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Isoform-resolved transcriptome of the
human preimplantation embryo

Denis Torre 1,14, Nancy J. Francoeur 2,14, Yael Kalma3,14, Ilana Gross Carmel3,
Betsaida S. Melo1,4, Gintaras Deikus1,4,5, Kimaada Allette1, Ron Flohr6,7,
Maya Fridrikh1,4,5, Konstantinos Vlachos8, Kent Madrid1,4,5, Hardik Shah1,4,5,
Ying-Chih Wang1,4,5, Shwetha H. Sridhar1,4,5, Melissa L. Smith9, Efrat Eliyahu1,5,
Foad Azem3, Hadar Amir3, Yoav Mayshar10, Ivan Marazzi11,
Ernesto Guccione 12,13, Eric Schadt 1, Dalit Ben-Yosef3,6,7,15 &
Robert Sebra 1,4,5,13,15

Human preimplantation development involves extensive remodeling of RNA
expression and splicing. However, its transcriptome has been compiled using
short-read sequencing data, which fails to capture most full-length mRNAs.
Here, we generate an isoform-resolved transcriptome of early human devel-
opment by performing long- and short-read RNA sequencing on 73 embryos
spanning the zygote to blastocyst stages. We identify 110,212 unannotated
isoforms transcribed from known genes, including highly conserved protein-
coding loci and key developmental regulators. We further identify 17,964
isoforms from 5,239 unannotated genes, which are largely non-coding, pri-
mate-specific, and highly associated with transposable elements. These iso-
forms are widely supported by the integration of published multi-omics
datasets, including single-cell 8CLC and blastoid studies. Alternative splicing
and gene co-expression network analyses further reveal that embryonic gen-
ome activation is associated with splicing disruption and transient upregula-
tion of gene modules. Together, these findings show that the human embryo
transcriptome is far more complex than currently known, and will act as a
valuable resource to empower future studies exploring development.

During fertilization the human sperm and egg unite to form a primary
totipotent cell, which undergoes sequential cleavages followed by
lineage differentiation into >200 different cell types comprising the
tissues and organs of the developing fetus. Occurring over roughly 7
days, these early phases of preimplantation development are regu-
lated by extensive remodeling of gene expression, underlying one of
the most complex and dynamic stages of development, and are con-
sidered one of the most fundamental paradigms in cell biology.
Embryonic, pluripotent stem cells and organoids are used to mimic
early stages of human development in vitro1–3; however, these are an
approximation of the true molecular mechanisms occurring during
development. Our understanding of human embryogenesis is largely

inferred through developmental studies of model organisms such as
zebrafish, mouse and primates4–9. Although this process is highly
evolutionarily conserved, there are human-specific processes that
have yet to be described due to the difficulty in studying human
embryogenesis.

The advent of high-throughput next generation sequencing (NGS)
has expanded our knowledge of the human transcriptome, facilitating
gene expression profiling on amassive scale. However, current human
gene annotation databases such as NCBI RefSeq10, GENCODE11 and
Ensembl12 are largely assembled using data derived from short-read
RNA-sequencing (RNA-Seq) technologies. Due to limited read length,
such technologies are inherently unable to capture the contiguous
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sequence of most messenger RNAs (mRNAs)13, often resulting in
fragmented, incomplete, or incorrectly compressed isoform annota-
tions. The development of single-molecule real-time sequencing
(SMRT-seq) has overcome such limitations through sequencing full-
length mRNA molecules up to 25 kb14, eliminating the need for tran-
script assembly in silico. SMRT-seq has been applied to discover tens
of thousands of previously unannotated isoforms in a variety of spe-
cies including humans, mice, other vertebrates, invertebrates and
plants13,15–19.Many of these studies integrate additional short-readRNA-
Seq data to improve the power of isoform expression quantification20.
This approach was recently successfully applied to study the mouse
preimplantation embryo, leading to the identification of thousands of
unannotated isoforms transcribed from both known and novel gene
loci15. However, human preimplantation embryos have been char-
acterized using short read data from a limited number of studies to
date21–27, motivating the need for an isoform-resolved approach to
comprehensively profile RNA expression and splicing during these
critical stages of development. Indeed, alternative splicing (AS) has
been demonstrated to be critical for proper oogenesis and pre-
implantation embryonic development28,29. Similarly, in vitro studies
demonstrated transcriptome-wide AS dynamics that are key in the
establishment and exit from pluripotency30–33 reflecting on the
importance of splicing in the inner cell mass (ICM) of blastocysts.

Combining full-length isoformstructures uncoveredby SMRT-seq
with the high read depth of RNA-Seq, we present the first isoform-
resolved catalog of transcriptional changes across early time points in
human embryogenesis using high quality in vitro fertilization (IVF)
embryos spanning six preimplantation stages from the zygote to the
blastocyst. These embryos were donated for research by patients after
completing their family fertility plan and following informed consent.
We subsequently leveraged the data to better characterize isoform
open reading frames (ORFs), repetitive element content, evolutionary
conservation; validated these isoforms by integrating publishedmulti-
omics datasets generated from human and non-human primate
embryos, in-vitro human blastoids and 8-cell like cells (8CLCs), as well
as fetal and adult tissues; and further explored dynamics of differential
gene expression and alternative splicing over preimplantation devel-
opmental stage transitions. Our data reveals 110,212 unannotated
alternative splice variants of known genes and 17,964 unannotated
isoforms transcribed from 5239 novel gene loci, which suggests that
the human transcriptome is indeed far more complex and dynamic
than current annotations indicate, and will thus serve as a valuable
resource for developmental studies to further explore the role of cri-
tical genes in development and disease.

Results
Long-read RNA-Seq identifies unannotated isoforms in human
embryos
We generated RNA sequencing data from 73 human embryos across
six pre-implantation stages: 13 zygotes (1C), 13 2-cell (2C) embryos, 16
4-cell (4C) embryos, 15 8-cell (8C) embryos, 3 morulae and 13 blas-
tocysts (Fig. 1A, Supplementary Data 1). mRNA was extracted from
each embryo, converted to cDNA, and sequenced using high-
throughput Illumina RNA-Seq and SMRT-seq, generating a total of
4.3 × 109 short reads and 10,139,308 full-length non-concatemer
(FLNC) long reads with an average length of 1332 bp (Supplementary
Fig. 1A–C).

The long and short RNA-Seq reads were then cohesively analyzed
to generate a reference transcriptome using an integrative analysis
pipeline with multiple state-of-the-art computational tools (Supple-
mentary Fig. 1D–F, see Methods). Isoforms were classified into five
structural categories based on their similarity to known isoform
annotations (Fig. 1B): “known”, if the isoform is an exact match of a
known transcript model; “novel in catalog” (NIC), if the isoform con-
sists of a novel combination of known splice donors and acceptors;

“novel not in catalog” (NNC), if the isoform contains at least one novel
splice donor or acceptor; “antisense”, if the isoform is transcribed from
a novel gene which overlaps an existing gene but is oriented in the
opposite direction (novel antisense gene); and “intergenic”, if the
isoform is transcribed from a novel gene which does not overlap with
any known transcript model (novel intergenic gene). Two additional
isoform classes were also defined (incomplete splice match, if the
isoform is a partial match of a known transcript model, and novel
mono-exonic isoforms), but not included in the final transcriptome as
these are often artifacts of sequencing and/or products of transcript
degradation34. We identified a total of 213,873 isoforms, supported by
junction-spanning short RNA-Seq reads, which are either known or
newly identified from the SMRT-seq data. Most of these isoforms are
transcribed from known genes: 85,697 (40.1%) were classified as
known, 30,988 (14.5%) as NIC, and 79,224 (37.0%) as NNC (Fig. 1C).
Another 17,964 isoforms were identified from unannotated loci: 9457
isoforms (4.4%) transcribed from 2466 novel antisense genes, and
8507 (4.0%) from 2773 novel intergenic genes. We found that known
genes transcribe an average of 4.6 known and 10.2 novel isoforms; by
contrast, novel antisense and intergenic genes displayed lower avera-
ges of 3.8 and 3.1 isoforms respectively (Supplementary Fig. 1G). NIC
isoforms have an average of 8.6 exons, the highest of all isoform
classes, followed by 7 for NNC and 6.5 for known isoforms; while novel
antisense and intergenic isoforms had averages of 3.5 and 3.1 exons
respectively (Supplementary Fig. 1H). Over 99% of isoforms across all
classes exclusively use canonical splice donor-acceptor sites; the only
exception being NNC, 3% of which contain at least one noncanonical
splice junction, potentially arising from yet uncharacterized atypical
splicingmechanisms35 (Supplementary Fig. 1I). Thus, our data suggests
that the human genome is heavily transcribed during early stages of
development, with a much higher splicing diversity than currently
annotated.

Characterizing biological properties of novel isoforms
To further characterize the novel isoforms, we predicted multiple
biological properties from their nucleotide sequence. First, we
assessed the protein coding potential of each isoform using CPAT36.
Coding probability was positively associated with isoform length,
with isoforms transcribed from known genes predicted to have
significantly higher coding probability than ones transcribed from
novel genes (see Fig. 1D and Supplementary Fig. 2A, p < 2.2 × 10−16,
rho = 0.54, Spearman’s correlation coefficient). Interestingly, NIC
isoforms were predicted to have the highest coding probability
among isoform classes, followed by known, NNC, antisense and
intergenic. Indeed, these isoforms have a longer median length, a
higher number of exons, and are transcribed from genes which are
significantly more protein-coding than others (Supplementary
Fig. 2B). Despite being transcribed by a highly overlapping set of
genes, NNC isoforms are instead slightly more associated with
genes with lower coding probability (Supplementary Fig. 2C), sug-
gesting that these loci may contain a large amount of previously
uncharacterized splice sites in early embryonic stages. Next, we
applied PfamScan37 to identify protein domains contained within
the ORF sequences of the predicted coding isoforms.Most isoforms
transcribed from known genes were predicted to generate proteins
with at least one known domain (Fig. 1E), the likeliest class being NIC
(63.4%), followed by known (53.9%) and NNC (49%). On the con-
trary, only 0.8% antisense isoforms (n = 78) and 0.5% intergenic
isoforms (n = 43) were predicted to do so. Notably, the latter are
significantly overrepresented for reverse transcriptase (RVT 1), viral
coat polyprotein (TLV coat) and transposase domains, which med-
iate retrotransposon replication and insertion, suggesting that
these elements may contribute to the generation and function of
novel isoforms. Indeed, transposable elements (TEs) play a funda-
mental role in regulating cell development and differentiation,

Article https://doi.org/10.1038/s41467-023-42558-y

Nature Communications |         (2023) 14:6902 2



Number of isoforms

A B

C D

Intergenic

Antisense

Novel not in catalog

Novel in catalog

Known isoform

Percent isoforms

Protein coding,
≥1 domain

Protein coding,
no domains

Non-codingE

0% 25% 50% 75% 100%

F

Is
of

or
m

 c
la

ss

Known reference transcript

No overlap with known transcripts

Isoform class
Gene 

novelty
Isoform 
novelty Splice sites

Known Known Known Known
(full match)

Novel in 
catalog (NIC) Known Novel Known

(novel combination)

