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Abstract of the Dissertation
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Professor Dejan Marković, Chair

Brain–machine interfaces require real-time, wireless signal acquisition systems. However,

wireless transmission of raw data is impossible for high-channel-count systems given the

power constraints. Data rates could be reduced, thereby enabling wireless data transmis-

sion, by performing spike sorting—mapping each recorded action potential to the neuron

that generated it—on a DSP at the recording site and transmitting only the sorting re-

sults. Our first objective was to design such a DSP. We first developed a standardized

dataset and methodology in order to perform an extensive, unbiased comparison of pub-

lished spike-sorting algorithms to determine which would be most appropriate for hardware

implementation. We then considered various implementation issues, such as whether analog

or digital spike detection is more efficient and how best to quantize neural signals. This work

led to two low-power digital spike-sorting chips.

Our second objective was to provide an offline solution for the research setting that

would accelerate the processing of data that has already been recorded using conventional

data-acquisition systems. Here, we present an FPGA-based spike-sorting platform that can

increase the speed of offline spike sorting by at least 25 times, effectively reducing the time

required to sort data from long experiments from several hours to just a few minutes. We at-

tempted to preserve the flexibility of software by implementing several different algorithms in

the design, and by providing user control over parameters such as spike detection thresholds.
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CHAPTER 1

Introduction

1.1 Electrophysiology and Extracellular Recording

For centuries, scientists have been using electrophysiology to study the electrical properties of

biological cells and tissues. In 1791 Luigi Galvani discovered that he could induce contraction

in a frog leg muscle by applying an electric current [1]. In 1952 Hodgkin and Huxley, using

an experimental technique they developed called the “voltage clamp,” made a number of

groundbreaking discoveries on the movement of ions across the membranes of nerve cells

during action potential generation for which they eventually received a Nobel Prize [2–5].

In 1977 Hubel and Wiesel (also Nobel Prize recipients) used electrophysiological recordings

to provide the first information about how the activity of individual neurons contributes to

higher visual processing [6].

Electrophysiological recordings can be made from within cells (intracellular) or from out-

side cells (extracellular). In studies of the central nervous system, small-diameter electrodes

can be positioned in the extracellular space to record electrical signals from surrounding

neurons (Fig. 1.1). These electrodes are able to detect action potentials from individual neu-

rons. The ability of extracellular recording to provide researchers with neuron-level activity

combined with its relatively low level of difficulty to perform (as compared to intracellular

recording, for example) has led extracellular recording to become one of the dominant ex-

perimental techniques in neuroscience research. For example, there has been a movement

towards studying not only individual neurons but networks of neurons in order to understand

how the activity of interconnected neurons results in higher-order functions such as percep-

tion, understanding, movement, and memory. Such studies require extracellular recording
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from ensembles of neurons using multichannel electrode arrays. In Methods for Neural En-

semble Recordings, contributing authors Sameshima and Baccalá go so far as to claim that

“extracellular recordings are the only practical choice in experiments that intend to establish

correlations between neural ensemble responses and behaviors involving awake animals” [7].

Electrophysiology is also used in clinical settings. For example, in presurgical patients

with severe medically intractable epilepsy, electrophysiological recordings from depth elec-

trodes placed inside the brain are used to localize brain areas where seizures begin. These

larger electrodes mainly record electroencephalogram (EEG) signals, but often microelec-

trodes are implanted as well for use in research (e.g., [8–10]), since single-unit activity pro-

vides greater detail on changes in signal transmission that could distinguish normal from

abnormal activity. And over the past decade, the technique of extracellular recording has

received additional attention as researchers have begun to tap into its potential use in med-

ical technologies for the treatment of disorders such as paralysis [11, 12], epilepsy [11], and

even cognitive and memory loss [13]. Many of these technologies are based upon the idea

of brain–machine interfaces (BMIs), in which implanted electronics record and decode brain

signals that can be used to control “machines” such as computers or prosthetic limbs.

Whether the application is basic science research, clinical diagnostics, or medical tech-

nology, the signals from individual neurons (“single-unit activity”) are often of particular

interest. In basic science, for example, the researcher may require knowledge of single-unit

activity in order to study how a type of neuron responds to a specific stimulus or how the

activities of different neurons are correlated. Similarly, most neural prosthetic technologies

employ some sort of “decoding” algorithm—which may decode movement [11,12,14], inten-

tions [15], or memories [13]—that typically operates on signals from individual neurons. But

because of the relatively large sizes of recording electrodes1, the recorded signal is the sum of

the signals from several (usually 2–10) neurons surrounding the electrode (“multiunit activ-

ity,” illustrated in Fig. 1.1). In such cases, spike sorting, the process of separating multiunit

activity into groups of single-unit activity, is necessary.

1Microwire electrode tips used in extracellular recording typically have diameters of 13 to 80 µm [16].
The Cyberkinetics implementation of the popular Utah silicon microelectrode array has conical electrode
tips with lengths of about 40 µm and surface areas of about 1600 µm2[17].
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100 µm

Figure 1.1: The electrical signal recorded from a microelectrode is the sum of the postsynaptic
and action-potential activity of many neurons in the surrounding area.

A ADC BPF
Software

Spike Sorting

in vivo

Figure 1.2: Block diagram of the conventional neural recording system.

1.2 Current State of the Art

In a traditional neural recording system, shown in Fig. 1.2, electrodes provide the direct

interface to the brain, and the unamplified raw data is sent outside the body through wires

to the rest of the data-acquisition hardware. The raw data is recorded onto computer hard

disks. All data processing, including spike sorting, is performed offline, in software.

An example of a commercial spike-sorting software package is shown in Fig. 1.3. The

yellow waveform in the bottom plot shows the energy of the recorded signal. The user

must set a detection threshold by manually adjusting the position of the white horizontal

line. Once spikes are detected, the user can choose to plot certain features, such as the

spike heights and widths or principal components (shown in the upper right plot), in two or

three dimensions. The operator can then use built-in automatic or semi-automatic clustering

routines. The results of clustering are then displayed on the left-most plots. Statistics about
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Figure 1.3: Screenshot of Offline Sorter, a commercial spike-sorting program by Plexon [18].

each cluster, such as the mean waveform, variance, and interspike interval (ISI) histograms,

are given so that the operator can evaluate the clustering results and make manual changes,

such as combining two clusters into one, if needed.

1.3 Objectives

There are several problems with the state of the art in neural recording, which led to the

two main objectives of this thesis:

4



1.3.1 Need for Wireless Recording Systems

In the current setup, data is transferred from the subject to a computer via thick cables.

In the research setting, cables restrict the physical movement of subjects (Fig. 1.4), thereby

limiting the quality and diversity of experiments that can be performed. Furthermore, these

cables can increase the severity of noise and motion artifacts seen in the recording. Cables

are obviously unwanted in BMI applications as well, where the goal is for patients to be able

to lead normal lives—meaning they cannot be tethered to electronic equipment. Thus, there

is a clear need for wireless recording systems.

Such a wireless recording system would presumably include an on-site radio to wirelessly

transmit data off-site. However, the high-channel-count systems of today incur high data

rates. Consider the example of a 100-channel system using a sampling rate of 30 kSa/s and

a resolution of 10 bits, which would produce data at 30 Mbps [19]. Wireless transmission at

this data rate would require about 600 mW of power2. This is problematic for two reasons.

First, such high power consumption would result in a battery life of only about 40 minutes3,

which is acceptable neither for experiments that require days of continuous recordings nor

for BMIs, which cannot afford such frequent battery changes. Second, such high power

dissipation could be dangerous for the surrounding tissue [21].

The alternative recording setup shown in Fig. 1.5 would solve this problem: a digital

signal processor (DSP) would perform on-site, real-time spike sorting and only the sorting

results would be transmitted, thereby achieving enough data reduction to enable the wireless

transmission of data. To continue the above example, assume that this new system transmits

only 11 bits per spike (4 bits for the cluster ID and 7 bits for the channel number). A spike

rate of 100 spikes/s would result in an output data rate of 110 kbps, a transmitter power of

2.25 mW, and a battery life of over 7 days (a 272x improvement). The first objective of

this thesis was, therefore, to design the DSP for this wireless recording system.

Towards this objective, we first surveyed the spike-sorting algorithms already published

2assuming the transmitter in [20], which was designed for a 100-channel wireless neural recording system;
20.45 nJ/b · 30Mb/s = 613.5 mW at 13 cm.

3assuming an Energizer CR1632, with a capacity of 130 mAh at 3 V = 390 mWh; battery life is 390 mWh÷
613.5 mW = 38 min.
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Figure 1.4: Example of an experimental setup for neural recordings from rat. The rat has
been implanted with electrodes, and a thick bundle of wires delivers the recorded signals
to the data-acquisition equipment. A commutator (seen above the cage) must be used to
prevent the rat’s movement from applying a torque to the headstage, which could break the
delicate wires.

A ADC BPF Spike-Sorting
DSP

in vivo

Figure 1.5: Block diagram of the proposed wireless neural recording system.
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in the field (Chapter 2) and performed an extensive, unbiased algorithm comparison to

determine which are most appropriate for hardware implementation (Chapter 3). We then

considered various implementation issues, such as whether analog or digital spike detection

is more efficient (Chapter 4) and what the best method is for quantizating neural signals

(Chapter 5). Examples of digital chips that have been designed based on this work will be

presented in Chapter 6.

1.3.2 Need for Hardware-Accelerated Data Processing

For the time being, many researchers are still working with wired systems and the data that

has already been recorded using such systems. This data is usually acquired with sampling

rates of 20–30 kHz and resolutions of 12–24 bits per sample [22–27] for 64–128 channels

simultaneously. Consider a human epilepsy study in which 64 channels of data are sampled

at 27.777 kHz and quantized to 16 bits. An 8-hour experiment would accumulate about

100 GB of data, which would require about 30 hours to sort using conventional software

tools4 (processing rate of 0.94 MBps). Now consider dedicated hardware running at 100 MHz

(200 MBps); the processing time would be reduced from 30 hours to 8.5 minutes (212x).

Thus, the second objective of this thesis was to develop a hardware spike-

sorting tool for accelerating the offline processing of existing neural data. In

order to provide a good compromise between speed and flexibility, we proposed an FPGA-

based spike-sorting platform. A library of algorithms was developed for each step in the

spike-sorting process. That way, rather than being tied down to one particular spike-sorting

algorithm, users are able to customize data processing to fit their needs. This library may

also be used to generate RTL for future ASIC implementations. This work will be described

in Chapter 7.

4Osort software package [28] running in Windows on an Intel Core2 Duo Processor.
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CHAPTER 2

Spike Sorting

2.1 Signal Composition

Let us begin by looking at the composition of the signals that are recorded by extracellular

electrodes. These signals are usually pre-lowpass-filtered in the analog domain and then

sampled at a rate of 20–30 kHz. Different cellular mechanisms are responsible for different

frequency components of the recorded signals. The high-frequency content (about 300 to

6000 Hz) is referred to as unit activity, while the low-frequency signal content (below about

600 Hz) is referred to as local field potential.

2.1.1 Unit Activity

If unit activity is the signal of interest, as it is in this thesis, then the sampled signal is

bandpass-filtered with a low cutoff frequency of 100 to 300 Hz and a high cutoff frequency

of 3000 to 10 000 Hz. As indicated by its name, the source of this “unit activity” is action

potentials from individual neurons.

On some level, the action potential can be thought of as the discrete, binary event by

which neurons communicate. Much of what we know about the mechanism was discovered

in the seminal works of Hodgkin and Huxley [2–5]. Neuronal membranes are impermeable to

charged ions except at sites of ligand- and voltage-gated channels, which allow the passage of

charged ions between the intra- and extra-cellular space. When the ion channels are closed or

inactive, the concentrations of potassium (K+) and chloride (Cl−) ions inside the cell are high

relative to oustide the cell, while the concentration of sodium (Na+) ions is high outside the

cell relative to inside the cell. At rest, the cell membrane potential, defined with respect to the
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inside of the cell, is about −70 mV. When a cell’s membrane is depolarized, for example by

excitatory synaptic input, this depolarization “activates” (opens) the Na+ channels, causing

Na+ ions to rush into the cell along the concentration gradient. This influx of Na+ causes

the membrane to become even more depolarized, consequently causing more Na+ channels

to become activated. Eventually the membrane potential reaches threshold, at which point

external input is no longer needed to depolarize the cell, and the positive feedback caused

by the Na+ current continues the depolarization at an even faster rate. This sharp influx of

Na+ into the cell results in the rising phase of the action potential shown in Fig. 2.1 (left–

top). Once the cell reaches a peak depolarization of about 40 mV, two things happen: the

Na+ channels become “inactivated” such that no more Na+ ions can pass through, and the

voltage-gated K+ channels open. Now, K+ ions flow out of the cell along the concentration

gradient, and the cell membrane begins to “hyperpolarize”; this efflux of K+ results in the

falling phase of the action potential (Fig. 2.1, left–top). This hyperpolarization continues

until the cell has returned to its resting potential. In some cases, the hyperpolarization is

followed by a slow after-hyperpolarization, where the resting potential is overshot, before the

membrane potential returns to rest. The action potential usually begins at the axon hillock,

near the cell body (soma), and propagates down the axon (Fig. 2.1, right). Depolarization of

the axon terminal then triggers the release of neurotransmitters into the synaptic cleft (the

gap between the pre-synaptic cell’s axon terminal and the post-synaptic cell’s dendrite), in

turn depolarizing the post-synaptic cell. It is in this way that neurons communicate with

each other.

Extracellularly recorded action potentials are called spikes. (The terms “action potential”

and “spike” are sometimes used interchangeably; to be precise, however, we will use “action

potential” to refer to the intracellular event and “spike” to refer to the captured extracellular

waveform.) As shown in Fig. 2.1 (left–bottom), a spike looks slightly different from an

intracellular action potential. First, because the recording electrode is placed outside of the

cell rather than inside the cell, the polarity is reversed. Second, the filtering properties of

the extracellular medium result in an extracellular signal that is about two to three orders

of magnitude smaller than the corresponding intracellular signal (∼10 to 100 µV compared
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Figure 2.1: Left : Adapted from [29]. Left, Top: Illustration of the change in membrane
potential during a typical action potential. Left, Bottom: Illustration of the corresponding
change in potential as seen by an extracellular electrode. Note the difference in vertical-axis
scales. Right : Diagram of a neuron. Action potentials begin at the axon hillock and prop-
agate down the axon. Depolarization of the axon terminal then triggers the release of
neurotransmitters into the synaptic cleft, in turn depolarizing the post-synaptic cell.

to ∼10 mV). Third, because the membrane acts like a resistor and capacitor in parallel, that

is, a highpass filter (Fig. 2.2a), the recorded extracellular potential is approximately equal

to the derivative of the intracellular potential [30].

The shape of the intracellular action potential depends on a number of cell properties,

including the cell type, the cell geometry, and the ion-channel distribution. This shape

is generally considered to be constant for a given neuron, except in special cases such as

“burst” (high-frequency) firing. Since the extracellular waveform is directly related to the

intracellular waveform, the extracellular spike shape also depends on these properties, as

well as on the position of the recording electrode relative to the cell, on the distance of

the electrode from the cell, and on interference from other nearby neurons (“background

noise”). This “biological noise” is the largest source of noise in a neural recording, having

amplitudes approaching that of the unit activity. But the recording hardware itself, including

the electrode, the amplifier, and the ADC, also adds a significant amount of noise, the scale

of which is largely dependent on the given circuit implementation. It is usually assumed that
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Figure 2.2: (a): A simple electrical-circuit model of extracellular recording [31]. Assume
that an intracellular electrode is placed inside the cell, an extracellular electrode is placed
outside but near the cell, and the reference electrode is placed very far away from the cell.
The extracellular material can be modeled as pure resistance, while the cell membrane can
be modeled as a resistor and a capacitor in parallel. The cell membrane highpass-filters the
action potential signal, such that the extracellulary recorded signal (vex) is approximately
equal to the derivative of the intracellularly recorded signal (vin) [30]. (b): As the broadband
signal passes through the extracellular medium, the capacitive membranes of nearby cells
attenuate its high-frequency components.

the signal and the noise are statistically independent and that they sum linearly. Thus, in a

given recording session where the electrode placement is assumed to be constant relative to

the tissue, we assume that the extracellular spike shape for each neuron can be modeled as

a deterministic waveform plus random noise. Note that while the recording noise usually is

Gaussian, the background noise typically is not [32].

Spike trains can be treated as point processes with arrival times following a Poisson

distribution. A neuron’s firing rate, the frequency at which it generates action potentials,

depends on the cell type and brain area. Neurons in the visual cortex, for example, which

are either silent or firing at a base frequency of around 5 spikes per second (or simply Hz),

respond to their preferred stimulus with firing rates of about 15–75 Hz [33]. A bursting

neuron, on the other hand, can fire as many as 300 to 800 spikes per second [34].

There is disagreement within the neuroscience community as to exactly how information

is encoded in the brain. The dominant theory contends that information is encoded by the

frequency of action potentials (“rate coding”) [35, 36]. Alternative theories propose that
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information is contained in the absolute timing of action potentials (“temporal coding”)

[36, 37] or in the phase of action potentials relative to specific oscillations (“phase coding”)

[38,39]. No matter which of these theories is true, it is clear that the action potential is the

main player in encoding, and that precise timing of action potentials must be obtained in

order to “decode” neural activity.

2.1.2 Local Field Potential (LFP)

While LFPs are not the focus of this thesis, a brief discussion of their properties is warranted

here. We will also refer to these signals again later when we discuss alternative methods of

decoding neural signals for BMIs.

A comprehensive description of the physiological basis for LFP was provided by Buzsáki

and Traub in [40]. To summarize, LFPs come from several sources, the most significant of

which is synaptic activity. Because the capacitive lipid membranes of cells in the brain act as

a lowpass filter, the high-frequency components of neuronal signals are greatly attenuated as

they travel through the extracellular medium; equivalently, slow signals are able to propagate

much farther than are high-frequency signals (Fig. 2.2b). As a result, the low-frequency

component of the signal recorded at any given point within the brain is a linear sum of the

activity from large populations of cells. Thus, LFP can be interpreted as an indication of

the “cooperative actions” of neurons.

Note that this signal is referred to as “LFP” when recorded by a microelectrode inserted

into the brain (hence the “local” in LFP) but as “EEG” if recorded using scalp electrodes

and as “electrocorticography (ECoG)” if recorded using epidural or subdural grid electrodes.

Some scientists favor using ECoG and EEG because these methods are less invasive and easier

to perform. However, because LFPs must propagate through a capacitive medium on their

way to these recording sites, EEG and ECoG are actually “spatially smoothed” versions of

the LFP. As such, EEG and ECoG contain very little information about the activity of the

neurons that actually generate the signals. Furthermore, scalp and dural grid electrodes

are only sensitive to signals originating in the superficial layers of the cortex; contributions
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to the signal from neurons in deeper layers of the cortex and from subcortical areas are

virtually negligible. Thus, extracellular recording, which provides the experimenter with

LFP measurements as well as unit activity, is the experimental technique most capable of

providing information about the cooperative actions of neurons at high temporal and spatial

resolutions.

2.2 The Spike-Sorting Process

In order to obtain (multi)unit activity, the extracellular data is first bandpass-filtered to

remove the LFP and high-frequency noise (as described in Section 2.1.1). To then obtain

single-unit activity, we must perform spike sorting by sending this “raw” data through the

signal-processing chain shown in Fig. 2.3. The first steps are spike detection, the process of

separating spikes from background noise, and alignment, the process of aligning all detected

spikes to a common temporal point relative to the spike waveform. Once the spikes have

been identified, spike sorting can take place.

Most spike sorting methods—relying heavily on the previously mentioned assumption

that each neuron produces a different, distinct shape (as seen by the electrode) that remains

constant throughout a recording session—are based on spike waveform information. Thus,

the first step in such methods is feature extraction, in which spikes are transformed into

a certain set of features, such as principal components, that emphasizes the differences

between spikes from different neurons as well as the differences between spikes and noise.

After feature extraction, some form of dimensionality reduction typically takes place, in

which feature coefficients that best separate spikes are identified and stored for subsequent

processing while the rest are discarded. Finally, spikes are classified into different groups,

corresponding to different neurons, based on the extracted feature coefficients; this process is

referred to as clustering. The result, the signal of interest to the experimenter and to BMIs,

is the train of spike times for each neuron. This information can be represented graphically

by a raster plot, where ticks are drawn to indicate spike occurrences versus time, as shown

in the right-most plot of Fig. 2.3 for three neurons.
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Figure 2.3: The signal-processing chain used to obtain single-unit activity.

