Self-Identification

Interest in large-scale, spatially-embedded networks has a long history in the social sciences, 

stemming from the famous Milgram experiments (Milgram 1967; Travers and Milgram 

1969), later re-popularized as the “small-world” phenomenon by Watts and Strogatz (1998). 

Recently, methods for statistical and simulation-based modeling of large-scale spatially-

embedded networks have been developed by Butts (2003); Butts and Acton (2011); Butts et 

al. (2012).

Spatial Bernoulli Graphs and the Spatial Interaction Function—A well-

established empirical regularity is that the marginal probability of a social tie between two 

persons declines with increasing geographical distance for a wide range of social relations 

(e.g., Bossard 1932; Festinger et al. 1950; Freeman et al. 1988; Hägerstrand 1966; Latané et 

al. 1994; McPherson et al. 2001). Butts (2003) demonstrates that, under fairly weak 

conditions, spatial structure is adequate to account for the vast majority of network structure 

(in terms of total entropy) at large geographical scales. Simple network models based on the 

distance/tie probabiliy relationship have been shown to produce reasonable distributions for 

structural features such as degree distributions (Butts et al. 2012) and have been found to 

have predictive power for example crime rates in neighborhoods (Hipp et al. 2013).

The most basic family of such network models is the set of spatial Bernoulli graphs. We 

define a spatial Bernoulli graph in the manner of Butts and Acton (2011). Consider a set of 

vertices, V, which are spatially embedded with a distance matrix D ∈ [0, 1)N×N. Let G be a 

random graph on V, with stochastic adjacency matrix Y ∈ {0, 1}N×N. The pmf of G given D 

is

(1)

where B is the Bernoulli pmf, and  : [0, ∞) → [0, 1] [the spatial interaction function 

(SIF)]. The SIF controls the underlying structure of a network, and thus is the key 

component within this family of models; specifically the SIF relates distance to the marginal 

tie probability. Empirically, real-world social networks typically appear to have an SIF, 

where the marginal tie probability decays with distance (see Butts 2003). Another well-

known empirical regularity is that the marginal probability of a tie between two persons 

declines with geographical distance for a broad range of relationships (e.g., Arentze and 

Timmermans. 2005; Axhausen 2007; Bossard 1932; Carrasco et al. 2008; Festinger et al. 

1950; Freeman et al. 1988; Hägerstrand 1966; Latané et al. 1994; McPherson et al. 2001). 

This tendency suggests that the functional form for a social network SIF is some variant of a 

power law. Here we consider two basic functional forms of an SIF based off of empirical 
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data estimated from two large communication networks (see Section Social Network Model 

(Tie Volume Model)):

(2)

(3)

where pd is the baseline tie probability at distance 0, γis a shape parameter governing the 

distance effect, and α is a scaling term. For a typical visualization of a network drawn from 

a model of this type, see Figure 1.

As the preceding discussion suggests, network structure and geography are intricately 

linked, and the spatial Bernoulli graphs can be viewed as providing a social structural 

interpretation of the classical gravity models (Haynes and Fortheringham 1984) that are 

replete in the geographical literature. The gravity models can be viewed as a family of 

nonlinear regression models for valued relational data, in which the expected degree of 

interaction between elements is taken to be a product marginal rates (i.e., row/column 

effects) and an attenuation function dependent upon the distance between them. Formally,

(4)

where P(x) is the interaction potential of element x, and  is the SIF. Thus the spatial 

Bernoulli graphs can be viewed as a special class of gravity models for dichotomous 

interactions (although this does not extend to the general class of spatial random graph 

models; e.g. see(Daraganova et al. 2012)). While gravity models are not always motivated 

by a clear social mechanism, here models of this form (i.e., spatial Bernoulli graphs) are 

used to capture the expected number of social ties between an individual respondent and all 

individuals in a given areal unit (based on extrapolative simulation from models fit to 

network data in prior work). Thus this paper provides an example of the connection between 

classical geographical techniques and other forms of relational analysis.