Novel not in 
catalog (NNC) Known Novel 1 novel

Antisense Novel Novel Novel

Intergenic Novel Novel Novel

1 cell 2 cell 4 cell 8 cell Morula Blastocyst

16-18h post
fertilization (n=13)

day 1.5
(n=13)

day 2
(n=16)

day 3
(n=15)

days 4-5
(n=3)

days 5-6
(n=13)

Extract RNA

Long-read sequencing (PacBio) Short-read sequencing (Illumina)

Generate novel reference transcriptome

Investigate isoform
biological properties

Validate using publicly 
available data

Quantify expression
and splicing

Intergenic

Antisense

Novel not in catalog

Novel in catalog

Known isoform

Protein-coding

Non-coding

Is
of

or
m

 c
la

ss

Is
of

or
m

 c
la

ss

0      25,000  50,000   75,000

Intergenic

Antisense

Novel not in catalog

Known isoform

Novel in catalog

n=8,507

n=9,457

n=79,224

n=85,697

n=30,988

0

0.25

0.50

0.75

1

300 1,000 3,000 10,000 30,000
Isoform length (bp)

C
od

in
g 

pr
ob

ab
ili

ty
 (

C
PA

T
)

Isoform class

Known isoform

Novel in catalog

Novel not in catalog

Antisense

Intergenic

Protein-coding
threshold

0% 25% 50% 75% 100%

****
**

****
****

****

Isoform repeat content

G Repeat-derived promoter

0% 25% 50% 75%

Intergenic

Antisense

Novel not in catalog

Novel in catalog

Known isoform

Percent isoforms

LTR

LINE

SINE

Other

>1 repeat class

Is
of

or
m

 c
la

ss

Internal repeat inclusion Repeat-derived terminator

Non-repetitive
sequence
Repetitive
sequence

0% 25% 50% 75% 0% 25% 50% 75%

H I

0.2

0.4

0.6

C
on

se
rv

at
io

n 
sc

or
e 

(P
ha

st
C

on
s)

Background

Known isoform

Novel in catalog

Novel not in catalog

Antisense

Intergenic

−3Kb TSS TES +3Kb

Hominids
Old World
monkeys

New World
monkeys Prosimians Rodents Sauropsids

Amphibians
and fish

Known isoform

Novel in catalog

Novel not in catalog

Antisense

Intergenic

30Mya 43Mya 74Mya
90Mya 320Mya

350Mya 415Mya

Hum
an

Chim
p

Bon
ob

o

Gor
illa

Ora
ng

ut
an

Gibb
on

Cra
b−

ea
tin

g 
m

ac
aq

ue

Rhe
su

s

Bab
oo

n

Gre
en

 M
on

ke
y

M
ar

m
os

et

Squ
irr

el 
m

on
ke

y

M
ou

se
 le

m
ur

M
ala

ya
n 

fly
ing

 le
m

ur

Bus
hb

ab
y

Rab
bit

M
ou

se Rat

Gold
en

 e
ag

le

Chic
ke

n

Liz
ar

d

X. t
ro

pic
ali

s

Stic
kle

ba
ck

Zeb
ra

fis
h

0%25%50%75%100%

% BLAST hits

Fig. 1 | Generation and functional characterization of the isoform-resolved
human embryo transcriptome. A Overview of the embryonic developmental
stages and the sequencing approach (illustration by Jill Gregory). B Schematic
representation of the isoform structural classes defined from long-read RNA-Seq
data. C Number of isoforms in the novel human embryo transcriptome for each
structural class. D Scatter plot displaying isoform length and predicted coding
probability for each isoform, colored by isoform class. Residual boxplots display
the distributions of isoform length and coding probability along the X and Y axes
respectively.EBarplot displaying the percentageof isoforms ineach classbasedon
their predicted protein-coding status, and the presence of known protein domains
in the encoded peptide. F Box plots displaying the relative repeat content of iso-
forms in each structural class, grouped by predicted protein-coding status. For
known isoforms, n = 59,517 protein-coding and n = 26,180 non-coding; novel in
catalog, n = 24,018 protein-coding and n = 6970 non-coding; novel not in catalog,
n = 49,826 protein-coding and n = 29,398 non-coding; antisense, n = 550 protein-
coding and n = 8907 non-coding; intergenic, n = 289 protein-coding and n = 8218

non-coding. p < 2x1016 for known, novel in catalog, novel not in catalong and anti-
sense isoforms, p =0.0062 for intergenic isoforms. P-values were calculated using
unpaired two-sided Wilcoxon Rank Sum test, Benjamini-Hochberg correction.
G Bar plots displaying the relative abundance of repetitive elements acting as
alternative promoters, internal exon elements, or terminators for each isoform
class, grouped by repeat class. H Average base-wise conservation scores (Phast-
Cons100way) across exons and ±3 kb of each isoform, grouped by isoform class.
I Evolutionary conservation of transcripts acrossmultiple vertebrates, in relation to
the phylogenetic tree. The heatmap displays the percentage of conserved isoforms
in each structural class compared to different vertebrate genomes, determined
using BLAST. The phylogenetic tree displays evolutionary divergence of selected
vertebrate groups from hominids. For the box plot in F, box limits extend from the
25th to 75th percentile, while the middle line represents the median. Whiskers
extend to the largest value no further than 1.5 times the inter-quartile range (IQR)
from each box hinge. Points beyond the whiskers are outliers. Source data are
provided as a Source Data file.
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initiating stage-specific transcription and providing promoter
modules to both embryonic and somatic tissues38–41.

To further investigate the presence of TEs in our transcriptome,
we applied RepeatMasker42 to scan the isoforms for repetitive ele-
ments. Known isoforms are the least repetitive class, with most iso-
forms containing negligible repetitive content as a fraction of their
total length (Fig. 1F). However, repetitive elements were significantly
more included in non-coding isoforms than in their protein-coding
counterparts, consistent with their known association with long non-
coding RNA (lncRNA) transcription43. Similar patterns were observed
across all novel isoform categories, but with significantly higher levels
of repetitive element inclusion, especially for non-coding intergenic
isoforms. To elucidate the biological role of these widespread inte-
gration events, we categorized them by repetitive element class and
the relative location of integration within the isoform (Fig. 1G). Most
repeat-derived promoters are driven by TEs containing long terminal
repeats (LTRs). LTRs serve as promoters for over a quarter of antisense
and intergenic isoforms (n = 2267 and 2525 respectively), as well as to
526 known, 947 NIC, and 6086 NNC isoforms. These include HERVH-
int, THE1D and MLT2A1, which have been previously shown to form
chimeric isoforms with known genes39,44,45. Repetitive elements are
abundantly integrated within isoforms across all categories, pre-
dominantly among novel antisense and intergenic classes, where they
may alter RNA processing mechanisms or contribute binding sites for
RNA-binding proteins46. Repeat-derived transcriptional end sites
(TESs) are the least abundant category, most commonly occurring in
novel antisense and intergenic genes where LTRs, SINEs and LINEs
account for roughly 11% of terminator sequences. These results show
widespread evidence of repetitive element integration within iso-
forms, which has thus far been lacking in current annotations, likely
due to the technical limitations of short-read sequencing.

We next investigated isoform evolutionary conservation at the
sequence level, which may be used to estimate divergence time of
novel transcripts, and to prioritize elements with putative conserved
biological function across species (though it is important to note that a
lack of conservation does not imply lack of function47,48).Wemeasured
isoform conservation using PhastCons49, which estimates base-wise
conservation frommultiple sequence alignment of the humangenome
against 99 other vertebrate species (Fig. 1H). Novel antisense and
intergenic isoforms displayed the lowest evolutionary conservation
scores of all classes, but were still significantly more conserved than
intergenic background (Supplementary Fig. 2D). By contrast, isoforms
transcribed from known genes displayed significantly higher con-
servation scores, with NIC being themost conserved category. Indeed,
these isoforms are disproportionately transcribed from highly evolu-
tionarily conserved genes, and their sequences lie within annotated
splice sites that are more highly conserved than their NNC counter-
parts (Supplementary Fig. 2E–H). All isoform classes also displayed
peaks of evolutionary conservation at their TESs, indicating the pre-
sence of conserved DNA elements responsible for driving transcrip-
tional termination50; indeed, poly(A)motifswere identified close to the
3’ end for isoforms across all categories (Supplementary Fig. 2I, J).
Conservation peaks were also observed at the TSSs of isoforms tran-
scribed from known genes but less at novel genes, likely because the
TSSs of the latter often lie within human-specific repetitive elements.
To further assess conservation at the species level, we scanned isoform
sequences against multiple vertebrate genomes using BLAST51 (Fig. 1I).
Predictably, over 99% of all isoforms were classified as hits (>100 bp
sequence match with >95% identity) in chimp and bonobo, two of the
most closely related primates to humans. However, in species with
greater evolutionary distance to humans, the conservation of isoforms
transcribed from novel genes decreased more rapidly compared to
isoforms transcribed from known genes. In the macaque, only 47.6%
antisense and 42.8% intergenic isoforms are classified as hits, com-
pared to 85.3% of known isoforms; in the marmoset, only 12.1%

antisense and 9.7% intergenic isoforms are classified as hits, compared
to 65.5% of known. In the mouse, one of the most commonmodels to
study mammalian embryogenesis, only 0.3% antisense and 0.1%
intergenic isoforms were classified as hits, compared to 10.4% of
known isoforms. While the number of known isoforms concordant
with themouse genome rapidly increases upon lowering theminimum
sequence identity threshold, the number of novel antisense and
intergenic isoforms in common remains consistently low, further
supporting the novelty of these transcriptional events (Supplementary
Fig. 2K). Thus, these results suggest that common rodent models for
developmental studies are likely unable to recapitulate significant
components of primate embryonic development, particularly for non-
coding transcripts. Nonetheless, it is also possible that some of these
isoforms represent by-products of transcriptional events occurring
during early embryonic development. Additionally, secondary struc-
tures could also impart evolutionary conserved functions that are not
apparent when considering primary sequence alone. Full results for
the protein-coding probability, protein domain, repeat element con-
tent and evolutionary conservation analyses for each isoform can be
found at Supplementary Data 2–5. Results are also available in the
accompanying resource website and browser, https://denis-torre.
github.io/embryo-transcriptome/, which allows users to interactively
explore the splicing patterns and predicted biological function for
every isoform in the isoform-resolved reference transcriptome, and
freely download all relevant data files for further reanalysis.

Multi-omic validation of long-read isoforms
To confirm the validity of the isoforms reported herein, we integrated
multiple datasets from independently published transcriptomic and
epigenomic studies conducted on early human embryos (Fig. 2A,
Supplementary Data 6). The transcriptomic datasets were processed
to validate the expression of isoforms, while the epigenomic datasets
were processed to assess chromatin state at unannotated TSSs
throughout development.

