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Air pollution, epigenetics, and asthma
Hong Ji1,2, Jocelyn M. Biagini Myers1, Eric B. Brandt1, Cole Brokamp3, Patrick H. Ryan3 
and Gurjit K. Khurana Hershey1*

Abstract 

Exposure to traffic-related air pollution (TRAP) has been implicated in asthma development, persistence, and exacer-
bation. This exposure is highly significant as large segments of the global population resides in zones that are most 
impacted by TRAP and schools are often located in high TRAP exposure areas. Recent findings shed new light on the 
epigenetic mechanisms by which exposure to traffic pollution may contribute to the development and persistence 
of asthma. In order to delineate TRAP induced effects on the epigenome, utilization of newly available innovative 
methods to assess and quantify traffic pollution will be needed to accurately quantify exposure. This review will sum-
marize the most recent findings in each of these areas. Although there is considerable evidence that TRAP plays a 
role in asthma, heterogeneity in both the definitions of TRAP exposure and asthma outcomes has led to confusion in 
the field. Novel information regarding molecular characterization of asthma phenotypes, TRAP exposure assessment 
methods, and epigenetics are revolutionizing the field. Application of these new findings will accelerate the field and 
the development of new strategies for interventions to combat TRAP-induced asthma.

Keywords: Asthma, Traffic pollution, Epigenetics

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
A recent comprehensive and systematic review of world-
wide traffic emissions and health science by a special 
panel convened by the Health Effects Institute (HEI) 
found sufficient evidence that exposure to traffic-related 
air pollutants (TRAP) causes asthma exacerbation in 
children [1] and more recent reports have corroborated 
this [2, 3]. Within the complex mixture of gaseous and 
particulate components of TRAP, diesel exhaust particles 
(DEP) are of particular concern with respect to health 
effects. DEP are estimated to contribute up to 90 % of the 
particulate matter (PM) derived from traffic sources, are 
primarily ultrafine in size (<100 nm), can be deposited in 
the nasal and peripheral airways, and have been shown to 
induce oxidative stress and airway hyper-responsiveness, 
enhance allergic responses and airway inflammation 
[4–6]. This exposure is highly significant because in large 
cities in North America, up to 45  % of the population 
resides in zones that are most impacted by TRAP [1] and 

over 30 % of schools are located in high TRAP exposure 
areas [7]. Similar trends have been reported globally [8, 
9]. Evidence from our group and others suggests TRAP is 
also associated with reduced lung growth and the devel-
opment of asthma, though recent studies have reported 
conflicting results [10–16]. These inconsistent findings 
may be due to a lack of knowledge regarding the mecha-
nistic basis of TRAP health effects and the characteris-
tics of those most susceptibility to the harmful effects of 
TRAP exposure. Recent studies have started to fill gaps 
in knowledge regarding the molecular mechanisms by 
which TRAP leads to adverse effects on allergic diseases 
such as asthma. These studies demonstrate that exposure 
to DEP induces changes in DNA methylation that may 
have long lasting effects on health and future health risk.

Epidemiology of the health impact of TRAP on allergic 
disease
The prevalence and incidence of allergic diseases, includ-
ing asthma, have been increasing worldwide since the 
1960s [17, 18]. While asthma prevalence has plateaued 
in developed countries, in developing countries where 
the prevalence was previously low, allergic diseases are 
on the rise [19]. Environmental changes are suspected 
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to be the major driver of this increasing trend [20], with 
air pollution identified as an important exposure [21]. 
Motor vehicles produce a complex mixture of air pollut-
ants including carbon monoxide, nitrogen oxides, par-
ticulate matter (PM) of varying size, polycyclic aromatic 
hydrocarbons (PAHs—e.g. benzo(a)pyrene), volatile 
organic compounds (VOCs—e.g. benzene, acetaldehyde) 
and other hazardous air pollutants (HAPs). Collectively 
referred to as traffic-related air pollutants (TRAP), these 
are the primary source of intraurban variability in air pol-
lutant concentrations [1].

There is sufficient evidence to suggest that TRAP can 
decrease lung function and trigger asthma exacerbation 
and hospitalizations [18, 22]. Recent large studies on 
TRAP and respiratory outcomes substantiate these con-
clusions. Findings from the University of Southern Cali-
fornia’s Children’s Health Study (CHS), a cohort of 11,365 
schoolchildren in 16 communities, indicate that expo-
sure to higher local nitrogen dioxide (NO2) concentra-
tions and close residential proximity to freeway increase 
asthma prevalence [23]. Asthmatic children in the cohort 
that lived in communities with higher levels of NO2, PM10 
and PM2.5 had increased chronic lower respiratory symp-
toms, phlegm, production, bronchitis, wheeze and medi-
cation use [23]. In Korea, children aged 6–14 (n = 5443) 
living within 200 m of a main road that was ≥254 m long 
had increased lifetime wheezing, lifetime asthma diag-
nosis and decreased lung function [24]. A meta-analysis 
of six cohorts in the European Study of Cohorts for Air 
Pollution Effects (ESCAPE) that included 23,704 adults 
found that exposure to higher NO2 increased the inci-
dence of adult-onset asthma, although the results did not 
reach significance [25].