Tie Volume—Geographically embedded networks have many properties that are jointly 

related to space and social structure Butts (2003; ming), the most relevant to this work being 

tie volume. The tie volume, (A, B) between areal units A and B for graph G is the number 

of edges (i, j) such that vertex i resides in unit A and vertex j resides in unit B. If we take Ai 

to be an arbitrarily small region around vertex i (such that Ai contains no other vertices), 

(Ai, B) also can be used to express the total number of ties from vertex i to individuals in 

areal unit B; we use the shorthand (i, B) to denote this special case. When dealing with 

extrapolatively simulated networks (as in the present context), it is natural to work with the 

expected tie volume  V(A, B) rather than the tie volume for an observed graph; in the 

foregoing, we refer to the expected tie volume simply as the “tie volume” where there is no 

danger of confusion.
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Now, SNH can be operationalized in terms of tie volume in a straightforward manner. Given 

the calculations of the expected tie volume between two locations (e.g., a respondent’s home 

location and each community in the US), the SNH predicts that an individual identifies with 

the community that has the largest expected tie volume with his or her residential location.

Social Network Model (Tie Volume Model)

To obtain identification predictions from the Tie Volume Model, we proceed as follows: 

first, calculate the expected tie volume between a respondent’s home block to the block 

groups that make up a given community, dividing by the population of a respondent’s block 

to obtain the expected number of ties from the respondent to residents of each block group 

in the community. Next, sum the expected tie volumes from a respondent to each block 

group in the community, providing the expected tie volume between the respondent and the 

community as a whole. Repeat this procedure for each community in a choice set, then 

select the community with the maximum expected tie volume as the location with which an 

individual identifies. This procedure may be written explicitly as follows:

1. Let P be the set of communities, with each Pk consisting of nk block groups gk1, …, 

gknk with population counts given by . Let ri be the Census block in which the ith 

respondent resides.

2.
For each k ∈ 1 …, |P|, calculate .

3. Select arg maxPk∈P E (i, Pk); this is the community with which i is predicted to 

identify.

The expected tie volume between a respondent’s location and a given block group depends 

on both the detailed geometry of the blocks/block groups and the SIF, and is computed via a 

Monte Carlo quadrature algorithm (Butts ming).6 In this paper we employ two distinct SIFs. 

The first is a classic SIF estimated from a large-scale phone network, and the second is a 

modern example from the social networking site Facebook7

The first SIF used in this article is based on Hägerstrand’s data set of phone calls made 

between regions in rural Sweden in 1950. Butts (2002) computed this SIF from 

Hägerstrand’s (1966), “technologically mediated communication” relation, which acts as a 

long tailed example with a slowly decaying distance function (approximately d−2.95). The 

6These algorithms have been implemented in the spatialNetwork in the R statistical environment (Butts and Almquist 2013; R 
Development Core Team 2010). The spatialNetwork software package requires the user choose a particular parametric form of the 
SIF.
7Facebook, an online social networking site, offers a rich context in which to study social relations. Further, it has attracted 
researchers from many different fields (Lewis et al. 2008; Tufekci 2008; Wimmer and Lewis 2010). Users of the website build 
detailed personal profiles, including information about demographics, interests, and activities. Beyond personal characteristics, 
Facebook allows users to publicly declare “friendships” with other users (so called Facebook friendship). Declared friendships must 
be confirmed by both parties involved, and therefore constitute mutual relationship acknowledged by both individuals. Although much 
debate exists over the nature of Facebook friendships evidence suggests that Facebook users maintain a significant degree of online/
offline integration (Lampe et al. 2006; Wimmer and Lewis 2010). That is, individuals primarily use the service to “friend” others 
whom they met in a offline context, rather then search out friends with whom they have had no offline interaction. The popularity and 
global penetration of Facebook makes it extremely attractive to researchers as a source for rich population level social interaction data. 
It is one of the most prominent sources for large-scale social network data. Given its extremely high membership (and daily usage) 
rates, Facebook users have access to a extremely large, diverse (both spatially and demographically) population of potential social 
contacts.
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parametric form is an attenuated power law (see equation 2), with parameters (0.937, 0.538, 

2.956).

