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Abstract: Liquid chromatography–high-resolution mass spectrometry (LC-HRMS), as applied to
untargeted metabolomics, enables the simultaneous detection of thousands of small molecules,
generating complex datasets. Alignment is a crucial step in data processing pipelines, whereby LC-MS
features derived from common ions are assembled into a unified matrix amenable to further analysis.
Variability in the analytical factors that influence liquid chromatography separations complicates data
alignment. This is prominent when aligning data acquired in different laboratories, generated using
non-identical instruments, or between batches from large-scale studies. Previously, we developed
metabCombiner for aligning disparately acquired LC-MS metabolomics datasets. Here, we report
significant upgrades to metabCombiner that enable the stepwise alignment of multiple untargeted
LC-MS metabolomics datasets, facilitating inter-laboratory reproducibility studies. To accomplish
this, a “primary” feature list is used as a template for matching compounds in “target” feature
lists. We demonstrate this workflow by aligning four lipidomics datasets from core laboratories
generated using each institution’s in-house LC-MS instrumentation and methods. We also introduce
batchCombine, an application of the metabCombiner framework for aligning experiments composed
of multiple batches. metabCombiner is available as an R package on Github and Bioconductor, along
with a new online version implemented as an R Shiny App.

Keywords: metabolomics; LC-MS; alignment; chromatography; R package; software

1. Introduction

Metabolomics is widely used in biological research to assess the small molecule compo-
sition of biological samples and derive insights into physiological phenomena. The leading
technology for untargeted metabolomics is liquid chromatography–mass spectrometry (LC-
MS), which routinely detects thousands of metabolomics features with high sensitivity and
measures their mass-to-charge ratio (m/z), retention time (RT), and relative abundance [1].
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Feature alignment across samples is a key step in computational metabolomics workflows;
many published software methods [2] correct for chromatographic drift due to changes in
temperature, column age, sample instability, and solvent proportioning [3–5]. Large-scale
metabolomics studies composed of multiple batches frequently harbor significant drift in
RTs within, and especially between, batches [6–8]. LC-MS metabolomics data obtained
with non-identical instruments and parameters often display greater RT differences (up to
several min) that cannot be overcome using conventional alignment approaches. As efforts
to standardize protocols have not yet substantially materialized in the metabolomics field,
there are significant challenges to data interoperability within and between laboratories.
Only a few strategies have been devised for disparate LC-MS method metabolomics feature
alignment [9–11].

Our group has previously described metabCombiner, a software package for aligning
experimentally incongruent LC-MS metabolomics datasets [12]. metabCombiner bridges
wide differences in analytical parameters, such as chromatographic gradients, column
dimensions, and mass spectrometer settings, to construct a merged feature matrix. metab-
Combiner was initially designed for the alignment of two pre-processed feature tables,
with limited functionality for handling three or more table inputs. The program reported
all hypothetical paired alignments but lacked approaches for the automated assignment
of one-to-one feature correspondence. The program reported an intersected feature list,
removing compounds lacking suitable matches.

In this work, we describe major additions to metabCombiner, extending the original
method to enable stepwise metabolomics data-merging operations. The updated package
contains functionality for aligning combinations of feature tables, as well as automated
correspondence assignment and the inclusion of non-intersected features for subsequent
alignment steps. As part of this framework, we implemented a new method called batch-
Combine for aligning multi-batch LC-MS metabolomics experiments, which serves as an
alternative to processing often unmanageably large datasets in a single batch. We illustrate
these methods in two different metabolomics studies. First, we use metabCombiner 2.0 to
align data from an inter-laboratory untargeted lipidomics study conducted by four core
laboratories, assessing the reproducibility of lipidomics identification strategies across
diverse mammalian specimens. Second, we applied batchCombine to the ELEMENT (Early
Life Exposures in Mexico to Environmental Toxicants) cohort study [13], which generated
multi-batch untargeted LC-MS metabolomics analyses of fasting blood serum from Mexican
adolescents. We also present a graphical user interface implemented as an R Shiny App to
facilitate the package’s usage by the wider metabolomics community.

2. Materials and Methods
2.1. Workflow Overview

The upgraded metabCombiner workflow is depicted in Figure 1. The new alignment
process is illustrated as a cycle, starting with the merging of two metabolomics feature
tables, followed by the integration of additional single or combined datasets, with each
cycle comprised of six alignment steps. Three of the steps, selectAnchors, fit_gam, and
calcScores, perform as described previously [12] with minor changes. The metabCombiner()
step, which serves to determine the set of possible feature alignments (constrained by m/z)
was revamped to accommodate multi-dataset objects and the organization of data into
constituent feature lists. A new function, reduceTable, was developed to enable automatic
assignment of one-to-one correspondence between feature pairs, according to calculated
alignment scores and ranks. Finally, a new function called updateTables restores features
from X and Y dataset inputs to the results table that lack complementary paired matches.
Each step is described in detail below.
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Figure 1. metabCombiner 2.0 workflow.