Birth cohort studies have evaluated the impact of TRAP 
on asthma development in children. In the Cincinnati 
Childhood Allergy and Air Pollution Study (CCAAPS) 
birth cohort, a child’s risk for persistent wheeze and 
asthma development varied depending on the timing 
and duration of TRAP exposure [26]. The TRAP expo-
sure level at the child’s birth address was associated with 
wheezing [27–29] and recurrent night cough [30] in the 
first 3  years of life. Children exposed to high levels of 
TRAP at birth were nearly twice as likely to experience 
persistent wheezing at age seven; however, a longer dura-
tion of exposure to high levels of TRAP (beginning early 
in life and continuing through age seven) was the only 
time period of exposure related to asthma development 
[26].

The ESCAPE project is comprised of five birth cohort 
studies including 17,041 children. While these birth 
cohorts did not find any significant associations between 
six traffic-related pollution metrics and childhood 
asthma prevalence, the land-use regression (LUR) models 

used to estimate exposures were carried out as long as 
15 years after the asthma outcomes were collected [14]. 
During this time, campaigns to reduce air pollution could 
have reduced exposure levels compared to those present 
when the asthma outcomes were collected.

In 2015, Bowatte et al. conducted a systematic review 
and meta-analysis of birth cohort studies to understand 
the association between early childhood TRAP and sub-
sequent allergies, asthma and allergic sensitization [16]. 
While significant associations were observed between 
asthma incidence and PM2.5 and black carbon (BC), there 
was substantial heterogeneity observed (likely due to dif-
ferences in study design, participants and exposure and 
outcome definitions) between the studies [16]. Neverthe-
less, their review highlights that traffic-related air pol-
lution (TRAP) is associated with new onset of asthma 
throughout childhood, and the authors suggest that 
TRAP exposure may have an ongoing effect with a lag 
time of about 3 years [16].

Reduced lung function as a consequence of air pollu-
tion exposures is also a recognized risk factor for long-
term respiratory effects. The ESCAPE Project found that 
estimated levels of NO and PM were associated with 
small but significant reductions in lung function in school 
children [31]. Most recently, the investigators from the 
Child Heart and Health Study in England (CHASE) 
evaluated the effects of air pollution on lung function in 
children both in their cohort and in a systematic review 
and meta-analysis that included the ESCAPE studies 
[32]. In CHASE, they observed that residential levels of 
oxides of nitrogen and PM showed inverse but non-sig-
nificant association with both FEV1 and FVC [32]. When 
the CHASE results were included in a meta-analysis of 
published studies, a statistically significant association 
between NO2 and FEV1 was observed. The authors esti-
mate that every 10 μg/m3 increase in NO2 is associated 
with a 0.7 % decrease in FEV1, which translates into a 7 % 
increase in the prevalence of children with abnormal lung 
function [32], which is a significant public health con-
cern. Similar to the CHASE meta-analysis, in 1968 Latino 
and African-American children from the US and Puerto 
Rico, a 5  μg/m3 increase in average lifetime PM2.5 was 
associated with a 7.7 % decrease in FEV1 [33]. In children 
aged 10–18 participating in the University of Southern 
California CHS mentioned above, living within 500 m of 
a freeway was associated with a significant reduction in 
FEV1, FVC and maximal mid-expiratory flow rate com-
pared to those living more than 1500 m away [23].

Collectively, there is considerable evidence that TRAP 
plays a role in the development, and/or symptoms of 
asthma. However, heterogeneity in both the definitions of 
TRAP exposure and asthma outcomes and unmeasured 
confounding limit the ability to draw firm conclusions 
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from the data. As discussed in the Bowatte et  al. meta-
analyses, there is substantial variability in the exposure 
measurements across TRAP-related studies. Land use 
regression (LUR) models are among the most common 
methods to assess TRAP exposures [16]. Other meth-
ods include passive samplers, central monitoring stations 
and proximity to major roads. The most frequent mark-
ers of pollutants include PM, oxides of nitrogen, carbon 
monoxide and ozone. PM may be further reported as BC, 
PM10, or PM2.5. While this vast variation in the defini-
tion of TRAP exposure limit the ability to conduct sound 
meta-analyses, it highlights the importance of appropri-
ate exposure assessment, as discussed below.