First, we integrated three short-read RNA-Seq studies profiling
human embryos at comparable timepoints (Yan et al.21, Xue et al.23, Liu
et al.22) and investigated the number of isoforms across classes that are
fully supported by spliced short reads across all junctions. Most iso-
forms in the updated transcriptome are supported by short RNA-Seq
reads across all three published transcriptomic datasets analyzed:
74.2% known isoforms, 69.7%NIC, 71.4%NNC, 77% antisense, and 76.5%
intergenic (Fig. 2B). These values are even higher when counting
support in at least one dataset: 99.2% known isoforms, 98.1% NIC,
98.3% NNC, 99.3% antisense, and 99.1% intergenic. Despite this con-
cordance, the contiguous sequence of these isoforms was not known
at the time these datasets were published, underscoring the utility of
our isoform-resolved transcriptome for retrospective analyses. While
Yan et al. carried out de novo transcript assembly, this approach only
leveraged short-read RNA-Seq data andwas thus unable to capture the
complete isoform structures captured herein. We further leveraged
these datasets to assess the expression dynamics of isoforms across
developmental stages (Fig. 2C), alongside data from three additional
studies that span subsets of this timeline: a single-cell RNA-Seq dataset
spanning human embryos between E3-E7 (Petropoulos et al.24) and two
datasets containing a large number of oocyte and 1C samples (Asami
et al.25 and Töhönen et al.26). Most novel isoforms are broadly
expressed between the 1C and 8C embryonic stages across all datasets,
and subsequently downregulated in the morula and blastocyst (Sup-
plementary Fig. 3A). This is especially evident for novel antisense and
intergenic isoforms, which reach a peak of 97% detection at the 4C
stage in our short-read RNA-Seq samples (compared to 87% of known
isoforms), but only about 48% in the blastocyst (compared to 89% of
known isoforms). Similar patterns were observed in the publicly
available data, albeit at lower detection rates, which may be partly
explained by the lower sequencing depth of these studies
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(Supplementary Data 6). We found that many novel isoforms are also
detected in human oocytes, indicating these are already expressed
prior to fertilization and may include previously uncharacterized
maternal transcripts.

We also integrated single-cell RNA-Seq data from two recent
studies characterizing emerging platforms to study early human
development in vitro: 8-cell-like cells (8CLCs), whichmimic the human
embryo 8C phase and are derived from human pluripotent stem cells
(hPSCs, Mazid et al.52) and blastoids, in vitro hPSC-derived structures
whichmimic the humanblastocyst (Kagawa et al.53). Notably, we found
increased expression of all novel isoform classes in cells during the
primedPSC to 8CLC conversion, and a similar increase in expressionof
such isoforms in cells that are part of blastoid structures when

compared to primed PSCs (Fig. 2D). The expression of novel isoforms
alone was shown to effectively separate developmental stages and cell
types from the three integrated single-cell RNA-Seq studies (Supple-
mentary Fig. 3B). Taken together, these data show that the novel iso-
forms reported are widely supported across published studies
spanning multiple modalities as well as newly developed in-vitro
models.

We further integrated chromatin accessibility, H3K4me3, and
H3K27ac data from two independent studies (Liu et al.22, and Xia
et al.54), to assess whether the novel isoforms are associated with
epigenetic marks of active transcription55–57. We first defined four TSS
classes: known TSSs, novel TSSs of known genes, and TSSs of novel
antisense and intergenic genes respectively. Roughly 90% of novel
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TSSs of known genes and 65% of novel TSSs of antisense genes lie
within known gene bodies or in proximity of known promoter
regions; by contrast, about 95% of novel intergenic TSSs lie within
distal intergenic space (Supplementary Fig. 3C). For each category
and epigenetic dataset, we calculated average normalized pileups in
genomic windows ±500 bp from each TSS, comparing them to
intergenic background regions (Fig. 3A and Supplementary Fig. 3D).
Known TSSs displayed the highest levels of chromatin accessibility,
H3K4me3, and H3K27ac across all developmental stages and data-
sets, followed closely by novel TSSs of known genes. By contrast,
novel antisense and intergenic gene TSSs displayed lower levels of
these marks, but were still significantly higher than background at
each stage (p < 2.2 × 10−16, Wilcoxon rank-sum test). Given that many
such genes are already detected in oocytes, this result suggests that
some of these are maternally inherited and not actively transcribed
in early preimplantation development. Consistent with observed
upregulation patterns, TSSs of novel antisense and intergenic genes
were most accessible and highly associated with H3K4me3 and
H3K27ac between the 4C and 8C stages, decreasing to near back-
ground levels in the blastocyst inner cell mass (ICM). Similar patterns

were observed for novel antisense TSSs, but with slightly higher
levels, likely in part due to their proximity to actively transcribed
known genes. We additionally integrated an independent dataset
profiling DNA methylation in early human embryos (Guo et al.58),
which plays a key role in transcriptional repression59–62 (Fig. 3B).
Known TSSs were the least methylated category, harboring close to
0% mCpGs within ±500 bp of each site across all profiled stages (1C
to postimplantation). By contrast, novel TSSs displayed highermCpG
levels, but still significantly lower than background in all pre-
implantation samples (p < 2.2 × 10−16, Wilcoxon rank-sum test).
Interestingly, we observed pronounced hypermethylation in the
post-implantation sample disproportionately affecting novel TSSs,
particularly of novel genes. For example, the percentage of hyper-
methylated novel intergenic TSSs (≥50% mCpGs within ±500 bp)
increases from 7.1% in the TE to 85.9% in the post-implantation stage,
while the corresponding values for known TSSs are 3.8% and 15.7%,
respectively. This is consistent with our observation that TSSs of
many novel genes lie within transposable elements, which are known
to be broadly methylated and epigenetically silenced in somatic
tissues63,64. Together, these results indicate that novel isoforms are
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widely expressed and associated with epigenetic marks of active
transcription in early preimplantation stages, with many novel genes
likely undergoing transcriptional silencing by DNA methylation fol-
lowing embryo implantation.

Next, we sought to investigate whether the novel isoforms and
genes are also expressed in non-human primate embryos. To achieve
this, we analyzed RNA-Seq data from embryonic studies of the rhesus
macaque (Macaca mulatta)65 and the common marmoset (Callithrix
jacchus)66. (Supplementary Data 6). First, we mapped the genomic
coordinates of both known and novel isoforms from the human gen-
ome to the respective primate genomes using liftOver67, discarding
isoform models with failed or incomplete mapping from further ana-
lysis to improve accuracy. We then estimated the expression of the
fully mapped isoforms using short-read RNA-Seq data across primate
preimplantation stages. Predictably, known isoforms have the highest
degree of mapping to the primate genomes, and are broadly detected
across developmental stages (Fig. 3C, Supplementary Fig. 3E). Novel
isoforms of known genes were also widely mapped and expressed in
both species, suggesting that many previously undetected alternative
splicing events are conserved in non-human primates. By contrast,
novel antisense and intergenic isoforms displayed the lowest levels of
conservation and expression in both primates. For example, only 24%
of novel intergenic isoforms were mapped and detected in macaque
preimplantation embryos, and only 7% in the marmoset (Supplemen-
tary Fig. 3F). Nonetheless, the mapped isoforms displayed similar
expression patterns to the human, reaching highest detection levels
between the 4C and 8C stages and subsequently undergoing down-
regulation. Thus, the human transcriptome described in this study
includes both human-specific and evolutionarily conserved novel iso-
forms and genes supported by various independent transcriptomic
and epigenomic studies.

Lastly, to investigate whether novel isoforms and genes are
expressed inmorematurehuman fetal and adult tissues,we integrated
published short-read RNA-Seq data generated from 7 different organs
at multiple time points of human development spanning week 4 post-
conception through adulthood68. We found that NIC are the most
highly detected class, with up to 60% isoforms detected across mul-
tiple fetal tissues, followed by NNC, with a detection rate of around
20% (Supplementary Fig. 3G). These levels tend to decrease through-
out development, with fewer such isoforms observed in adult samples.
By contrast, novel antisense and intergenic isoforms were less sig-
nificantly detected, even in fetal tissues, suggesting that these tran-
scriptional events are primarily restricted to earlier developmental
stages.

Known developmental genes transcribe novel isoforms
Gene and isoform expression dynamics were further examined across
humanpreimplantation stages. Principal Component Analysis (PCA) of
gene expression levels across our short-read RNA-Seq samples
revealed strong separation between early developmental time points
(1C, 2C and4C) and later stages (8C,morula andblastocyst), consistent
with the known timing of major embryonic genome activation (EGA,
Fig. 4A)69. We then sought to measure how strongly novel isoforms
contribute to gene expression levels across developmental stages. To
estimate this, we identified genes that are confidently expressed at
each developmental stage using our polyA+ short-read RNA-Seq data,
and then calculated the average percentage of such reads that are
predicted to derive from novel isoforms for each gene and stage
(Fig. 4B). The4C and8C stages displayed the highest degree of isoform
novelty, with over 50% of expressed genes per stage predicted to be
predominantly transcribed as novel isoforms in their polyadenylated
fraction, while this value significantly decreases to about 25% in the
blastocyst (p < 2.2 × 10−16, Wilcoxon rank-sum test). This suggests that
genes expressed at earlier developmental stages are poorly annotated,
likelydue to the difficulty in establishing experimentalmodels for such

early time points especially when limited to short-read RNA-Seq data.
We further assessed isoform temporal expression dynamics by per-
forming a differential expression analysis using sleuth70. We found
thousands of differentially expressed isoforms, with a peak of differ-
ential expression taking place during the 4C to 8C transition, coin-
ciding with EGA (Fig. 4C). Novel antisense and intergenic isoforms are
significantly enriched among downregulated isoforms at each devel-
opmental transition starting from the 8C stage, confirming that these
are broadly downregulated beyond EGA (Supplementary Fig. 4A). This
pattern is also evident at the epigenetic level, with novel antisense and
intergenic isoform TSSs displaying lower degrees of chromatin
accessibility, H3K4me3 and H3K27ac deposition from the 8C stage
onwards (Supplementary Fig. 4B).

To determine whether known developmental genes transcribe
novel isoforms, we next focused on a set of 74 genes which have been
previously reported as regulating development66, 71–82 and undergo
statistically significant changes in expression throughout pre-
implantation stages (Fig. 4D, Supplementary Data 7). These include
earlymarkers such asDNMT1, PADI6 and FOXO3; pluripotencymarkers
such as SOX2, NANOG and OCT4/POU5F1 and blastocyst markers
including GATA3, CD24 and KLF6. Most of these genes were found to
transcribe multiple novel isoforms, particularly at earlier pre-
implantation stages, including both non-coding and protein-coding
RNAs with varying ORF lengths, predicted protein domains, and chi-
meric TE-gene isoforms. For example, we found 156 novel isoforms of
DNMT1, a DNA methyltransferase involved in the maintenance of
methylation imprints in preimplantation embryos83. These include a
novel major TSS used across all preimplantation stages, two novel
exons predicted to be in frame and thus contribute to the isoformORF
sequence, and multiple short isoforms predicted to produce N- and
C-terminal truncated proteins containing diverse combinations of its
protein domains, including ones conferring DNA-binding and
methyltransferase function84 (Fig. 4E, Supplementary Fig. 4C). We also
identified 21 novel isoforms for PADI6, an evolutionarily conserved
maternal factor which catalyzes protein deimination85. These include
several short isoforms containing novel LINE-derived TESs, which are
predicted to generate shorter C-terminal truncated peptides with
fewer protein-arginine deiminase (PAD) domains (Supplementary
Fig. 4D). We also identified 8 novel isoforms for FOXO3, a transcription
factor which regulates mouse preimplantation development86,
including a novel TSS and an in-frame exon (Supplementary Fig. 4E).
These results indicate that the human preimplantation transcriptome
is far more complex than currently annotated, even for many well-
studied developmental genes.