2.3 Classifying Spike-Sorting Algorithms

Spike-sorting methods can be categorized according to a number of different characteris-

tics. The first is the level of autonomy : methods can be “automatic/unsupervised” (fully

autonomous) or “manual” (not at all autonomous). Automatic or unsupervised methods

require no user input, while manual methods require constant supervision by an oper-

ator. Methods can also fall anywhere between these two extremes; a “semi-automatic”

method is a method with both a manual stage and an automatic stage. Examples of semi-

automatic methods include detection methods that require the manual setting of a threshold,

or window-discriminator methods that require the manual definition of windows, but that

then work automatically [41], as well as classification methods that require the user to man-

ually re-assign clusters after automatic cluster determination [42]. For neural prosthetic

applications, spikes must be sorted in real time, thus precluding manual spike sorting. And

because of the growing amount of data resulting from an increase in the number of simul-

taneously recorded channels, manual spike sorting is no longer a viable option in research

settings either. Therefore, automatic methods are now usually required.

A second way to classify spike-sorting algorithms is by whether or not they are real-time

(also called online). The standard practice for many years has been to first record and store

all the data and then to perform spike sorting offline after the experiment. As a result, many

of the spike-sorting methods that have been developed are noncausal, in that they rely on

access to all of the data at once. When using principal component analysis, for example,

the principal components are often calculated using all of the detected spikes, and then each

spike is projected onto these basis vectors before the actual classification takes place. It is
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increasingly common, however, for applications that require spike sorting to require that the

spike sorting occur in real time. This requirement renders a number of hitherto commonly

used methods inadequate. A compromise would be to modify offline algorithms to include

an offline training period followed by a real-time classification period.

The third attribute by which spike-sorting methods can be categorized is adaptivity. As

we will describe later, extracellular signals are not always stationary. In such cases it would

be beneficial to use an algorithm that can adapt to a changing environment, as opposed to a

static algorithm. There can be intermediate cases on this scale as well. For example, a static

algorithm that requires a training period can be made adaptive by retraining it periodically.

Clustering algorithms can be further classified as either parametric or nonparametric.

Koontz et al. define a nonparametric clustering algorithm as “an algorithm for clustering

multivariate data which is not based on a parametric model of an underlying probability

density function. In particular, a nonparametric algorithm should identify clusters of arbi-

trary shape and size” [43]. In other words, any algorithm that assumes a certain structure to

the data or that is biased towards a particular cluster shape, such as spherical or ellipsoidal,

will be considered parametric. The underlying probability density function for neural data

is not known a priori (see Section 2.5.2), so nonparametric clustering algorithms are highly

desirable.

Early spike-sorting algorithms were very simple, but not very accurate. In general, the

more complex the method, the better the performance. This inherent tradeoff between

algorithm accuracy and complexity leads to another characteristic by which to classify al-

gorithms: the accuracy–complexity measure. As we described in the introduction, many

applications require spike sorting in implantable hardware. Any implantable hardware is

subject both to strict power-density constraints and to high reliability requirements. Thus,

it is crucial to choose the spike-sorting methods with the optimal balance between accuracy

and complexity to implement in hardware.

In the next section, we will give some examples of algorithms that have been used for

each step of spike sorting. We will also mention some alternative methods, mostly statisti-
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cal/probabalistic in nature, that do not conform to the block diagram shown in Fig. 2.3.

2.4 Overview of Spike-Sorting Algorithms

Note that Lewicki provided a nice review of spike-sorting methods in 1998 [44]. Here, we

provide a relatively high-level description of the evolution of spike-sorting techniques as well

as an update of more recent algorithms, and present them in the context of hardware spike

sorting.

2.4.1 Detection

Nearly all detection methods involve two main steps: the pre-emphasis of the signal and the

application of a threshold. Spike-detection methods vary in how the signal is pre-emphasized

and in how the threshold is determined. All of these methods run automatically given the

detection threshold, so whether or not the algorithm is fully automatic depends on whether

or not the threshold can be determined automatically. All of these methods are also real-

time (save a small latency for buffering spikes) given the detection threshold, but automatic

calculation of the threshold usually involves a training period.

The early days of spike sorting came in a time before personal computers. Processing was

done purely in analog hardware. As a result, spike-sorting methods were relatively primitive.

Spike detection was typically performed using a simple voltage trigger or Schmitt trigger,

where the voltage threshold was set manually by the user. Any time the voltage signal crossed

that threshold, a pulse would be generated to indicate the presence of a spike [44]. Or, if

the user needed the spike waveforms for subsequent spike sorting, a threshold crossing would

trigger the capture of the spike waveform. This method is appealing because of its simplicity,

and, as a result, is still used today by many experimenters. Some researchers have modified

this method to include an absolute-value operation before the compare (or, equivalently,

a compare to ± threshold, as shown in Fig. 2.4); the absolute-value threshold was confirmed

to be better than a simple threshold in [45].
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Figure 2.4: Examples of pre-emphasized signals and threshold values (dashed red lines)
for three different detection methods. Left : Absolute-Value, Middle: NEO, Right : DWT
Product [48].

For an autonomous spike-sorting system, the threshold must be calculated automatically.

An intuitive value for this threshold would be a multiple of the standard deviation of the

noise. This would minimize the probability of noise exceeding the threshold. One method

for estimating the noise standard deviation would be to calculate the standard deviation of

the entire signal (including spikes), under the assumption that spikes are sparse. However,

[46] showed that as the firing rate of the data increases, this estimate becomes too high. So

they suggested the following estimator:

σ̂N = median

(
|x(n)|
0.6745

)
, (2.1)

where σ̂N is the estimate of the noise SD and x(n) is a sample of the original signal x at time

n1, and proposed the following detection threshold Thr:

Thr = 4σ̂N. (2.2)

Another class of spike-detection algorithms are based on detecting changes in the energy

of the signal. One such algorithm is called the nonlinear energy operator (NEO) or the

Teager energy operator (TEO). Originally described in [49], the NEO has been proposed for

1This formula may come from the fact that the median absolute deviation (MAD) of a standard normal
distribution is 0.6745 [47]. It follows that for a zero-mean normal distribution with non-unit variance,

σ = MAD(x)
0.6745 .
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use in spike detection by [45,50,51]. In discrete time, the NEO ψ is defined as

ψ[x(n)] = x2(n)− x(n+ 1) · x(n− 1), (2.3)

where x(n) is a sample of the waveform at time n. The NEO is large only when the signal

is both high in power (i.e., x2(n) is large) and high in frequency (i.e., x(n) is large while

x(n + 1) and x(n − 1) are small). Since a spike by definition is characterized by localized

high frequencies and an increase in instantaneous energy [50], this method has an obvious

advantage over methods that look only at an increase in signal energy or amplitude without

regarding the frequency. This can be seen in Fig. 2.4, which shows that the NEO operation

increases the SNR of the signal, making detection less sensitive to the detection threshold.

Another advantage of this method is that it is relatively simple to implement, whether in

the digital or analog domain. The threshold Thr for this method can be automatically set

to a scaled version of the mean of the NEO:

Thr = C
1

N

N∑
n=1

ψ[x(n)], (2.4)

where N is the number of samples in the signal [50]. The scale can be chosen initially by

experiment (e.g., as described in Section 3.3.2) and then used as a constant.

Other spike-detection algorithms are based on template matching. If the spike wave-

forms of interest are known a priori to the user, then matched filters can be used to correlate

the incoming signal with the spike templates; if the correlation crosses a certain threshold

then a spike has been detected. With known cluster templates, this method can also be used

for the actual spike classification. A related method is detection using the discrete wavelet

transform (DWT). The DWT, which is ideally suited for the detection of signals in noise

(e.g., edge detection, speech detection), has recently also been applied to neural spike de-

tection ([48, 52, 53]). This method has an intuitive appeal in that it is similar to template

matching, where we correlate the signal with a known waveform, only it is scale-invariant.

The DWT is also appealing because it can be implemented using a series of filter banks,

keeping the complexity relatively low.
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An example of one possible implementation is the DWT Product [48]. First, the sta-

tionary wavelet transform (SWT) is calculated at 5 consecutive dyadic scales (W (2j, n), j =

1, . . . , 5). Then the scale 2jmax with the largest sum of absolute values is found:

jmax = argmax
j∈{3,4,5}

(
N∑
n=1

|W (2j, n)|

)
. (2.5)

From here, we calculate the point-wise product P (n) (or “SWTP”) between the SWT at

this scale and the SWTs at the two previous scales:

P (n) =

jmax∏
j=jmax−2

|W (2j, n)|. (2.6)

This product is then smoothed by convolving it with a Bartlett window w(n) in order

to eliminate spurious peaks, and a threshold is applied. The threshold Thr can be set

automatically to a scaled version of the mean of this result:

Thr = C
1

N

N∑
n=1

w(n) ∗ P (n), (2.7)

where N is the number of samples in the signal and C is a constant. Once again, Fig. 2.4

shows that the pre-emphasized DWT signal has an increased SNR compared to the original

signal, making detection less sensitive to the detection threshold.

2.4.2 Alignment

When spike detection is performed in the digital domain, whenever the voltage signal crosses

a threshold, a window is applied and a spike waveform is captured. At this point, each spike is

essentially aligned to the point of the threshold crossing. However, sampling jitter combined

with noise effects may leave features of interest, such as maximum and minimum values,

misaligned. This temporal misalignment has the effect of increasing the spread of points in

feature space, making clustering more difficult. Thus, alignment should be performed prior

to classification.
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Figure 2.5: Examples of two different alignment methods. Left : alignment to maximum
amplitude, Right : alignment to maximum slope.

The alignment process usually begins by upsampling the signal (using an interpolation

method such as cubic spline) to help reduce the effects of sampling jitter. Then, the signal

is aligned to some event in time. The aligned spikes may be downsampled to the original

sampling rate after alignment.

The most common method of temporal alignment is to align each spike to the point of

its maximum amplitude (Fig. 2.5) [44]. Alignment to the point of maximum slope

(Fig. 2.5) has also been proposed [54], which is intuitive since the rising slope of the action

potential has biological significance (Fig. 2.1). This method would be especially convenient

if discrete derivatives (described in Sec. 2.4.3) were already being used for feature extraction.

Others have proposed alignment to the maximum of an energy measure such as the NEO

[55], which would be convenient if NEO were already being used for spike detection. Simi-

larly, alignment to the maximum integral [56] would be convenient if the integral transform

(described in Sec. 2.4.3) were being used for feature extraction. Indeed, it would be conve-

nient to perform alignment with respect to any measure that is already being calculated in

the sorting process.

Although the aforementioned alignment methods will usually improve classification ac-

curacy, alignment to a metric that is derived from the whole spike rather than from a single

point may be less susceptible to the effects of background noise. One example of such a

metric is the spike’s center of mass [57]. Note that all of the algorithms that have been

described in this section are completely automatic and real-time.
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2.4.3 Feature Extraction

Feature-extraction methods were also primitive in the early days of spike sorting. Often only

very simple features such as the maximum spike amplitude, peak-to-peak amplitude,

and spike width were used [44]. This approach, although simple, is quite susceptible to

noise, as well as to intrinsic variations in spike shapes.

In the 1970s, as digital computers gained popularity and processing capacity, researchers

began using more sophisticated algorithms for feature extraction, such as principal compo-

nent analysis (PCA) [58]. In PCA, the orthogonal basis (i.e., the “principal components”

or PCs) that captures the directions in the data with the largest variation is calculated by

performing eigenvalue decomposition of the covariance matrix of the data. Each spike is

then expressed as a series of PC coefficients ci:

ci =
N∑
n=1

PCi(n) · s(n), (2.8)

where s is a spike, N is the number of samples in a spike/PC, and PCi is the ith PC

(Fig. 2.6). These coefficients are then clustered to obtain the spike classifications. This

method raised the bar on the classification performance that could be achieved, especially

for noisier data. An added bonus is that, because most of the variance is captured in the first

few components, the dimensionality can be reduced by keeping only the first two or three

PCs, thereby reducing the computation time of PC coefficient calculation and of subsequent

clustering. Even today, PCA is the most trusted and most commonly used method of spike

sorting. The downside to PCA is that it is not a real-time algorithm. It is usually performed

offline after the acquisition of the entire dataset, but it can be modified to include a training

period during which the PCs are calculated followed by a real-time PC-coefficient-calculation

period. Additionally, PCA is most effective on Gaussian data, while spike data may be non-

Gaussian (Section 2.5.2).

Besides for spike detection, the DWT has also been proposed for feature extraction by
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Figure 2.6: Sample results of feature extraction using PCA. For the detected spikes (left),
principal components are calculated (middle), and each spike is expressed by its first two
PC coefficients (right).

[46]. The DWT is given by

W (u, 2j) =
∞∑

n=−∞

s(n) · 1

2j/2
·Ψ
(
n− u

2j

)
,

where u is a translation parameter (analagous to time), j is an integer, 2j is a scale parameter

(analagous to frequency), and Ψ is the wavelet function. The DWT should work well for

feature extraction since it is a multi-resolution technique that provides good localization in

both time and frequency. As in PCA, performing the DWT on spike waveforms results in

a set of “expansion coefficients,” which can then be clustered to achieve spike classification.

An example showing the DWT of raw data is shown in Fig. 2.7.

Methods have also been developed with the accuracy–complexity tradeoff in mind. One

such method is called discrete derivatives (DD) and is like a simplified version of DWT

[59]. Discrete derivatives are calculated by computing the slope at each sample point, over

a number of different time scales:

ddδ(n) = s(n)− s(n− δ), (2.9)

where s is a spike and δ is an integer related to the time scale.

Another such method is called the integral transform (IT) [60], in which spikes are

classified based on the areas under the positive and negative phases of the spike, IA and IB,
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Figure 2.7: Example showing the DWT (lower plot) of raw data (upper plot), where u
is a translation parameter (analagous to time), j is an integer, and 2j is a scale parame-
ter (analagous to frequency). Vertical axis of upper plot represents the signal amplitude
(arbitrary units).

A

Bn
A

n
A
+N

A

n
B

n
B
+N

B

s(n)

Figure 2.8: Illustration of feature extraction using the integral transform (IT).

respectively:

IA =
1

NA

nA+NA−1∑
n=nA

s(n) , IB =
1

NB

nB+NB−1∑
n=nB

s(n), (2.10)

where s is the spike, nA is the first sample of the positive phase, NA is the total number of

samples in the positive phase, nB is the first sample of the negative phase, and NB is the

total number of samples in the negative phase of the spike (Fig. 2.8). Parameters NA, NB,

nA, and nB are all determined by offline training. This method is appealing because of the

simple hardware implementation presented. Since only two features are extracted from each

spike (IA and IB), the resulting dimensionality of this method is 2, and no dimensionality

reduction is required before clustering.
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2.4.4 Dimensionality Reduction

Dimensionality reduction is a critical step in spike sorting for a number of reasons. The most

obvious reason is that it will significantly reduce the required memory and computational

complexity of clustering, resulting in significant reductions in the area and power of the

spike-sorting hardware. Another obvious benefit is that it reduces the output data rate of

spike-sorting hardware configured to output features only. A third reason that makes dimen-

sionality reduction critical is that it improves the accuracy of clustering. Adding dimensions

in clustering improves the performance only up to a certain point, after which adding more

dimensions can cause the performance of the clusterer to degrade. One reason for this may

be that dimensions in which the data is not separated introduce noise or confusion into the

clusterer.

The most primitive way that the dimensionality of features can be reduced is with uni-

form sampling, in which to reduce the dimensionality from N to D we simply choose D

evenly spaced samples, for example, by choosing every N/Dth sample beginning with sample

number D/2. This is essentially the same as choosing D random samples.

A smarter way to choose the features that can best separate clusters, as shown in Fig. 2.9,

is by finding those features that have mulitmodal distributions across spikes, as multimodal

distributions are an indication that more than one population (collection of spikes from the

same neuron) is present in the dataset. Next, we present three dimensionality-reduction

algorithms that use this approach.

The first of these algorithms is called the Lilliefors Test [61], a modification of the

Kolmogorov-Smirnov Test. The null hypothesis is that the data under question comes from

any normally distributed population (whereas the Kolmogorov-Smirnov Test tests the null

hypothesis that the data comes from a standard normal distribution). The basic steps of the

test are:

1. Calculate the population mean and population variance of the data.

2. Calculate the empirical distribution function (EDF) of the data.
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Figure 2.9: An illustration of how feature distribution information can be used in dimen-
sionality reduction. For visualization purposes, we use the time samples of the spikes as
features. In this example, the distributions of the amplitudes for samples 1, 2, and 3 are
unimodal, so they would not be good choices of features to be used in clustering. Samples
x and y, on the other hand, have bimodal distributions, indicating that clustering of these
features would reveal the two underlying populations within the data.
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3. Test statistic: The maximum discrepancy between the EDF and the cumulative dis-

tribution function (CDF) of a normal distribution having the mean and variance cal-

culated in 1).

The Lilliefors Test has been used by [46] for dimensionality reduction in spike sorting,

where the test statistic was used to find the coefficients whose distributions differed most

from the normal distribution. The assumption is that the null hypothesis will be rejected

for coefficients with multimodal distributions but not for coefficients with unimodal distri-

butions.

Hartigan’s Dip Test [62], [63] is a statistical test that looks specifically for multimodal-

ity. The CDF of a unimodal distribution has only one mode and is convex before the mode

and concave after the mode. On the other hand, CDFs of multimodal distributions have

more than one mode, and therefore have regions alternating between concave and convex.

The basic steps in the Dip Test (illustrated in Fig. 2.10) are:

1. Calculate the EDF of the data.

2. Calculate the greatest convex minorant (GCM) and the least concave majorant (LCM).

3. Test statistic: The maximum distance (“dip”) between the EDF and the unimodal

distribution function that minimizes the maximum difference.

The coefficients whose distributions are “more multimodal” will have larger test statistics.

Thus, we choose the coefficients that have the largest test statistics for use in clustering.

We proposed an alternative to the above algorithms with comparable accuracy yet far

less complexity in [64]. In the Maximum-Difference Test (illustrated in Fig. 2.11), as

in the Lilliefors Test, we seek the coefficients with the most variability, only now under the

limited-memory conditions typical of implantable hardware. For an initial feature dimen-

sionality N , four N -sample arrays of memory are initialized to zero: maximum difference,

local difference, spike new, spike old. Throughout the training period, the ith iteration

of the algorithm is as follows:

26



PDF CDF

d

d

Greatest 
Convex
Minorant

Least
Concave
Majorant

F

xx

f

Figure 2.10: Example showing the calculation of the “dip” statistic (d) for Hartigan’s Dip
Test for various PDFs (f(x) vs. x) and CDFs (F (x) vs. x).

1. Write the current feature samples to the array spike new.

2. Subtract the values in spike new, coefficient by coefficient, from the values in spike old,

and write the absolute value of the result to local difference.

3. Find the indices corresponding to the 3 largest values in local difference.

4. Increment the values in maximum difference indexed by these 3 indices.

5. Overwrite the values in spike old with the values in spike new.

These steps are repeated until the end of the training period. At this point, assuming that

the goal is to reduce the dimensionality from N to D, maximum difference is scanned for

the locations corresponding to the D largest values, and the coefficients corresponding to

these indices are identified as the coefficients that will be used in clustering.

2.4.5 Clustering

Clustering, especially unsupervised clustering, is often the most difficult and most complex

part of the sorting process.

27



10 60 30 7 8 620 40 55 57

6 5 0 3 20 105 3 12 6

6 –4 –2 0 0 07 12 –4 –5

0 1 –2 3 20 102 9 8 1

0 0 0 0 1 10 0 1 0maximum_difference
1

spike_new
1

spike_old
1

local_difference
1

maximum_difference
n

.

.

.

Figure 2.11: Example execution of the Maximum-Difference Test. At the beginning of
the algorithm, the first spike would be stored in spike old and the second spike in
spike new. The difference between the two arrays is calculated and its absolute value
stored in local difference. The indices corresponding to the three largest values in
local difference are 4, 9, and 10; the values in maximum difference indexed by these
indices are each incremented by 1. These steps are repeated until the end of the train-
ing period, when we have the final value of maximum difference. Assuming that we want
to reduce the dimensionality from 10 to 3, we choose the features indexed by the indices
corresponding to the 3 largest values of maximum difference, 4, 5, and 6, to be used in
clustering.
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Figure 2.12: Example of results of manual cluster cutting on PCA features.