The second SIF used in this paper is based on a uniform sample of Facebook users in 2009 

collected by Gjoka et al. (2010), where the authors recorded (when identified) a user’s 

university affiliation and his or her alter’s affiliation. From this information Spiro et al. 

(2012), computed an SIF for Facebook friendship between university affiliated individuals. 

This SIF represents a “modern technologically mediated communication” relation, which 

acts as a long tailed example with a slowly decaying distance function (approximately 

d−6.527). Its parametric form is a power law (see equation 3), with parameters 

(0.627,0.049,6.527).

The regional identification proposed in the SNH suggests that a weak interaction SIF such as 

that from a communication network might be representative of the type of macro-level 

structure underlying this phenomenon. The SIFs employed here are two examples of how 

such a network can scale with distance; by representing a fairly wide range of scaling 

parameters, they allow us to examine the robustness of the SNH while still employing SIFs 

based on (previously) observed network structure. Both SIFs were inferred from observed 

networks in previous studies, and were not in any way fit to the CCP (or other regional 

identification) data. Thus, these models are zero-parameter with respect to CCP prediction, 

because they contain no free parameters that are adjusted to improve fit for the regional 

identification data.

Because optimal prediction from the Tie Volume Model requires that one have either a 

priori knowledge of the exact SIF governing identification-relevant relationships or infer an 

SIF from the data (to guarantee the best fitting model), computing the expected tie volume 

in the manner implemented here is a more stringent test of the SNH than for example fitting 

the observed data to a gravity model. If the Tie Volume Model outperforms competing 

models in predicting Regional Identification, the extent of this superior performance would 

only increase in a better-fitted model. In effect, the aspects of sub-optimality of this model 

make it a stronger test of the effects of large-scale social networks on regional identification.

To demonstrate the Tie Volume Model, we consider an illustrative case within California. 

Respondent A lives within a Census block in Albany, CA. First, we compute the expected 

tie volume of respondent A, given their home location within the city of Albany to all other 

communities in California under the aforementioned SIF (See Figure 4). We then rank the 

results and select the community with the highest expected tie volume between respondent 

A and all communities within California. In this case respondent A lives in Albany but 

identifies with Berkeley, as the Tie Volume Model predicts (See Figure 4).

The Proximity Model

The Proximity Model is a family of parameterized models that map the location of each 

respondent to the nearest item (community) in the choice-set (P), where nearest here is 

defined as the item with minimum distance between itself and the respondent’s location. 

Given the notation of the The Uniform Choice Model Section, in combination with a 

distance function d(·, ·), the algorithm first calculates a respondent’s distance from his or her 
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location to every item in the choice-set, and then selects the item with the smallest 

corresponding distance.

In order to best approximate the actual physical distance between a respondent and each 

place in the continental US, the Great Circle distance8 is calculated between the longitude 

and latitude of each respondent and the center point of each community. For example, a 

respondent with a location (−107.53, 41.03) would be predicted to identify with Dixon, WY 

as a result of the respondent having a distance of zero between his or her location and the 

location of Dixon, WY and greater than zero distance for all other places.

Vetting Models

Given the notation in Section and the distance function of The Proximity Model Section, 

two distinct families of single-parameter vetting models are proposed, the first of which is a 

distance-based vetting model, here dubbed the Distance Vetting Model, and the second of 

which is a prominence-based vetting model, here called the Population Vetting Model. All 

vetting models are named according to the initial rule an individual uses to first limit his or 

her choice set.

Each vetting model may be viewed as a two-stage process (Handcock and Jones 2004) in 

which an individual first limits his or her personal choice set with a decision rule, and 

subsequently selects a final choice based on a different decision rule. This procedure follows 

the same basic logic as the elimination heuristics in the cognitive science literature (Berretty 

et al. 1997; Tversky 1972), and involves the following three basic steps:

Step 1) Select a rule to limit the choice set (e.g., individuals contemplate only 

communities within 50 miles of where they live).