2.2. Terminology

The package contains two objects for representing metabolomics data: metabData and
metabCombiner. metabData objects are single dataset representation classes containing
a formatted feature table, with each feature described by the mass-to-charge ratio (m/z),
retention time (RT), and per-sample abundance values (samples). Optional identifiers (id),
and adduct or formula labels (adduct) are stored for each feature as well. Any additional
columns may be designated as “extra”, and are reported in the final output but do not affect
the alignment. Features in metabData objects are assigned a quantile abundance value (Q)
between 0 (least abundant) and 1 (most abundant), based on the ranked median or mean
peak intensities across samples. metabCombiner objects are multi-dataset representation
classes that serve as the main framework for executing the package workflow steps. Two
closely linked report tables are generated in each alignment: a combined table containing
the set of possible feature pair alignments (FPAs), their associated per-sample abundances,
and alignment scores for the feature pairs; and the feature data table, which organizes the
aligned features and their associated descriptors (m/z, RT, id, adduct, Q) by the constituent
dataset of origin. Each dataset is assigned its own unique identifier.

2.3. Initial Data Processing

The inputs for metabCombiner are pre-processed LC-MS metabolomics feature tables
generated using programs such as XCMS [14], MZmine [15], or MS-DIAL [16]. All feature
tables must be processed and formatted as metabData objects before alignment. The
associated constructor, metabData(), maps the required and auxiliary feature meta-data to
input table columns and applies multiple filters to exclude features based on proportion
missingness and RT ranges. Duplicate features representing the same compound can be
filtered or merged into a single representative row (see Supplementary Text S1 for more
details). The remaining features are eligible for alignment with other feature lists.

2.4. Combined Dataset Construction

A metabCombiner multi-dataset class can be constructed from two single datasets, a
single and a combined dataset, or two combined dataset objects. In each cycle, one input
object is selected to be the projection (“X”) feature list and the other is designated as the
reference (“Y”). Figure 2 illustrates a combined dataset composed of three feature lists ‘A’,
‘B’, and ‘C’, and a new single dataset labeled as ‘D’. One set of feature descriptors is selected
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from combined dataset (A-B-C) for comparison with new list D. In Figure 2, for example,
X columns are drawn from feature list A, whereas Y columns are derived from dataset
D. This generates the combined table showing the list of possible FPAs arranged into
m/z-based groups, constrained by the ‘binGap’ parameter. The columns of this table are
the same as described previously, including a ‘score’ column that represents the calculated
similarity of the pairs; rankX and rankY ordering the alignment scores by individual
features; and “rtProj”, showing the mapping of retention times from the projection set (rtx)
to the reference (rty). metabCombiner also updates the feature data table to include table D
features, with the two results tables linked by a single column (“rowID”).
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aligned to a new single dataset (D), with one constituent list (Data Set A, red columns) selected to
represent the combined entity for feature matching with (Data Set D, blue columns).

2.5. RT Mapping and Score Calculation

Briefly, a subset of the feature pairs is chosen among highly abundant compounds
(within m/z, RT, and Q difference constraints) for modeling the retention time warping
function between the projection and reference chromatograms (selectAnchors). fit_gam()
computes a penalized basis spline model to obtain RT mapping, using the selected anchors
from the previous step. This mapping can be further constrained to an RT range by
removing empty head or tail chromatographic regions. Subsequently, calcScores() computes
a similarity score between 0 and 1 for all grouped feature pairs, using an exponential
penalty for differences in m/z, RT (model-projected rty vs. observed rty), and Q. Pairwise
score ranks (rankX and rankY) are computed for each unique feature with respect to their
complements. The most plausible matches are ranked first (rankX = 1 and rankY = 1) and
score close to 1.

2.6. Aligned Feature Table Annotation and Reduction

Using the computed scores and ranks, the initial combined feature table can be reduced
to a final list of plausible feature matches. Simple thresholds for alignment scores, pairwise
ranks, and RT prediction errors typically exclude over 90% of mismatches. To consider
competitive alignment hypotheses among lower-ranked feature pairs (e.g., alignments
between closely eluting isomers), the program identifies rows that (i) meet the indicated
score and rank thresholds; (ii) have a feature in common with a top-ranked alignment
(rankX = 1, rankY = 1); and (iii) have similarity score values (or alternatively m/z and
RT) within a small gap of the top-ranked alignment. FPAs that meet conditions (i–iii) are
flagged as conflicting possibilities, and associated rows are assigned to a “subgroup”. On
the other hand, rows that meet (i) and (ii), but not (iii) are deemed removable. To resolve
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conflicts, a third step was added to select the combination of FPAs within each subgroup
with the highest sum of scores. Finally, all rows annotated as removable are eliminated
from the tables. See Table S1 for illustrative examples of this process.

2.7. Assembling Aligned and Non-Aligned Features

Following the table reduction step, many input features will not be aligned due to a
lack of complementary matches. updateTables() locates all features present in the original
X or Y input objects used to construct the object, but missing in the reduced aligned data
table. These features are carried forward into both report tables, with missing values in
counterpart data columns. This allows for non-intersected features to be used in further
alignment steps and serves as the final step of the package workflow. Users may opt to
forgo this step if only the intersection is desired, though it is highly recommended that this
step be performed when aligning more than two input feature lists.