In the early days of spike sorting, the most common method of clustering was manual

cluster cutting; extracted features were plotted on a scatter plot and cluster boundaries

were defined by hand [44]. Even today, most commercial software packages for spike sorting

provide the user with the capability to define cluster boundaries by drawing polygons in the

chosen feature space using a mouse pointer (example in Fig. 2.12). But because this method

is prone to human errors [41, 42], not to mention the time that is required of the operator,

automatic and semi-automatic methods are desirable. Another primitive but at least semi-

automatic technique is that of window discriminators, in which spike waveforms that

intersect one or several user-defined windows are assigned to the same neuron.

A more sophisticated method of clustering, which is now the benchmark clustering

method in this field, is called k-means [65]. The k -means algorithm is based on a dis-

tance metric. The main steps of the algorithm are described in Box 1. The main benefit

of using k -means is that it is a very simple and fast algorithm. However, a major drawback

to this algorithm is that it is not unsupervised, as it requires the user to input k. For appli-

cations such as BMIs, the spike sorting must be completely automatic, so there will be no

user to input this information. Moreover, even if there were a user, determining the num-

ber of neurons is a nontrivial, often difficult task. Efforts are being made, however, to find

ways of automatically and reliably determining the number of neurons in a recording [66];

perhaps these techniques could be used to initialize k -means, making it a fully unsupervised
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1. Define k (number of clusters/neurons).

2. Randomly define the k cluster centroids.

3. Assign each data point to the cluster with the closest (usually by Euclidean
distance measure) centroid.

4. Recompute each cluster centroid as mean of that cluster.

Steps 3–4 are repeated until a convergence criterion (either that the assignments stop
changing or that the maximum number of iterations has been reached) is met.

Box 1: k -Means Clustering

algorithm. Another drawback of k -means is that it is not real-time, making it unsuitable for

real-time applications. A compromise would be to adapt the algorithm to have a training

period, where the cluster centroids are defined, followed by a real-time classification period,

but this would only be appropriate for stationary data. Yet another drawback of this algo-

rithm is that it is parametric; since each point is assigned to a cluster based solely on its

Euclidean distances from the cluster centroids, the determined clusters will necessarily be

spherical. There are many instances when the distribution of neural data will not be spher-

ical. For example, during electrode drift, data tends to form ellipsoidal clusters. K -means

would force spherical clusters, possibly dividing ellipsoidal clusters into two.

One unsupervised clustering algorithm is called valley seeking [67]. The idea in valley

seeking is to first calculate the normalized density derivative (NDD) and then to find the

peaks of this function. The cluster boundaries are then identified as the regions between

the peaks (i.e., the valleys). An overview of the algorithm is provided in Box 2. The

benefits of the valley-seeking algorithm are that it is unsupervised (not even the number of

clusters is required to be provided by the user) and nonparametric, giving it the ability to

cluster datasets that have nontrivial shapes, such as donuts and spirals. The algorithm is

not real-time, however, making it unsuitable for real-time applications. Additionally, from

a hardware point of view, the algorithm has the serious drawback of high complexity. It

requires the computation and storage in memory of at least 6 NS-by-NS matrices, where NS

is the number of spikes being clustered. For large values of NS, valley seeking may not be a
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Definitions. Let x and x′ be two data points. Denote the neighbor number (NN) of x′

with respect to x as NN(x, x′) = k and NN(x′, x) = l. Denote the ith neighbor of x as
x(i), i.e., NN(x, x(i)) = i, and NN(x(i), x) = a(i), i = 1, 2, . . . , k − 1. Similarly, denote
the jth neighbor of x′ as x′(j), NN(x′, x′(j)) = j, NN(x′(j), x

′) = b(j), j = 1, 2, . . . , l − 1.
Algorithm steps:

1. Input threshold parameters t1, t2, and t3.

2. Calculate the Euclidean distance matrix D = (dij).

3. Determine the neighbor number (NN) matrix L = (lij), where lij = NN(xi, xj).

4. Calculate the matrix S = (sij), where

sij =
(lij + lji)

2
.

5. Estimate the NDD matrix J = (Jij), where

Jij =
|lij − lji|
s

1+1/d
ij

, sij ≤ t1.

and d is the dimensionality of the feature space.

6. Estimate the convexity D2 = (d2ij), where

d2ij =
lij
∑k−1

i=1 a(i) + lji
∑l−1

j=1 b(j)

lij
∑k−1

i=1 i+ lji
∑l−1

j=1 j
, sij ≤ t1.

7. Determine the discretized connectivity matrix C = (cij), where

cij = I(sij ≤ t1, Jij ≤ t2, d2ij ≤ t3)

is the indicator of whether xi and xj belong to the same cluster

8. Assign cluster labels to observations according to the discretized connectivity
matrix.

Box 2: Valley-Seeking Clustering
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viable choice for hardware implementation.

Superparamagnetic clustering (SPC) [68] is another unsupervised clustering algo-

rithm that has found application to spike sorting [46]. In SPC, the data is modeled as a

granular magnet, where each point is assigned a spin. The model is heated from low tem-

peratures to high temperatures. At very low temperatures, all the spins will be aligned; this

is referred to as the “ferromagnetic region.” At high temperatures, the system is disordered

and all the spins are random; this is called the “paramagnetic region.” At temperatures

that lie between these regions (called the “superparamagnetic region”), spins within the

same high-density region are aligned while the spins of different high-density regions are not

aligned; here the clusters are revealed. A summary of the algorithm steps is provided in Box

3.

SPC has benefits similar to those of valley seeking: it is unsupervised (again, no a priori

knowledge of the number of clusters is required) and nonparametric. It also has the same

major drawback: complexity. It requires the computation of at least 9 NS-by-NS matrices,

where NS is the number of spikes being clustered. Again, a large NS requires a prohibitive

number of operations and amount of memory. SPC also requires a Monte Carlo simulation,

which increases the computation time. The algorithm can be simplified by using a mean-

field approximation in place of the Monte Carlo simulations. But although this simplification

reduces the runtime, it actually increases the complexity. Furthermore, like the valley-seeking

method, SPC is an offline algorithm. Thus, SPC is also not a practical choice for hardware

implementation.

The only clustering algorithm known to the author at this time that is both automatic

and online and that has a good accuracy–complexity tradeoff is called Osort [69]. This

method was developed by researchers who needed to isolate single neurons during their

experiments, which requires processing large amounts of data in real time. Out of necessity,

they proposed a much simpler way of clustering, where each data point is assigned to a

cluster “on-the-fly”. The algorithm is described in Box 4. This method of clustering

appears to be extremely efficient. Very little memory is required. Therefore, of the three

unsupervised clustering algorithms presented here, this method is the only one suitable for
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1. Calculate the Euclidean distance matrix D = (dij).

2. Identify the K nearest neighbors of each point vi. vi and vj are considered neighbors iff
vi is one of the K nearest neighbors of vj and vj is one of the K nearest neighbors of vi.

3. Assign a Potts spin si = 1, 2, . . . , q to each point vi randomly (or set all si = 1), where
q is a constant representing the number of possible spins. Note: The value chosen for q
does not imply anything about the number of clusters. The authors of [68] used q = 20.

4. Calculate the interaction strength Jij between neighboring points vi and vj , where

Jij =

{
1
K exp(− d2ij

2a2
) if vi and vj are neighbors,

0 otherwise,

and a is the average of all dij ’s between neighboring points.

5. For each temperature (e.g. T = 0 : 0.02 : 0.2), perform the following Monte Carlo
simulation of iterations m = 1 : M :

(a) Assign a frozen bond between nearest-neighbor points vi and vj with probability:

pfi,j = 1− exp(−Jij
T
· δsi,sj ), where δsi,sj =

{
1 if si = sj ,

0 otherwise.

(b) Generate a random number x from a uniform distribution on [0, 1]. If x < pfi,j ,
there is a bond between vi and vj .

(c) Define clusters as all points that are connected by a bond.

(d) Define cm, where

cmij =

{
1 if vi and vj are in the same cluster,

0 otherwise.

6. Calculate the two-point connectedness Cij , where

Cij =
1

M

M∑
m=1

cmij .

7. Calculate the spin-spin correlation function:

Gij =
(q − 1)cij + 1

q
.

8. If Gij > θ, where θ is a pre-defined threshold, vi and vj belong to the same cluster.

9. Assign cluster labels to observations according to G.

Box 3: Superparamagnetic Clustering

33



1. Initialization: Assign the first data point to its own cluster.

2. Calculate the Euclidean distance between the next data point and each cluster
centroid.

3. If the smallest distance is less than the merging threshold TM , assign the point to
the nearest cluster and recompute that cluster’s mean using the N most recent
points. Otherwise, start a new cluster.

4. Check the distances between each cluster and every other cluster. If any distance
is below the sorting threshold TS, merge those two clusters and recompute its
mean.

Steps 2–4 are then repeated indefinitely. In the simplified version of this algorithm,
TM = TS, which is equal to the variance of the data computed continuously on a long
(∼ 1 minute) sliding window. Note that when computing cluster centroids, only the
N most recent points are used. This helps to account for electrode drift, since the
clusters are allowed to drift as well.

Box 4: Osort Clustering

implementation in hardware. The main drawback to this method is that, like in k -means, it

bases its decisions on a distance metric, essentially assuming a spherical distribution of data.

So while it can track spherical clusters moving in time to form ellipsoidal clusters, it cannot

resolve a stationary ellipsoidal cluster (which would result, for example, from multivariate

noise).

An example showing the results of clustering using valley-seeking clustering, SPC, and

Osort is shown in Fig. 2.13. Valley seeking and SPC give similar results, whereas Osort

appears to over-cluster—that is, to find too many clusters, or to divide a single-unit cluster

into sub-clusters. A summary of various characteristics of each of the algorithms described

in this section is given in Table 2.1. Because Osort is the only algorithm that is real-time and

unsupervised while at the same time low in complexity, Osort would be the only practical

choice for hardware implementation.

2.4.6 Alternative Methods for Spike Sorting

While most spike-sorting methods to date involve feature extraction followed by clustering

of these features using nonparametric, nearest-neighbor methods as described above, other,
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Superparamagnetic Clustering

Cluster
Means

Valley-Seeking Clustering Osort Clustering

   All
Spikes

100 µV

0.5 ms

Figure 2.13: Example results from clustering 30 seconds of real data (human entorhinal
cortex) using three different clustering methods. Note that for the valley-seeking and su-
perparamagnetic methods, PCA was performed for feature extraction prior to clustering,
whereas Osort uses only time-domain samples for clustering by default.

Table 2.1: Summary of Clustering Algorithm Characteristics

Window Valley
Manual Discriminators k-Means Seeking SPC Osort

nonparametric NO YES NO YES YES NO

unsupervised NO NO NO YES YES YES

real-time NO YES NO NO NO YES

adaptive NO NO NO NO NO YES

accuracy low+ ? 0.90* 0.74* 0.85* 0.74*

complexity – – LOW HIGH HIGH LOW
+[42], *[70]
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more sophisticated methods have been developed based on Gaussian mixture models [57,

71–73] or t-distribution mixture models [74] in attempt to provide optimal solutions to

the clustering problem based on statistics and probability theory. Many of these methods

involve calculating a noise model for a particular dataset, performing noise whitening, and

using Bayesian or maximum-likelihood estimation.

An example of one such method was presented in [73]. In summary, the method begins

with calculating an empirical model for the recording noise and using this model to perform

noise whitening on the data. Next, a “data generation model” (which includes the number

of clusters and their positions in the event space) that maximizes the a posteriori probability

to observe the samples that are actually observed (i.e., to maximize the likelihood function)

is calculated as follows:

1. Specify a model M by specifying the number of neurons K, their discharge frequencies

πj, j = 1, . . . , K, and their template waveforms uuuj, j = 1, . . . , K.

2. Compute the probability for unit (neuron) j to have generated the event (spike) eeei,

p(eeei|uuuj), as follows:

(a) Define the residual vector ∆ij = eeei − uuuj.

(b) Then p(eeei|uuuj) = 1
(2π)D/2 · exp

(
−1

2
·∆T

ij∆ij

)
, where D is the dimensionality of the

event space.

3. Calculate the probability Pi for the model to have generated event eeei: Pi =
∑K

j=1 πj ·

p(eeei|uuuj), where πj is the probability for unit j to occur.

4. Maximize the a posteriori probability, P(S;M) =
∏N

i=1 Pi, or the likelihood function,

L(S;M) =
∑N

i=1 lnPi.

5. Use an iterative algorithm such as Expectation-Maximization to maximize L.

Once the model is established, each event eeei is attributed to one of the K units by finding the

j that minimizes |∆ij|2, which is equivalent to choosing the unit with the highest probability

to have generated the event.
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The assumptions built in to this method are that the spike waveforms generated by a

given neuron are constant, that the signal and the noise are statistically independent, that

the signal and the noise sum linearly, and that the noise is well described by its covariance

matrix. Non-stationary noise would violate this last assumption, but the authors in [73]

claimed that in such cases several noise covariance matrices could be used successively to

describe the noise. The same assumption would be violated if the noise covariance matrix

were to have third or higher order moments. However, the authors showed that, at least for

their data, the background noise is well described by its covariance matrix.

2.5 Challenges in Spike Sorting

2.5.1 No Ground Truth

There are many unique characteristics of neural recording that make classification of neural

data more difficult than for other types of data. One such characteristic is that there is

almost always a lack of any sort of “ground truth.” Many popular classification techniques,

such as support vector machines, rely on a training period that uses known data in order to

define cluster boundaries before the automatic classification period begins. In extracellular

recording, however, experimenters typically must play a more passive role; we can only

observe the neural activity, we cannot influence it2. Thus, we have no ground truth to be

utilized in training the algorithms.

The lack of a ground truth also makes it nearly impossible to quantify the performance

of the classifier. Let’s revisit the problem, illustrated in Fig. 1.1. The recording electrode is

inserted into the neural tissue. Although each neuron in the tissue is generating its own, often

independent, train of spikes, the recording electrode receives only the sum of the activity

from all neurons in its vicinity. We want to use spike sorting to separate the composite

signal into the individual spike trains. Now consider an analogous problem in classical

2Neural activity can be influenced by electrical stimulation, but intracellular stimulation (i.e. voltage
clamping) is difficult to perform, while extracellular stimulation is not precise enough to influence individual
cells.
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communications theory. Let’s say we want to quantify the performance of an error-correcting

code (spike-sorting algorithm). To do so, we would generate a known test vector (signals

from individual neurons), encode the signal, corrupt it with noise (mix the signals from

individual neurons together), decode the signal (perform spike sorting), and finally calculate

the bit error rate (classification performance) as the percentage of correctly received bits

(percentage of correctly classified spikes). The problem is that in extracellular recording, we

have no control over, or even knowledge of, the input signals. If we have no access to known

test vectors, how can we quantify the performance of the classifier?

The best known solution to this problem has been to perform simultaneous intracellu-

lar/extracellular recordings [75]. Although we still have no control over the input signals,

the intracellular recordings at least provide us with some knowledge of them, so we can to

some degree evaluate the clustering performance. The problem with this method is that

intracellular recordings are very difficult to make, and there are very few such datasets al-

ready in existence, making thorough algorithm evaluations difficult. Furthermore, for each

of the paired intracellular/extracellular recordings in [75], although the extracellular elec-

trodes (tetrodes) may have recorded signals from multiple neurons, only one neuron’s spikes

were intracellularly confirmed. This limits the degree to which the accuracy of an algorithm

can be assessed. Another solution to the problem has been to use a real dataset that has

been annotated by an expert according to spike occurrences and classes. However, studies

have shown that the performance of human operators is actually much lower than that of

semi-automatic clustering tools [41,42]. Therefore, it does not make sense to take the perfor-

mance of a human operator as ground truth, particularly when calculating the accuracy of

automatic methods that are likely to outperform the human operators. A third option has

been to create biologically accurate synthetic datasets, which would provide both a ground

truth and the flexibility to manipulate the signal variance and feature complexity in a way

that is not possible using real data [46,64,69,76–78].

An entirely different approach to evaluating the performance of spike sorting is to use

post-processing techniques based on our knowledge of the statistical properties of firing

neurons. For example, one can look at the distribution of interspike intervals (ISI) for each
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neuron after spike sorting [44, 69, 79, 80]. Under most circumstances, after firing an action

potential a neuron cannot fire again until after a refractory period, typically 1–3 ms. An

interspike interval histogram showing a significant number of samples less than 3 ms would

indicate bad clustering (e.g., that spikes from two neurons were combined into one multiunit

cluster, or that the cluster is a noise cluster).

Tankus et al. developed a method specifically to identify a cluster as a single cell or

multiple units [80]. This task is normally performed by human visual inspection of the

distributions of spike waveforms around the spike mean (the variation around the mean for

single units should be small). As such, their approach was to mimic the performance of the

human classifier. The method is composed primarily of two parts. First, the ISI distribution

of each cluster is examined as described above, and a cluster is declared multiunit if more

than 1% of ISIs are less than 3 ms. For each remaining cluster, the variance of the spike

waveforms around the main rise in voltage of the mean waveform is quantified. Then clusters

whose variances exceed a certain threshold are also declared multiunit.

Pouzat et al. also developed several additional clever post-processing techniques, includ-

ing the S.D. (standard deviation) test, the χ2 test, and the projection test [73]. The idea

behind the S.D. test is that, assuming that the spike waveform generated by a given neuron

is constant and that the signal and noise sum linearly, the sample-by-sample S.D. over all the

spikes from one cluster should be equal to the standard deviation of the noise. So after spike

classification, any cluster whose S.D. differs significantly from the noise S.D. can be either

further scrutinized or discarded. The χ2 test tests the hypothesis that each cluster of spikes

forms a D-dimensional Gaussian distribution. (In Section 2.5.2, however, we will examine

whether the assumption of this test is valid or not.) The test is performed by first calcu-

lating the squared D-dimensional distance of every spike in a given cluster from its cluster

mean and then by checking whether or not this distribution follows a χ2 distribution with D

degrees of freedom. A distribution that deviates significantly from the expected distribution

may indicate the clustering of two similar units into one cluster. Finally, in the projection

test, we again assume that the distribution of spikes in D-dimensional space should be a

multivariate Gaussian with a covariance matrix equal to the identity matrix (assuming that
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noise whitening has been performed, as in Sec. 2.4.6), and that the projection of all spikes

onto all possible axes joining any pair of units should form Gaussian distributions centered

on the cluster centroids with standard deviations equal to 1. The “distinguishability” of any

two given units can then be defined by setting a limit on the acceptable overlap between

these two distributions, and a user can declare that units with less than a certain degree of

distinguishability not be used in further analysis. This test also reveals when two clusters

have been combined into one, as the projections between these two clusters will form a single

Gaussian distribution centered around the true cluster mean.

2.5.2 Non-Gaussian Noise

Much of classical signal-detection theory is based on the assumption of channels having addi-

tive white Gaussian noise, and, as a result, most of the classical signal-detection techniques

have been built around this assumption. Noise in extracellular recordings, on the other

hand, has been shown to be both non-white [58] and non-Gaussian [32,74], so many of these

classical techniques cannot be applied. Even signal-detection techniques that do not assume

Gaussian noise, just that the distribution of the noise is known, are difficult to apply to

neural data due to a lack of accurate noise models, especially models that are valid across

various experimental setups.

2.5.3 Non-Stationarities

To make matters worse, neural data can be non-stationary. Fee et al. showed both that

background noise is non-stationary and that a neuron’s spike waveform varies as a function

of the time since its preceding action potential [32]. This change in a neuron’s spike waveform

over time is especially dramatic during burst firing [44,81], during which the peak amplitude

of the spike will decrease, since it is firing before completely returning to its resting state.

Other causes of non-stationarites are electrode drift [44, 81], when the stiff electrode drifts

within the fluid tissue with respect to the neurons being recorded, and cortical pulsation due

to heartbeat or respiration [81]. Despite all of these known contributors to non-stationarity,
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data stationarity is still an assumption built into most spike-sorting methods. Until spike-

sorting methods are developed to combat this problem, classification results will suffer.

Efforts in this direction include [81,82].