Step 2) Select a rule to pick from among the limited choice set (e.g., individuals choose 

the highest-population community within the resulting choice set).

Step 3) Apply the conjunction of Steps 1 and 2.

Step 1 constrains a choice set using a decision rule, motivated by the hypotheses in the 

Mechanisms of Regional Identification Section, which is operationalized as a parameter 

constraint, θ, and relation operator, R (e.g., a binary relation R usually is defined as an 

ordered triple (X, Y, G) where X and Y are arbitrary sets, and G is a subset of the Cartesian 

product X × Y; this is commonly written xRy). For example, in the case of the Distance 

Vetting Model, a choice set is limited to only those communities less than θ distance from a 

respondent.

In Step 2 another decision rule is chosen, again motivated by the hypotheses in the 

Mechanisms of Regional Identification Section. In this article, two decision rules are 

proposed: closest (C) and largest (L). closest is where an actor chooses the community 

nearest to where he or she lives that is contained within his or her limited choice set. largest 

is where an actor chooses the most salient item in terms of population size (e.g., largest) 

8d(vi, vj) = Cr cos−1 [cos(vi)2 cos(vj)2 + cos ((vi)1 − vj)1) sin(vi)2 sin(vj)2], where Cr is the spherical radius (approximately 6,371km 
in the case of the Earth).
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within the limited choice set. The largest decision rule requires a monotonicity assumption 

for a choice set, which can be accomplished by listing cities in descending order based on 

population size.

The Distance Vetting Model—The Distance Vetting Model assumes that, in the process 

of regional identification, an individual considers only those regions within some maximum 

distance of where he or she lives. This initial limitation is achieved by narrowing the choice 

set to only those cities which are less than or equal to θ distance from an individual (i.e., R is 

the ≤ operator). Subsequently, an individual makes his or her ultimate choice by selecting 

the most prominent community from within that radius (θ).

For example, a respondent with a location (−86.816, 33.272) and a θ = 106.58 km has an 

initial, limited choice-set of 171 communities. The largest three communities within this 

radius (in descending order) are Birmingham, AL (population 242,820) Tuscaloosa, AL 

(population 77,906); and Hoover, AL (population 62,742). Thus, this respondent is predicted 

to identify with Birmingham, AL.

The Population Vetting Model—According to the Population Vetting Model, an 

individual considers only communities whose population is greater than or equal to θ (e.g., 

population ≥ 50,000, for θ = 50, 000). This individual then makes his or her final choice by 

selecting the closest community from within this choice set.9

For example, a respondent with a location, (−86.816, 33.272) and θ= 289, 315.4 has a 

resulting initial choice-set of 57 communities. The closest three communities from within 

this set are (in ascending order of distance) Atlanta, GA (228.9 km), Nashville, TN (322.3 

km), and Memphis, TN (356.6 km). Thus, this respondent is predicted to identify with 

Atlanta, GA.

Computational Considerations

Each of the aforementioned algorithms employed in this paper are implemented in the R 

statistical programing environment (R Development Core Team 2010). The Uniform Choice 

Model and Proximity Model are implemented exactly as discussed, as is the Tie Volume 

Model, including estimation of the expected tie volume between a respondent’s block and 

the block groups of a given city using the spatialNetwork package (implemented in R). The 

Population Vetting Model and Distance Vetting Model employ modern techniques of 

optimization (specifically we employ the optimization function provided in the R base code; 

R Development Core Team (2010)) to obtain their parameter estimates (all code written in 

the R statistical programing language).

For parametric models, estimates of model standard errors and confidence intervals are 

performed using a non-parametric bootstrap (10,000 replications), allowing for tests of 

statistically significant differences in performance among the proposed models (Dwass 

1957).