Novel isoforms are transiently included during EGA
Having observed widespread expression of novel isoforms across
developmental genes, we sought to further leverage this data to
explore the patterns of alternative splicing (AS) over time. First, we
usedSUPPA287 tomeasure the relative abundanceof sevenmajor types
of AS events (Fig. 5A).We identifiedhundreds of statistically significant
AS events taking place across developmental stages, with the highest
splicingdiversity taking place in themorula-to-blastocyst and4C-to-8C
transitions respectively (Fig. 5B). Genes undergoing AS were found to
be significantly enriched for pathways including mRNA processing,
splicing and translation (Supplementary Fig. 5A). Interestingly, the 4C-
to-8C transition displayed a significant increase of exon skipping and
intron retention events, which are typically associated with splicing
disruption88–90.

We next performed an isoform switching analysis that included
integrated predictions on the biological properties of AS to better
understand the effect that such events have on gene function. Similar
to what was observed for AS events (Fig. 5B), we found peaks of iso-
form switching at the morula-to-blastocyst and 4C-to-8C transitions,
with nearly 500 and 200 isoform switching events respectively
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(Fig. 5C). Isoforms that are more highly included at the 8C stage have
significantly lower coding probability than isoforms which are less
included at this stage, suggesting thatAS events lead toORFdisruption
during EGA. By contrast, the opposite pattern was observed in the
morula-to-blastocyst transition (and in the 8C-to-morula transition,
thoughnot statistically significant), suggesting that disruptedORFs are
re-established in subsequent stages (Fig. 5D). To further confirm this,
we clustered relative isoform inclusion levels across stages using
Mfuzz91, focusing on isoforms undergoing at least one statistically
significant switch over time. We identified four clusters of isoforms
undergoing significant switching events at the 8C stage (Fig. 5E, Sup-
plementary Data 8), which are distinguished by the direction of

inclusion (more or less included at the 8C stage) and the inclusion
dynamics over time (transient peak or persistent shift). Isoformswith a
transient peak of inclusion at the 8C stage are mostly novel and have
the lowest coding probability and evolutionary conservation levels
among these clusters, while isoforms that are transiently excluded at
the 8C stage arepredominantly known, and significantlymore protein-
coding and conserved (p < 1 × 10−4, Wilcoxon rank-sum test, Benjamini-
Hochberg correction). By contrast, isoforms undergoing both positive
and negative shifts of inclusion display intermediate levels of isoform
novelty, coding potential, evolutionary conservation (Fig. 5F–H). Peak
8C-included isoforms have also significantly fewer and shorter introns
than their more excluded counterparts (Supplementary Fig. 5B).
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Interestingly, we found over 80 genes transcribing pairs of isoforms
belonging to clusters with opposite inclusion patterns throughout
development, which may be associated with functional changes not
detectable at the gene level (Supplementary Fig. 5C). Together, these
results suggest the presence of splicing disruption during EGA, leading
to the inclusion of predominantly novel, non-coding isoforms with
poorly evolutionarily conserved sequences. This is consistent with
recent findings reporting ORF-disrupting exon inclusion during EGA
by short-read RNA-Seq analysis92, as well as studies revealing that
splicing inhibition can induce a totipotent, EGA-like state in both
mouse and human embryonic stem cells93, 94. Our analysis is the first to
show these patterns at the isoform resolution.

To relate thesedynamic changes inAS to splicing factors (SFs), we
calculated the correlation between the expression of annotated SFs
and relative isoform inclusion levels throughout development, high-
lighting the top SFs with highest average absolute correlation to the
previously identified isoform clusters (Fig. 5I). These include SNRPB
and SNRPD2, whosemouse orthologs were recently shown to regulate
EGA-associated exon skipping92. We then integrated ENCODE eCLIP
data for all available SFs to build a network of highly correlated SF-
isoform pairs with evidence of SF binding to the isoform nucleotide
sequence (Supplementary Fig. 5D), further refining the results. Among
the highly correlated pairs we highlight MRPS21, a mitochondrial
ribosomal gene, whose first intron is bound by the SF TIA1. Both genes
are upregulated during EGA, and expression of TIA1 is significantly
correlated to the relative inclusion levels of the first intron of MRPS21
throughout development (Supplementary Fig. 5E, F). While this ana-
lytical approach alone doesn’t allow to establish a direct mechanistic
link between AS events and SFs, it may be useful to prioritize candi-
dates for further investigation. The results of these analyses are
available in Supplementary Data 8.

Co-expression network analysis of known and novel genes
Next, we investigated the co-expression dynamics of known and novel
genes using an unbiased, systems-level approach. To achieve this, we
performed weighted gene co-expression network analysis (WGCNA)95,
which identified 30 distinct groups of co-expressed genes (termed
modules) whose expression is significantly correlated across samples
(Fig. 6A). Novel genes were found to be significantly overrepresented
in modules reaching peak expression between the 1C through 8C
stages, and significantly underrepresented in modules more highly
expressed in the morula and blastocyst (p < 1.05 × 10−10, Fisher’s exact
test, Benjamini-Hochberg correction, Supplementary Fig. 5G), further
confirming that they are most highly expressed in earlier pre-
implantation stages and downregulated in the morula and blastocyst.

We further investigated 6 selected modules which recapitulate
stage-specific developmental patterns and display significantly enri-
ched gene ontology terms, as well as diverse patterns of novelty

(Fig. 6B–D). Modules 1 and 5, whose genes are broadly expressed
between the 1C to 4C stages and are subsequently downregulated, are
composed of 23% and 14.5% novel genes respectively. Collectively,
these modules comprise over 4000 genes involved in cell signaling,
adhesion and cytoskeletal organization, including key regulators such
KMT2C, MDM4, DNMT1, FOXO3 and PADI6. Many of these genes likely
include maternally inherited mRNAs, whose expression, splicing and
translational efficiency is typically additionally regulated by cyto-
plasmic polyadenylation prior to EGA in mammals and other
organisms96–99. Module 30, whose genes display a transient peak of
expression at the 4C stage, was the most novel of the highlighted
clusters. Over half of this module is comprised of previously unknown
antisense and intergenic genes, while its known genes are involved in
pathways including cell signaling and transduction. Module 23, whose
genes are transiently upregulated at the 8C stage, is similarly com-
prised by over 40% novel genes, and includes known regulators of
transcription, cell proliferation and apoptosis such as YAP1 and
SMARCD1. By contrast, modules associated with later developmental
time points are almost entirely comprised by known genes. Module 3,
which is activated at the 8C stage and contains known pluripotency
markers such as SOX2, NANOG, KLF4, and other genes involved in RNA
processing and translation, contains only ~1% novel genes. Module 7,
whose genes are activated in the blastocyst and include GATA3, KLF6
and ESRRB, contains a similarly small number of novel genes.

We further assessed the validity of these modules by per-
forming a preservation analysis using RNA-Seq data from published
human, macaque and marmoset preimplantation embryo studies
(Fig. 6E). All six highlighted modules were significantly conserved
across these orthogonal datasets (p ≤ 0.0001, Bonferroni correc-
tion), with the only exception of module 30 in the marmoset data-
set. The five most conserved modules likely represent well-
established, evolutionary conserved networks of genes which play
key roles in preimplantation development across species. Module
30 may instead represent more recent evolutionary developmental
programs specific to macaque and human. Indeed, only 25.2% of the
genes in this module are fully mapped and expressed at corre-
sponding genomic coordinates in marmoset embryos, compared to
47.6% in the macaque (Supplementary Fig. 5H). In addition, the
coding potential analysis revealed that modules 30 and 23 are
predominantly comprised of predicted non-coding genes (74% and
80.4% respectively), with the other modules displaying a larger
proportion of predicted protein-coding genes (Supplementary
Fig. 5I). We further scanned the 3’ UTR sequences of genes in each
module for miRNA binding sites using miRanda100, identifying
miRNAs that are significantly predicted to bind module 1 and 5
genes by overrepresentation analysis (Supplementary Fig. 5J –K).
The global gene network, alongside a selection of key develop-
mental genes in highlighted modules, are displayed in Fig. 6F.

Fig. 5 | Alternative splicing inducesORFdisruptionandnovel isoform inclusion
during embryonic genome activation. A Schematic representation of the seven
types of AS events analyzed: skipped exon (SE), alternative 5’ splice site (A5),
alternative 3’ splice site (A3), retained intron (RI), mutually exclusive exons (MX),
alternative first exon (AF), and alternative last exon (AL).BNumberof significant AS
events at each developmental stage transition. C Number of significant isoform
switching events at each developmental stage transition. D Predicted protein-
coding probability of isoforms undergoing significant isoform switches at each
developmental stage transition, grouped by direction of inclusion. (1C vs 2C,
p =0.94; 2C vs 4C,p =0.83; 4C vs 8C, p = 4.3e−06; 8C vsmorula, p =0.28;morula vs
blastocyst, p =0.0021, unpaired two-sided Wilcoxon Rank Sum test, Benjamini-
Hochberg correction; for 1C vs 2C, n = 35 more included and n = 36 less included
isoforms; for 2C vs 4C, n = 16 more included and n = 13 less included isoforms; for
4C vs 8C, n = 82more included and n = 99 less included isoforms; for 8C vsmorula,
n = 64 more included and n = 52 less included isoforms; for morula vs blastocyst,
n = 226 more included and n = 252 less included isoforms). E Relative inclusion

levels of isoforms undergoing significant switching events at the 8C stage. Four
major clusters are identified, based on the direction of inclusion (more or less
included at the 8C stage) and temporal inclusion dynamics (transient peak or
sustained shift). F Structural classes of the isoform clusters defined in E.
G, H Coding probabilities and evolutionary conservation scores for the isoform
clusters defined in E. (unpaired two-sided Wilcoxon Rank Sum test, Benjamini-
Hochberg correction; cluster sizes:n = 80 forpositive peak at 8C;n = 92 for positive
shift at 8C, n = 93 for negative shift at 8C, n = 85 for negative peak at 8C. Box plot
colors are proportional to median values for each corresponding box). I Heatmap
displaying average correlation (Spearman R) between splicing factor expression
and isoform inclusion levels for each isoform cluster defined in E. Displayed are the
top 35 splicing factors as rankedby highest absolute correlation values. For the box
plots inD,G,H, box limits extend from the 25th to 75th percentile, while themiddle
line represents themedian. Whiskers extend to the largest value no further than 1.5
times the inter-quartile range (IQR) from each box hinge. Points beyond the
whiskers are outliers. Source data are provided as a Source Data file.
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Consistent with previous findings by Xue et al. 23, these results
demonstrate that human preimplantation transcriptome dynamics
may be recapitulated by key modules of functionally defined co-
expressed genes. Crucially, by leveraging isoform-resolved data and
a larger sample size, we were able to identify additional undiscov-
ered gene modules, including two 4C and 8C-specific modules
composed of hundreds of novel genes.