2.8. batchCombine: Extension to Multi-Batch LC-MS Alignment Tasks

The updated metabCombiner framework has applications for large-scale metabolomics
studies composed of multiple batches. As previously noted, instrumental conditions often
undergo subtle changes throughout the course of a large-scale experiment. LC-MS run
order is an important variable as distal batches tend to be more dissimilar compared to
proximal sample runs [8]. For a study composed of N batches, the batchCombine procedure
requires each batch of samples be separately pre-processed, generating N total feature
tables. After transforming each table into metabData format and arranging in run order, the
batchCombine wraps together the six alignment steps to construct a batch-merged object
in a stepwise manner. The first batch is aligned to the second, and the results are then
aligned to the third, and so forth, until a total of N−1 alignment cycles are complete. In
each cycle, feature descriptors are drawn from the latter batch or, alternatively, the averaged
<m/z, RT, Q> values among previously merged sample sets for comparison with the next
batch. batchCombine uses identical parameters in each cycle, with stricter default values
for retention time modeling weights and tolerances.

2.9. metabCombiner Online

We have developed an R Shiny App web interface for the program, implementing
the functionality of the R package. metabCombiner Online is divided into two main tabs:
metabCombine for pairwise disparate LC-MS alignment and batchCombine for large multi-
batch metabolomics studies. The app accepts as input .csv or .txt files for single datasets
or .rds files for combined dataset objects. For the metabCombine tab (default workflow),
the app generates customizable plots for the spline-fitted retention time model, as well
as summary information for the input and output dataset objects. A link to the app, as
well as a detailed guide to its usage and links to the R package versions on Github and
Bioconductor, can be found at https://metabcombiner.medicine.umich.edu/ (accessed on
1 January 2024).

2.10. Unknown Lipids Consortium Study
2.10.1. Study Design and Experimental Methods

We demonstrate metabCombiner on an inter-laboratory untargeted lipidomics study
conducted at four laboratories (hereafter designated as “I”, “II”, “III”, and “IV”) operating
as NIH Compound Identification Development Cores (CIDCs). The laboratories measured
the lipid profiles of multiple mammalian specimens, namely 4 pooled human plasma
samples provided by NIST and 1 commercially available lipid extract each of human
muscle, bovine heart, bovine liver, and porcine brain (Avanti Polar Lipids, Alabaster, AL,
USA). Each laboratory acquired data using their own individualized SOP for untargeted
lipidomics. Detailed descriptions of the methods used in the study were previously re-
ported [17], using different identifiers to the ones used here (A = III, B = IV, C = I, D = II).
The instruments used by the laboratories include a Shimadzu CTO-20A Nexera X2 UHPLC

https://metabcombiner.medicine.umich.edu/
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coupled to an AB Sciex 5600 TripleTOF (I) (AB Sciex, Concord, ON, Canada), a Thermo
Vanquish UPLC coupled to a Thermo Q-Exactive HF (II) (Thermo Fisher Scientific, San
Jose, CA, USA), an Agilent 1290 Infinity II coupled to an Agilent 6530 QTOF (III) (Agilent
Technologies, Inc., Santa Clara, CA USA), and a Waters—ACQUITY UPLC H-Class PLUS
System (Waters Corporation, Milford, MA, USA) coupled to a Thermo LTQ-Orbitrap Velos
(IV). Chromatographic columns used were Waters HSS T3 C18, 50 mm × 2.1 mm ID, 1.8 µm
particle diam (I), Thermo Accucore C30, 2.1 mm × 150 mm, 2.6 µm particle column (II),
Waters ACQUITY UPLC CSH C18, 2.1 mm × 100 mm, 1.7 µm particle column (III), and a
Waters CSH C18 column (3.0 mm × 150 mm, 1.7 µm particle size) (IV). For plasma samples,
various lipid extraction methods were used, namely, modified Bligh–Dyer (I), single-step
isopropanol precipitation (II), Matyash (III), and modified Folch (IV).

2.10.2. Data Processing and Metabolite Identification

Each participating laboratory performed conventional pre-processing (peak picking,
alignment across samples) for their own respective dataset. They also acquired MS/MS
spectra and identified as many lipids as possible using tandem MS library searches [17].
Laboratory I used MS-DIAL [16] for lipid identification and Multiquant (AB SCIEX, Con-
cord, ON, Canada) for quantitation. Laboratory II used Compound Discoverer (Thermo
Fisher Scientific, San Jose, CA, USA) and Laboratory III used MS-DIAL [16] for both identifi-
cation and quantitation. Laboratory IV raw files were pre-processed with the MZmine2 [15]
software with the ADAP modules [18]. The laboratories provided pre-processed and anno-
tated data tables in various formats, with no post-processing steps performed to filter the
resulting feature lists.

2.10.3. Stepwise Alignment with metabCombiner

For this analysis, peak area columns corresponding to human plasma samples were
selected for relative quantitation comparisons since they comprised the largest share of the
LC-MS data in the study (12 total sample runs) compared to other specimen types (3 runs
each). Other data columns were incorporated as ‘extra’ into the eventual aligned feature
table. RT range constraints were imposed on two feature tables (I and IV) to improve
modeling performance by eliminating chromatographic regions consisting mostly of non-
biological features. Features with missing values in more than 50% of plasma samples were
removed by default. Duplicate features (defined as two or more rows with close m/z and
RT values, representing the same compound) were highly prevalent in dataset I; wherever
detected, these rows were merged as described in Supplementary Text S1.

The feature tables provided by the laboratories were aligned to each other in a stepwise
manner using metabCombiner, with customized parameters for each pairwise operation.
First, Table 1 I and II were combined, and the resulting combined table object was aligned
to III, followed by IV. In each alignment cycle, meta-data from feature list I were selected
for comparison with the next list, thereby centering all alignments to list I features. metab-
Combiner generated the set of feature alignments, as well as a concatenated data table
from these four datasets. The script for performing the stepwise alignment can be found in
Supplementary Text S2.