9Note that the Population Vetting Model reproduces the Proximity Model when θ = 0, resulting in a “limited” choice set that, is, in 
fact, the entire choice set. This effect also may be observed in cases in which θ is sufficiently small.
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Analysis and Results

Uniform Choice Model and Baseline Models

To test the hypotheses proposed in the Mechanisms of Regional Identification Section, each 

model discussed in the Methodology Section has been applied to the Common Census data 

set, the results of which (at national-level estimates) are summarized in Table 1. Currently, 

computation of the Tie Volume Model solutions for the entire national data set is not 

feasible; rather, it has been applied on a state-by-state basis to the contiguous US. This 

implementation means that any individual who resides in one state, but selects a city in 

another state, counts against the model for its predictive analysis (e.g., if a respondent lives 

in New Jersey and selects New York City as the city with which he or she identifies, then 

the model cannot predict it and is penalized).

Table 1 shows model prediction for community-level regional identification. These results 

illustrate the poor performance of the Uniform Choice Model – which predicts only 0.02% 

of the data. This performance is interpreted as evidence of the presence of underlying 

structure in the data set (i.e., individuals do not choose to identify with a place at random). 

Of the four baseline models proposed, the Proximity Model performs the best. The Distance 

Vetting Model performs quite poorly (θ̂ = 53.13 kilometers), which may be a result of 

heterogeneity of human settlements (an assumption not accounted for in the single-

parameter Distance Vetting Model). Although including additional parameters in any of the 

models, including the Distance Vetting Model, improves overall performance, the relative 

performance of the Distance Vetting Model most likely would not change given its initial 

shortcomings in the single-parameter version (e.g., 20% reduction in accurate predictions 

compared with the Proximity Model). The Proximity Model and Population Vetting Model 

θ̂= 1, 480 people) are statistically indistinguishable, and the limit of the Population Vetting 

Model is the Proximity Model (if θ = 0 the Population Vetting Model is identical to the 

Proximity Model). Overall, from the national results presented in Table 1 imply: (1) regional 

identification is not a random process, and (2) of the baseline models proposed, the 

Proximity hypothesis is the most likely mechanism for regional identification at the 

community scale.

Tie Volume Model versus the Proximity Model: A State-by-State Analysis

Because it was not possible to utilize the Tie Volume Model nationally, this paper presents a 

state-by-state comparison of the proportion correctly predicted by the it and the Proximity 

Model (where both models have been provided a limited choice set such that only the cities 

within a state are considered; both models are penalized by individuals who select 

communities out of state; Table 2). The Proximity Model is chosen for this comparison 

because it is the best performing model for the baseline hypotheses.1011

10One might worry that performing a state-by-state comparison unfairly limits the choice set for the Tie Volume Model. Although this 
might be the case, we have no evidence that this should be an issue. To this effect we took a moderately sized state (Nebraska) and 
performed our procedure giving the choice set as all contiguous states with Nebraska and itself (i.e., Wyoming, South Dakota, Iowa, 
Missouri, Kansas, Colorado) and the model performed approximately identically with the sole state constraint. Notice that many of the 
adjoining states have large nearby cities which might influence the prediction, e.g., Denver, CO.
11Results for the baseline models maintain their rank order when given the more limited choice set with a linear decrease in 
prediction.
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Inspecting the pattern of results presented in Table 2, the Tie Volume Model consistently 

outperforms the Proximity model, sometimes by as much as 27% in the Hägerstrand SIF 

case and by as much as 45% in the case of the Facebook SIF. The Tie Volume Model 

performs significantly better than the Proximity model for 31 of the 48 continental states and 

DC in the case of the Hägerstrand SIF, and 47 of the 48 continental states and DC in the 

case of the Facebook SIF. In other words, the Tie Volume Model has significantly better 

prediction of regional identification for almost all of the states analyzed, and a greater raw 

number of correct predictions for all but one state analyzed (and this case is not-significant) 

in the case of the Hägerstrand SIF, and all states in the case of the Facebook SIF. If one 

takes the aggregation of the Tie Volume Model applied to each state individually as an 

estimate for the full contiguous US and then compares this estimate to that for Proximity 

model, one again finds a highly significant result for both SIFs (over 11% > (Table 2) for the 

Hägerstrand SIF, and over 18% > (Table 2) in the case of the Facebook SIF. The Facebook 

SIF performs significantly better than the national estimates of all the baseline models with a 

7% improvement over the best performing model (Table 1 and 2). As a cautionary note, the 

pooled Tie Volume Model only moderately out performs the unconstrained Proximity 

Model in the case of the Hägerstrand SIF (which would not be statistically significant), this 

outcome is moderated by the Facebook SIF results, which statistically out perform all the 

baseline models.