The other central challenge is the vast heterogeneity 
of asthma. The term “asthma” encompasses a number 
of distinct phenotypes of asthma, which have different 
molecular signatures. These asthma “endotypes” are sub-
sets of disease defined by a distinct functional or patho-
biological mechanisms [34]. The linkage to pathogenic 
mechanisms makes recognition of endotypes especially 
valuable, as knowledge of pathogenic mechanisms of spe-
cific variants of asthma may serve as a more precise guide 
to treatment. TRAP-induced asthma is a distinct pheno-
type of asthma, which was recently shown by our group 
to be characterized by increased levels of serum IL-17A 
in children and increased CD4+IL13+IL17+ double-
producing T effector memory cells in mice [6, 35]. Thus, 
studies of the health effects of TRAP exposure need to 
carefully define and characterize both the exposure vari-
able and the health outcome.

Assessment of TRAP exposure
Given the increasingly evident health impact of TRAP, 
methodologies to accurately assess exposure are needed. 
While TRAP affects air quality on urban and regional 
scales, their impact is greatest on a local scale, particu-
larly near roadways, as their concentrations are sig-
nificantly elevated within approximately 300–500  m of 
their source [36]. Further influencing individuals’ TRAP 
exposure is its temporal variability combined with com-
plex and variable personal behavior including time spent 
indoors/outdoors [37]. In order to meet the intrin-
sic challenge of accurately assessing TRAP exposure 
for epidemiologic studies both modeling and personal 
measurement approaches have been utilized. Because 
particulate matter (PM) is a complex mixture of chemical 
and elemental constituents, recent studies have focused 
on assessing exposure and associating health effects 
with specific elemental PM components, rather than the 
more traditionally used total PM mass. Most notably, the 
large ESCAPE project has developed land use regression 
models for particle composition in twenty study areas in 
Europe [38]. Accurate and precise models were built for 

individual components and the group used these to asso-
ciate exposure to PM2.5 nickel and sulfur with decreased 
lung function in five cohorts of children [39]. Further-
more, they found that long term exposure to PM2.5 cop-
per and PM10 iron was associated with increased levels 
of inflammatory blood markers [38].

While regulatory air monitoring provides valuable data 
to link regional and temporal variability of air pollutants 
to population-level health outcomes [40–43], these net-
works are unable to capture the high spatial variability 
of TRAP concentrations within an urban area. Meas-
uring proximity (i.e. distance) to major roadways is a 
straightforward approach to estimate TRAP exposure, 
though this method does not account for traffic density 
and other geographic and land-use characteristics which 
impact TRAP concentrations [44]. Dispersion models 
have also been used to assess exposure to TRAP, but this 
approach has been limited to a small number of locales 
with available emissions and meteorology data required 
for this approach [10, 45, 46].

The most frequently used method to estimate TRAP 
exposure in epidemiologic studies is land use regression 
(LUR) modeling [44, 47–49]. In the most straightforward 
LUR approach, a single pollutant from the TRAP mixture 
is measured at multiple stationary sites within a defined 
study region and characteristics of the area surrounding 
each sampling site (e.g. elevation, nearby roads, traffic) 
are used as predictors of the measured concentrations in 
a linear model. The resultant LUR model is then applied 
to estimate pollutant concentrations at non-sampled 
locations including schools and homes where significant 
geographic predictor variables can be determined [14, 
15, 44, 48, 50–57]. Recently, research groups have cre-
ated land use models to predict the concentration of indi-
vidual components of PM in more urban environments 
[58]. The temporal variability of TRAP concentrations 
have also been incorporated into LUR models through 
the addition of mobile or continuous monitoring allow-
ing for short-term and daily estimates of TRAP exposure 
for study participants [52, 59–62]. LUR models have also 
been shown to accurately capture the spatial variability 
in pollutant concentrations over a period of 7 or more 
years [63, 64]. New data inputs for LUR models, includ-
ing satellite-derived pollutant measurements [65, 66] 
and the development of hybrid models combining LUR 
with Bayesian Maximum Entropy have also improved 
the accuracy of TRAP exposure assessment [67, 68]. In 
studies with available participant-reported time spent 
in locations outside the home, LUR models have been 
used to derive time-weighted estimates of exposure 
based on location [48]. More recent application of this 
time-weighted approach have utilized smartphones and 
GPS-derived location data to improve estimates of TRAP 
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exposure by combining LUR or other modeled TRAP 
estimates with individuals’ location through space and 
time [69]. External model validation is also key to accu-
rate exposure assessment. Researchers recently found 
that models developed for specific neighborhoods were 
not generalizable to other neighborhoods, but that a gen-
eral model that was locally calibrated performed similarly 
to neighborhood-specific models [70].