Investigating unannotated genes in early human embryos
We further characterized the biological properties and transcriptional
regulators of the thousands of unannotated genes by integrating
multiple predictive tools. First we performed soft clustering using
Mfuzz91, identifying five clusters of novel genes with distinct embryo-
nic stage-specific expression (Fig. 7A). Most novel genes were assigned
to two clusters with peak expression at either the 1C or the 2C phases
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(termed early and 2C clusters respectively, comprising 53% of novel
genes in total). Another two clusters of genes are transiently upregu-
lated during the 4C and 8C stages (14% and 19% genes respectively),
and the late cluster is primarily activated in either the morula or
blastocyst (14% of genes). The expression patterns of these clusters are
supported by data from previously published human embryo short-
read RNA-Seq studies (Supplementary Fig. 6A). While only a small
fraction of these genes is fully mapped and detected at corresponding
genomic coordinates in the macaque and marmoset preimplantation
embryos, their expression over time is broadly consistent with the
human, further supporting their validity and suggesting a conserved
role in primate embryo development (Supplementary Fig. 6B). Early
and 2C gene clusters, unlike others, are also broadly detected in
oocytes (Supplementary Fig. 6C), indicating they likely represent
maternally inherited genes. Reanalysis of publicly available scRNA-Seq
data revealed that these gene clusters are broadly expressed in E3-

stage embryos, but not in 8CLCs (Supplementary Fig. 6D). Gene clus-
ters also display significant differences in their predicted biological
properties. While the majority of such genes are predicted to be non-
coding, early expressedgenes arepredicted tobemoreprotein-coding
(>10%) than their later-expressed counterparts (~4%), suggesting the
presence of hundreds of maternally-inherited or early activated
protein-coding genes which are yet uncharacterized (Fig. 7B). TE
content was also found to vary across gene clusters (Fig. 7C). Early
expressed genes are associated with a wide variety of repetitive ele-
ments, including multiple classes of LTRs, LINEs and SINEs. Interest-
ingly, over 70% of 4C and 8C cluster genes contain LTR/ERVL-MaLR
family repeats, includingHERVH-int,MLT2A1 andMLT2A2, all of which
have been previously reported to be highly activated during the 8C
embryonic phase, but never shown to form chimeric transcripts using
isoform-resolved data. Late-expressed genes display the lowest levels
of repetitive element integration, primarily consisting of SINE/Alu and

Fig. 6 | Novel genes are key components of early expressed, evolutionarily
conserved modules of co-expressed developmental genes. A Hierarchical clus-
tering tree displaying results of the gene co-expression network analysis. Modules
of genes co-expressed across developmental stages are displayed as color bars.
Novel genes are highlighted below. Normalized gene expression across stages is
also displayed (red - highest relative expression, blue - lowest expression).
B Representative expression profiles (module eigengenes) of selected gene mod-
ules characterizing specific developmental stages (sample sizes for each stage
shown in Fig. 1A). C Gene Ontology: Biological Process terms enriched in the
selected gene modules shown inB.D Percentage of each gene class in the selected
modules. E Heatmap of module preservation scores in independent, publicly

available short-read RNA-Seq datasets of human and non-human primate embryos
(scores and p-values calculated using theWGCNAmodulePreservation function, p-
values adjusted using Bonferroni method). Module colors (from A) are shown on
the left. F Network diagram displaying connected genes from different modules
(represented as different colors, from A) of the gene co-expression network. A
selection of known developmental genes is highlighted for five modules. For the
box plot in B, box limits extend from the 25th to 75th percentile, while the middle
line represents themedian. Whiskers extend to the largest value no further than 1.5
times the inter-quartile range (IQR) from each box hinge. Points beyond the
whiskers are outliers. Source data are provided as a Source Data file.
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Fig. 7 | Novel genes have distinct expression patterns, predicted biological
properties, and transcriptional regulators. A Novel genes separate into five
clusters with distinct expression patterns across human preimplantation develop-
ment (n = 1402 genes in early cluster, 1391 genes in 2C cluster, 712 genes in 4C
cluster, 987 genes in 8C cluster, 746 genes in late cluster). B Predicted coding
probability for novel genes in each cluster defined in A. C Heatmap displaying the
percentage of novel genes in each cluster containing distinct classes of human
retrotransposons. D Heatmap displaying predicted transcription factor regulators
of each novel gene cluster, including their DNA bindingmotifs (p-values calculated

using HOMER findMotifsGenome.pl, q-values adjusted using Benjamini-Hochberg
method). E Network diagram displaying predicted TFs-novel target gene pairs, as
determined by integration of ATAC-Seq footprinting and inferred TF activity-gene
expression correlation. For the box plot in B, box limits extend from the 25th to
75th percentile, while the middle line represents the median. Whiskers extend to
the largest value no further than 1.5 times the inter-quartile range (IQR) from each
box hinge. Points beyond the whiskers are outliers. Source data are provided as a
Source Data file.
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LTR/ERV1 elements. We further predicted novel gene function by
integrating annotations of the most strongly co-expressed known
genes, an approach that has been used to infer putative roles of
unannotated loci in a variety of contexts101–103. Early-expressed novel
genes were found to be co-regulatedwith known genes involved in cell
signaling, adhesion, and cellular component morphogenesis, while
later expressed ones are instead co-expressed with genes involved in
DNA-templated transcription, mRNA processing and splicing (Sup-
plementary Fig. 6E).

We next predicted transcriptional regulators of novel gene
clusters by performing a motif analysis using HOMER104 (Fig. 7D).
Promoter regions of early expressed genes were enriched for binding
sites of TFs including DUX4, TEAD2, and FOXP1, which are known to
play key roles in the regulation of EGA, stem cell self-renewal and
differentiation30, 105–107. Interestingly, DUX4 was also strongly pre-
dicted to bind promoters of 4C and 8C cluster genes. This is con-
sistent with the high abundance of ERVL/MaLR repeats among such
loci, which have been previously shown to be bound by DUX4108. Late
expressed gene promoters were instead predicted to be bound by
blastocyst fate TFs, including kruppel-like factors such as KLF5109. To
further examine regulatory interactions between TFs and novel
genes, we performed an ATAC-Seq footprinting analysis using
TOBIAS110, which predicted TFs bound at novel gene promoters by
integration of chromatin accessibility data from Liu et al. with
information on known TF binding motifs. Predicted TF-gene pairs
were further refined by requiring a statistically significant correlation
between the target gene expression and the TF activity as inferred by
VIPER111. We thus built a filtered TF-novel gene interaction network
(Fig. 7E). Consistently with the motif analysis, MNT was predicted to
predominantly regulate 2C and 4C clusters, DUX4 to regulate mainly
4C and 8C-cluster genes, while genes such as KLF5, KLF6 and TEAD2
instead predicted to mostly regulate late cluster genes. Together,
these predictions shed light on the putative biological function and
transcriptional regulators of the thousands of newly identified genes,
and will empower future studies seeking to further understand their
function in early human development.

We next showcase selected examples of novel genes with diverse
patterns of evolutionary conservation, predicted function, and
expression dynamics throughout development. First, we highlight
NOVELG000067783, a novel, early-expressed protein-coding gene
located on human chromosome 3 which does not overlap any known
annotations (Fig. 8A). The locus transcribes multiple isoforms,
including several alternative splice variants predicted to encode pep-
tides containing ferritin domains, as well as non-coding RNAs (Sup-
plementary Fig. 7A). In addition to being supported across all
integrated human embryo short-read RNA-Seq datasets (Supplemen-
tary Fig. 7B), the gene is also detected at syntenic genomic locations in
both macaque and marmoset preimplantation embryos, displaying
similar expression patterns throughout development (Fig. 8B, C).
Interestingly, the gene is more lowly expressed and lacks its first exon
in the marmoset, suggesting it may be a product of more recent evo-
lutionary events. We also highlight three examples of novel predicted
lncRNAs that are expressed in 1-4 cell embryos and are supportedby all
integrated human embryo short-read RNA-Seq and ATAC-Seq data-
sets, but not detected in either of the primate embryo studies, thus
representing human-specific transcriptional events (Fig. 8D, Supple-
mentary Fig. 7C). These include NOVELG000084291, a novel antisense
gene which shares its TSS with known protein-coding gene UNC13B,
but is transcribed in the opposite strand; NOVELG000070644, a novel
intergenic gene locatedon chromosome 16; andNOVELG000059671, a
novel antisense gene which overlaps inferred pseudogene PPIAP24 on
the opposite strand. NOVELG000084291 displays abundant integra-
tion of HERVH-int and LTR7, and further contains a SINE/Alu repeat
within its first intron. Its expression is anticorrelated to both its anti-
sense neighbor UNC13B (Supplementary Fig. 7D) and its intronic SINE,

suggesting that it may act as a natural antisense transcript112 and
pointing to a potential TE-mediated role in gene expression
regulation113. The TSSs of most NOVELG000070644 and
NOVELG000059671 isoforms originate from insertions of THE1D, an
LTR element of the ERVL-MaLR family, which are activated by DUX4
and have been shown to provide alternative promoters for multiple
genes in placenta and lymphoma studies114–116. While these insertions
are present in both macaque and marmoset genomes, neither of the
genes are detected in the corresponding primate embryos. The
expression of both genes is significantly correlated to VIPER-inferred
DUX4 activity across preimplantation stages (Supplementary Fig. 7E),
and NOVELG000059671 further displays predicted DUX4 binding
footprints at its TSS at the 4C and 8C stages, thus suggesting its
expression may be regulated by this TF. Notably, we further validated
the expression of novel genes by PCR on an additional set of embryos
(Supplementary Fig. 8), as well as in multiple independently published
short-read RNA-Seq datasets from human preimplantation embryos
(Supplementary Fig. 9). Together, these results show that the novel
transcriptome contains both evolutionarily conserved and human-
specific novel genes and isoforms, with a wide variety of predicted
biological properties and transcriptional regulators. These examples
only showcase a small fraction of the novel genes and isoforms
described in this study, and we anticipate that this data will serve as a
valuable resource to empower future studies seeking to further
understand early development.

Discussion
Here, we present the first isoform-resolved human preimplantation
reference transcriptome generated by combined long- and short-read
RNA-Seq, in silico validated by integrating existing embryo multi-
omics datasets, and extensively characterized to predict the biological
relevance of thousands of unannotated genes and isoforms. Using this
comprehensive computational approach, we identified 30,988 unan-
notated isoforms transcribed from known gene loci consisting of a
novel combination of known splice sites, and 79,224 unannotated
isoforms transcribed from known loci containing at least one novel
splice site. We also identified 17,964 isoforms transcribed from 5239
previously uncharacterized loci which overlap known genes on the
opposite strand, or are located in intergenic space. The full set of
isoforms, associated predictions and integrated datasets can be freely
accessed at the following online resource: https://denis-torre.github.
io/embryo-transcriptome/.

Integration of multiple computational predictive tools and ana-
lytical approaches allowed us to gain insights into the human pre-
implantation embryo transcriptome at unprecedented resolution.
Thorough characterization of the 5239 newly identified genes revealed
that these are largely predicted to be non-coding, rich in TEs and
poorly evolutionarily conserved beyond hominids, underscoring that
common models to investigate mammalian development such as the
mouse may not fully recapitulate many of these early transcriptional
events in humans. Indeed, it is known that TEs can contribute to the
generation of novel lncRNAs43, 117, including human endogenous ret-
rovirus (HERV)-K and HERV-H elements118. Our catalog greatly expands
the number of TE-chimeric isoforms, with thousands of such unan-
notated transcriptional events detected in human preimplantation
stages. Prior to the release of this transcriptome, the repetitive nature
of such sequences would have made the reconstruction of these iso-
forms difficult using existing lower resolution datasets. Most of these
genes are either maternally inherited or transiently expressed during
EGA, as underscored by analysis of our standalone data and the
orthogonal integrated published short-read RNA-Seq data. Further
analysis of these isoforms will increase our understanding in the per-
vasive role of TE-chimeric promoters in preimplantation development,
though it remains to be determined to what extend these new gene
modules comprise key mechanistic players of human preimplantation
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development, or transcriptional by-products of this highly dynamic
and complex process.