For the states that do not exhibit a statistically significant difference in the performance of 

the Tie Volume versus Proximity Models (20 of 49, <50% for the Hägerstrand SIF and 2 of 

49; < 5% for the Facebook SIF), at least some of these cases may be due to power 

constraints (e.g., a state like Delaware, which has only 176 respondents, may lack the 

requisite statistical power for such a comparison). A closer look at several of the worst-

performance states (from the perspective of the Tie Volume Model) reveals that several of 

these cases are ones furnishing arguably fertile ground for out-of-state identification based 

on the size of the state, as well as the size of nearby (yet not in-state) cities (e.g., 

Connecticut or Maryland, which are near New York and Washington, DC, respectively).

Discussion and Conclusion

This paper outlins a cognitive representation of self identification, and further makes a case 

for regional self-identification as a particularly interesting case study of self identification. If 

summarizes an evaluation of six competing hypotheses where we find that the social 

influence model performs the best. The social network model performs the best without 

fitting to the data (i.e., it is a zero parameter model), whereas the other five models are 

optimized to the data, thus providing a stronger result. The superior performance of the 

SNH-based model affirms the theory that regional identification is both a social and a 

geographical process.

The application of comparable models (and hypotheses of social structure) to other forms of 

identification (e.g., gender, racial/ethnicity, urban/rural, and national) possibly may shed 

light on many different areas of identification. For example, the large-scale social network 

methods can be used to accurately predict even difficult cases of identification (e.g., 

boundary cases of ethnic identity).
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Finally, the successful application of large-scale social network models to the regional 

identification problem provides further validation for geographical factors as critical drivers 

of social process (Mayhew 1984). Even very simple spatial network models, incorporating 

marginal distance effects, are here able to predict a complex social psychological process. 

Applications of such models to other social processes would seem to be a fruitful direction 

for further research.
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Figure 1. 
A simulated spatial Bernoulli network for San Francisco, CA. The simulation was 

performed using the procedure outlined in the Social Network Model (Tie Volume Model) 

Section using the Facebook SIF in Section. The map is as an orthogonal projection around 

the centroid point in meters. Gray lines represent US Census block lines, dots represent 

individuals, and black lines represent a social relation (e.g., friendship).
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Figure 2. 
At a given culturally defined scale (planes), an individual most closely identifies with a 

given geographical unit (circled areas). Identification at any given scale can be 

conceptualized as eliciting a “slice” through the cone-like structure formed from the union 

of possible elicitations. “Slicing” at a uniform level allows us to examine identification 

mechanisms across individuals.
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Figure 3. 
Centroid locations of the Common Census Internet Project respondents in the continental 

US, in an Albers Conical Equal Area projection (in meters).
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Figure 4. 
An example of Tie Volume Model for single a respondent living in Albany, CA. Results 

logged for visualization purposes (log is a rank-preserving transformation and therefore does 

not change the results). (a) Full state example of the Tie Volume Model for a single 

respondent living in Albany, CA. (b) A close up of the example of the Tie Volume Model 

for a single respondent living in Albany, CA.
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Table 1

National Comparison of each Model; standard errors and 95% CI calculated using a non-parametric bootstrap 

with 10,000 replications.

Proportion Correct 95% CI

Uniform Choice Model 0.00020 (0.00007, 0.00033)

Tie-Volume Model N/A N/A

Proximity Model 0.62968 (0.62028, 0.63909)

Distance Vetting Model 0.34939 (0.34002, 0.35874)

Population Vetting Model 0.62956 (0.62003, 0.63908)
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