2.11. Early Life Exposures in Mexico to Eevironmental Toxicants (ELEMENT)
2.11.1. Study Design and Experimental Methods

The Early Life Exposure in Mexico to Environmental Toxicants (ELEMENT) study was
founded in the early 1990s as previously described [13]. The blood samples of 402 adoles-
cent volunteers from the ELEMENT 2015 study visit were analyzed with an untargeted
metabolomics assay at the Michigan Regional Comprehensive Metabolomics Resource Core
(MRC2) [19]. Serum samples were thawed on ice prior to processing. For deproteinization,
100 µL of plasma was combined with 400 µL 1:1:1 methanol/acetone/water containing the
following internal standards: (L-(D4)Thymine, L-[15N] Anthranilic acid (each 5 µmol/L);
L-(15N)2 Tryptophan, Gibberellic acid, and L-Epibrassinolide (each 20 µmol/L)). Samples



Metabolites 2024, 14, 125 7 of 13

were vortexed and then centrifuged (10 min at 15,000× g). For RPLC-MS analysis, the super-
natant was transferred to a clean vial and dried under nitrogen gas. The dried sample was
reconstituted in 50 µL of methanol/water (50:50) containing zeatin (1 µmol/L). Samples
were analyzed using an Agilent 1290 LC/6530 qTOF MS system (Agilent Technologies, Inc.,
Santa Clara, CA, USA) using a Waters Acquity HSS T3 2.1 × 100 mm column with 1.8 µm
particle diameter (Waters Corporation, Milford, MA, USA). Mobile phase A was 100%
water and mobile phase B was 100% methanol, both with 0.1% formic acid. The gradient
was as follows: 0 min to 20 min 2% to 75% B (linear), 20 min to 22 min 75% to 98% B (linear),
followed by a 7 min re-equilibration at starting conditions. The flow rate was 0.45 mL/min
and the column temperature was 55 ◦C. Mass spectrometry was performed via electrospray
ionization with an Agilent Jetstream ion source, with full-scan mass spectra acquired over
the m/z range from 50 Da to 1500 Da in positive ion mode. Source parameters were: drying
gas temperature of 350 ◦C, drying gas flow rate of 10 L/min, nebulizer pressure of 30 psig,
sheath gas temp of 350 ◦C and flow of 11 L/min, capillary voltage of 3500 V, and internal
reference mass correction enabled.

Table 1. Inter-laboratory lipidomics study aligned-feature summary.

Positive Negative

Detected Across Four Datasets 601 215

Detected in I, II, and III 155 30

Detected in I, II, and IV 280 115

Detected in I, III, and IV 580 533

Detected in I and II 156 211

Detected in I and III 1053 398

Detected in I and IV 743 670

Detected in I only 5202 3691

II III IV II III IV

Detected Outside I 2617 22,516 17,165 1676 6132 7402

2.11.2. Data Pre-Processing

All Agilent .d files were converted to .mzML format using the MSConvert tool in
Proteowizard [20], organized into eight separate directories corresponding to each exper-
imental batch, and pre-processed with XCMS [16]. The same parameters were used for
pre-processing each of the batches. Peak picking is performed with the Centwave algo-
rithm [21], with peak width from = 3 s to 30 s, noise = 250, ppm = 20, prefilter = c(3, 1000),
snthresh = 10, integrate = 1, fitgauss = TRUE. Initial peak grouping was performed with the
density method, with bw = 15, mzwid = 0.015, and minfrac = 0.5. Retention time correction
follows, based using the loess method, with span = 0.25 and family = “symmetric.” A
second density-based grouping of features was performed with bw = 5, mzwid = 0.015, and
minfrac = 0.5. Gap filling is then applied using fillPeaks(). The peak tables were written to
separate .csv files.

2.11.3. Alignment with batchCombine

The batch-wise feature tables were loaded into R and converted to a list of metabData
objects. The “samples” field was chosen to correspond to pooled QC samples, with all
other samples designated as “extra”, with all other metabData constructor parameters kept
at their default values. A common binGap value of 0.0075 was employed for grouping
features by m/z. Anchor selection and spline-fitting parameters were kept mostly to default
values. Score calculation parameters were set to A = 70 (m/z weight), B = 35 (RT weight),
and C = 0.8 (Q weight). Table reduction parameters were set to their defaults, except for
maxRTerr = 0.3 min. All three quantitative descriptors—m/z, RT, Q—were averaged after
every step (means = TRUE). The script for performing the batchCombine operation is
provided in Supplementary Text S2, and the pre-processed batches are provided as an
example dataset within metabCombiner.
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3. Results
3.1. Aligning Multi-Laboratory Untargeted Lipidomics with metabCombiner 2.0
3.1.1. Unknown Lipids Study

Each of the four CIDC core laboratories performed untargeted LC-MS and LC-MS/MS
analyses on identical extracts using independently devised “in-house” standard operating
procedures (SOPs) typically performed for untargeted lipidomics at their respective labo-
ratories. The SOPs used to generate these datasets differed in many important analytical
parameters, including instrumentation, chromatographic columns and gradients, mass
spectrometer settings, data acquisition parameters, and data preprocessing methods, as
previously detailed [17]. The initial feature table sizes ranged from 2000 to 30,000 features,
influenced by multiple factors such as lipid extraction efficiency, separation, instrument
sensitivity, and data preprocessing workflows. Further processing by metabCombiner to
reduce highly missing and duplicate features, as well as features in the boundary (solvent
and re-equilibration) regions, yielded individual dataset feature counts of 8770 (I), 3809 (II),
24,905 (III), and 19,369 (IV) in the positive ion mode and 5863 (I), 2247 (II), 7308 (III), and
8935 (IV) in the negative ion mode. The full results for the individual data processing are
displayed in Supplementary Table S2.