In addition to novel genes, we found widespread evidence of
unannotated alternative splicing events taking place in known genes,
including known regulators of early development such as DNMT1,
FOXO3, and PADI6, further underscoring the necessity of leveraging
long-read RNA-Seq for improving annotations for transcriptomic
analysis, especially from relatively understudied conditions such as
human preimplantation development. Further functional work will be
able to provide specific answers on the function of individual isoforms
for known genes. Nonetheless, our analysis was also able to identify
global patterns, specifically taking place during EGA, which exhibits
transient inclusion of unannotated, poorly evolutionarily conserved
isoforms, as recently reported in a study leveraging short-read
RNA-Seq92.

Our study builds upon the results of previous publications
investigating human preimplantation development using multi-omics
approaches such as bulk and single-cell transcriptomics21–25,27, analysis
of chromatin accessibility22,119,120, histone modifications54 and DNA

methylation58,121. While these studies greatly increased our under-
standing of the transcriptomic and epigenomic events taking place in
these early stages, they relied on the limited, largely short read-derived
transcriptome annotations available at the time, which fail to capture
the full length of most mRNAs. Integration and reanalysis of data from
these studies revealed that the novel genes and isoforms described in
this work are widely supported at both the transcriptional and epige-
netic levels.Many novel isoforms are also supported by transcriptomic
data generated from macaque and marmoset preimplantation
embryos65,66, suggesting that some of these unannotated events are
also present in other primates.Multi-omics studies onmouse embryos
have also been conducted120,122–125, including a recent study using both
long- and short-read RNA-Seq, which identified 6289 novel isoforms
from previously annotated genes and 2280 from unannotated genes15,
though at a lower sequencing depth and smaller sample size compared
to the dataset presented here. Recently, an orthogonal study was
published using long read RNA-Seq to characterize the poly(A) tail
length during the maternal-to-zygote transition of human pre-
implantation embryos, rather than alternative splicing126. However, our

D

A Human embryo
(chr3:98,624,191-98,629,624)

Macaque embryo
(chr2:177,473,396-177,478,575)

Marmoset embryo
(chr15:84,273,016-84,278,866)

1C

2C

4C

8C

mor.

bla.

1C

2C

4C

8C

mor.

bla.

1C

4C

8C

morula

early ICM

late ICM

[0-343] [0-22] [0-0.75]

NOVELG000067783
(+4 other isoforms)

NOVELG000067783
(lifted to macaque genome)

NOVELG000067783
(lifted to marmoset genome)

1C

2C

4C

8C

mor.

bla.

S
ho

rt
-r

ea
d 

R
N

A
-S

eq

1C

2C

4C

8C

mor.

bla.

A
TA

C
-S

eq
 (

Li
u 

et
 a

l.)

NOVELG000070644
(+7 other isoforms)

NOVELG000084291
(+3 other isoforms)

NOVELG000059671
(+7 other isoforms)

chr9:35,149,786-35,168,175 chr13:106,845,309-106,901,829chr16:66,204,381-66,230,494

Repetitive
elements

Novel
isoforms

(long-read
RNA-Seq)

B C

PPIAP24
UNC13B

[0-1.75] [0-13] [0-2.66]

Fig. 8 | Examples of novel genes expressed in human and non-human primate
embryos. A Short-read RNA-Seq expression across developmental stages (dis-
played in blue, RPKM normalization) and long-read-defined isoforms for evolu-
tionarily conserved novel human gene NOVELG000067783. B, C Short-read RNA-
Seq expression frommacaque andmarmoset preimplantation embryos (data from
Wang et al. and Boroviak et al., respectively), and long-read-defined isoforms for
novel human gene NOVELG000067783. Novel isoform annotations from the

human genome (hg38) were lifted to the corresponding locations in the respective
primate genomes (Mmul10 for macaque, calJac4 for marmoset) using liftOver.
D Short-read RNA-Seq expression, long-read-defined isoforms and matching
chromatin accessibility (from Liu et al.) for three novel human-specific genes. Also
shown are repetitive genomic elements from RepeatMasker. Source data are pro-
vided as a Source Data file. Icons in A–D were created with BioRender.com.
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dataset is the first study presenting an isoform-resolved transcriptome
conducted on human embryos spanning the zygotic to blastocyst
stages of human preimplantation development.

Experimental investigation of early human embryo development
remains challenging using real-time embryo manipulation in a
laboratory setting. However, recent studies have described novel
experimental platforms to study early developmental stages starting
from human pluripotent stem cells (hPSCs): 8C-like cells (8CLCs),
which display EGA-like transcriptional and epigenetic features52,94; and
blastoids, blastocyst-like structures that develop the three lineages
(trophectoderm, epiblast, primitive endoderm) typical of normal
human development53,127,128. The integration of single-cell RNA-Seq
data these models confirmed widespread expression of the novel
isoforms and genes in 8CLCs and blastoids, confirming that these
platforms recapitulate unannotated transcriptional events taking
place in early human embryos, and indicating that they may be lever-
aged to further understand their function.

Together, our results greatly expand the annotation of isoform
diversity in human preimplantation development, revealing tens of
thousands of unannotated isoforms transcribed fromboth known and
novel genes. Integration of diverse computational tools and multi-
omics datasets further validates these isoforms and helps predict their
putative biological function. By providing these results and interactive
database to the community, we anticipate that ourworkwill help guide
future experimental studies aiming to explore the role of critical genes
in development and disease.

Methods
Ethics statement
Embryos were produced by IVF for clinical purposes between years
1997 and 2017 at Tel Aviv Medical Center and surplus embryos at
different preimplantation development stages (from zygote to blas-
tocyst stage, see Supplementary Data 1) were cryopreserved for future
use. The embryos used in this studywere spare frozenpreimplantation
human IVF embryos at day 1-6 of development (after fertilization), that
were donated by IVF patients after they have completed family plan-
ning, and after signing a full informed consent. The informed consent
was used in compliance with Institutional Review Board following
approval by the National Ethics Committee (IRB 559/16: “Advanced
RNA sequencing technologies for characterization of human pre-
implantation embryo’s transcriptome”)”. Only embryos that were
donated for research were allocated for this study. These human
embryos represent the infertile population. Embryos were thawed
according to their day of freezing (i.e. developmental designation),
and according to the study design aimed to extract RNA from the
embryo cohort used for our study across each preimplantation stage.

Embryo selection
Most embryos analyzed (76%) were at high/good quality when frozen
as well as at thawing for RNA preparation. Embryos were scored
according to the Istanbul consensus workshop on embryo assessment:
proceedings of an expert meeting129. The spare IVF embryos used in
this study are considered genetically normal, as the biological parents
performed IVF due to infertility problems but otherwise have no
indications of genetic abnormalities. However, we cannot rule out the
possibility that some of them may carry genetic mutations that were
not known or diagnosed at the time the embryos were frozen. Fur-
thermore, it is well accepted that some IVF embryos may be
aneuploid130.

cDNA preparation
Donated embryos were thawed using the Quinn’s Advantage Thaw
Kit (SAGE) following the manufacturer’s instructions. Single
embryos were lysed to release mRNA, which was primed using a
modified oligo-dT primer and reverse-transcribed using template

switching technology to generate full-length cDNA using the
SMART-Seq v4 Ultra Low Input RNA kit (Clontech, Takara; Cat#
634897), following the manufacturer’s instructions. The first-strand
cDNA templates were then amplified using 14-16 cycles of LD-PCR
and then purified using AMPure XP beads (Beckman Coulter). The
resulting double-stranded cDNA templates were then transferred to
the Genomics Technology Facility at the Icahn School ofMedicine at
Mount Sinai for sequencing. Each sample was aliquoted for both
PacBio and Illumina library preparation.

SMRT-seq library construction and sequencing
Full-length cDNA was used as input for preparing SMRTbell libraries
using the SMRTbell Express Template Preparation Kit v2.0 as
recommended by the manufacturer (Pacific Biosciences). Samples
with enough cDNA mass (>100 ng) were prepped as individual
libraries and those with little mass available (<100ng) were pooled
together for library prep. Briefly, the cDNA was treated with a DNA
Damage Repair mix to repair nicked DNA, followed by an End Repair
and A-tailing reaction to repair blunt ends and adenylate each tem-
plate. Next, overhang SMRTbell adapters are ligated onto the ends of
each template and purified with 0.6X AMPure PB beads to remove
small fragments and excess reagents (Pacific Biosciences). The
completed SMRTbell libraries were then annealed to sequencing
primer v4 and bound to sequencing polymerase 2.0 before being
sequenced using one SMRTcell 8M on the Sequel II system with a 24-
hour movie.

Illumina RNA-seq library construction and sequencing
Illumina sequencing libraries were prepared by following the Nextera
XT DNA Library Preparation Kit (Illumina, # FC-131-1024) workflow, as
recommended by the manufacturer. Briefly, 0.7–1 ng of amplified full-
length cDNA from each sample was ultrasonically sheared using a
Covaris AFA system,while also simultaneously ligatedwith adapters by
tagmentation. Individual indiceswere then ligated onto the tagmented
cDNA templates via PCR. The libraries were sequenced on an S1 200
flowcell on the NovaSeq platform as 100 nt or 125 nt paired-end reads
at a depth of 50 million reads per sample.

PacBio long-read sequencing primary data processing
The developer version of the PacBio Iso-Seq3 pipeline (v3.4.0) was
used for preparing full-length non-concatemer (FLNC) reads from
the raw sequencing data. First, subreads were intramolecular error-
corrected and polished using the circular consensus sequencing
(CCS) algorithm (v5.0.0) to produce highly accurate (>Q10) CCS
reads, each requiring a minimum of 1 complete polymerase pass.
The polished CCS reads were then passed to the lima tool (v2.0.0) to
remove barcodes (if used), SMART-Seq primers and template-
switching oligo sequences and orient the isoforms into the correct
5’ to 3’ direction. The refine command was then used to remove
polyA tails and concatemers to generate FLNC reads ready for
downstream analysis. The FLNC reads per Sequel II SMRTcell were
then mapped to the GRCh38 genome assembly using the splice-
aware aligner, minimap2 (v2.17)131, with the following parameters:
minimap2 -ax splice -uf --secondary=no -C5 --MD. Unmapped full-
length reads, and reads with <50 MAPQ, were removed using sam-
bamba (v0.5.6)132.