Despite advances in modeling TRAP and the incorpo-
ration of GPS to improve estimates of individual-level 
exposure, personal monitoring remains the ‘gold-stand-
ard’ for TRAP exposure assessment. The use of mobile 
monitoring has increased in popularity, in part due to its 
ability to cover a higher spatial resolution as compared to 
stationary monitoring. Land use regression models have 
been developed using data from mobile laboratories [71] 
as well as cars and bikes [72], allowing for resolutions up 
to 20 m. Although the increased resolution is an advan-
tage of using mobile monitoring to collect air pollution 
measurements, it requires multiple repeated measure-
ments to precisely predict exposure.

Mechanistic insights into TRAP effects on the epigenome 
and the pathogenesis of asthma
Although there is strong evidence that TRAP expo-
sure contributes to childhood asthma [1, 10, 11, 29], the 
mechanistic basis of TRAP effects on asthma has been 
elusive. The epigenetic, molecular, and cellular path-
ways triggered by exposure to TRAP and their impact on 
allergen-induced immune responses have been studied in 
human studies as well as in reductionist models in vitro 
and in animal models in vivo.

The basics of epigenetics
The concept of epigenetics keeps revolving since Wad-
dington first coined the word to describe mechanisms 
that regulate gene expression and contribute to develop-
ment [73]. A modern definition of an epigenetic trait is 
a stably heritable phenotype resulting from changes in a 
chromosome without alterations in the DNA sequence 
[74]. To date, epigenetic mechanisms include DNA 
methylation, histone modification, histone variants, 
nucleosome positioning, non-coding RNA and other 
newly discovered phenomenon such as RNA methyla-
tion. Together, these epigenetic mechanisms regulate the 
gene expression programs of a cell by being responsive 
to changes in the environment of a cell, including all the 
developmental signals and environmental cues that lead 
to diseases, which is particularly evident during cellu-
lar differentiation and cancer development [75–77]. A 
compelling hypothesis is that environmental cues asso-
ciated with diseases might initiate or influence the epi-
genetic processes of host cells, leading to epigenetic 

reprogramming of host cells to favor their pathogenic 
function and contributing to the development of the dis-
ease. DNA methylation is the first epigenetic mechanism 
recognized and most extensively studied in human popu-
lations. Thus, the main focus of this part of the review is 
on DNA methylation, its association with air pollution 
and asthma, and its impact on the association between 
air pollution with asthma.

DNA methylation is the chemical modification of cyto-
sine by covalently adding a methyl group to its 5′ carbon 
(5-methylcytosine, or 5mC), which is mostly found in 
the context of CpG dinucleotide. CpG islands (defined 
as regions of more than 200 bases with a G + C content 
of at least 50  % and a ratio of observed to an expected 
frequency of at least 0.6) are often found at function-
ally relevant genomic elements, such as promoters and 
enhancers, indicating their important role in gene regu-
lation. Genome-wide DNA methylation profiling by 
next-generation sequencing in several species has dem-
onstrated that DNA methylation at the promoter and at 
the 3′ end of a gene is negatively associated with gene 
expression levels, whereas whole gene body methylation 
seems to be positively associated with gene expression 
levels [78, 79]. In mammalian cells, DNA methylation 
is maintained through the coordinated actions of DNA 
methyl-transferases (DNMTs), which catalyze the trans-
fer of a methyl group from S-adenosyl methionine (SAM) 
to the carbon 5′ position of cytosine (Fig. 1). Replication 
of symmetrically methylated CpGs leads to hemi-methyl-
ated parent-daughter duplexes, which will be methylated 
by DNMT1/UHRF1 complex [80, 81]. Non-CpG meth-
ylation occurs primarily in pluripotent stem cells and 
neuron cells [82, 83], and is maintained by two de novo 
methylases, DNMT3a and 3b [83, 84]. Recently TET pro-
teins (ten-eleven translocation family) were identified as 
dioxygenases that utilize two key factors Fe(II) and 2-oxy-
glutarate (2-OG), to oxidize the methyl group of 5mC 
to hydroxylmethyl, formyl, or carboxyl groups [85–89] 
(Fig.  1). The resulting oxi-mC intermediates (5hmC, 
5fmC and 5caC) can be restored to C by active or pas-
sive mechanisms [88, 89], resulting in DNA demethyla-
tion (Fig. 1).

Many cellular differentiation processes, including 
immune cell differentiation, are accompanied by dynamic 
changes in DNA methylation and other epigenetic 
changes, which often occur at key transcription factors 
sites and at genomic locations encoding functional mol-
ecules such as cytokines to control their lineage com-
mitment [76, 90–92]. Protein components in epigenetic 
machinery such as DNMTs, TETs and DNA methyl-
group binding proteins, often bind to these cytokine 
signature gene loci through interaction with key tran-
scriptional factors, setting up local epigenomic structure 
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and controlling their expression [92]. In addition, envi-
ronmental cues including air pollution can directly regu-
late the expression levels of DNMTs and TETs [93–96], 
or accumulation of these enzymes at targeted genes [97, 
98], therefore modify the epigenomic landscape of key 
genes involved in asthma pathogenesis.