2.5.4 Overlapping Spikes

A final, very tricky problem in spike sorting is that of overlapping spikes. The refractory

period forces a neuron to rest for at least 1 ms between successive action potentials. But

remember that our recorded signal is the sum of signals from several nearby neurons that are

assumed to be firing independently. Thus it is possible for two different neurons to fire at or

around the same time, such that their spikes overlap with one another in the recorded signal.

At best, conventional spike-sorting methods may be able to identify such a detection as an

outlier and, therefore, to classify it as noise. At worst, this overlap would be misclassified

entirely. Ideally, we would like to be able to detect when an overlap occurs, and to resolve

which neurons the overlapping spikes have come from. Some techniques have been developed

towards this goal: [54, 71,83–87].

2.6 Single vs. Multichannel Signal Processing

In multichannel recordings, adjacent channels sometimes receive activity from the same neu-

rons. Examples of these types of multichannel recordings are stereotrode/ tetrode recordings,

where the recording probes (made from microwires) have two/four closely spaced electrodes

(∼ 10 µm between centers). In these cases, correlations between channels can be exploited in

order to separate single-unit activity, similarly to how triangulation can be used to determine

the position of one object with respect to two other objects. Several algorithms have been

developed to make use of this information, including independent component analysis

(ICA) [88].

The idea behind ICA is that if N sources (neurons) have been mixed onto N detectors

(electrodes) using a linear combination, a matrix can be found to “un-mix” the data such

that each channel is independent from every other channel—that is, each channel contains
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the spike train from each neuron. The assumptions behind this method are that, ideally, the

number of electrodes equals the number of neurons (or, in the less ideal case, the number of

detectors is greater than the number of sources), and that each neuron is seen by at least two

electrodes. This method, when it can be applied, has many benefits, including the ability

to automatically detect artifacts and overlapping spikes and to correctly sort spikes from a

neuron whose amplitude changes with time (i.e., to handle waveform non-stationarities).

Note that multichannel silicon arrays have much larger spacing between electrodes (∼

400 µm for the Utah array [89]), so it is much less likely for the same neuron to be recorded

on two channels here. As such, algorithms exploiting correlations between channels can

typically not be used for multichannel recordings of this type.

2.7 Controversy

There is an ongoing debate within the field of neural prosthetics—still a relatively imma-

ture field—over whether or not spike sorting is really necessary for reliable decoding. Spike

sorting in the traditional sense seeks the single best spike train for each observed neuron.

As a result, ambiguous spike trains often get discarded, which may be undesirable or un-

acceptable in some cases such as chronic recordings. To mitigate this problem, Wood and

Black propose using an infinite Gaussian mixture model to instead generate a distribution of

spike trains—that is, multiple different spike-sorting results with varying probabilities [90].

Then, this distribution of spike trains, rather than a single spike train, would serve as in-

put to subsequent processing steps. The authors postulate that these results may be useful

in certain types of neural signal analysis such as decoding algorithms which rely on cosine

tuning. This approach has the benefit of quantifying the certainty of spike-sorting results

and of improving single-unit yield. However, it is unclear how straightforward it would be

to use this approach in neural signal analysis; downstream algorithms would likely have to

be modified.

A number of other researchers have actually reported sufficient decoding performance

when multiunit, rather than single-unit, activity is decoded. Ventura, for example, pre-
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sented a paradigm for using multiunit spike trains in conjunction with existing decoding

algorithms, such as the population-vector and maximum-likelihood decoding algorithms, to

predict movement with comparable performance to traditional methods that use single-unit

spike trains [91]. By bypassing spike sorting, this method saves time and computational

effort, making it more appropriate for use in real-time neural prosthetics. This method has

the added advantage of performing well in low SNR, where spike sorting can be unreliable.

Actually, though, spike sorting is implicitly built in to this method, in that each constituent

neuron’s identity is revealed through information about tuning.

Stark and Abeles, on the other hand, came up with a decoding paradigm that involves

no spike sorting at all, whether explicit or implicit [92]. They introduce a quantity called

MUA (multiunit activity), which is calculated by bandpass-filtering the signal from 300–

6000 Hz and taking the RMS. They then used the MUA as input to classification algorithms

such as support vector machines, Fisher’s linear discriminant analysis, Poisson probability

density estimation, and artificial neural networks, which traditionally use single-unit activity.

For each of these decoding methods, they found MUA to give better motion-prediction

performance than either single-unit activity or LFP. Other advantages of this method are

that MUA is more easily obtained than single-unit activity, MUA recordings are more stable

over time, and MUA is informative even in the absence of spikes. An example of an MUA

signal, compared to spikes and LFP, is shown in Fig. 2.14.

Another study showed that, while decoding is still better when single units are used, an

acceptable level of performance can also be achieved using mulitple units [93]. A number of

other researchers have also reported success in movement decoding using LFP [94, 95]. The

primary advantages to using LFPs over spikes are that they are easier to acquire, are more

stable over time, and are less susceptible to noise. Many other studies have suggested using

a combination of LFPs and spikes to achieve high decoding performance [96–98].

Still, the majority of published studies in the field of neural prosthetics have used single-

unit activity as input to their decoding algorithms [14, 15, 99, 100]. Furthermore, neural

prosthetics is just one of many applications for spike sorting. Spike sorting will always be

necessary for electrophysiological experiments that are designed to study the behavior of
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Figure 2.14: Example of an MUA signal, compared to the raw signal, unit activity, and LFP.
Signals in this figure were generated by the authors and plotted in the same manner as in
[92].
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individual cells or networks of cells.

2.8 Conclusion

Spike sorting is an important processing step for many of the scientific and clinical appli-

cations that involve the extracellular recording of neuronal activity. Work still remains in

finding optimal automatic, real-time, efficient, and accurate spike-sorting algorithms that

address all the remaining challenges described in Sec. 2.5. Finding such a solution to the

spike-sorting problem would finally allow reliable spike sorting to be performed in implantable

hardware. Performing spike sorting in hardware, simultaneously on many channels, would

provide researchers with whole new experimental paradigms. For example, on-site spike

sorting would aid in providing experimenters with instantaneous information about the neu-

rons, such as their tuning functions as a stimulus is varied. These signals could also be used

to “close the loop” by delivering signals back to the brain, enabling a whole new class of

neurophysiological and neuropsychological experiments. Performing spike sorting in hard-

ware would also achieve enough data reduction to enable the wireless transmission of data,

thereby eliminating the need for cables. This would open the door for new types of experi-

ments in which the activity of the brain is investigated as animals move freely in enriched,

and possibly even their natural, environments. It may also allow for recording from species

that have never before been recorded, such as freely flying bats. And finally, implantable

spike-sorting hardware would bring medical technologies for the treatment of disorders such

as paralysis, epilepsy, and even cognitive and memory loss closer to a reality.
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CHAPTER 3

Algorithm Evaluations

3.1 Introduction

As described in Chapter 2, many spike-sorting methods have been published over the past

30 years. However, each time a new algorithm is published, it is demonstrated on a different

dataset, which could be real or simulated, realistic or unrealistic, noisy or noiseless, etc.

No standard dataset or methodology has been established for measuring a new algorithm’s

performance against existing algorithms. This makes it impossible for one to make fair

comparisons between algorithms or to decide which algorithm is best for a given scenario

(e.g., high or low SNR).

Here, we attempt to provide the needed dataset and methodology. Whereas many in-

dependent groups (e.g., [46, 48, 50, 51, 56, 60]) have evaluated individual algorithms using

different, often biological, datasets, we have used the neural-signal simulator introduced in

[46] to develop synthetic datasets in order to obtain an accurate, unbiased comparison be-

tween algorithms over a wide range of SNRs. Implantable spike-sorting hardware must be

low-power in order to prevent heat-related tissue damage and to maximize battery life, as

well as low-area in order to be implantable. The algorithms implemented in the hardware

must be accurate, automatic, and real-time, as well as computationally simple in order to

stay within the power limitations. Thus, we provide a methodology for evaluating algo-

rithms in terms of accuracy versus computational complexity. We finally use this dataset

and methodology to evaluate several spike-detection, feature-extraction, and dimensionality-

reduction algorithms in order to determine which are most appropriate for use in a real-time,

implantable neural-recording system.
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This chapter is organized as follows. Section 3.2 describes the datasets that were created

and Section 3.3 describes the methodology that was developed to evaluate the spike-sorting

algorithms. Section 3.4 lists the algorithms that are evaluated in this chapter. Section 3.5

presents the results of the algorithm evaluation, including the accuracy, number of operations

per second (NOPS), estimated area, and normalized cost of each algorithm. Section 3.6

provides a discussion of the reduction in data rate at each block of signal processing. Finally,

conclusions and future work are discussed in Section 3.7.

3.2 Test Data

In order to evaluate the accuracy of spike-sorting algorithms, data with known spike times

and classes is required. As described in Section 2.5.1, there are a few different ways to

obtain such data. For this study, we chose to generate a semi-synthetic dataset using the

data-driven neural-signal simulator introduced in [46]. The simulator contains a library of

594 average spike shapes taken from a collection of real physiological recordings. After the

user selects the number of spikes, the spike shapes, the spike amplitudes, the firing rates,

and the standard deviation of the noise, the system generates a waveform with the chosen

spikes placed randomly in time (given a refractory period) at the chosen rate. Noise is

automatically added by randomly choosing spike shapes from the library and adding them

to the waveform at random times1, which is a more biologically sound assumption than it

would be to use only additive white Gaussian noise (see Section 2.5.2). Along with the test

data (“raw data”), the simulator also generates a file containing the true spike time and the

true spike class for each actual spike in the data file, which can be used to calculate accuracy

(Fig. 3.1).

We wanted to produce datasets with varying degrees of difficulty to represent the diversity

of data likely to be encountered in real recordings. Thus, we used this simulator to create

1The total firing rate of all spikes composing the background noise is 48 kHz. Henze et al. showed that
extracellular electrodes can detect spikes within a 140-µm radius and that, in the hippocampus, about 1100
neurons are present within this volume [75]. A total firing rate of 48 kHz for these neurons is equivalent to
each cell firing at about 43 Hz, a reasonable assumption. Note that the background spikes overlap with one
another to a high degree, so individual spike shapes within the noise are generally not observable.
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datasets with varying spike shapes, numbers of neurons, firing rates, amplitudes, and noise

levels. We generated 96 datasets at 17 different noise levels, for a total of 1632 datasets.

First, 24 sets of spikes were chosen from the library randomly (Fig. 3.2). Out of the 24 sets,

6 contained 2 neurons (Fig. 3.2a), 6 contained 3 (Fig. 3.2b), 6 contained 4 (Fig. 3.2c), and

6 contained 5 (Fig. 3.2d). From each of these 24 sets, 4 datasets were generated: 2 where

the amplitudes of all spikes were equal (normalized to one) and 2 where the amplitudes were

unequal. Each of these groups included one dataset where the firing rate of each neuron was

equal (40 Hz) and one where the firing rates varied (from 5 to 40 Hz). Finally, we generated

17 versions of each of the 96 datasets at different noise levels, where the standard deviation

of the noise ranged from σ = 0 to 0.4. This range allowed us to explore very high (∼20 dB)

to very low (∼ −10 dB) SNRs with the granularity needed in order to analyze at which

SNRs the algorithms begin to break down. All datasets were 60 s in length and generated

at a sampling rate of 24 kHz.

The SNR of each neuron in a given dataset was calculated as the peak-to-peak amplitude

of the average spike shape from that neuron divided by 6σ, where σ is the standard deviation

of the noise. Because the signal is sparse, we used the standard deviation of the raw data

as an approximation for σ. The SNR of the entire dataset was then defined as the average

SNR of all neurons in the dataset.

3.3 Testing Methodology

3.3.1 Accuracy Calculations

All detection, feature-extraction, and dimensionality-reduction algorithms were tested in

MATLAB on the test data described above.

Spike detection using all of the methods was accomplished as follows: When a sample in

the pre-emphasized signal crosses the threshold, a 3-ms window (1 ms before the threshold

crossing and 2 ms after) is applied to the signal and the result is saved as a spike. This

window length was chosen because a spike duration is unlikely to be longer than this and
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Figure 3.1: Signal-processing chain used to evaluate algorithm accuracies. The processing
blocks that are being tested are highlighted in yellow.
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Figure 3.2: Average spike waveforms used as templates in the test datasets. Each set in
column (a) contains 2 neurons, (b) 3 neurons, (c) 4 neurons, and (d) 5 neurons. For each
set of spikes shown, 4 datasets were generated: 2 where the amplitudes of all spikes were
normalized and 2 where the amplitudes were different (as shown). Within these pairs of
datasets, the firing rate of each neuron was equal (40 Hz) in one and varied (from 5 Hz to
40 Hz) in the other.
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because it minimizes the likelihood that we capture more than one spike in the window. In

order to evaluate the quality of each detection method, the false-alarm and detection rates

were calculated. In accordance with signal-detection theory, the false-alarm rate is defined

as

PFA =
number of false alarms

number of true negatives
, (3.1)

and the detection rate is defined as

PD = 1− PM, PM =
number of misses

number of true positives
. (3.2)

We defined true positives as the samples within known spikes and true negatives as all other

samples. False alarms are all the samples within a detected spike that are not part of a true

spike, and misses are all samples of true spikes that are not part of detected spikes.

As depicted in Fig. 3.1, the accuracy of each feature-extraction method was calculated

as follows. For each signal over the range of SNRs, true spikes were extracted using the file

of true spike times. This assured that the accuracy calculations for the feature-extraction

methods were not affected by the possible inaccuracies of spike-detection methods. Features

from the detected spikes were then extracted using each of the feature-extraction algorithms

being tested. These feature sets were then clustered using the MATLAB implementation

of fuzzy c-means, the most accurate out of all clustering methods tried. The accuracy was

then calculated by comparing the computed cluster assignment of each spike to the actual

identities of each spike.

The accuracy of each dimensionality-reduction method was calculated similarly. For

each test signal, the features extracted using each feature-extraction method were reduced

using each of the dimensionality-reduction methods under test. These reduced features were

then clustered using fuzzy c-means clustering, and the accuracy was again calculated by

comparing the computed cluster assignment of each spike to the actual identities of each

spike.
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3.3.2 Receiver Operating Characteristic (ROC)

ROC curves were used to evaluate the performance of the various spike-detection algorithms.

For a given method, the ROC curve was generated by first performing the appropriate pre-

emphasis (as described in Section 3.4) and then systematically varying the threshold on the

pre-emphasized signal from very low (the minimum value of the pre-emphasized signal) to

very high (the maximum value of the pre-emphasized signal). At each threshold value, spikes

were detected and PD and PFA were calculated in order to form the ROC curve. The area

under the ROC curve (also called the “choice probability”) represents the probability that an

ideal observer will correctly classify an event in a two-alternative forced-choice task. Thus,

a higher choice probability corresponds to a better detection method.

The ROC curves were also used to choose the spike-detection parameter C, which multi-

plies the automatically calculated thresholds (for example, in Eq. 2.4 and Eq. 2.7). For each

method, the ROC curve of an initial training dataset was examined and the best threshold

chosen given an acceptable error (PD > 70% and PFA < 30%, determined empirically). C

was then defined by dividing this threshold by the mean of those samples used to generate

the ROC curves (i.e., the respective pre-emphasized signal).

3.3.3 Complexity Calculations

The number of operations per second (NOPS) is typically used to quantify an algorithm’s

computational complexity. Thus, one dimension to our complexity estimates was the NOPS,

where an operation is defined as a 1-bit addition. For simplicity, a subtraction was considered

to be equal to an addition in terms of number of operations, and multipliers and dividers

were considered to require 10 times as many NOPS as an addition. In this chapter, this

metric is reported in MOPS, millions of operations per second.

NOPS is a good indication of the power that an algorithm will require, but not neces-

sarily of the area. Since we are concerned with both the power and area requirements of

spike sorting, we also estimated the area requirement of each algorithm. The area can be

divided into the area of logic and the area of memory. For logic, we estimated the required
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number of adders and multiplied by 20.46 µm2 per 1-bit full adder (obtained from standard-

cell estimates in a commercial 90-nm CMOS process). Subtractors and comparators were

assumed to be the same size of an adder, while multipliers and dividers were assumed to be

10 times the size of an adder. For memory, we distinguished simple delays from memories

that require addressing logic. For simple delays, we assumed 15 µm2 per 1-bit register (ob-

tained from standard cell estimates in a commercial 90-nm CMOS process). For memory,

we estimated the memory requirement (in bits) for each algorithm and then estimated the

size of this memory (in mm2) in SRAM. In order to estimate the size of a memory using

SRAM, we used the ARM-Artisan memory compiler to generate memories of different sizes

and estimated their areas from the compiler reports. The memory depths supported by the

tool vary from 1 kB to 8 kB (up to 8192 words, each word assumed to be 8 bits wide for

our analysis). To estimate the area for memories larger than 8 kB, it is assumed that the

memory is built from multiple smaller memories.

Finally, we combined these two metrics, NOPS and area, into a cost function so as to

easily compare the complexities of different algorithms, as well as to provide a perspective

on the complexity of individual processing steps (e.g., detection, feature extraction) relative

to other processing steps. As shown in Eq. 3.3, first the NOPS for each algorithm was

normalized by dividing by the maximum NOPS of any algorithm. Second, the same was

done for area. Finally, these two numbers were summed. Thus, the cost function has a range

from 0 to 2, 0 being least costly and 2 most costly.

Normalized Costi =
NOPSi

max
i

NOPS
+

areai
max
i

area
(3.3)

To make these estimates, we assumed a sampling rate of 24 kSa/s, a maximum firing rate

of 100 spikes/s, and 8-bit quantization for all signals. Also, since detection and dimensionality

reduction both require a training period, we assumed 10 s of training. Finally, note that

spike detection can be performed in either the analog or the digital domain. Because for

8 bits the power and area of a digital implementation are slightly lower than that of an

analog implementation [101], we prefer to implement the circuit as a digital block. Thus,
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digital spike detection was assumed in the complexity estimations.

3.3.4 Assumptions

At this point we should point out a number of assumptions that were made in this analysis.

The first is regarding the nature of the recording noise. Section 3.2 describes the way in

which one source of noise, background spikes, was modeled and added to the test signals.

Background activity is often the primary source of noise in an extracellular recording, but it is

not the only source. Imperfections in the recording hardware, including electrodes, amplifiers,

and ADCs, also contribute to the noise observed in extracellular recordings. Such hardware-

dependent noise sources can vary significantly depending on the circuit implementations.

Because it is difficult to generalize parameters such as thermal noise across these various

circuit implementations, we chose to include only hardware-independent noise sources. Noise

due to hardware should be small in comparison to background noise anyway, so we would

not expect the inclusion of such noise sources to change the findings of this paper.

A second caveat is that all performance analyses were performed using floating-point

arithmetic. We chose to go this route because we wanted a performance characterization of

the algorithms themselves, in their purest forms, independent of their hardware implemen-

tations. The wordlengths for each signal can always be optimized during the design process

to ensure whatever accuracy (relative to the floating-point performance) is needed.

The last assumption that was made is that the processing steps can be optimized some-

what independently. In this chapter, we will evaluate 3 detection, 4 feature-extraction, and

4 dimensionality-reduction algorithms. This gives us 48 possible combinations of algorithms.

To simplify the analysis, we will treat detection independent from feature extraction and di-

mensionality reduction, since we expect minimal interaction between detection and feature

extraction/dimensionality reduction. However, as will be discussed in Section 3.5.3, we sus-

pect a higher degree of interaction between feature extraction and dimensionality reduction.

Thus, we will first calculate the individual feature-extraction accuracies and then test the

accuracies of combinations of the best feature-extraction algorithms with dimensionality-

55



reduction algorithms.

3.4 Algorithms

The goal of this study was to evaluate a set of algorithms that are representative of the

various principles used by, as well as of the range of complexity seen in, various spike-sorting

methods. Thus, we investigated the following algorithms.

• For spike detection:

– Absolute value, representing the class of detection algorithms based on voltage

thresholding.

– Nonlinear energy operator (NEO), representing the class of detection algo-

rithms based on energy thresholding; and

– Stationary-wavelet-transform product (SWTP), representing the class of

detection algorithms based on wavelets.

• For feature extraction:

– Principal component analysis (PCA), the benchmark method in feature ex-

traction;

– Discrete wavelet transform (DWT), representing the class of feature-extraction

algorithms based on wavelets;

– Discrete derivatives (DD), representing the lower-complexity feature-extraction

methods; and

– Integral transform (IT), also representing the lower-complexity methods.