Short-read RNA-seq primary data processing
Short-read RNA-Seq raw reads underwent adapter trimming and
quality control using Trim Galore (v0.6.6)133 with default parameters.
Filtered reads were initially aligned to the GRCh38 reference genome
together with the Ensembl v102 gene annotation reference database
with STAR (v2.7.5b)134 using the two-pass mapping approach in order
to count reads spanning splice junctions. Spliced read count was
provided to filter long reads (see below).
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Integration of short and long RNA-Seq reads to build the
isoform-resolved embryonic transcriptome
Uniquely mapped long- and short RNA-Seq reads were integrated to
generate a novel isoform-resolved transcriptome using TALON
(v5.0)34. First, SAM files containing aligned PacBio FLNC reads were
processed using TranscriptClean (v2.0.2)135 in order to correct mis-
matches, indels, and to remove full-length isoforms containing non-
canonical splice junctions not supported by short reads. Next,
talon_label_reads was used to flag FLNC isoforms with evidence of
intra-priming artifacts (primingof genomicA-rich tracts during reverse
transcription) using default parameters. talon_initialize_database was
then used to generate an SQLite database against which to classify
PacBio isoforms by providing the Ensembl GRCh38 v102 transcript
reference using the following parameters: --l 200 –50 1000 –3p 1000.
These parameters require FLNC isoforms to be at least 200bp long,
and instruct TALON to collapse transcript models with congruent
internal exons whose 5’ and 3’ ends vary by up to 1000bp. Next, the
talon commandwasused to collapse, count and classify FLNC isoforms
into a reference transcriptome by requiring a minimum alignment
threshold of 99% coverage and a minimum sequence identity of 95%.
Isoforms were additionally filtered by removing transcripts with a
fraction of A > 0.6 (internal priming artifacts). The reference GTF was
generated using the talon_create_GTF command, and used to calculate
splice junction reads from short-read RNA-Seq data using the STAR
two-pass mapping approach with default parameters. Isoforms were
subsequently filtered by requiring at least one uniquely mapped
spliced short read overlapping each of their junctions in at least three
independent short-read RNA-Seq samples. Lastly, SQANTI3 (v4.2)136

was used to classify isoforms in the reference GTF with default para-
meters and the provided human polyA motif list. Final isoform classi-
fications were generated by integrating the complementary TALON
and SQANTI3 classifications as described in Supplementary Fig. 1F.

Gene and isoform expression quantification from bulk and
single-cell short-read RNA-Seq
Expression of isoforms and genes in the novel reference transcriptome
wasquantifiedusingourown short-readRNA-Seq samples andpublicly
available data from the following studies: Liu et al. 22. (NCBI SRA
accession SRP163205), Yan et al. 21. (SRP011546), Xue et al. 23.
(SRP018525), Petropoulos et al. 24. (ArrayExpress accession E-MTAB-
3929), Mazid et al. 52. (CNGDB Nucleotide Sequence Archive accession
CNP0001454), Kagawa et al. 53. (SRP323840), Mazin et al. 68. (E-MTAB-
6814). First, short RNA-Seq reads were trimmed from adapters and
filtered using Trim Galore as described above. Next, the filtered reads
were aligned to the GRCh38 reference genome using STAR (v2.7.5b)134

two-pass mapping using default parameters. Finally, RSEM (v1.3.3)137

wasused to calculate expression using the followingparameters: rsem-
calculate-expression –alignments --strandedness none --paired-end
--estimate-rspd. Gene expression of large single-cell RNA-Seq datasets
generated by SmartSeq (Petropoulos et al., Mazid et al., Kagawa et al.)
wasquantifiedusing STARsolo (v2.7.9a)with the followingparameters:
--soloType SmartSeq --soloUMIdedup Exact NoDedup --soloStrand
Unstranded –soloMultiMappers EM. Gene counts were imported in R
using Seurat (v4.0.0)138, outlier cells were filtered as described in the
respective studies, data was normalized and used to find variable
features. To generate theUMAP inFig. 2D, Petropoulos et al. andMazid
et al. datasets were integrated using the FindIntegrationAnchors and
IntegrateData functions fromSeurat, followedbydata scaling, PCAand
UMAP with 30 principal components. Gene set scores for novel anti-
sense and intergenic genes (Fig. 2E) were calculated using the
AddModuleScore function on the unintegrated data. Panels for
Kagawa et al. (Supplementary Fig. 3A, B) were generated as above, but
without data integration. BigWig files displaying short-read RNA-Seq
pileup were generated using bamCoverage from deepTools (v3.5.0),
by providing scaling factors calculated for each sample using DESeq2

(v1.3.0) using the --scaleFactor parameter. Average coverage for each
developmental stage was calculated by averaging the signal across
scaled replicates for each developmental stage using the mean func-
tion from wiggletools (v1.2).

Analysis of protein-coding potential, protein domain content
and repeat content
Open reading frames (ORFs) were predicted from the nucleotide
sequence of each isoform using CPAT (v3.0.2)36 with default para-
meters. As recommended by the authors, ORFs with a coding prob-
ability ≥0.364 were labeled as protein-coding, while sequences below
this threshold were classified as non-coding. For every coding isoform,
the best ORF nucleotide sequence was translated into the corre-
sponding amino acid sequence using the translate function from Bio-
strings (v2.58) in an R 4.0.3 environment, and then scanned for protein
domains using pfam_scan.pl (v1.6) and HMMer (v3.3)139 with default
parameters. Isoform nucleotide sequences were also assessed for the
presence of repetitive elements by using RepeatMasker (v4.1.1)42 with
default parameters. Genomic annotation of isoform TSS locations
compared to known transcripts was performed using ChIPSeeker
(v1.26.0)140.

Evolutionary conservation analysis
Evolutionary conservation scores were obtained by downloading the
hg38.phastcons100way.bw files from the UCSC genome browser
database, which contain base-wise conservation scores estimated
using PhastCons49 frommultiple alignments of 99 vertebrate genomes
to the human genome. Conservation scores across isoforms were
calculated using the computeMatrix function from deepTools (v3.5.0)
with the following parameters: scale-regions --metagene --beforeR-
egionStartLength 3000 --regionBodyLength 5000 --after-
RegionStartLength 3000. Density profiles were plotted using the
plotHeatmap function. For each isoform structural category, a control
set of background regions was calculated by randomly shuffling iso-
forms in intergenic space using the bedtools shuffle function from
bedtools (v.2.29.2) by providing transcripts from Ensembl GRCh38
v102 and chromosome gaps to the -excl parameter. Average con-
servation scores for each isoformand thematching shuffled intergenic
regions were calculated using bigWigAverageOverBed (v2) function
from UCSC. P-values were calculated by comparing average con-
servation scores of isoforms to shuffled intergenic regions using the
Wilcoxon rank-sum test in an R 4.0.3 environment and adjusted using
the Benjamini-Hochberg method. BLAST v2.9.051 was used to scan the
nucleotide sequences of isoforms from the reference transcriptome
against a nucleotide database built using the latest available genome
sequence assemblies of 50 selected vertebrates downloaded from
UCSC141. BLAST was run using -task megablast and default parameters.
Isoforms were considered a hit to each target genome if BLAST
returned at least one alignment of >100bpwith >95% identity and anE-
value < 0.05. The temporal estimates of evolutionary divergence from
hominids displayed in the phylogenetic tree in Fig. 1I were calculated
using TimeTree142,143.

Analysis of publicly available ATAC-seq and CUT&RUN data
Publicly available human embryo ATAC-Seq data was downloaded
from the SRA database (Liu et al. 22, SRP163205), while human embryo
CUT&RUN data was downloaded from the European Nucleotide
Archive (Xia et al. 54, PRJNA513257). Raw ATAC-Seq reads underwent
adapter trimming and quality control with Trim Galore (v0.6.6) using
default parameters for paired-end data. Since the CUT&RUN dataset
contained both single- and paired-end samples with variable read
lengths between 50bp and 150 bp, additional steps were taken to
ensure that the differences in sequencing configuration would not
introduce biases in the downstream analysis. More specifically, reads
underwent hard trimming from the 5’ end with Trim Galore to match
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the shortest read length in the dataset (50bp), and only the first mate
of paired-end reads was used to ensure compatibility between single-
and paired-end samples. ATAC-Seq and CUT&RUN were subsequently
aligned to the human genome hg38 with bowtie2 (v2.4.1)144 using
default parameters. The hard trimming of CUT&RUN reads reduced
the average alignment rate by only 4% when compared to a default
adapter trimming with Trim Galore, thus indicating that the additional
filtering did not result in large loss of data. Next, reads which were
unmapped, duplicate, with MAPQ< 30, or mapping to chromosomes
other than chr1-22, X or Y were removed using sambamba (v0.5.6)132.
For ATAC-Seq samples, peaks were called for each developmental
stage using Genrich (v0.6, https://github.com/jsh58/Genrich) with the
following parameters: -q 0.01 -j -y -v. For CUT&RUN samples, peaks
were called for each developmental stage using MACS2 (v2.1.0)145 with
the following parameters: --broad –broad-cutoff 0.05 -q 0.05 -g hs.
Consensus and differential peaks across developmental stages were
calculated with DiffBind (v3.0.8)146, using the summits=500 parameter
for ATAC-Seq and summits=1000 parameter for CUT&RUN datasets.
Enrichment analysis of peaks overlapping TSSs was performed using
fgsea (v1.16.0)147. Normalization factors for each sample were esti-
matedby applying the calcNormFactors function fromEdgeR (v3.32)148

with method “TMM” to a matrix containing read counts across all
consensus peaks. Scaling factors were next identified by multiplying
the normalization factors by the total number of readsmapped across
all peaks for each sample divided by a factor of 106, and subsequently
taking the reciprocalof the resulting value. BigWigfileswere generated
using bamCoverage from deepTools (v3.5.0)149, by providing the
scaling factors calculated for each sample using the --scaleFactor
parameter. Lastly, coverage for each developmental stage was calcu-
lated by averaging the signal across scaled replicates for each devel-
opmental stage using the mean function from wiggletools (v1.2)150.
Genomic regions ±500bp of TSSs from the transcriptome were
defined in an R 4.0.3 environment. Random genomic 1000bp regions
were generated using bedtools (v2.29.2)151 shuffle, by providing a BED
file of the genomic locations of transcript locations from Ensembl v102
and chromosome gaps to the -excl parameter. Normalized pileup at
TSS regions and shuffled background locations was calculated using
deepTools using the computeMatrix reference-point function with the
following parameters: --referencePoint center --beforeRegion-
StartLength 500 --afterRegionStartLength 500. Density profiles were
plotted using the plotHeatmap function.

Analysis of publicly available RRBS data
Publicly available human embryoRRBS data was downloaded from the
SRA database using accession number SRP028804. Raw RRBS reads
underwent adapter trimming and quality control with Trim Galore
(v0.6.6) using the following parameters: --rrbs --paired. Next, Bismark
(v0.22.3)152 was used to align trimmed reads to the human genome
hg38 and generate a genome-wide report of cytosine methylation in
the CpG context with default parameters. DNA methylation at regions
±500bp of TSSs and at random genomic 1000bp regions (as defined
above) was calculated usingmethylKit (v1.16.0)153. For each region, the
percentage of DNAmethylationwas defined by dividing the number of
identified Cs (methylated reads) by the total number of identified Cs
and Ts (unmethylated reads) within the region. Lastly, average
methylation levels for each region were identified by calculating the
arithmetic average across replicates in each developmental stage.