DNA methylation and asthma
Epigenomic regulation of T cell differentiation plays 
an important role in the process of allergic sensitiza-
tion [99–101], including T helper cell differentiation 
(Th1, Th2 and Th17) and the establishment of regula-
tory T cell phenotype (Treg). Activation of the T helper 2 
(Th2) type cytokine profile is a hallmark of experimental 
asthma. Epigenetic remodeling including DNA methyla-
tion changes and histone modifications has been shown 
to influence Th2 polarization and associated cytokines 
and chemokines involved in the development of asthma 
[102–104, 106]. Further, pharmacological modification of 
IFNγ methylation in T cells modifies asthma phenotypes 

in animal models [107]. Tregs also play an essential role 
in allergic responses in asthma [108] and FOXP3 is the 
master regulator of Tregs. The regulation of FOXP3 
expression by methylation at its proximal promoter and 
an intronic regulatory element is well-established and 
studies from twins discordant for asthma indicate that 
this mechanism is important for asthma development 
[99, 109].

Although asthma has long been characterized as a dis-
ease of dysregulated TH2 immune responses to environ-
mental allergens, accumulating evidence suggests a role 
for TH17 cells, especially severe steroid resistant asthma. 
Serum IL-17A is significantly higher in severe asthmat-
ics compared to mild asthmatics or controls in adults and 
children [110–112]. Recent studies have demonstrated 
that dual-positive TH2/TH17 cells and IL-17A were pre-
sent at a higher frequency in the bronchoalveolar lavage 
fluid (BALF) from steroid resistant asthmatic patients 
[113]. These TH2/TH17 cells were resistant to dexameth-
asone-induced cell death and the TH2/TH17 predominant 

C 

5mC 

5hmC 5fC 

5caC 

DNMTs 

TET 

TET 

TET 

Fig. 1 DNA methylation and demethylation in mammals. DNMTs methylate cytosine C to 5-methylcytosine (5mC) by transferring the methyl group 
from S-adenosylmethionine (SAM) to cytosine. TET enzymes oxidize 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), 5-carboxyl-
cytosine (5caC) (together, oxi-mC). Further, oxi-mC can be restored to C through the thymine DNA glycosylase (TDG)-mediated base excision repair 
(BER) of 5fC:G and 5caC:G base pairs and replication-dependent passive demethylation
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subgroup of patients manifested the most severe form of 
asthma [113]. As an important player in asthma develop-
ment, especially air pollution-related asthma [6], the epi-
genetic regulation of Th17 cells is not well understood. 
Recently it has been shown that the promoter of IL17a 
and intron 2 of Rorα (IL17 associated transcriptional fac-
tor) were demethylated in ex vivo isolated murine Th17 
cells and in murine Th17 cells generated invitro com-
pared to naïve T cells and other T helper cells [114]. This 
is consistent with a previous report highlighting the epi-
genetic regulation of Il17a and IL17f expression by pro-
moter DNA methylation and histone modifications in 
in vitro generated murine Th17 cells [115].

In addition to genes implicated in T cell function, 
which have been relatively well studied, association stud-
ies in human populations identified epigenetic variations 
in other genes important for asthma, including those 
involved in immune responses, nitric oxide synthesis, 
lipidomics, and pharmacologic receptors [99]. In sup-
port of these previous findings, a recent report using a 
genome-wide approach identified an IL13-induced DNA 
methylation signature in adult asthmatic airways, which 
contains two co-methylation modules related to asthma 
severity and eosinophilia respectively [116]. Using the 
same platform, another study compared blood DNA 
methylation levels between 97 controls and 97 inner city 
asthmatic patients and identified 81 differentially meth-
ylated CpG sites [117]. Validated CpG sites are located 
at RUNX3 (related to T cell maturation), IL4 (related to 
Th2 function), and catalase (related to oxidative stress). 
CpG sites associated with serum IgE among asthmatics 
were also discovered in this study. An epigenome-wide 
association study also identified and validated 36 CpG 
sites whose methylation levels in blood DNA are sig-
nificantly associated with serum IgE level (FDR  <  10−4) 
[118]. Importantly, the top three CpG sites account for 
13  % of IgE variation, which is tenfold higher than that 
derived from large single nucleotide polymorphism 
(SNP) genome-wide studies. This implies a significant 
role for epigenome in asthma and underscores that the 
epigenome may be a rich source of novel biomarkers for 
asthma and potentially new targets for asthma therapy. 
Recent evidence from our group associated lower TET1 
promoter methylation and higher 5hmC levels in air-
way epithelial cells with childhood asthma, uncovering 
a novel role of TET1 and DNA demethylation in asthma 
development [95]. In addition, researchers also started to 
look at DNAm markers for asthma that develops in child-
hood and persists into early adulthood [119] and mark-
ers for temporal asthma transition [120]. Despite these 
investigations, DNAm variations consistently associated 
with asthma are rarely found, possibly due to differences 
between cohorts, definition of asthma phenotypes, and 

from which tissue DNAm is measured. Disease-epige-
netic variation is often tissue-specific, which should be 
accounted for when interpreting the results. How this 
should be considered in epigenomic epidemiologic stud-
ies has been discussed in other reviews [121].