• For dimensionality reduction:

– Lilliefors Test, representing the class of statistical methods for dimensionality

reduction;
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– Hartigan’s Dip Test, also representing the class of statistical methods for di-

mensionality reduction;

– Maximum-Difference Test, our own invention [64], representing a simple, in-

tuitive method; and

– Uniform sampling, representing the most basic method.

Mathematical definitions of each of the above algorithms were provided in Chapter 2.

3.5 Results

3.5.1 Spike Detection

The ROC curves in Fig. 3.3 clearly show that the SWTP method is inferior to the other two

methods. The curves corresponding to the absolute value and NEO methods, however, are

too close to draw any conclusions. We next statistically compared the underlying choice-

probability distributions, shown in Fig. 3.4, in order to determine which of these methods is

better. The difference between each distribution is statistically significant (Kruskal-Wallis

test, p < 0.01). The median of the NEO choice-probability distribution is highest, indicating

that its performance is best. Figure 3.5 gives insight into the performance of each of these

algorithms versus SNR and shows, more dramatically than Fig. 3.3 or Fig. 3.4, that NEO

performs better than absolute value across SNRs. This result indicates either that the

threshold calculation technique in Eq. 2.4 is more robust than the technique in Eq. 2.2, or

that the NEO method is generally less sensitive to the choice of threshold than the absolute

value method.

The complexity of each spike-detection algorithm, including the complexity for threshold

calculation, is listed in Table 3.1. The absolute-value method is the least complex, followed

by the NEO method. SWTP’s cost of 2 indicates that it is most complex in terms of both

OPS and area. Figure 3.6 shows the choice probability (median over all datasets and SNRs)

versus cost. Methods that lie in the upper left corner (high accuracy, low complexity) are

optimal for our application. Because the NEO method lies in the upper left corner, we
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Figure 3.3: Median ROC curve for each detection method (N = 1632). The areas under
the curves (choice probabilities) are as follows: Absolute Value, 0.925; NEO, 0.947; SWTP,
0.794.

Table 3.1: Complexity of Spike-Detection Algorithms

Algorithm MOPS Area [mm2] Normalized Cost

Absolute Value 0.4806 0.06104 0.0066

NEO 4.224 0.02950 0.0492

SWTP* 86.75 56.70 2
*Biorthogonal (3,1) wavelet. Smoothing operations not included.

identified it as the optimal spike detection method for our application.

3.5.2 Feature Extraction

Table 3.2 shows the complexity of each feature-extraction algorithm. Note that IT requires

offline training in order to determine NA and NB (Eq. 2.10), which increases the complex-

ity beyond the numbers in this table. More importantly, PCA requires offline training to

determine the PCs, which significantly increases the complexity as it involves eigenvalue

decomposition; the numbers in this table reflect only the complexity required to calculate

the PC scores. Incidentally, since both IT and PCA require offline training, they are not

completely unsupervised algorithms, and this in our view is not optimal for BMI applications
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Figure 3.4: Histograms of choice probabilities for each detection method (N = 1632). The
difference between each distribution is statistically significant (Kruskal-Wallis test, p < 0.01).
The median of each distribution is: Absolute Value, 0.913; NEO, 0.926; SWTP, 0.772.

Figure 3.5: Left : Probability of detection (PD) vs. SNR for each detection method. Right :
Probability of false alarm (PFA) vs. SNR for each detection method. Curves for each of the
96 datasets are shown. For each method, the median across all datasets is shown in bold.
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Figure 3.6: The accuracy of all datasets and noise levels (N = 1632) vs. normalized compu-
tational cost for each spike-detection, feature-extraction, and dimensionality-reduction algo-
rithm. For spike-detection algorithms, “accuracy” represents the median choice probability.
For feature-extraction and dimensionality-reduction algorithms, “accuracy” represents the
mean classification accuracy after fuzzy c-means clustering, with error bars indicating the
standard error of the mean.

anyway. Figure 3.6 shows that DD is the optimal feature-extraction method, since it lies at

the knee point of the curve.

3.5.3 Dimensionality Reduction

Because the DWT and DD feature-extraction methods exhibited similar performance, we

used both sets of features to test the dimensionality-reduction methods. We did this for

two reasons: First, we anticipate some degree of interaction between feature extraction and

Table 3.2: Complexity of Feature-Extraction Algorithms

Algorithm MOPS Area [mm2] Normalized Cost

PCA* 1.265 0.2862 0.0196

DWT† 3.125 0.06105 0.0371

DD 0.1064 0.04725 0.0021

IT* 0.05440 0.03709 0.0013
*Requires offline training
†Level-5 Haar wavelet
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dimensionality reduction. Second, although DD was shown to be less complex than DWT,

it could be that in combination with the best dimensionality-reduction method the total

complexity is less when DWT is used. Figure 3.7 shows the accuracy of each dimensionality-

reduction method, for DWT and DD, as a function of the number of coefficients chosen.

Note that uniform sampling is not shown here because its results were quite poor in com-

parison with the other methods, as will be shown in the next figure. It can be seen from

this figure that the accuracy of each method levels off at a dimensionality of less than 39

coefficients. It can also be seen that for each dimensionality-reduction method, DWT reaches

its maximum accuracy at a lower dimensionality than DD. However, the final accuracy of

each dimensionality-reduction method when used with DD is higher than those when used

with DWT. Finally, this figure shows that the peak accuracy is reached at the lowest dimen-

sionality with the maximum-difference method, regardless of the feature-extraction method

used.

Figure 3.8 shows a comparison of each dimensionality-reduction algorithm for dimen-

sionalities up to 10, since memory issues in the next step of signal processing, clustering,

make it desirable to reduce the dimensionality to at most 10 coefficients. All populations are

statistically significantly different from one another (Friedman Test, p < 0.001 in each case).

The performance of uniform sampling is obviously sporadic and in general lower than that of

the other methods. For both feature-extraction methods, the maximum-difference method

outperforms both Lilliefors and Hartigan’s Dip tests, making it the optimal algorithm, in

terms of accuracy, for dimensionality reduction. When a dimensionality of 10 DD coefficients

is used, the maximum-difference method achieves an average accuracy of about 87%.

The complexity of each dimensionality-reduction algorithm is shown in Table 3.3, and

Fig. 3.6 shows the accuracy of each method (averaged over all datasets and SNRs) versus the

computational cost. While uniform sampling has a cost of 0, it also has the lowest accuracy.

On the other hand, the maximum-difference algorithm has the highest accuracy, with a cost of

around 3 orders of magnitude less than that of the Lilliefors Test and of Hartigan’s Dip Test.

Thus, we chose the maximum-difference algorithm as the optimal dimensionality-reduction

method.
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Figure 3.7: Mean classification accuracy of each dimensionality-reduction algorithm (a: Lil-
liefors Test, b: Hartigan’s Dip Test, c: Maximum Difference test), averaged over all datasets
and noise levels (N = 1632), after fuzzy c-means clustering, vs. dimensionality. Error bars
show standard error of the mean.

Figure 3.8: Mean classification accuracy of each dimensionality-reduction algorithm when
using (a) DWT feature extraction and (b) DD feature extraction, averaged over all datasets
and noise levels (N = 1632), after fuzzy c-means clustering, vs. dimensionality. Error bars
show standard error of the mean. All populations are statistically significantly different from
one another (Friedman Test, p < 0.001 in each case).
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Table 3.3: Complexity of Dimensionality-Reduction Algorithms

Algorithm MOPS Area [mm2] Cost

Lilliefors Test 39.32 9.642 0.6233

Hartigan’s Dip Test 77.72 11.81 1.1042

Maximum-Difference 0.1536 0.03679 0.0024

Uniform Sampling 0 0 0

Figure 3.9: Pie charts indicating total system complexity: (a) OPS, (b) area.

3.6 Discussion

In Section 3.5, we determined that NEO, DD, and maximum-difference were the optimal

algorithms for our application. Figure 3.9 shows a block-by-block breakdown of the overall

system complexity when these methods are used. As shown in Fig. 3.9(a), the required

NOPS is heavily dominated by detection. This is due to the fact that the detection hardware

must operate on every single incoming sample, whereas other components only operate in the

presence of a spike. Figure 3.9(b) shows that the total system area is more evenly distributed

between components.

As suggested by Fig. 3.10, significant data reduction is achieved from spike sorting.

Assume that we record from 100 channels, each channel having 3 neurons, each neuron

having a firing rate of 20 spikes per second, an average firing rate for a cortical neuron
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Figure 3.10: Example of data-rate reduction provided by each step of the spike-sorting
process for an Nch-channel recording system. The data rate at the end of spike sorting is
lower than that of the raw data. (Assumptions are annotated on the figure in red italics.)

Table 3.4: Overall System Complexity
Area Data Rate*

MOPS [mm2] [Mbps]

Detection (NEO) 4.22 0.0295 2.88

FE (DD) 0.106 0.0473 2.88

DR (Max. Diff.) 0.154 0.0368 0.60

Overall System 4.48 0.114 0.60
*Assumptions: 100 ch, 3 cells/ch, 20 Hz/cell, 10 bpSa.

responding to its preferred stimulus. If in spike detection we take 48 samples per spike with

a resolution of 10 bits per sample, this reduces our data rate from 24 Mbps to 2.88 Mbps—

an 88% reduction. Feature extraction and dimensionality reduction can further reduce the

data rate; when the dimensionality is reduced to 10 coefficients per spike, the data rates are

effectively further reduced by 79%. Again assuming 100 channels and 3 neurons per channel

at 20 spikes per second per neuron, the total data reduction achieved from detection, feature

extraction, and dimensionality reduction is 95% (when 10 coefficients are selected). These

results are summarized in Table 3.4.

3.7 Conclusion

Based on the present analysis, we advocate the NEO for spike detection, DD for feature ex-

traction, and the maximum-difference test for dimensionality reduction. NEO would require

an estimated area of about 0.03 mm2, DD 0.05 mm2, and maximum difference 0.04 mm2, for

a system total area of less than 0.12 mm2 per channel. Assuming that area scales linearly
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with the number of channels, this equates to less than 12 mm2 for 100 channels, which is

feasible for implantable devices.

The area of the overall system is so far dominated by feature extraction, and the overall

system power (as indicated by NOPS) by detection. We estimate that once clustering is

added to the system, the overall area and power will both be dominated by clustering, which

will be at least 3× more complex than spike detection, feature extraction, and dimensionality

reduction combined.

The next step is to similarly evaluate existing methods for alignment at the front end

and clustering at the back end of the spike-sorting process. A challenge will be to find an

online, unsupervised, accurate, and computationally simple clustering algorithm for use in

a hardware spike-sorter. Finally, verification methods, such as autocorrelograms and cross-

correlograms, should be employed. Another direction to be explored is adaptive spike-sorting

algorithms, which could adapt to moving electrodes/tissue and which would be more stable

for long-term recordings.
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CHAPTER 4

Analog vs. Digital Spike Detection

4.1 Introduction

Because of the strict limitations on power density for implanted electronics, all hardware

must be carefully optimized in terms of power and area in order for them to be safely

implantable. One question that arises when optimizing spike-detection hardware is whether

spike detection should be performed in the analog or digital domain.

Many existing systems perform spike detection in the analog domain (e.g., [19, 20, 102–

105]), while others choose to perform spike detection in the digital domain (e.g., [106–108]).

The assumption is that analog spike detection is more power-efficient since the ADC would

only need to run when there are spikes, whereas in digital detection the ADC must constantly

be running since detection occurs only after sampling (Fig. 4.1). However, performing

computations in the digital domain has the advantage that digital-design techniques that

are not possible in the analog domain, such as voltage scaling and interleaving, can be

employed. In this chapter, we investigate whether analog or digital spike detection is more

efficient, with respect to both power and area. Circuits are simulated in 90-nm bulk CMOS,

with thick oxide 250-nm transistors used for some parts of the analog designs.
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Figure 4.1: Block diagram for (a) digital spike detection and (b) analog spike detection.

4.2 Methods

4.2.1 Algorithms

4.2.1.1 Spike-Detection Algorithms

We wanted to include algorithms representing different levels of computational complexities

in our analysis. Based on the study in Chapter 3, we chose absolute-value thresholding and

the nonlinear energy operator, which differ in complexity by about one order of magnitude

while maintaining similar performance.

As described in Chapter 2, in absolute-value thresholding, a threshold is applied to the

absolute value of the waveform x(n) [45], and in the nonlinear energy operator (NEO) method

[45,49–51], a threshold is applied to the NEO ψ:

ψ[x(n)] = x2(n)− x(n+ 1) · x(n− 1). (4.1)

4.2.1.2 Modes of Operation

We also chose to analyze each algorithm for two different modes of operation (Fig. 4.2).

In Pulse Output mode, the spike detector just outputs a pulse when the signal (|x| or ψ)

crosses the threshold. Most published analog spike detectors operate in this mode. It is the

simplest mode, since it requires neither memory nor an ADC (in the case of analog spike

detection). However, in applications that require single-unit activity, spike sorting must
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Figure 4.2: Outputs of spike detector for each mode of operation. In Pulse Output mode,
a pulse is outputted each time the waveform crosses the threshold. In Spike Output mode,
spike samples are outputted for subsequent spike sorting.

be performed following spike detection. If only spike times are outputted, then the spike

shapes are lost, making subsequent spike sorting impossible. Therefore, the second mode

of operation that we analyzed (Spike Output) transmits 1-ms-worth of waveform samples

before the threshold crossing (the “spike preamble”) and 2-ms-worth of waveform samples

after the threshold crossing. Although 3 ms is much longer than a typical spike, this provides

a sufficient number of samples for subsequent alignment.

4.2.2 Analog-to-Digital Converter (ADC)

The power (PADC) and area (AADC) of the ADC are modeled by Eq. 4.2 and Eq. 4.3. To

compare the power of ADCs of different speeds (FS), resolutions (B), and technology, the

Figure-of-Merit (FoM) shown in Eq. 4.2 is used, where A0 and B0 are the area and resolution,

respectively, of the baseline ADC described below.

PADC = FoM · Fs · 2B (4.2)

AADC = A0 × 22·(B−B0) = 0.03× 22·(B−8) (4.3)

Based on recent published work (such as [109–111]), ADCs with FoMs on the order of

100 fJ/conv-step are readily achievable in the 8 to 12 bit range. Figure 4.3 shows a survey of
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ADCs against different FoMs. As technology and circuit architectures improve, the FoM

also improves. In the future, FoMs ten times lower may be commonplace [111]. Power

increases linearly with speed, and exponentially with resolution (and often faster than 2B).

Area is primarily determined by the resolution. For an 8-bit, 24-kSa/s, 100-fF/conv-step

ADC, the power consumption is expected to be 614 nW. Silicon area ranges from 0.021 to

0.24 mm2; for the estimates below we use 0.03 mm2 (A0) and 8 bits (B0) as our baseline

ADC. To scale to other resolutions (B), we use Eq. 4.3. While the power dissipation of

the high-efficiency ADCs previously mentioned is dominated by dynamic power, we allocate

10% of the reported power as standby power (for biasing and references). Including readout

circuitry (Sec. 4.2.3.3) for buffered samples, the effective power is given by Eq. 4.4.

PADC,eff = (0.9 · FoM · 2B

+Pbuf/Fs) · rD

+0.1 · FoM · 2B · Fs (4.4)

where Fs is the sampling rate (24 kSa/s) and rD is the detection rate in samples per second,

defined later in Eq. 4.5.

We also assume that interleaving the ADC with up to 64 channels has little impact on

the overall performance (which is the case for fine-line CMOS).

4.2.3 Analog Spike Detection

Before we consider different implementations of the analog spike detectors, we will briefly

consider the signal levels. With this information, we are able to specify tolerable degradation

of the analog circuit (such as noise and offsets). As shown in Fig. 4.1, the detector circuitry

is placed after amplification. Typical extracellular spike amplitudes are in the 50 to 500

µV range, with worst-case noise of 10 µV. With a preamp voltage gain of 100×, the noise

at the detector and ADC input is 1 mV. The analog detector must keep its own electronic
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Figure 4.3: Performance of recent ADCs, and FoM contours. 100 fJ/conv-step is readily
achievable, with better than 10 fJ/conv-step demonstrated.

thermal noise and offsets below this level. While this is achievable with modest power, we

will compare the analog and digital implementations to determine which is optimal. We

will only describe the dominant power and area contributors; clock power, for instance, was

found to be negligible at the operation frequency of neural spike recording. The supply

voltage assumed is fixed at 1 V for the analog portions. Area calculations are based on total

active MOSFET area (W × L) and capacitors with a specific capacitance of 1 fF/µm2.

4.2.3.1 Absolute-Value Threshold Detector

Absolute-value thresholding can be performed with a clocked comparator and a Switched-

Capacitor (SC) difference circuit. The primary error is the comparator offset voltage. Smaller

offsets can be achieved by increasing the device area at the cost of power dissipation. The

other significant error source is charge injection from the switches.

The comparator shown in Fig. 4.4 draws approximately 0.176 µA from a 1-V supply.

The gate area of the input devices is 10 µm2, yielding a random offset of 10.8 mV (in 90-nm

CMOS). Assuming an ADC full-scale of 500 mV, this offset would result in a 10% error in
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Figure 4.4: Schematic for a low-power dynamic comparator.

the desired threshold. However this could be overcome by circuit techniques such as auto-

zeroing, or by increasing the device areas. The area is dominated by the sampling capacitor

C1 (500 fF).

A reference circuit is also required. The supply current of approximately 0.2 µA would

drive the input capacitance of the comparator in its comparison phase. The total power of

an analog spike detector is 2×0.18 + 0.2 = 0.54 µW.

4.2.3.2 Analog Nonlinear Energy Operator (NEO) Detector

Because analog differentiation is prone to being noisy, because its time constant is sensitive

to process variation, and for a more direct comparison to the digital implementation, we

implement the discrete-time version of the NEO as shown in Eq. 4.1.

In order to implement Eq. 4.1, we require an analog multiplier and analog memory. The
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Figure 4.5: Implementation of the nonlinear energy operator in the discrete-time analog
domain.

algorithm can be implemented with the circuit shown in Fig. 4.5. After the first half of

the clock period (Φ1), a new sample is buffered in the C1 array. During Φ2, the products

x2(n) and x(n − 1) · x(n + 1) are computed from the corresponding capacitor voltages. A

commutator after the capacitor array routes the correct sample to the multipliers, and the

routing is updated each clock cycle. The products are stored on C2. Auto-zeroing of the

multipliers is achieved during Φ2, with C2 implementing Output Offset Storage (OOS). This

allows smaller devices to be used in the multipliers to save area.

Because the linear input range of a typical Gilbert multiplier is on the order of ± 50 mV,

only limited gain can be applied to the signal. Hence thermal noise of the multiplier may

cause excessive degradation of the SNR. Simulations show that 140-nA tail current for the

multiplier is sufficient for 150-µV noise (1.5 µV at the preamplifier input).

The power of the combined circuitry (2 multipliers and 3 amplifiers, plus comparator) is

2 × 0.14 + 3 × 0.1 + 0.38 = 0.96 µA. The analog NEO circuit requires a total of 5 pF of

capacitance, so the total area is approximately 5000 µm2.
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Figure 4.6: Implementation of analog memory for buffering of the signal before a spike has
been detected.

4.2.3.3 Analog Memory

In some applications, it is advantageous to retain the samples before the spike detect event.

This is straightforward in digital, but it is somewhat difficult to implement in analog. One

solution, by Anelli [112], is shown in Fig. 4.6. In other applications that do not require the

spike preamble, we can ignore this power/area.

Setting the storage capacitance (C1) as 100 fF meets kT/C (thermal) noise requirements.

The total area is computed as 24 samples × 100 fF × 1 fF/µm2 × 2 (for a differential

implementation) yielding a total area around 4800 µm2 active area.

After a spike is detected, the memory must be read by the ADC. A buffer, in the form

of a Flip-Around Track-and-Hold, provides good linearity. To estimate the power of this

amplifier, we assume a two-stage OTA. Behavioral simulations show that gm1 = 0.564 µS is

required to meet the settling time requirement. The total opamp current, assuming gm2 =

3gm1 is then 8 × (gm1+gm2) × VT/κ = 180 nA. Our estimate for the total amplifier is 1.5×

the area of the compensation capacitors (2 pF), for a total area of 3000 µm2.
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4.2.4 Effect of SNR and Firing Rate on Analog Detection Power

Since SNR and firing rates can vary significantly across neural recordings, it is important to

check the validity of this analysis for a wide range of SNRs and firing rates. For example, if

the rate of detection increases as SNR decreases due to false alarms, then the power of analog

spike detection would also increase due to more frequent use of the ADC. If so, there could

be a range of SNRs and firing rates for which digital detection is more efficient. Therefore,

we estimated the variation in power consumption for the analog detection hardware with

SNR and firing rate.