Isoform coordinate lifting and quantification in non-human
genomes
Isoform genomic coordinates were converted from the human hg38
genome to other vertebrate genomes using the liftOver (v9-Jul-2019)67

utility from UCSC with default parameters. Lifting was performed by
using chain files for the following genomes: chimpanzee (PanTro6),
rhesus macaque (RheMac10), marmoset (CalJac4), pig (SusScr11),

mouse (Mm10), chicken (GalGal6), and zebrafish (DanRer11). Publicly
available RNA-Seq data generated from rhesus macaque and marmo-
set preimplantation embryos were downloaded from the SRA and ENA
databases from the following studies: SRP089891 (Wang et al., maca-
que embryo RNA-Seq) and PRJEB29285 (Boroviak et al., marmoset
embryo RNA-Seq). To assess expression of novel isoforms in these
species, the genePred files containing fully mapped isoforms gener-
ated by liftOverwere converted toGTF using the genePredToGtf utility
from UCSC, and subsequently used to generate STAR and RSEM indi-
ces with the corresponding genome assembly nucleotide sequences.
Raw RNA-Seq reads underwent adapter trimming, quality control, and
were subsequently aligned to the respective reference genomes and
used to quantify isoform expression using the newly generated indices
as described above for the human samples.

Differential gene and isoform expression analysis
Gene- and isoform-level raw counts generated by RSEMwere imported
into an R 4.0.3 environment using tximeta (v1.8.2)154. Principal Com-
ponent Analysis was performed using the prcomp R function on a
matrix containing expression levels of the top 2500 most variable
genes following normalization with the varianceStabilizing-
Transformation function fromDESeq2 (v1.3.0). Per-stage distributions
of isoform novelty were calculated by first taking genes with >10
counts in each sample, and subsequently calculating the arithmetic
average of the percentage of short RNA-Seq reads mapping to novel
isoforms for each gene and stage. Differential gene expression analysis
across developmental stages was performed using DESeq2 (v1.3.0)155

using default parameters.P-valueswere correctedusing theBenjamini-
Hochberg method. Differentially expressed genes were defined as
having an adjusted p-value ≤0.05 and log2FoldChange > 1 (upregu-
lated) or log2FoldChange < -1 (downregulated). Differential isoform
expression analysis was performed using kallisto (v0.46.1)156 (run with
–bootstrap-samples 100) and sleuth (v0.30.0)70; significant isoforms
were filtered by requiring an adjusted p-value ≤0.05 and beta value >
1.5 (upregulated) or beta value < -1.5 (downregulated). Enrichment
analysis of novel isoform classes was performed on isoform-level dif-
ferential expression signatures for each developmental stage transi-
tion using fgsea (v1.16.0)157. Isoform plots in Supplementary Fig. 4C–E
were generated using IsoformSwitchAnalyzeR158.

Alternative splicing analysis
Alternative splicing across developmental stages was profiled using
SUPPA2 (v2.3)87. First, the novel transcriptome GTF file and transcript
TPM values from RSEM were used to measure the percent spliced in
(PSI) values for isoforms and seven types of alternative splicing events
for each sample: skipped exon (SE), alternative 5’ splice site (A5),
alternative 3’ splice site (A3), retained intron (RI), mutually exclusive
exons (MX), alternative first exon (AF), alternative last exon (AL). Sig-
nificant isoform switching and alternative splicing events across con-
secutive developmental stages were next identified by using the
SUPPA2 diffSplice function. Significant AS events were defined as
having a p-value < 0.05 and differential PSI > 0.1 (more included) or < -
0.1 (less included). Gene Ontology enrichment analysis of genes
associated with at least one significant AS event per comparison was
performed using the gprofiler2 (v0.2.0) R package. Isoforms were
clustered based on their relative inclusion across developmental
stages by providing the average PSI value for each stage to the Mfuzz
(v2.50.0)159 R package. Only isoforms with a statistically significant
switching event in at least one comparison were used for the analysis.
Statistical significance between distributions of coding probability,
evolutionary conservation scores, intron number and length across
clusterswere calculated using theWilcoxon rank-sum test in anR 4.0.3
environment and adjusted using the Benjamini-Hochberg method.
Correlation between mRNA expression of SFs (defined as genes
annotated in the Gene Ontology Biological Process term “RNA
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splicing”, GO:0008380) and isoform PSI across short-read RNA-Seq
replicates was calculated using the cor.test function in R with the
Spearman method and pairwise complete observations parameter. SF
eCLIP peak files (BED format) and coverage files (BigWig format) were
downloaded from the ENCODE database46. Isoform-SF pairs in the
network (Supplementary Fig. 5D) were filtered by requiring an abso-
lute correlation value greater than 0.75, and the presence of at least
one eCLIP SF binding peak overlapping the isoform primary sequence
on the same strand.

Weighted gene co-expression network analysis
Gene co-expression networks were generated from gene-level
expression data across all short-read RNA-Seq samples across devel-
opmental stages in an R 4.0.3 environment using WGCNA (v1.69)95.
Genes were first filtered by requiring >10 counts across all samples.
Raw expression counts were subsequently normalized using size fac-
tors from DESeq2 (v1.3.0), and lastly transformed by performing
log10ðx + 1Þ. A signed adjacency matrix was calculated from gene
expression data using a power of β = 13 and converted to a signed
topological overlapmatrix, whichwas used to performgene clustering
with the hclust function using the “average” clustering method. Mod-
ules were defined by cutting the clustering tree using the Dynamic
Hybrid Tree Cut method with a minimum cluster size of 30 genes.
Modules whose eigengenes had a Pearson correlation ≥0.95 were
merged. Gene Ontology enrichment analysis was performed for each
module using the gprofiler2 (v0.2.0)160 R package and the Gene
Ontology: Biological Process library. miRNA-gene binding was pre-
dicted using miRanda (v3.3a)100 with default parameters, using miRNA
sequences from miRbase (v22.1)161. miRNA-gene pairs were filtered by
requiring an alignment in the 3’UTR regionof at least 10 bp and at least
85% sequence identity (allowing wobble base pairing). Over-
representation analysis was performed using clusterProfiler
(v3.18.0)162, with amaximumgene set size of 5000, andfiltered usingp-
value < 0.05, adjusted using the Benjamini-Hochberg method. The
genome-wide co-expression network was plotted with ggnetwork
(v0.5.10) using the Fruchterman-Reingold layout after removing edges
with ≤0.1 connectivity in the signed TOM matrix generated from
WGCNA and resulting unconnected nodes. Module preservation ana-
lysis was performed using the modulePreservation WGCNA function,
computing a Zsummary and p-value (Bonferroni correction) for each
module representing the preservation of the module’s network
topology across each independent dataset. For the two primate data-
sets, the analysis was performed using the human reference tran-
scriptome lifted to the respective species genome using liftOver and
quantified using the short-read RNA-Seq embryonic samples.

Novel gene cluster analysis
Novel gene clusters were defined by applying Mfuzz (v2.50.0) to a
matrix containing gene expression levels normalized using the var-
ianceStabilizingTransformation function from DESeq2 (v1.3.0). Motif
enrichment analysis for each novel gene cluster was performed with
HOMER (v4.10) on promoter regions defined between 3000bp
upstream and 500bp downstream of each gene’s major isoform TSS,
using the -size given parameter and other novel gene cluster pro-
moters as background. Predicted motifs were further filtered by
requiring an enrichment q-value < 0.05, and the corresponding TF to
bind at least 10 novel gene promoters and have valid predicted TF
activity scores (see below for details). The top 5 results for each novel
gene cluster are displayed in Fig. 4D. Gene Ontology enrichment
analysis of novel gene clusterswas performed using gprofiler2 (v0.2.0)
by submitting the top 1000 most connected known genes for each
cluster, as ranked by average connectivity from the WGCNA TOM
matrix weighted by each gene’s Mfuzz cluster membership.

Construction of the TF-novel gene regulatory network
TF-novel gene regulatory interactions were predicted by integrating
TOBIAS (v0.11.1)110 and VIPER (v1.24.0)111. First, BAM files generated by
alignment of ATAC-Seq replicates for each developmental stage (from
Liu et al.) were merged, and Tn5 insertion bias was corrected using
ATACorrect by providing previously defined peaks (see above) and the
hg38 blacklist file from ENCODE163 (https://github.com/Boyle-Lab/
Blacklist/). Next, FootprintScores was used to estimate TF footprint
scores, which were used by BINDetect in combination with non-
redundant TF motifs from JASPAR CORE (9th release)164 to predict
boundTFs for each developmental stage. Putative TF-target regulatory
interactions were determined by identifying TFs predicted to be
bound at novel gene promoters (3000bp upstream and 500 bp
downstream of each isoform TSS). Next, TF activity was predicted for
each short-read RNA-Seq sample using VIPER, using human regulons
from DoRothEA (v1.2.2)165 and gene expression values normalized as
for the network analysis. The TF-target network was further refined by
requiring the predicted TF activity and the novel gene’s normalized
expression to have absolute correlation values ≥0.3 across short-read
RNA-Seq replicates, as determinedbySpearman’s index, as an adjusted
p-value < 0.05 (Benjamini-Hochberg correction).

PCR validation of novel genes
PCR primers were generated using NCBI Primer-BLAST166 and checked
for off-target effects against the genome using UCSC in silico PCR
(https://genome.ucsc.edu/cgi-bin/hgPcr). To capture a diversity of
isoform structures, two pairs of primers were designed for each gene:
one pair that encompasses the most common outer pair of exons
within the gene, and a second pair that captures at least one internal
exon (see Supplementary Fig. 8A, full primer sequences are available in
Supplementary Data 9). RNA was extracted and reverse transcribed to
cDNA as described above. Samples were collected from two early
preimplantation stages: day 1 (1C) embryos and day 3 (8C) embryos,
and two biological replicates were generated for each developmental
stage. As a result, four separate samples were assessed: 1C-1 and 1C-2
(both independently generated by pooling three sets of separate 1C
embryos), 8C-1 and 8C-2 (pooling four E3 embryos each). To allow for
detection of genes with varying levels of expression, cDNA was
amplified by PCR using 30–36 cycles, and gel lanes were loaded with
10–200ng cDNA.

Statistics and reproducibility
IVF embryos used in this study were donated for research by patients
following informed consent and after completing their family fertility
plan. In order to ensure reproducibility of our experimental findings,
we extracted RNA from high-quality embryos as assessed with the
scoring system routinely used in IVF clinical cycles. Nevertheless, for
some stages (i.e. morula) we did not have a large enough selection of
embryos from our banked resource, and used a limited number of
morula stage embryos as noted within the methods and results
accordingly. Regardless, our embryo collection is a sufficient pre-
sentation of IVF preimplantation embryos representing the natural
variability in the population across the zygotic to blastocyst stages of
development. No statistical method was used to predetermine sample
size butwe included 13 to 16 embryos at all stages of developmentwith
the exception of N = 3 at the morula stage as illustrated in Fig. 1A.
Experiments were not randomized and investigators were not blinded
to allocation during experiments and outcome assessment, as this was
not considered relevant to the study.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.
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Data availability
The long- and short- RNA-Seq sequencing data have been deposited at
GEO under the accession GSE190548. Data can be also interactively
explored and downloaded from the following custom built web
resource: https://denis-torre.github.io/embryo-transcriptome/. Pre-
dicted biological properties for isoforms in the transcriptome are
provided as Supplementary Data. Source data are provided with
this paper.

Code availability
All analyses were performed using publicly available tools in bash
4.2.46, Python 3.8.2 and R 4.0.3 environments. The code has been
deposited on GitHub at the following link https://github.com/denis-
torre/embryo-transcriptome, and can be cited via Zenodo at https://
doi.org/10.5281/zenodo.8368062.
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