3.1.2. m/z Grouping and RT Mapping Results

For all pairwise alignments, we employ a common binGap value of 0.0075 Da for
grouping features in m/z space and determining the initial set of possible pairwise align-
ments. In the positive mode, 3355, 6241, and 5711 out of 8770 processed table I features
were initially grouped by m/z with at least one unique feature from tables II, III, IV; in the
negative mode, 1828, 3589, and 3755 out of 5863 table I features were assigned groups. The
other tables’ features had similar grouping rates of 30 to 55%. Increasing the binGap value
(up to 0.02) only slightly raises the number of unique grouped features in this analysis.

Ordered pair anchor selection and RT mapping were performed using parameters
tuned to each alignment, with visual guidance from the plot method. Figure 3 illustrates
the RT mapping curves for each alignment in both ionization modes, with the pairwise
curves displayed in Supplementary Figure S1. Generally, the early portions of the gradient
are well mapped, whereas later chromatographic regions contain poorly resolved peaks
that resemble background ions. After translating RTs from data set I to each of the three
counterpart datasets, similarity scoring and table reduction steps determine the most
plausible one-to-one feature matches.
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3.1.3. Inter-Laboratory Alignment Results

Table 1 summarizes the alignment results between the four datasets. The overlaps of
dataset I with sets II, III, and IV consist of 1192, 2389, and 2204 features, respectively, in the
positive mode and 571, 1176, and 1533 features in the negative mode. In total, 3568 positive-
mode and 2207 negative-mode list I features (roughly 40% of the post-processed feature
table sizes) were aligned with at least one feature detected by the other participating
laboratories. Only 601 and 215 features were aligned across all four input tables in the
positive and negative ionization modes, respectively. These compounds had median
QI values of 0.724 (positive) and 0.881 (negative), indicating that these features mostly
represent highly abundant lipids. On the other hand, nearly 60% of processed list I features
were unique to this dataset, with no matches with features in the other lists. The full
aligned table reports can be found in Supplementary Sheet S1. Multiple factors could
explain this relatively modest overlap. The initial sizes of pre-processed feature tables
have a moderate influence, with the smallest table (II) contributing the fewest features
to the overall intersection. Many absent peaks are present in the raw data but were not
extracted by the pre-processing algorithms used to generate the datasets. In each pairwise
alignment operation, 30 to 70% of Table I features lacked m/z-matched counterparts in the
target datasets and were therefore not assigned to an m/z group. An additional 20% to
30% of dataset I features could not be aligned due to low similarity scores (<0.5) with all
potential pairwise matches. Many non-aligned features derived from noise, contaminants,
or in-source ion activation specific to one experiment. Finally, due to the complexity of
the lipidome, which contains numerous isomeric and isobaric species, the datasets contain
many peak groups within close m/z and RT distances to each other. Assigning one-to-one
feature correspondence across datasets is especially challenging for isomers, particularly
whenever an unequal number of peaks are detected between datasets. Previous studies
have reported overlaps as small as 10% for the same dataset using different pre-processing
software and parameters [22,23]. Here, different software packages were employed by
separate laboratories on data acquired under non-identical conditions.

3.1.4. Comparative Lipid Annotation Analysis

One of the aims of the inter-laboratory lipidomics study was to compare lipid anno-
tations assigned by the institutional participants. The overall annotation rates differed
between the laboratories, with laboratory II having the highest proportion of annotated
features at 20% to 30% in both ionization modes, but the lowest total number of detected
features. Other laboratories reported more features but annotated fewer than 10% of them.
Using the aligned feature table, we studied commonalities and differences in identity
assignments for putative matched features. In this analysis, lipid annotations are treated as
consistent between datasets if they match at the species level according to the shorthand
nomenclature (lipid class, followed by total carbon atoms/total double bonds) proposed
by the International Lipid Classification and Nomenclature Committee [24]. The results are
illustrated in Figure 4.
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Out of 601 positive mode features overlapped across the four lists, 92 had matching
identities, including 25 phosphatidylcholines (PCs), 10 triacylglycerides (TAGs), 18 sphin-
gomyelins (SMs), and 9 phosphatidylethanolamines (PEs). Meanwhile, 21 out of 215 com-
mon negative-mode features were assigned the same identity, 5 of which were PEs and 6
of which were phosphatidylinositols (PIs). Among the deuterium-labeled internal stan-
dards included by each laboratory, 6 were annotated and aligned across all four laboratory
datasets in the positive mode, and 7 were this way in the negative mode. A total of 492 and
339 identified Table I features in the positive and negative modes were aligned to features
in at least one other laboratory dataset; of these, 386 and 166 had matching identities in the
other set(s). Most of the other aligned and annotated features were matched to unannotated
compounds. Few mismatches were observed between the aligned features, with the most
common stemming from negative-mode adducts labeled as [M+COOH]− in dataset II vs.
[M+CH3COO]− in dataset I, thus differing by a single carbon. In the positive mode, there
were 18 mismatches, mostly affecting annotations of PCs and PEs. As extensive validation
of these annotations was not performed by each laboratory, metabCombiner alignments
can serve as a secondary check to determine the concordance between feature annotations,
as well as potential errors.