We generated data with the neural signal simulator used in [76] for SNRs ranging from

about 15 dB to −10 dB. We then performed spike detection using both algorithms, using the

automatic threshold calculation techniques described in [76], and calculated the probability

of detection (PD) and the probability of false alarm (PFA) at each SNR. These rates were

then used to calculate the detection rate rD in samples per second for each SNR using Eq.

4.5:

rD = max{rN · l · PD + (FS − rN · l) · PFA, Fs}, (4.5)

where rN is the firing rate of the neurons (which can be the sum of firing rates of multiple

neurons) in spikes per second and l is the length of a spike in samples per second. rD can

be thought of as the number of samples that the ADC must convert/quantize per second.

Note that the maximum value that rD can take is Fs. This equation was used in Eq. 4.4 to

calculate the power of the ADC.

Figure 4.7 shows the variation in power of the analog implementation of NEO, Spike

Output mode. The detection rate, and therefore the power, remain constant across SNRs

until around −5 dB, when the number of detections (power) begins to decrease. This is due

to the adaptive nature of the threshold, which is based on a multiple of the mean of the NEO,

and which, therefore, increases as the noise increases. Figure 4.7 also shows that the power

increases linearly with the firing rate, due to the linear increase in detection rate with firing

rate, with a maximum variation in power of about 600 nW. (Similar results, not shown, were
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Figure 4.7: Variation in power of analog NEO spike detection, Spike Output mode, due to
changes in SNR and neuronal firing rates. (Note: Firing rate can represent the sum of firing
rates from multiple neurons.) The variation was calculated by subtracting the minimum
power from each value. The power remains constant across SNRs until about -5 dB, at
which point it begins to decrease, and the power increases steadily with firing rates, until
saturation, when the ADC is operating at its maximum 24 kSa/s.

obtained for the absolute-value method.) To simplify the analysis, we will use an operating

point of 1.3-dB SNR and 100-Hz firing rate when presenting the results in Section 4.3.

4.2.5 Digital Spike Detection

In order to obtain power and area estimates for the digital implementations of the spike-

detection algorithms, both the absolute-value threshold and the NEO detection methods

(Spike Output and Pulse Output modes as explained earlier) were implemented in the

Matlab/Simulink-based design environment. Each of the above algorithms was implemented

with 2-, 4-, 8-, 16- and 32-channel data-stream interleaving to determine a power–area ef-

ficient implementation. The RTL was auto-generated from the Simulink model using the

Synplify DSP blockset. Power and area estimates were then obtained from the synthesis

reports for these designs when synthesized with DC compiler from Synposys. Simulated
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neural data was input to RTL simulations to obtain switching activity estimates for the de-

sign. These estimates were then annotated into the synthesis flow to obtain power estimates

for the digital spike-detection module.

Based on technology evaluation results for our design in 90-nm bulk CMOS process, we

chose to operate the circuits at a reduced supply voltage of 0.4 V. Since standard-cell libraries

are characterized for the nominal supply voltage (1 V), we specified a higher clock frequency

for synthesis in order to account for the increase in delay due to supply voltage scaling. We

also evaluated the reduction in leakage power due to supply voltage scaling for basic gates.

The switching power and leakage power numbers obtained from synthesis were thus scaled

down to their corresponding values at 0.4 V to make comparisons for power consumption at

0.4 V.

Figures 4.8 and 4.9 show the area and power per channel versus the number of channels

interleaved. Interleaving usually increases the power due to increased switching activity of

logic and a similar number of registers switching at a faster rate. However, if the supply

voltage is scaled, savings in the leakage power of logic and the increase in switching power are

comparable. Thus, the total power consumed per channel versus degree of interleaving has

a global minimum. From the above results we found 8-channel interleaving to be a power–

area efficient implementation for the detection algorithms considered. We also observed that

area and power for Spike Output mode are significantly higher than those for Pulse Output

mode. This is due to the additional logic and memory required to provide the detected spikes

(with preamble) as the output. It should be noted that we used a register-based memory

for our design to guarantee functional operation at 0.4 V. However, custom low-voltage

memory would reduce the power difference between Pulse Output and Spike Output mode

implementations. We found that variation in SNR and firing rate does not cause significant

variations in the power consumed by the DSP. This result is expected, due to two major

reasons: a) SNR and firing rate do not affect the ADC power for digital detection; and b)

SNR and firing rate only affect the switching power of a portion of the DSP, which does not

cause a significant change in the total power of the DSP scaled to 0.4 V. Hence, we expect

the results of the above analysis to be valid for a wide range SNR and firing rates.
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Figure 4.8: Power estimates obtained from Synopsys for NEO, Spike Output mode. The
total power (Ptotal) is divided into switching power (Pswitching) and leakage power (Pleakage).
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Figure 4.9: Area estimates for NEO, Spike Output mode, obtained from Synopsys as a
function of the number of channels interleaved.
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4.3 Results

Figure 4.10 shows the power per channel and area per channel for each algorithm and output

mode. The first row of plots corresponds to power per channel, and the second row of plots

corresponds to area per channel. Solid red (green) lines correspond to the total power/area

per channel of analog (digital) detection, including the power/area of the ADC. The solid

red (green) line can be decomposed into the power/area of detection alone, indicated by the

dashed red (green) line, and the ADC power when operating at the maximum rate (Fs),

indicated by the dashed black line.

The power for analog detection in Pulse Output mode is constant across bit resolution.

In the case of the Spike Output mode, the power for analog detection does increase with

bit resolution, since the ADC power increases. However, the increase in analog detection

power due to the ADC is less than that for digital detection. This is because the ADC is

only active for a limited time in case of analog detection. As for the area tradeoff, there is

a crossover between analog and digital implementations in the case of Pulse Output mode.

At higher bit resolution, the area for analog implementation is less since the area of the ADC

dominates. For the Spike Output mode, however, the area of digital detection is less than

that of the analog detection.

From these plots we can conclude that digital spike detection is better for resolutions of

up to 8 or 9 bits, depending on the algorithm used. Until this point, the ADC power is small.

Hence the saving in ADC power achieved by analog detection does not outweigh the lower

power cost of the DSP implementation. However, since the power and area of the ADC scale

exponentially with bit resolution, the ADC starts to dominate at higher resolution. The

analog detection, therefore, is more power-efficient in this domain.

4.4 Conclusion

In this chapter, we have compared the power consumption and the area of analog and digital

spike detection. We demonstrated that power is not a strong function of SNR or firing rates;
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thus, the results shown for the operating point 1.3 dB, 100 Hz are valid across a wide range of

SNRs and firing rates. We also showed that the tradeoff between digital and analog detection

is a strong function of the bit resolution. For lower resolutions, digital implementations are

more efficient, whereas for higher resolutions, analog implementations are more efficient.

Therefore, the choice of whether to implement hardware spike detection in the analog or

digital domain is dependent on the desired resolution.

Results in this work were based on an implementation in 90-nm bulk CMOS process.

Future work could be to analyze the tradeoff between analog and digital detection across dif-

ferent technologies. The automatic-threshold-calculation block should also be incorporated

into the analysis. We could also consider alternative circuit realizations that incorporate

multiple recording channels.
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CHAPTER 5

The Effects of Quantization on Spike Sorting

5.1 Introduction

In the previous chapter, we looked at minimizing the system power by optimizing the detec-

tion block. Another important design consideration that can have a significant impact on

the total system power is the type and resolution of the quantizer used in data acquisition.

For systems that are required to transmit the data wirelessly (Fig. 5.1a), the transmitter

power will increase roughly linearly with the number of bits, and for systems that perform

all processing on-chip (Fig. 5.1b), the power and area of the DSP will increase at least lin-

early with the number of bits. Yet there is no consensus within the recording community

over the necessary resolution of neural signals. Most commercial (wired) data-acquisition

systems provide 12- to 24-bit resolution [22–27]. A few researchers, however, have suggested

that substantially fewer bits are necessary. For example, the authors in [107] performed an

analysis of quantization noise versus total system noise and reported an optimal quantization

level of 5 bits. The authors in [113] and [114] (independent studies) estimated the required

number of bits by setting the dynamic-range-to-noise ratio (DNR) of the ADC equal to the

“DNR” of the input signal, and concluded that 8 and 6 bits were needed for their respective

systems.

The required resolution is likely application-dependent. Because in this thesis we are

particularly interested in spike sorting, here we will assume that all data-acquisition hardware

has been moved to the implant, where data must be processed via spike sorting on-site

before wireless transmission of the results, and we will examine the effects of both uniform

and optimal quantization on spike-sorting performance. We will begin by describing the
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Figure 5.1: Block diagrams for two potential recording systems. (a) Raw data is transmitted
wirelessly and processed off-site. (b) Data is processed on-site and only the results are
transmitted wirelessly.

spike-sorting algorithms on which we tested these effects.

5.2 Spike-Sorting Algorithms

With the DSP now on the transmit side, all spike-sorting algorithms must be fully au-

tonomous. Thus, we first looked for algorithms for each of these tasks that are completely

unsupervised; from among the available unsupervised algorithms, we then chose algorithms

that have demonstrated good performance in previous studies and that are realizable within

the strict power budget to which implantable electronics are subject.

Spike detection was performed by applying a threshold to the absolute value of the

amplitude of the waveform (Section 2.4.1). This method has been shown to be accurate for

SNRs above 0 dB [64]. Because the spike-sorting system must be completely autonomous,

the threshold must be calculated automatically. We used the automatic-threshold-calculation

method described in Eq. 2.1 and Eq. 2.2, reprinted here for convenience:

Thr = 4σ̂N, (5.1)
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σ̂N = median

(
|x(n)|
0.6745

)
, (5.2)

where Thr is the detection threshold, σ̂N is an estimate of the noise standard deviation (SD),

and x(n) is a sample of the original signal x at time n. Spikes were extracted from data

with a sampling rate of 24 kHz by taking 23 samples before the threshold-crossing sample

and 48 samples after, resulting in a 3-ms spike of dimensionality D = 72. Following spike

detection, each spike was aligned by placing a 48-sample window around the spike such

that the maximum amplitude occurred at sample number 16, resulting in aligned spikes of

dimensionality D = 48.

After spikes were detected and aligned, classification was performed using the Osort

online sorting algorithm [69] (Section 2.4.5), which has been shown to have good clustering

accuracy and is in use in several neuroscience laboratories. A summary of the algorithm is

repeated here for convenience:

1. Initialization: Assign the first spike to its own cluster.

2. Calculate the Euclidean distance between the next spike and each cluster centroid.

3. If the smallest distance is less than the merging threshold TM , assign the spike to the

nearest cluster and recompute that cluster’s mean using the X most recent spikes.

Otherwise, start a new cluster.

4. Check the distances between each cluster and every other cluster. If any distance is

below TM , merge those two clusters and recompute its mean.

Steps 2–4 are then repeated indefinitely. In spike sorting, we typically assume that each spike

observed is the sum of the signal (the deterministic spike shape for a given neuron) and a

random noise variable. Thus, when viewing spikes in D-dimensional space (Fig. 5.2), we will

see points clustered around each signal mean according to the noise probability distribution.

Osort essentially limits the radius of each cluster to TM , so it makes sense that TM should

be a function of the amount of noise in the system. The author of [69] suggests setting TM

equal to the noise SD, calculated as the SD of the raw data, again on the assumption of
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Figure 5.2: Plot of received signals in 2-dimensional space. Each axis represents one dimen-
sion of the signal (arbitrary units). Each observed signal is the sum of the mean spike shape
and a random noise variable. As a result, received points are spread around each mean ac-
cording to the noise probability distribution. The two noise sources considered here are the
system noise before quantization (SD = σN), which is composed of biological and electronics
noise, and quantization noise (SD = σQ). We assume that each noise source is independent,
so their variances add linearly, and the total noise SD is σtot =

√
σ2

N + σ2
Q.

signal sparsity. However, in simulations we obtained better results when using the estimator

given in Eq. 5.2.

5.3 Quantization

In Chapter 3, the theoretical performance of various spike-sorting algorithms was studied

using floating-point precision. In practice, however, an NB-bit ADC will limit the analog

neural input signal to a finite resolution of 2NB . The signal at the output of the ADC, Vtot,

can be written as

Vtot = VIN + VN + VQ, (5.3)

where VIN is the neural input signal, VN is the pre-quantization system noise (i.e., biological

and thermal), and VQ is the quantization noise. The system noise and quantization noise

84



are assumed to be independent, making the total noise variance

σ2
tot = σ2

N + σ2
Q. (5.4)

Figure 5.2 shows the effect of quantization noise on the signal. When viewed in D-

dimensional space, the pre-quantization noise sources will lead to a distribution of points

around each mean with a spread of SD = σN. Quantization effects will increase the spread

to SD = σtot.

The most widely used ADC in practice is a uniform quantizer. The full-scale voltage,

Vfs, is quantized to bins of a fixed width, VLSB = Vfs/2
NB . It is typically estimated that the

probability of receiving the voltages within each quantized bin is approximately constant

for moderate- to high-resolution quantizers. This results in a uniform distribution of the

quantization noise from −VLSB/2 to VLSB/2 with p(VQ) = 1
VLSB

. The variance of VQ is

calculated by

σ2
Q =

VLSB/2∫
−VLSB/2

V 2
Q p(VQ) dVQ =

VLSB
2

12
(5.5)

and represents the quantization noise power. Uniform ADCs are well suited for applications

where (i) the probability distribution function (pdf) of the input is uniform or (ii) the pdf

of the input is not available to the designer.

In systems where the input voltage pdf is available to the designer (and is non-uniform),

we can obtain lower quantization noise variance for the same resolution by using an optimal

quantizer [115]. For a given input pdf, an optimal quantizer optimizes xi, the transition

voltage, and yi, the representative voltage of the ith bin, ∀ i ∈ {2NB}. The solution to the

resultant optimization problem shows that the optimal signal-to-quantization-noise ratio,

SQNR, is obtained when:

1. xi = (yi + yi+1)/2, and

2. yi is the centroid of the bin bounded by xi and xi+1.

The difference in quantization noise can best be understood by looking at the quantization
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Figure 5.3: Examples of uniform and optimal quantization levels for narrow and wide Gaus-
sian pdfs. The optimal quantizer minimizes the quantization error for each Gaussian by
placing more bins in higher-probability regions and fewer bins in lower-probability regions.

noise curves of Fig. 5.3. In uniform quantization, each bin supplies the same amount of noise

regardless of the input pdf. An optimal quantizer, on the other hand, selectively chooses the

transition levels such that inputs with high probabilities will have a lower quantization noise

than inputs with low probabilities. Figure 5.4 (left) shows the maximum SQNR for Gaussian

and Laplacian pdfs quantized using both a uniform and an optimal quantizer. Depending

on the resolution and pdf, the optimal quantizer can increase the SQNR by up to 10 dB.

Using the approximation that each resolution bit increases the SQNR by about 6 dB, this

implies that for a given SQNR, an optimal quantizer will use 1–2 fewer resolution bits than

a uniform quantizer.

In spike-sorting applications, we have the benefit of a priori knowledge of the input pdf.

Neural signals have a generalized normal distribution with a scale factor between 1 (Laplace)

and 2 (Gaussian), as shown in Fig. 5.4 (right), and their distribution does not change rapidly

over time. To evaluate the benefits of optimal quantization over uniform quantization, we

will evaluate the performance of the detection and clustering algorithms using both types of

quantization. But first, we will estimate the required resolution for uniform quantizers.
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5.3.1 Detection

The basic idea in detection is to differentiate signal values above and below σN. To do this, the

first quantization level must be less than or equal to σN. It follows that we can approximate

a lower limit on the number of bits required for detection using uniform quantization to be

Nmin =

⌈
log2

(
Vfs

σN

)⌉
. (5.6)

This equation gives us the number of bits required to reach a noise level of σN, or the number

of bits required to ensure the maximum performance for a known σN. Note that [113] and

[114] are essentially using the same equation when they set the DNR of the ADC equal to

the “DNR” of the input signal.

Because the accuracy of spike detection is highly dependent on the accuracy of the

estimate of the noise SD (see Eq. 5.1 and Eq. 5.2), optimal quantization should improve

the accuracy of spike detection. The optimal quantizer chooses the quantization levels and

representative values to minimize the quantization error for a given distribution (Fig. 5.3).

Minimizing the quantization error for VN should allow us to estimate σN more accurately,

thereby increasing the accuracy of detection.

5.3.2 Clustering

The separability of two clusters depends on the distance between their mean spike shapes

d (Fig. 5.2). Quantization will increase the SD of each cluster to σtot, which increases the

probability that the clusters overlap. Thus, in order to ensure that we will be able to separate

highly similar spikes, we must minimize σQ.

Equations 5.4 and 5.5 show that as NB increases, σ2
Q decreases, and as σ2

Q decreases,

σ2
tot approaches σ2

N. If we let σ2
Q equal σ2

N, then σtot =
√
σ2

N + σ2
Q =

√
2σ2

N = 1.4σN,

corresponding to a degradation in SNR of 3 dB. Whether or not this SNR loss is tolerable

is a function of the data, that is, of how small the distances are likely to be between pairs of

mean spikes. Ideally one should determine how much SNR loss is tolerable for a particular
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Figure 5.4: Left : SQNR vs. resolution for a uniform quantizer compared to the optimal
quantizer. The optimal quantizer can increase the SQNR by up to 10 dB. Right : Input
pdfs for spikes (red x’s) and raw data (spikes plus noise, green x’s). The black line shows a
Gaussian fit using the sample mean and variance. Both non-uniform distributions suggest
that non-uniform quantization would be more appropriate than uniform quantization.

dataset and then calculate how many bits are needed.

An optimal quantizer may also improve the accuracy of clustering for a given resolution.

For clusters that are separable prior to quantization but that have a small d, it is critical to

minimize σQ such that σtot ≈ σN so that the clusters are still separable after quantization.

For a given resolution, an optimal quantizer can reduce the quantization noise compared to

a uniform quantizer by up to 10 dB (Fig. 5.4, left), effectively reducing the noise around the

cluster centroid. Thus, it may be able to maintain the separation between two clusters when

a uniform quantizer cannot.

5.4 Simulation Results

We tested the effects of quantization on the synthetic datasets described in [64], which include

a variety of difficulty levels (resulting from the degrees of similarities between mean spike

waveforms) and SNRs. These datasets provided us with a ground truth to be utilized in

the accuracy calculations. Data was generated at 24 kHz with floating-point precision. The

maximum amplitudes of the mean spike waveforms in each dataset were normalized to 1

88



σ
N
 = 0.075 σ

N
 = 0.15σ

N
 = 0.125σ

N
 = 0.1

Increasing Background Noise
Mean Spike Shapes

1

Figure 5.5: Example of a synthetic dataset composed of spikes from two neurons whose mean
spike shapes are shown on the left. Data is generated with varying degrees of background
noise. Note that only a few milliseconds of the 60-s datasets are shown here.

(unitless). An example of one dataset is shown in Fig. 5.5. The effects of quantization were

examined by quantizing this raw data prior to spike sorting and calculating the accuracy

after spike sorting. The quantizers were assumed to have Vfs = 3.33 (unitless) to allow for

biphasic spikes and to accurately model worst-case conditions for practical front ends with

adaptive gain control.

To calculate the accuracy of detection, we defined N as the total number of true spikes

in the dataset and D as the number of correctly detected spikes. We also defined FA as the

number of false alarms and TN as the number of true negatives (total number of samples not

containing a spike, normalized to the length of a spike). The quantities D/N and FA/TN ,

then, represent the probability of detection and the probability of false alarm, respectively.

We then calculated the clustering accuracy separately by using the known true spikes, rather

than the detected spikes, as input to the clusterer; this allowed us to determine whether

detection or clustering was the limiting factor in terms of accuracy/required resolution. We

defined C as the number of spikes that were classified correctly; the quantity C/N , then,

represents the probability of correct classification.

Figure 5.6 shows the results of detection and clustering for the dataset shown in Fig. 5.5.

Note that D/N = 0 indicates cases where, because most of the values were quantized to 0,

Eq. 5.2 evaluated to 0, and detection was terminated in order to avoid the situation where
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all samples trigger detection. Also note that for most simulation points (noise levels and

resolutions), the probability of false alarm was negligible (< 1% in most cases, < 5% in every

case); therefore, we did not include this figure in the plots.