Studies of DNA methylation are often coupled with 
gene expression studies and genetic variation studies, as 
DNA methylation can regulate gene expression [122] and 
SNPs also modify DNA methylation [123, 124]. Morales 
et al. demonstrated an interaction between SNPs within 
ALOX12 and a nearby DNA methylation variation that is 
significantly associated with childhood wheezing in three 
cohorts [125]. Interestingly, this interaction is most evi-
dent for those SNPs tagged by rs312466, and rs312466 is 
~300 away from the interacting CpG site, indicating an 
in cis interaction. In the Swedish birth-cohort BAMSE, 
Acevedo and colleagues studied the association of child-
hood asthma with SNPs, regional DNA methylation, 
and gene expression at the GSDMB/ORMDL3 locus 
located at 17q21, a well-studied asthma-susceptibility 
locus found in ethically diverse populations [126]. They 
found that 3 SNPs that either created or removed CpG 
sites altered DNA methylation in cis and were associ-
ated with asthma. Methylation at these SNP-CpG sites 
was correlated with ORMDL3 expression and associated 
with methylation levels at other CpG sites in this locus, 
including ones located in the ORMDL3 promoter. They 
also found that the methylation levels in the ORMDL3 
promoter was higher compared to controls, and corre-
lated with ORMDL3 expression in blood leukocytes from 
asthmatic children. Together, these data suggest interac-
tions among CpG sites and between CpG sites and SNPs 
within this locus in asthma. Future well-designed, inte-
grative genome- and epigenome-wide associations stud-
ies are needed to examine the interplay between genetic 
and epigenetic factors and how these interactions con-
tribute to asthma in a cell type-specific manner.

Air pollution and DNA methylation
The epigenome is postulated to be a mechanistic bridge 
between air pollution and the development of asthma, 
possibly via mediating gene-environment interactions 
[99, 127]. Indeed, combined inhaled diesel exhaust parti-
cles and allergen exposure in mice lead to changes in pro-
moter methylation of the asthma related gene IL4, and 
methylation levels are correlated with serum IgE changes 
[128]. These findings are consistent with numerous stud-
ies that have demonstrated that exposure to either par-
ticulate matter or DEP exacerbates TH2 responses. One 
recent study using co-cultures of OVA transgenic CD4+ 
T cells and bone marrow derived dendritic cells (BMDC) 
pre-exposed to OVA with or without TRAP, demon-
strated increased IFNγ, IL4, IL13, and IL17 levels in 
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culture supernatants of OVA +  TRAP exposed BMDC 
compared to BMDC exposed to OVA alone [129].

A growing body of literature has identified DNA meth-
ylation variations associated with different types of air 
pollution in human populations, including TRAP [127, 
130]. TRAP is a mixture of carbon monoxide, nitrogen 
oxide, PM, PAH, VOCs and other HAPs. Among these 
components, PM2.5 from various sources has been asso-
ciated with DNA methylation changes [130]. However, 
these studies are often inconsistent, possibly due to the 
differences in exposure measurement and different rela-
tive amounts of the TRAP components within the esti-
mate; therefore, the impact of TRAP on repeat element 
methylation or global DNA methylation remains uncer-
tain. One recent study evaluated the in  vitro epigeno-
toxicity of six different types of ambient air PM [131] 
including soil dust, road dust, agricultural dust, biomass 
burning, traffic exhausts, and pollen. Indeed, these dif-
ferent types of PMs have very different, sometimes oppo-
site, effects on the expression and enzymatic activity of 
DNMTs and the methylation of repetitive elements. Fur-
ther, such impact is time-specific and dose-dependent.