3.2. Alignment of the Multi-Batch ELEMENT Study with batchCombine

We also demonstrate batchCombine on metabolomics data from ELEMENT, a well-
characterized birth-cohort study that collected fasting serum from 402 Mexico City adoles-
cents [13,19]. Samples were partitioned into eight batches, each composed of roughly fifty
subject samples and nine pooled QCs. Raw LC-MS files were organized into their respective
batches and separately pre-processed using XCMS [14], yielding 11,000 to 14,000 features
per table. Each table was converted to metabData format, then aligned with batchCom-
bine. The resulting batch-merged table contains 23,700 aligned feature rows in total;
of these, 6493 were detected in all 8 batches, whereas 5453 were unique to one batch.
Supplementary Sheet S2 illustrates a batch-aligned table output of batchCombine. The
columns consist of reported feature meta-data for all eight experimental batches, including
the m/z, RT, and Q values. These are useful for analyzing systematic and random drift in
chromatographic and spectrometric measurements among the batches. Using the standard
deviation of batch RTs (σrt) as a diagnostic, more than 75% of features found in two or more
batches exhibited modest-to-no variation (σrt < 0.03 min), whereas 5% to 10% of features
exhibited more significant drifts between batches (σrt > 0.05 min). The most significant
variation was found near the end of the gradient (16–20 min) and the tail chromatographic
region (26 min to 30 min), as illustrated in Figure 5A below.

Two examples of aligned features that exhibited significant RT variation are depicted
in Figure 5B,C. Figure 5B shows three isomers detected across all eight batches, with
the measured m/z = 332.332 eluting between RT = 19.2 min and 20.3 min. A major
chromatographic shift was observed for the three isomers in batch 4, with only minor
variation detected in the remaining batches. In Figure 5C, a feature with m/z = 650.6453
exhibits gradual drifting from 29.5 min in the first three batches to 28.9 min in the last
batch. Conventional alignment approaches perform poorly, with significant RT drifting
exemplified here, assigning peaks arising from the same analyte as distinct entities. Errors
like these often go undetected since most programs report a single m/z and RT value
for each feature. Various computational multi-batch alignment tools perform post hoc
alignment corrections of preprocessed XCMS data, using the presence or absence of peaks in
at least one batch as a diagnostic criterion [6,8]. By contrast, the batchCombine approach is
to perform within-batch alignments as a step towards between-batch LC-MS data merging,
similar to the work of Liu et al. [7] This process is flexible and independent of pre-processing
software, though it currently does not allow for “gap-filling” following alignment.



Metabolites 2024, 14, 125 11 of 13Metabolites 2024, 14, x FOR PEER REVIEW 11 of 14 
 

 

 

Figure 5. Inter-batch RT drifts in the ELEMENT study. (A) Boxplot of reported batch RT standard 

deviations across discrete chromatographic regions. (B) EIC of three similar-mass (m/z = 332.332) 

compounds, with a random shift observed in batch 4. (C) RT drifting of one compound (m/z = 

650.6453) from batch 1 (29.4 min) to batch 8 (28.9 min). 

Two examples of aligned features that exhibited significant RT variation are depicted 

in Figure 5B,C. Figure 5B shows three isomers detected across all eight batches, with the 

measured m/z = 332.332 eluting between RT = 19.2 min and 20.3 min. A major chromato-

graphic shift was observed for the three isomers in batch 4, with only minor variation 

detected in the remaining batches. In Figure 5C, a feature with m/z = 650.6453 exhibits 

gradual drifting from 29.5 min in the first three batches to 28.9 min in the last batch. Con-

ventional alignment approaches perform poorly, with significant RT drifting exemplified 

here, assigning peaks arising from the same analyte as distinct entities. Errors like these 

often go undetected since most programs report a single m/z and RT value for each fea-

ture. Various computational multi-batch alignment tools perform post hoc alignment cor-

rections of preprocessed XCMS data, using the presence or absence of peaks in at least one 

batch as a diagnostic criterion [6,8]. By contrast, the batchCombine approach is to perform 

within-batch alignments as a step towards between-batch LC-MS data merging, similar to 

the work of Liu et al. [7] This process is flexible and independent of pre-processing soft-

ware, though it currently does not allow for “gap-filling” following alignment. 

4. Discussion 

metabCombiner 2.0 expands upon the original software while overcoming many of 

its limitations. Many additional improvements are being considered for the future devel-

opment of this software. Though not observed in any of the studies presented here, sys-

tematic m/z drift has been reported to occur between datasets generated by different mass 

spectrometers [11]. Modules for visualizing and correcting drift across the range of meas-

ured m/z values will be implemented as a remedy for this issue. As illustrated in the inter-

laboratory lipidomics study feature-alignment example, metabCombiner determines the 

overlaps of a chosen primary feature list with multiple secondary lists (all-to-one align-

ment), but leaves out intersections for features that are missing in the primary dataset (all-

to-all alignment). The ability to incorporate features present in all datasets represents a 

major area of improvement for this tool. One potential solution is to perform an imputa-

tion procedure for combined dataset inputs, whereby quantitative descriptors (m/z, RT, 

Q) are projected onto a common reference. As this would potentially add thousands of 

entities to the feature list, multi-dataset alignment tasks are likely to grow in complexity. 