First, let us look at the performance of the uniform quantizer. As expected, for both

detection and clustering we achieve near-perfect performance at 10 bits, and the performance

degrades as the resolution decreases, until we reach the point where the threshold can no

longer be calculated and the accuracy drops to zero. Note the points in the clustering plots

where the classification accuracy is 50%; this corresponds to chance performance, since we

have two neurons in this dataset. In other words, at these points the threshold can still be

calculated, but classification is random. Also notice that the accuracy is always limited by

(or the required resolution is always dictated by) the clustering block.

Interestingly, as the noise in the system increases, the uniform quantizer requires a lower

number of bits for accurate detection. Although this result may seem unintuitive, remember

that the detection method requires an accurate estimate of the noise SD. As shown in Fig. 5.3,

for a fixed resolution or bin width, noise with a large σN will quantize into multiple bins,

resulting in an accurate estimate of the noise, while noise with a small σN will be quantized

into the same bin, making estimation of σN impossible.

Next, let us compare our simulation results to the calculated values of Nmin for the case

of uniform quantization. Equation 5.6 predicts that, with known σN’s, we can guarantee

maximum detection performance with 6, 6, 5, and 5 bits for σN = 0.075, 0.1, 0.125, and 0.15,

respectively; Fig. 5.6 shows that, for this example, we actually need 6, not 5, bits for perfect

detection for σN = 0.125 and σN = 0.15. This indicates that Eq. 5.6 is not reliable for

determining the required resolution of a system. (Remember, this very equation was used

to determine the system resolution in [113] and [114].)

We can also use this plot to determine the minimum number of bits required to cluster

at each noise level, and then back-calculate the maximum allowable degradation in SNR due

to quantization. In this example, assuming that a resolution of 6 bits achieves acceptable

classification accuracies in each case, we must limit the degradation in SNR to about 1.6 dB
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Figure 5.6: Comparison of detection (top) and classification (bottom) results for the example
dataset shown in Fig. 5.5 when a uniform vs. an optimal quantizer is used.

(σtot = 1.2σN), 1.2 dB (σtot = 1.15σN), 1.0 dB (σtot = 1.12σN), and 0.8 dB (σtot = 1.1σN),

for σN = 0.075, 0.1, 0.125, and 0.15, respectively, in order to ensure good clustering results.

Next, let us compare the results of detection for the uniform quantizer and the optimal

quantizer. Figure 5.6 shows that, across the board, the optimal quantizer requires 3 to 4

fewer bits for detection. This is likely because it minimizes the quantization error for VN,

thereby allowing us to estimate σN more accurately. Likewise, clustering requires as many

as 5 fewer bits when the optimal quantizer is used versus when the uniform quantizer is

used. In such cases, an NB-bit optimal quantizer would be able to sort just as well as an

(NB + 5)-bit uniform quantizer.

An example of how using an optimal quantizer can benefit clustering is shown in Fig. 5.7.
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Figure 5.7: An example of the benefits to clustering of using an optimal quantizer, corre-
sponding to the example for σN = 0.1, NB = 5 (highlighted in Fig. 5.6).

This example corresponds to the example in Fig. 5.6 for σN = 0.1, NB = 5. The clustering

results when floating-point precision is used is shown on the left. The clustering results are

good for both the uniform and the optimal quantizer from 10 down to 6 bits. At 5 bits,

however, clustering of the uniformly quantized data breaks down by clustering all spikes

into the same cluster (Fig. 5.7, center), whereas the optimally quantized data can still be

clustered (Fig. 5.7, right). These results indicate that the quantization error introduced by

uniform quantization increased σtot to a point where the clusters overlapped, whereas the

quantization error introduced by optimal quantization was much smaller (σtot ≈ σN) and the

clusters were still well separated.

5.5 Conclusion

We have analyzed the effects of quantization on the performance of spike sorting. First,

we provided intuitive explanations for how various quantization techniques affect various

stages of spike sorting. We derived, for the uniform quantizer, an estimate for the number

of bits needed to ensure the maximum performance for spike detection and a theoretical

framework for calculating number of bits needed for clustering. We also provided evidence

that optimal quantizers are appropriate for neural data. Finally, we demonstrated that

optimal quantization provides a savings of 1–2 bits in theory and up to 5 bits in simulations.
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Because optimal quantizers can improve the accuracy of spike sorting for a given resolution,

or provide the same accuracy with fewer bits, they are well suited for ADCs in wireless neural

recording systems.
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CHAPTER 6

Spike-Sorting ASICs

6.1 Spike-Sorting Chip

Building on the algorithm evaluation work described in Chapter 3, we have developed two

digital chips that perform automatic spike sorting. The first chip [116, 117] performs NEO

detection, maximum-derivative alignment, and discrete-derivatives feature extraction, si-

multaneously for 64 channels. The chip has a modular architecture, which allows it to be

configured to process 16, 32, 48, or 64 channels. The chip was implemented in a 90-nm

CMOS process and has a power dissipation of 130 µW (power density of 30 µW/mm2) when

processing all 64 channels. Processing with this chip would reduce the data rate by 91.25%

(11.71 to 1.02 Mbps). This data reduction could increase battery life from 1.6 to 18 hours

(11x)1.

A micrograph of the chip and a summary of its characteristics are shown in Fig. 6.1 and

Table 6.1. An example showing the output of the chip is shown in Fig. 6.2. Data from two

neurons are present in this example. We performed offline clustering on both the aligned

spikes (bottom–left) and on the extracted features (bottom–right). The figure shows that

the two spike classes are more separable in the feature domain than in the time domain.

Indeed, for this example we can achieve a clustering accuracy of 92% for extracted features,

compared to 77% for the original waveforms.

Table 6.2 shows a comparison of our work with previous spike-sorting DSPs [106–108,

118]. Our design performs simultaneous processing of 64 channels with a power consump-

tion/power density lower than previous designs that perform only detection for multiple

1Assuming the transmitter in [20] with 20.45 nJ/b at 13 cm, an Energizer CR1632 battery with a capacity
of 130 mAh at 3 V = 390 mWh, and an analog front-end power of 10 µW per channel [70].
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Figure 6.1: Micrograph of spike-sorting chip.

Table 6.1: Spike-Sorting Chip Summary
Technology 90-nm 1P8M CMOS
Core VDD 0.55 V
I/O Voltage 1.2 V / 2.5 V
Gate Count 650 k
Clock Domains 0,4 MHz, 1.6 MHz
Power 2 µW/channel
Data Reduction 91.25% (11.71 to 1.02 Mbps)
No. of Channels 16, 32, 48, or 64
Median PD 87%
Median PFA 5%
Median CA 77%

channels or detection and feature extraction for a single channel. The design shows a 7-

times reduction in power consumption and 2-times reduction in power density compared to

the previous state-of-the-art spike-sorting DSPs.

6.2 Osort Chip

Previous spike-sorting DSP chips [106,107,117] have implemented spike detection and feature

extraction, but none perform online multi-channel clustering. This is primarily because most

of the clustering algorithms traditionally used for spike sorting are offline algorithms that
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Figure 6.2: Sample of chip output. For the synthetic data shown on top, spikes were detected
and aligned (bottom–left), and each spike was expressed by three disrete derivative “coef-
ficients” (bottom–right). Spikes have been colored according to the ground truth. (Figure
adapted from [116].)

Table 6.2: Comparison with Prior Work
Reference [108] [107] [106] [119] This work

No. of Channels 96 32 1 128 64
Power (µW/channel) 104 75 100 14.6 2.03
Area (mm2/channel) – 0.11 1.58 0.01 0.06

Power Density (µW/mm2) – 680 60 1460 30
Process (nm) FPGA 500 350 90 90

Core Voltage (V) – 3 3.3 1.08 0.55
Detection X X X X X
Alignment × × × × X

Feature Extraction × × X X X

96



cannot be used for real-time data streams (see Section 2.4.5). Without clustering, however,

on-chip spike-sorting cannot be considered complete. In our second chip [70], we implemented

absolute-value spike detection along with multi-channel, unsupervised clustering, allowing us

to meet the real-time spike-sorting requirement for applications like brain–machine interfaces.

Additionally, because on-chip clustering reduces the output data rate by 20 times, we were

able to support a higher number of channels for a given system power consumption.

6.2.1 Clustering Algorithm Evaluations

As mentioned in Section 2.12, the only automatic, online clustering algorithm (and, therefore,

the best candidate for hardware implementation) known to the authors at this time is called

Osort [69]. To benchmark its performance, we first evaluated the accuracy of Osort and

compared it to other established clustering methods: k -Means, SPC, and Valley-Seeking

(refer to Section 2.12 for descriptions of each method). The algorithm evaluation process

was similar to the one described in Chapter 3. We used the same simulated datasets as

described in Chapter 3, but we only used those with positive SNRs, as we found that many

of the clustering methods broke down in negative SNR. Thus, we used 618 datasets with

SNRs from about 20 dB down to 0 dB.

In testing all of the algorithms, we first performed perfect spike detection by extracting

spikes using the file of known spike times. (Thus the detection was 100% accurate.) We then

aligned spikes to their maximum values. In order to test k -means, SPC, and Valley-Seeking,

we first performed feature extraction using PCA. Because Osort uses raw spikes as inputs

instead of features, no feature extraction was performed prior to Osort clustering. Note that

while SPC, Valley-Seeking, and Osort are all unsupervised algorithms, k -means requires the

user to input k (the number of clusters/neurons) for each dataset; the correct value of k was

always given in this analysis.

The results of this algorithm comparison are shown in Fig. 6.3. K -means has the highest

accuracy, but it has the advantage of a priori knowledge of k, whereas all the other algorithms

have to compute the number of clusters. SPC and Valley-Seeking both have higher accuracies
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Figure 6.3: Box plots showing accuracy for each clustering algorithm tested. Red lines in the
centers of the boxes represent the median accuracy, box edges the lower and upper quartiles,
and whisker edges the maximum and minimum values (N = 618).

than Osort (“Osort (original)”), but they have the advantage of having information about

the entire dataset before clustering is initiated, while Osort is causal (i.e., it makes decisions

about each spike using only information about past spikes, not future spikes). In [70], we

introduced several modifications to the Osort algorithm in order to reduce its complexity

which actually turned out to improve its performance (Fig. 6.3, “Osort (modified)”).

6.2.2 Chip Results

The die micrograph of the 16-channel spike-sorting chip is shown in Fig. 6.5. The chip occu-

pies a core area of 1.23 mm2 in a 65-nm CMOS process and consumes 75 µW of power from

a 270-mV supply voltage. The power density of the chip is 67 µW/mm2, which is 12-times

lower than the power density known to damage brain cells. The algorithmic performance

of the chip is characterized by a probability of detection (PD) of 95%, a probability of false

alarm (PFA) of 1%, and a median classification accuracy (CA) of 75%. Table 6.3 summarizes

the performance of the chip.

The chip was tested using human neural data recorded from one of nine 40-µm-diameter
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Table 6.3: Osort Chip Summary
Technology 65-nm 1P9M CMOS
Core VDD 0.27 V
I/O Voltage 1.2 V / 2.5 V
Clock Freq. 400 kHz
Power 4.68 µW/channel
Data Reduction 240x
No. of channels 16
Median PD 95%
Median PFA 1%
Median CA 75%

electrodes positioned in the hippocampal formation of a human epilepsy patient at UCLA.

Figure 6.4(a) figure shows a sample raw data waveform on one of the channels along with

the spike-detection thresholds. In this particular example, the detected action potentials

were classified into three different clusters with the cluster means shown in Fig. 6.4(b). Fig-

ure 6.4(c) shows a raster plot of the detected action potentials. A two-dimensional projection

of the 48-dimensional spike waveforms is shown in Fig. 6.4(d) to aid visualization of the clus-

tering results. The approximate cluster boundaries are marked with the dotted lines and the

cluster means are marked with bold colored markers.

Table 6.4 compares this work to previous spike-sorting DSP chips. As mentioned earlier,

this is the only spike-sorting chip that provides real-time, multi-channel clustering. This

chip can reduce the data rate from 3.072 Mbps to 12.8 kbps (240x), a 20-times higher

reduction than previous work with only 2-times higher power consumption. While the DSP

power is higher than previous work, the high data-rate reduction achieved due to online

clustering would allow us to reduce the radio power, thereby reducing the total system

power consumption. This could increase battery life from 6.2 hours to over 1 month 2.

2Assuming the transmitter in [20] with 20.45 nJ/b at 13 cm, an Energizer CR1632 battery with a capacity
of 130 mAh at 3 V = 390 mWh, and an analog front-end power of 10 µW per channel [70].
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Figure 6.4: The chip was used to process multi-channel human neural data. The sample
output from one of the channels is shown in this figure. (a) Sample raw data waveform. (b)
Identified cluster means. (c) Raster plot of the detected action potentials. (d) A 2-D pro-
jection of the 48-dimensional cluster space presented to aid in visualization of the clustering
results.

Table 6.4: Comparison with Prior Work
Reference [107] [106] [116] This work

No. of Channels 32 128 64 16
Detection X X X X

Feature extraction × X X N/A
Clustering × × × X

Data-rate reduction 12.5x 80x 11x 234x
Power (µW/channel) 75 100 2.03 4.68
Area (mm2/channel) 0.11 1.58 0.06 0.07

Power Density (µW/mm2) 682 63.3 33.8 66.8
Process (nm) 500 350 90 65

Core Voltage (V) 3 3.3 0.55 0.27
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Figure 6.5: Die photo the 16-channel Osort chip.
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CHAPTER 7

FPGA-Based Spike-Sorting Platform

7.1 Introduction

7.1.1 Motivation

The work presented in Chapters 3–6 address the need to reduce the output data rate of

neural recording systems in order to make wireless recording feasible. A separate issue with

neural recording discussed in Chapter 1 was the need to reduce the offline processing time

to spike-sort data that has already been recorded onto hard disks.

To review, currently most neural recording systems record raw data onto computer hard

disks. This data is usually acquired with sampling rates of 20–30 kHz and resolutions of 12–

24 bits per sample [22–27] for 64–128 channels simultaneously. For a human epilepsy study

in which 64 channels of data are sampled at 27.777 kHz and quantized to 16 bits, an 8-hour

experiment would accumulate about 100 GB of data. All data processing, including spike

sorting, would be performed in software after the experiment. Conventional software tools1

would require about 30 hours to sort the data from this one day of experiments (processing

rate of 0.94 MBps).

If we could replace spike-sorting software with dedicated hardware running at 100 MHz

(200 MBps), the processing time would be reduced from 30 hours to 8.5 minutes (212x).

This example illustrates the clear need for the hardware acceleration of spike sorting.

1Osort software package [28] running in Windows on an Intel Core2 Duo Processor.
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7.1.2 Proposed Solution

In this chapter, we present a hardware spike-sorting tool for accelerating the offline processing

of existing neural data. In order to provide a good compromise between speed and flexibility,

we chose to design our tool around an FPGA.

FPGAs, or field-programmable gate arrays, are a type of hardware that can be con-

figured using software. FPGAs represent a tradeoff between speed and flexibility. At the

high-speed/low-flexibility end of the spectrum we have ASICs (application-specific integrated

circuits). ASICs have fixed architectures: each chip is designed and manufactured to per-

form only a particular function or set of functions. This allows the chip to be optimized

in terms of power and area efficiency, but at the expense of flexibility. On the other end

of the spectrum, high-flexibility/low-speed, we have general-purpose hardware such as mi-

croprocessors. Microprocessors are highly flexible—they can be programmed to perform

virtually any operation—but this flexibility comes with a high overhead: Microprocessors

also have fixed architectures that can support finite instruction sets, so performing even a

simple operation takes many clock cycles (to fetch the instruction from program memory,

decode the instruction, execute the instruction, write the results to memory). Additionally,

microprocessors can only perform 3 to 4 operations in parallel, compared to ASICs which

typically perform 10’s to 100’s of operations per clock cycle [120].

FPGAs fall somewhere in between these two extremes. Unlike both ASICs and mi-

croprocessors, they do not have a fixed architecture. They are manufactured with standard

hardware units called “logic blocks”, which include basic units like lookup tables, full adders,

and flip flops (memory), and a grid of reconfigurable interconnects, which allow blocks to

be wired together in different ways to realize different architectures. The user can then

program the FPGA using software that tells the FPGA how to configure the interconnects

in order to achieve the desired architecture. In this way, the hardware can be configured

to perform complex combinational logic functions. Like ASICs, FPGAs can also perform a

high number of operations in parallel, which increases the efficiency, or effectively the speed,

of computation.
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FPGAs are a good choice of hardware for a spike-sorting platform because we have the

flexibility to program various spike-sorting algorithms onto it during runtime, such that the

user does not have to sacrifice flexibility of existing software, but because the hardware

architecture is customized for spike sorting, it will run much faster than software can run

on a general-purpose CPU. This flexibility also leaves room for modifying or improving the

design at any point in the future.

7.1.3 Design Features

Flexibility is one of our primary concerns; users are unlikely to use this tool if they perceive

that they are sacrificing on the functionality currently offered by their software tools. Thus,

we chose to develop a library of algorithms for each step in the spike-sorting process that the

user can choose from during runtime. Another way that flexibility was incorporated was in

the spike-detection threshold. Detection thresholds are automatically calculated in hardware

according to Eq. 2.2 and Eq. 2.4. However, we also allow the user the option of adjusting

that threshold manually if they so choose. We also tried to maximize the compatibility of

our tool with existing data acquisition hardware by providing support for data sampled at

any sampling rate between 5 and 125 kHz.

Another important design consideration was to make the tool as user-friendly as possible.

We do not want the user to perceive any difference between our tool and the software that

they are accustomed to using. Thus, we designed a user-friendly GUI which can be run

locally on any PC and serves to abstract the hardware away from the user. The GUI also

provides visual feedback to the user by displaying the processing status along with portions

of the sorting results.
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7.2 Functionality of Current Prototype

7.2.1 Inputs

The input data is required to be in binary format (.bin), quantized to 16 bits with 8 integer

and 8 fractional bits ([16,8]). In other words, a range of −128 to 128 is supported. The data

is assumed to have been bandpass-filtered, for example from 100 to 6000 Hz, to remove LFP.

Sampling rates from 5 to 125 kHz are supported. Scripts are provided to convert data from

MATLAB format (.mat) to binary format.

7.2.2 Processing

The spike sorter performs spike detection, spike alignment, and clustering. For spike detec-

tion, the user can choose from absolute value and NEO, which were shown in Chapter 3 to

be accurate and low in complexity. For alignment, the user has four different options: align-

ment to the spike maximum, spike minimum, absolute value maximum, or NEO maximum.

Clustering is performed using Osort, which was shown in Chapter 6 to be the clustering al-

gorithm most feasible for hardware implementation. Note that with Osort feature extraction

is not needed; thus, the current prototype of the tool does not perform feature extraction.

7.2.3 Outputs

For each spike, the spike sorter outputs the aligned waveform, the timestamp, and cluster

ID. The timestamp is generated on-chip using a counter, such that the timestamp represents

the sample number of the beginning of the spike relative to the first sample of the file. This

value can be used to calculate the absolute spike times during post-processing. Outputs are

first written to a binary file. MATLAB then reads in this file, converts it to .mat format,

and displays the sorting results graphically.

106



7.2.4 Modes of Operation

This prototype includes two modes of operation, ‘Test’ and ‘Run’. In ‘Test’ mode, the

processor runs for the length of the training time (to calculate the detection threshold),

plus one additional second, and displays the results. This allows users to experiment with

different detection and alignment parameters until they are satisfied with the results, before

processing on the entire dataset. In ‘Run’ mode, the entire input data file is processed.

7.2.5 GUI

The user interface is a GUI which runs in MATLAB. The GUI takes the following information

from users: input file name, input file sampling rate, detection method, detection threshold

scale factor (C), the length of training time for detection, the alignment method, and the

directory for the output file (results). There are two buttons for executing the two modes

of operation, ‘Test’ and ‘Run’. When a button is pressed, the FPGA is programmed and

configured according to the user inputs, and the data processing begins. While the data is

being processed, a progress indicator is printed in a display at the bottom of the GUI. At the

end of a run, the GUI will display the aligned spikes, color-coded according to the clustering

results, as well as a raster plot, showing the spike train for each neuron (Fig. 7.1). A count

of how many spikes were detected during the run is also displayed next to the raster plot.