Using a candidate gene approach, multiple cohort 
studies have consistently linked DNA methylation levels 
in the inducible nitric oxide synthase gene (iNOS) with 
exposure to particulate matter [132–137]. iNOS and 
other components in the nitric oxide synthase pathway 
are responsible for nitric oxide production, and children 
with asthma and allergic airway diseases have measurably 
higher fractional concentration of exhaled nitric oxide 
(FeNO) [138, 139]. Interestingly, an interaction between 
genetic variants, DNA methylation variation within 
iNOS, and PM exposure has been noted [137]. Other 
genes whose methylation levels in saliva DNA have been 
associated with ambient air pollution have also been 
implicated in asthma. A recent study identified an asso-
ciation between methylation of 31 genes and exposure to 
BC utilizing a pathway-based approach [140]. The genes 
included HLA-DOB (MHCII), FCER1A and FECR1G 
(IgE receptor), IL9, and MBP (eosinophil granule major 
basic protein), which are related to the Th2/B cell sign-
aling pathway, eosinophils, and airway inflammation. 
Increased exposure to ambient air pollution was also 
associated with hypermethylation of FOXP3, which coin-
cided with impaired Treg function and increased asthma 
morbidity [141]. Hypermethylation of IFN-γ in effector 
T cells was associated with increased exposure to ambi-
ent air pollution in the same cohort [142] and was further 
supported by observations from the Normative Aging 
Study [143]. Research from our group also uncovered 
the association of saliva FOXP3 methylation with TRAP 
exposure during the 1st year of life and persistent wheez-
ing and asthma diagnosis at age 7 in the CCAAPS cohort 

[144], which implicates the epigenome as a mediator of 
the impact of early life TRAP exposure on later asthma 
risk. Further work using the fast developing genome-
wide approaches to identify TRAP-associated DNA 
methylation changes in relevant tissues using a longitudi-
nal design are needed.

Recently we found that TET1 promoter methylation is 
associated with both TRAP exposure and asthma preva-
lence in children [95]. Exposure of airway epithelial cells 
to DEP altered the expression of TET1, and resulted in 
changes in global 5hmC [95]. Further, exposure to PM10 
was associated with higher global 5hmC levels over time, 
but not with global 5mC levels [145]. In the same cohort, 
PM exposure was associated with hypomethylation of 
selected tandem repeats, such as NBL2 and SATa [146]. 
Taken together, these data support a role for 5hmC and 
TET1 in response to TRAP exposure and highlight the 
need to differentiate 5hmC and 5mC in future environ-
mental epigenetic studies.

To directly investigate the short-term DNA methyla-
tion changes induced by exposure to TRAP in humans, 
controlled exposure studies have been performed in 
adults [147, 148]. A cross-over study in 15 healthy adults 
showed that exposure to concentrated ambient particles 
(CAPs) for 130 min lowered methylation levels at specific 
loci [147]: fine CAPs exposure lowered Alu methylation, 
while coarse CAPs exposure lowered TLR4 methylation. 
In another cross over study [148], sixteen non-asthmatic 
adults were exposed to diesel exhaust (300 μg/m3 PM2.5) 
for 2 h on two separate occasions at least 2 weeks apart. 
RNA samples isolated from their peripheral blood mono-
nuclear cells (PBMCs) were subjected to the Infinium 
HumanMethylation450 BeadChip array to identify 
genome-wide changes associated with DEP exposure at 
6  h or 30  h after the second exposure. Genes encoding 
protein kinases and other proteins in the NF-kB path-
ways become less methylated after the exposure. In a 
more recent study [149], Clifford et al. conducted a ran-
domized, crossover-controlled exposure study in which 
17 adults were exposed to filtered air or diesel exhaust 
(DE, 300 μg/m3 PM2.5) followed by saline via segmental 
allergen challenge. Genome-wide DNAm studies using 
bronchial epithelial cells collected 48 h after the last chal-
lenge identified changes at 6 CpG sites in response to 
DE, 7 sites in response to co-exposure (DE and allergen), 
while allergen alone didn’t cause any significant differ-
ences. Interestingly, allergen challenge 4 weeks after DE 
exposure induced DNAm changes at more CpG sites (75 
sites at p  <  0.05, difference in β  >  0.10) suggesting that 
DE exposure may have long lasting effects on epigenetic 
responses to subsequent exposures.

Exposure to other components in TRAP, specially PAH, 
has also been associated with DNA methylation changes 
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[130]. The epigenetic effects of PAH can begin in utero, 
which may lead to long-term health problems. Mater-
nal exposure to PAH is associated with DNA methylation 
changes in the acyl-CoA synthetase long-chain family mem-
ber 3 (ACSL3) gene in cord blood cells of children and is 
also associated with higher risk of developing asthma [150]. 
Maternal PAH exposure has also been linked to increased 
methylation of IFN-γ promoter in cord white blood cells 
[151]. Collectively, these data support the notion that 
methylation modifications can link in utero exposure with 
asthma development [152–154]. Similarly to PM exposure, 
exposure to ambient PAH can be associated with impaired 
Treg function and increased methylation of FOXP3 [155].