Figure 5. Inter-batch RT drifts in the ELEMENT study. (A) Boxplot of reported batch RT standard de-
viations across discrete chromatographic regions. (B) EIC of three similar-mass (m/z = 332.332) com-
pounds, with a random shift observed in batch 4. (C) RT drifting of one compound (m/z = 650.6453)
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4. Discussion

metabCombiner 2.0 expands upon the original software while overcoming many
of its limitations. Many additional improvements are being considered for the future
development of this software. Though not observed in any of the studies presented here,
systematic m/z drift has been reported to occur between datasets generated by different
mass spectrometers [11]. Modules for visualizing and correcting drift across the range of
measured m/z values will be implemented as a remedy for this issue. As illustrated in the
inter-laboratory lipidomics study feature-alignment example, metabCombiner determines
the overlaps of a chosen primary feature list with multiple secondary lists (all-to-one
alignment), but leaves out intersections for features that are missing in the primary dataset
(all-to-all alignment). The ability to incorporate features present in all datasets represents a
major area of improvement for this tool. One potential solution is to perform an imputation
procedure for combined dataset inputs, whereby quantitative descriptors (m/z, RT, Q) are
projected onto a common reference. As this would potentially add thousands of entities
to the feature list, multi-dataset alignment tasks are likely to grow in complexity. Steps
to mitigate this, such as individual feature table post-processing (e.g., false-positive peak
detection), should be implemented whenever possible. Finally, RT mapping between
datasets remains the most challenging step towards the automation of the metabCombiner
workflow due to numerous parameters (range constraints, anchor selection, and spline
fitting) affecting the resulting fit. New functionality for optimization and diagnosing poor
fits is a major priority for the future development of this software.

5. Conclusions

This manuscript outlines upgrades to metabCombiner with the aim of extending
nontraditional LC-MS alignment methods to combine multiple datasets or experimental
batches. While the process is still based on a pairwise dataset-merging operation, the ability
to perform the stepwise merging of multiple datasets represents a major improvement on
the original capabilities of the software and opens new doors to exploring relationships
between disparately acquired metabolomics data.
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curves, Sheet S1: Inter-laboratory lipidomics study alignment results, Sheet S2: ELEMENT study
multi-batch alignment results.

Author Contributions: Conceptualization, H.H., C.R.E. and A.K.; funding acquisition, A.K., C.R.E.,
O.F., D.A.G. and T.O.M.; methodology, H.H. and A.K.; software, H.H.; supervision, A.K. and C.R.E.;
visualization, H.H.; investigation, J.L.M., T.S., F.M.F. and K.R.R.; data curation, C.R.E. and T.S.;
writing—original draft, H.H.; writing—review and editing, H.H., C.R.E., A.K. and J.L.M.; project
administration (unknown lipids), C.R.E., O.F., D.A.G. and T.O.M.; project administration (ELEMENT),
J.L.M. and K.E.P. All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported by NIH Common Fund Grant U2CES03164 to C.R.E. and A.K.,
U2CES030158 to O.F., U2CES030170 to T.O.M.

Institutional Review Board Statement: Not Applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: The raw LC-MS data for the unknown lipid study can be found in the
Metabolomics Workbench with the dataset identifier ST002951. Links to the source code for the R
package as well as the online version can be found at https://metabcombiner.medicine.umich.edu/
(accessed on 1 January 2024).

Acknowledgments: We thank the participants of the Unknown Lipids Working Group of the NIH
Common Funds Metabolomics Consortium for providing the interlaboratory lipidomics data used
in this study. We thank the staff of the University of Michigan Biomedical Research Core Facilities
Metabolomics Core for their contributions to the generation of metabolomics data. Finally, we thank
Martha María Téllez Rojo for her work and leadership in the ELEMENT study.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Schrimpe-Rutledge, A.C.; Codreanu, S.G.; Sherrod, S.D.; McLean, J.A. Untargeted Metabolomics Strategies—Challenges and

Emerging Directions. J. Am. Soc. Mass. Spectrom. 2016, 27, 1897–1905. [CrossRef]
2. Smith, R.; Ventura, D.; Prince, J.T. LC-MS Alignment in Theory and Practice: A Comprehensive Algorithmic Review. Brief.