7.3 Implementation

7.3.1 Overview

The FPGA spike-sorting tool was implemented in three major layers: the FPGA layer, the

Python layer, and the MATLAB layer. The FPGA is where the data processing actually

occurs. A Python script is used to program the FPGA as well as to control the flow of data

to and from the FPGA. MATLAB is used to run the GUI, to call the Python scripts, and

to display the results.
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Figure 7.1: The user inputs sorting parameters into the ‘Input Parameters’ panel at the top
of the window. Buttons for ‘Test’ and ‘Run’ are to the right. The ‘Results’ panel displays
the aligned spikes color-coded according to the clustering results as well as a raster plot,
showing the spike train for each neuron. A count of how many spikes were detected during
the run is also displayed next to the raster plot. The progress is printed the ‘Status’ bar at
the bottom.
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Figure 7.2: Photograph of the ROACH FPGA processing board [121].

In this section, we will first describe the hardware that was targeted in the design of this

tool. We will then explain how the designs were implemented on the FPGA. Last, we will

describe the software components of the tool, the Python script and the MATLAB script.

7.3.2 Targeted Hardware

We targeted the ROACH (Reconfigurable Open Architecture Computing Hardware) stand-

alone FPGA processing board [121], which includes a Xilinx Vertex-5 FPGA and a separate

PowerPC. The PowerPC runs an extended version of the Linux kernel called BORPH (Berke-

ley Operating system for ReProgrammable Hardware) [122], which can be used for interfacing

between the FPGA and other external devices using Ethernet (Fig. 7.2). Instructions (e.g.,

program, write, read) can be sent from the local computer to the FPGA over Ethernet with

the aid of KATCP (Karoo Array Telescope Control Protocol), a communications protocol

designed specifically for the ROACH [123]. KATCP libraries have been developed both for

MATLAB and for Python such that either environment can be used to communicate with

the board via Ethernet. The board also includes a 10Gbps Ethernet (10GbE) interface. Note

that the 10GbE data path bypasses the PowerPC and does not utilize KATCP routines.
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7.3.3 FPGA Implementation

Algorithms were programmed in the Simulink environment using the Xilinx blockset, which

allows designs to be mapped to Xilinx FPGAs. The BEE XPS design tool [124] is a cus-

tomized tool for mapping designs to the ROACH board. Given a Simulink model, this tool

generates the bit file which can be loaded onto the PowerPC and then used to program the

FPGA. The tool also provides a Simulink blockset with several memory elements, such as

software registers and block RAMs, to/from which KATCP can directly write/read. The

blockset also includes a 10GbE transceiver block for sending and receiving User Datagram

Protocol (UDP) packets over the 10GbE interface.

The FPGA design is implemented in two major layers: the interface layer, which handles

data I/O, and the spike-sorting layer, which processes the data.

7.3.3.1 Interface for Data I/O

The typical size of a file that may need to be processed by the tool at one time is on the order

of GBs. Due to memory limitations of the FPGA, that entire amount of data cannot be

written into FPGA memory at once. Thus, we designed a “streaming” processing scheme,

where packets of data are continuously sent to the hardware and processed. To transfer

data to and from the FPGA at the maximum possible speed, we used the ROACH’s 10GbE

interface. Thus, the outermost layer of the FPGA design includes a 10GbE transceiver block

that is used to receive packets of data from the computer and to send packets of results back

to the computer (Fig. 7.3). We also included block RAM, both at the input and the output

of the spike-sorting circuit, to buffer input and output data to ensure that the tranceiver’s

internal buffer does not overflow. The effective processing scheme is as follows:

1. The computer sends a packet of data to the 10GbE transceiver.

2. The FPGA buffers data coming from the tranceiver into block RAM.

3. When the input buffer starts receiving valid data, a global “enable” signal is triggered

which enables: (a) the sample-by-sample readout of data into the spike-sorting circuit,
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and (b) the spike-sorting circuit itself2.

4. As data is processed by the circuit, the results are written to the output buffers and

simultaneously passed on to the 10GbE transceiver.

5. When the circuit has finished processing that packet, enable is set low and an “end of

frame” signal is sent to the 10GbE tranceiver.

6. The tranceiver forms a packet and sends it back to the computer.

7. When the computer receives a packet, it sends a new packet to the FPGA.

This process is repeated until all the data has been processed.

The interface layer of the FPGA design also includes software registers for storing the

desired spike-sorting parameters (i.e., the sampling rate, the detection algorithm, the de-

tection threshold scale factor C, the length of training time, and the alignment algorithm)

entered by the user via the GUI. These registers are written to over the Ethernet interface

using KATCP. Note that we can afford to use this slower interface here because we only

need to write to these registers once per input data file.

7.3.3.2 Spike Sorter

The spike sorter is composed of three main elements: the detection block, the alignment

block, and the clustering block (Fig. 7.4). The detection block receives the raw data, as well

as several of the configuration parameters (the detection method det meth, the detection

threshold scale factor C, and the signal indicating the training phase training phase valid).

The outputs of detection are the detected spikes (spk) and a valid signal (spk valid). When

the alignment block detects a positive edge of spk valid, it performs alignment on spk using

the desired alignment method (al method). When the clustering block detects a positive

edge on spk al valid, it performs classification on spk al. All blocks receive the global

2A global circuit enable is needed so that the circuit holds its state when it is not receiving valid data.
For example, if the spike detection threshold calculation block were not disabled between blocks of valid
data, it would process huge numbers of zeros as valid data, the effect of which would be to severely bias the
threshold towards zero.
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Figure 7.4: Block diagram of the processing elements on the FPGA.

enable EN and the sampling rate Fs. Following are some implementation details of each

block.

Spike Detection

The detection algorithms were coded completely in Simulink using the above protocol. The

detection block is composed of two sub-blocks, one for absolute-value and one for NEO,

and a demux. To configure the hardware for the desired detection method, the code corre-

sponding to the detection method chosen by the user (e.g. det meth = 0 for absolute value,

det meth = 1 for NEO) is read from its software register and used as the select line to the

demux, which passes the global enable signal through to the appropriate detection method

block.

Both detection methods require a training phase in which the detection threshold is

automatically calculated. The length of this training phase is also a user input, stored in

a software register as an unsigned [12,6]-bit number (maximum value = 64 s, precision =

0.0156 s). This value is used to generate a training phase valid signal for the correct

number of clock cycles, which is then used to enable the threshold calculation block during
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training while at the same time disabling all other circuitry. After the threshold has been

calculated, it is multiplied by C, another user input stored in a software register as an

unsigned [24,12]-bit number (maximum value = 4096, precision = 0.00024414).

The spike detection block also needs to know the sampling rate of the input data (Fs)

because this determines how many samples to save as a spike (Ns). In spike detection, we

buffer Ns/3 samples, and when a value crosses the detection threshold we declare all the Ns/3

samples in the buffer plus the following 2Ns/3 samples as a spike. In order to implement this

scheme for an arbitrary Fs, we created a variable-length delay. This was implemented using

a dual-port block RAM (Fig. 7.5). A counter was used for addressing the RAM. Assume

c(n) represents the output of the counter at time n. Data is written to the RAM into address

c(n) +Ns/3 (Port B), while data is read out from address c(n) (Port A). In this way, every

sample that we read at time n is a delayed version of x, namely x(n−Ns/3). For example,

if Ns/3 = 10, then we would write samples x(0) through x(10) into addresses 10 through

20. Then at sample time n = 10, we can read out the contents of the buffer one sample at

a time, such that at sample time n = 20 we will have retrieved samples x(0) through x(10)

again. Various assumptions made during hardware design require Fs to be in the range of 5

to 125 kHz (precision of 1 Hz).

Spike Alignment

All four alignment algorithms were also coded completely in Simulink using the above pro-

tocol, and the alignment hardware is configured in the same way as the detection hardware.

Variable-length delays are also used for spike buffering in the alignment block.

Clustering

The implementation of Osort was more complex, as this algorithm involves not only arith-

metic operations but also large amounts of memory and complex control logic. Thus Osort

was broken down into three discrete modules: logic, memory, and control (Fig. 7.4). The

logic module was implemented in Simulink and included blocks for: clustering threshold

calculation, distance calculation, minimum distance calculation, cluster mean update, and

cluster merge. The memory module was also implemented in Simulink using Xilinx block
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Figure 7.5: Implementation of a variable-length delay used in spike buffering for arbitrary
sampling rates.

RAMs and included the memory for storing the cluster means and the cluster sizes. We

included enough memory to accomodate 44 clusters, which we found in simulations to be

the average maximum number of clusters existing at one time, but we also implemented

logic in the controller that will delete the smallest cluster if all memory is full and there is a

need to create a new cluster. The controller was written in Verilog and integrated with the

Simulink model using a Xilinx “black box”.

The “per-spike latency” of the whole spike-sorting circuit—that is, the number of cycles

required to process one spike—is dominated by clustering. This is because Osort is largely

a serial algorithm; each spike has to go through a sequence of states (Fig. 7.6). Each

state involves performing a different combination of operations, each with a different latency

(Table 7.1). Each spike, then, can have a different per-spike latency depending on which

path it takes through the state machine. The worst-case latency is represented by the

path in which a spike is assigned to an existing cluster and a cluster merge is required

(States 2 → 3 → 5 → 6 → 7 → 2). Such a case results in a per-spike latency of 266 clock

cycles, corresponding to 11 ms in real-time or a real-time spike rate of 88 Hz if we assume a
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Table 7.1: Latency of Clustering Operations
Latency

Operation [number of clock cycles]

receive new spike Ls

write spike to memory Ls

read spike from memory 2

calculate distances Ls + 1

find minimum distance 6

update cluster mean Ls + 32

sampling rate of 24 kHz. Since we would like to be able to support any arbitrary spike rate,

we have logic that monitors the state of the clustering state machine. If the clusterer is in

the “waiting” state (State 2), a new detected spike can be fed into the clusterer. If, however,

the clusterer is still busy processing the previous spike, the current data sample is held in

memory (i.e. the address on the input buffer is not incremented) until the clusterer returns

to State 2.

7.3.4 Python Wrapper

We developed a custom Python script that programs the FPGA (using KATCP) and sends/

receives data to/from the FPGA via the 10GbE interface. The Python script creates a

network socket and defines two threads: a transmitter and a receiver. The transmitter reads

8120 bytes3 from the input binary file, creates a UDP packet, and sends the packet to the

socket. This packet is received by the 10GbE transceiver on the FPGA. The FPGA processes

the data and sends a packet of results back to the 10GbE transceiver. When the receiver

thread, which has been listening for incoming packets, receives this packet, it writes the

packet to a binary file and tells the transmitter to send a new packet to the FPGA. This

process continues until the entire input file has been processed.

3We found experimentally that the size of the buffer in the 10GbE transceiver limits the size of a packet
to 8120 bytes (1015 64-bit words).
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Figure 7.6: State diagram of the Osort algorithm. Tables next to each state show which
operations are performed in that state and the associated latencies in number of clock cycles,
where Ls is the number of samples in a spike. The worst-case latency is incurred in the state
transitions 2 → 3 → 5 → 6 → 7 → 2, which has a latency of 5Ls + 86 clock cycles. For a
sampling rate of 24 kHz, Ls = 36 and the worst-case latency is 266 clock cycles or 11 ms of
real time.
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7.3.5 MATLAB Wrapper

We also developed a MATLAB script to serve as the interface to the user. This ensures

that everything running “under the hood”—both the hardware and Python—are abstracted

away from the user. The user starts the program by typing a command into the MATLAB

command window. This opens the GUI, where the user can input the desired spike-sorting

parameters. When the user presses one of the start buttons (‘Test’ or ‘Run’), MATLAB calls

the Python script. When the Python script finishes running, indicating that the processing

has completed, MATLAB reads the results from the binary files and plots the results in the

GUI. The GUI (Fig. 7.1) was designed to be user-friendly and to resemble the Osort GUI

in order to provide ease of use for our collaborators, who are accustomed to using the Osort

software package.

7.4 Performance

7.4.1 Accuracy

Because we directly mapped each algorithm to hardware, the accuracy of spike sorting using

this tool is the same as the accuracy using equivalent software tools. We provided an analysis

of the accuracy of both detection algorithms in [64]; both algorithms were shown to have

median accuracies of greater than 90% across all SNRs (see Chapter 3). An analysis of the

accuracy of Osort can be found in the original paper [69], as well as in Chapter 6 of this

thesis.

7.4.2 Processing Speed

We have achieved a processing time of 136 µs per 8120-byte packet, or a processing speed

of about 60 MBps. To benchmark this performance against that of conventional software,

we measured the speed at which the Osort software package [28], which runs in MATLAB,

could process one data file on three different computers with varying processing powers.

Figure 7.7(a) shows that this hardware tool can process 25-times faster than the equivalent
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Figure 7.7: (a) Speed improvements of this hardware tool over the equivalent software run-
ning on three different computers with different processing powers. Note the logarithmic scale
on the horizontal axis. Specifications of each computer are given in Table 7.2. (b) Time to
process 8 hours of experimental data, assuming 64 channels sampled at 27.777 kHz and
quantized to 16 bits.

Table 7.2: Computer Specifications

Windows Server Windows Laptop Linux Cluster

Number of Nodes 1 2 16

Model Intel Pentium D Intel Core 2 Duo T7250 AMD Opteron Proc 6136

Clock Speed (MHz) 2790 2000 2400

L2 Cache (kB) 2048 2048 512

MATLAB Version R2006b R2009b R2010b

MATLAB Wordlength 32 32 64

software running on the fastest computer available to us (a 16-node Linux cluster), and is over

100-times faster than a single-core computer. To continue the example given in Section 7.1.1,

this tool can decrease the time required to process 8 hours of experimental data from about

30 hours on a duo-core computer (12 hours on a 16-node cluster, 64 hours on a single-core

computer) to only 28 minutes (Fig. 7.7(b)).

Specifications for each computer used in this benchmark are provided for reference in

Table 7.2. Note that in the case of the cluster, the entire 16-node computer was reserved

for this experiment in order to ensure that we were allocated 100% of the computer’s re-

sources. Also, it was assumed that channels of data would have to be processed serially, but
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Figure 7.8: Breakdown of how various system components contribute to the total time to
process one 8120-byte packet.

MATLAB’s implicit multithreading was utilized to take advantage of the multiple cores.

7.4.3 Timing Analysis

Although the FPGA runs at 100 MHz (200 MBps), the total effective processing speed is

currently limited to 60 MBps. Of the 136 µs processing time required per 8120-byte packet,

almost two thirds is for data transfer and the rest is for FPGA processing. The bandwidth

limitations in transferring data from the computer to the FPGA seems to be a result of

software and operating-system overhead. Figure 7.8 provides a breakdown of how various

components contribute to the data I/O speed. Sending each packet requires calling the

Python interpreter (15 µs), reading data from the hard disk into main memory (10 µs), a

system call to the socket (14 µs), and moving the UDP packet to the kernel (19 µs). We

are incurring a penalty by using an interpreted language (Python) for the software wrapper;

switching to a compiled language like C may allow us to reduce the transfer time. Requiring

a system call for every individual packet also adds significant latency, especially since the

maximum packet size is so small (8120 bytes). If the system call could be modified to move

more than one UDP packet to the kernel at once, the transfer time would be greatly reduced.
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7.5 Tool Availability

To use this tool, users will need the bit file, Python wrapper, and MATLAB wrapper de-

veloped here, all of which are available for free download at: http://icslwebs.ee.ucla.

edu/dejan/researchwiki/index.php?title=FPGA_Spike-Sorting_Platform. This web-

page contains all the necessary files for running the tool, as well as instructions for how to

set up and use the tool. Note that users will also require the hardware on which to run

the bit file: a ROACH FPGA processing board, which can be purchased from the CASPER

group at UC Berkeley, and a 10GbE cable and network adapter. You may also contact the

authors to arrange a demonstration with our hardware.

7.6 Conclusion

We have presented a new hardware accelerator that can increase the speed of offline spike

sorting by at least 25 times, effectively reducing the time required to sort data from long

experiments from many hours to just one hour. We attempted to preserve the flexibility of

software by implementing several different algorithms in the design, and by providing user

control over parameters such as the detection threshold. By implementing the tool using an

FPGA, we leave room for future improvements and add-ons to the tool.

The tool has been posted online and is currently undergoing beta testing, where we

hope to gather feedback from actual users in regards to both the user interface and the tool

features. We plan to incorporate user suggestions into later versions of the tool. One idea for

expanding the functionality of the tool is to include configurable digital filters at the front

end to provide another dimension of flexibility for experimenters.
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CHAPTER 8

Conclusion

8.1 Contributions

First, we developed synthetic datasets that can be used to obtain an accurate, unbiased

comparison between spike-sorting algorithms. These datasets are biologically realistic, have

known ground truths, and cover a wide range of SNRs and levels of difficulty. We also

proposed a methodology for evaluating the tradeoffs between accuracy and computational

complexity of spike-sorting algorithms. We then used these datasets and methodology to

evaluate several published spike-sorting algorithms in order to determine which are most

appropriate for implementation in real-time, low-power hardware. It is our hope that other

researchers will also utilize our library of datasets and/or our methodology when publishing

new algorithms in the future in order to present new work fairly against the context of

existing work. We also presented an analysis of the tradeoffs between digital and analog

spike detection. We found that the choice of whether to implement detection in the digital

or analog domain is dependent on the desired resolution of the data. This analysis can serve

as a reference for anyone designing spike-sorting systems in the future. All of this work led

to the design of two low-power spike-sorting chips, both of which can be used in real-time

implantable recording systems to reduce the data rate while at the same time providing

useful computations.

We also provided an analysis of the effects of quantization on spike sorting, and of the

effects of nonlinear quantization on spike sorting. We found that optimal quantizers can

improve the accuracy of spike sorting at a given resolution, or can provide the same accuracy

with fewer bits. We should note, however, that it remains to be seen what effect nonlinear
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quantization has downstream—for example, on the DSP. How would the design of the DSP

have to change to accomodate nonlinearly quantized data? Would this increase or decrease

the complexity of the DSP? If the complexity of the ADC decreases but the complexity of

the DSP increases, have we gained or lost in terms of the overall system complexity?

Finally, we developed an FPGA-based spike-sorting platform that can increase the speed

of offline spike sorting by at least 11 times, effectively reducing the time required to sort

data from long experiments from many hours to just one hour. We attempted to preserve

the flexibility of software by implementing several different algorithms in the design, and by

providing user control over parameters such as spike detection thresholds. We hope that this

tool finds use in the neuroscience community. We also hope to receive feedback from actual

users regarding how the tool can be improved, in which case we may release add-ons with

new features.

8.2 Looking to the Future

The work presented in this thesis can be continued, improved upon, or added to in many

ways. In Chapter 3, we were able to evaluate only a subset of the many spike-sorting

algorithms that exist; the same evaluation could be applied on the many algorithms that were

not studied here. We could also evaluate the hardware feasibility of the “alternative” methods

for spike sorting presented in Section 2.4.6. We could look for methods that can resolve

overlapping spikes. We could perform the same type of analysis on alignment algorithms,

and test whether or not interpolation improves the accuracy of spike sorting (and whether

or not it is worth the increase in computational complexity).

Our spike-sorting algorithm analysis also assumed data that had been recorded with

single-electrode probes. Many researchers, however, use tetrodes, which have four closely

spaced electrodes on each probe. Data recorded using tetrodes can be processed using

different techniques that exploit the dependence between channels. It could be useful to

perform similar algorithm evaluations on these kinds of algorithms.

For BMIs, I think that the real excitement lies in the next stage of processing after spike
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sorting: decoding. Several independent labs have had success in decoding neural signals from

various brain areas in various species [11–15]. But for this technology to become a therapeu-

tic reality, these algorithms also need to be implemented in hardware. Which algorithms are

most accurate? Which are most robust to noise? To changing recording conditions? Which

algorithms are even feasible for hardware implementation? How sophisticated do these algo-

rithms really need to be, and how much can we rely on the plasticity of the brain for learning

to control the BMI? This is certainly an exciting time to be in the field of neuroengineering.
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“Intracellular features predicted by extracellular recordings in the hippocampus in
vivo.” J. Neurophysiol., vol. 84, no. 1, pp. 390–400, Jul. 2000. 2.5.1, 1

[76] S. Gibson, J. W. Judy, and D. Marković, “Comparison of Spike-Sorting Algorithms
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