How TRAP, including DEP and PAH, modifies the 
epigenome remains unclear. One hypothesis is that the 
epigenetic changes are mediated via the AhR, which sub-
sequently regulates the expression and function of the 
epigenetic machinery that can activate/repress target 
genes related to inflammation and immune responses 
(Fig. 2). It has been shown that the expression of DNMTs 
and TETs is altered in the lungs of asthmatics [93–95]. A 
few recent reports have demonstrated the regulatory role 
of TET1/2/3 in hematopoiesis [156], B cell lineage speci-
fication [157] and Treg differentiation [158–160], which 
are all involved in asthma development. Exposure to air 
pollution can regulate the expression levels of these pro-
teins in airway epithelial cells and alveolar macrophages 
[95, 131] (Fig. 2). Air pollution may also modify the accu-
mulation of epigenetic enzymes at genetic loci involved 
in asthma pathogenesis [97, 98], thereby modifying the 
local epigenomic landscape of these genes and contribut-
ing to asthma. Expression of DNMTs and TET1 can both 
be regulated in a HIF1α-dependent matter under hypoxia 
conditions [161, 162]. In addition, it is reported that oxi-
dative stress and the generation of reactive oxygen spe-
cies (ROS) can regulate HIF1α transcription in humans 
[163]. Since the HIF1α and AhR pathways may intersect 
[164], it is plausible that the effects of DEP are partially 
mediated through interactions between AhR, HIF1α, 
DNMTs and TETs (Fig. 2). Futures studies elucidating the 
interactions between AhR signaling and the epigenetic 
machinery are needed to pinpoint the mechanisms by 
which TRAP contribute to asthma.

The impact of early life TRAP exposure
The timing and duration of traffic-related air pollu-
tion (TRAP) exposure may be important for childhood 
wheezing and asthma development. High TRAP expo-
sure at birth was significantly associated with wheez-
ing phenotypes in a birth cohort, but only long-term 
exposure to high levels of TRAP throughout child-
hood was associated with asthma development [26]. 
Indeed, in the Cincinnati Childhood Allergy and Air 

Pollution Study (CCAAPS) birth cohort, early TRAP 
exposure was associated with persistent wheeze while 
early and sustained exposure to TRAP was associated 
with asthma development [26]. As discussed above, 
saliva FOXP3 methylation was found to be associated 
with TRAP exposure during the 1st year of life and per-
sistent wheezing and asthma diagnosis at age 7 in the 
CCAAPS cohort [144], suggesting that the epigenome 
may contribute to the impact of early life TRAP expo-
sure on later asthma risk.

Prenatal TRAP exposure has been linked to asthma as 
well [165–168]. Mothers who lived near highways during 
pregnancy are more likely to have children with asthma 
[166]. Prenatal exposure to PAHs is associated with 
increased risk of allergic sensitization and early childhood 
wheeze [165, 168]. A limited number of mechanistic stud-
ies have assessed the impact of in utero TRAP exposure on 
the development of allergic disorders. In one recent study, 
offspring of mice exposed to DEP were hypersensitive to 
OVA and developed increased OVA sensitization, airway 
inflammation, Th2/Th17 responses, and AHR compared 
to offspring with no prior in utero DEP exposure [169]. 
Further, prenatal DEP exposure induced expression of 
genes downstream of AhR and this upregulation persisted 
1  month after birth, even though mice were no longer 
exposed to DEP. Thus, in utero DEP exposure appears to 
result in a primed state where the neonate is hypersensitive 
to subsequent allergen exposure. In mice exposed to ambi-
ent particulate air pollution near steel mills and major high 
ways, there is significant, persistent sperm DNA hypo-
methylation [170], suggesting a transgenerational effect 
of TRAP exposure. Thus, the epigenetic changes induced 
by TRAP may have very long lasting effects. While the 
epigenetic mediation of the trans-generational impact of 
numerous exposures (endocrine disruptors, high fat diets) 
is being actively explored; the evidence for the epigenetic 
mediation of trans-generational effects of TRAP is lacking 
and in need of better investigation.

Conclusion
As discussed above, there is considerable evidence that 
exposure to TRAP is associated with childhood asthma 
development, symptoms, and exacerbations. Herein, we 
have reviewed the recent findings regarding the epige-
netic mechanisms by which TRAP exposure mediates 
its negative health effects. These findings have identified 
potential biomarkers that could enable rapid and reliable 
identification of individuals at-risk due to high exposure 
in the future. Further, new methodologies for quantifica-
tion of TRAP will enable accurate assessment of exposure 
in real time such that interventions could be designed 
and implemented early in the course of exposure in vul-
nerable populations. Additional studies are needed to fill 
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the remaining gaps including more careful characteriza-
tion of the epigenetic modifications and the upstream/
downstream pathways, the study of interactions between 
genetic and epigenetic variations, the impact of the tim-
ing, load, and duration of TRAP exposure on the dura-
bility of the epigenetic modifications, and translation of 
these findings to clinical applications.
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