Bioinform. 2015, 16, 104–117. [CrossRef] [PubMed]
3. Boswell, P.G.; Schellenberg, J.R.; Carr, P.W.; Cohen, J.D.; Hegeman, A.D. A Study on Retention “Projection” as a Supplementary

Means for Compound Identification by Liquid Chromatography-Mass Spectrometry Capable of Predicting Retention with
Different Gradients, Flow Rates, and Instruments. J. Chromatogr. A 2011, 1218, 6732–6741. [CrossRef] [PubMed]

4. Christin, C.; Smilde, A.K.; Hoefsloot, H.C.J.; Suits, F.; Bischoff, R.; Horvatovich, P.L. Optimized Time Alignment Algorithm for
LC−MS Data: Correlation Optimized Warping Using Component Detection Algorithm-Selected Mass Chromatograms. Anal.
Chem. 2008, 80, 7012–7021. [CrossRef] [PubMed]

5. Abate-Pella, D.; Freund, D.M.; Ma, Y.; Simón-Manso, Y.; Hollender, J.; Broeckling, C.D.; Huhman, D.V.; Krokhin, O.V.; Stoll, D.R.;
Hegeman, A.D.; et al. Retention Projection Enables Accurate Calculation of Liquid Chromatographic Retention Times across Labs
and Methods. J. Chromatogr. A 2015, 1412, 43–51. [CrossRef] [PubMed]

6. Brunius, C.; Shi, L.; Landberg, R. Large-Scale Untargeted LC-MS Metabolomics Data Correction Using between-Batch Feature
Alignment and Cluster-Based within-Batch Signal Intensity Drift Correction. Metabolomics 2016, 12, 173. [CrossRef]

7. Liu, Q.; Walker, D.; Uppal, K.; Liu, Z.; Ma, C.; Tran, V.; Li, S.; Jones, D.P.; Yu, T. Addressing the Batch Effect Issue for LC/MS
Metabolomics Data in Data Preprocessing. Sci. Rep. 2020, 10, 13856. [CrossRef] [PubMed]

8. Wu, C.-T.; Wang, Y.; Wang, Y.; Ebbels, T.; Karaman, I.; Graça, G.; Pinto, R.; Herrington, D.M.; Wang, Y.; Yu, G. Targeted
Realignment of LC-MS Profiles by Neighbor-Wise Compound-Specific Graphical Time Warping with Misalignment Detection.
Bioinformatics 2020, 36, 2862–2871. [CrossRef]

9. Hsu, Y.-H.H.; Churchhouse, C.; Pers, T.H.; Mercader, J.M.; Metspalu, A.; Fischer, K.; Fortney, K.; Morgen, E.K.; Gonzalez, C.;
Gonzalez, M.E.; et al. PAIRUP-MS: Pathway Analysis and Imputation to Relate Unknowns in Profiles from Mass Spectrometry-
Based Metabolite Data. PLoS Comput. Biol. 2019, 15, e1006734. [CrossRef]

10. Mak, T.D.; Goudarzi, M.; Laiakis, E.C.; Stein, S.E. Disparate Metabolomics Data Reassembler: A Novel Algorithm for Agglomerat-
ing Incongruent LC-MS Metabolomics Datasets. Anal. Chem. 2020, 92, 5231–5239. [CrossRef]

https://www.mdpi.com/article/10.3390/metabo14020125/s1
https://www.mdpi.com/article/10.3390/metabo14020125/s1
https://metabcombiner.medicine.umich.edu/
https://doi.org/10.1007/s13361-016-1469-y
https://doi.org/10.1093/bib/bbt080
https://www.ncbi.nlm.nih.gov/pubmed/24273217
https://doi.org/10.1016/j.chroma.2011.07.105
https://www.ncbi.nlm.nih.gov/pubmed/21862024
https://doi.org/10.1021/ac800920h
https://www.ncbi.nlm.nih.gov/pubmed/18715018
https://doi.org/10.1016/j.chroma.2015.07.108
https://www.ncbi.nlm.nih.gov/pubmed/26292625
https://doi.org/10.1007/s11306-016-1124-4
https://doi.org/10.1038/s41598-020-70850-0
https://www.ncbi.nlm.nih.gov/pubmed/32807888
https://doi.org/10.1093/bioinformatics/btaa037
https://doi.org/10.1371/journal.pcbi.1006734
https://doi.org/10.1021/acs.analchem.9b05763


Metabolites 2024, 14, 125 13 of 13

11. Climaco Pinto, R.; Karaman, I.; Lewis, M.R.; Hällqvist, J.; Kaluarachchi, M.; Graça, G.; Chekmeneva, E.; Durainayagam, B.;
Ghanbari, M.; Ikram, M.A.; et al. Finding Correspondence between Metabolomic Features in Untargeted Liquid Chromatography–
Mass Spectrometry Metabolomics Datasets. Anal. Chem. 2022, 94, 5493–5503. [CrossRef]

12. Habra, H.; Kachman, M.; Bullock, K.; Clish, C.; Evans, C.R.; Karnovsky, A. metabCombiner: Paired Untargeted LC-HRMS
Metabolomics Feature Matching and Concatenation of Disparately Acquired Data Sets. Anal. Chem. 2021, 93, 5028–5036.
[CrossRef] [PubMed]

13. Perng, W.; Tamayo-Ortiz, M.; Tang, L.; Sánchez, B.N.; Cantoral, A.; Meeker, J.D.; Dolinoy, D.C.; Roberts, E.F.; Martinez-Mier, E.A.;
Lamadrid-Figueroa, H.; et al. Early Life Exposure in Mexico to ENvironmental Toxicants (ELEMENT) Project. BMJ Open 2019, 9,
e030427. [CrossRef] [PubMed]

14. Smith, C.A.; Want, E.J.; O’Maille, G.; Abagyan, R.; Siuzdak, G. XCMS: Processing Mass Spectrometry Data for Metabolite Profiling
Using Nonlinear Peak Alignment, Matching, and Identification. Anal. Chem. 2006, 78, 779–787. [CrossRef] [PubMed]
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