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REVIEW ARTICLE

Dietary natural flavonoids treating cancer by targeting aryl
hydrocarbon receptor

Tian Yanga�, Ya-Long Fenga�, Lin Chena, Nosratola D. Vazirib and Ying-Yong Zhaoa

aFaculty of Life Science & Medicine, Northwest University, Xi’an, China; bDivision of Nephrology and Hypertension, School of Medicine,
University of California Irvine, Irvine, CA, USA

ABSTRACT
The role of aryl hydrocarbon receptor (AhR) as a ligand-activated transcription factor in the field of can-
cer has gradually been unveiled. A strong body of evidence indicated that AhR is implicated in cell pro-
liferation and apoptosis, immune metabolism and other processes, which further affected tumor
growth, survival, migration, and invasion. Therefore, AhR targeted therapy may become a new method
for cancer treatment and provide a new direction for clinical tumor treatment. Astonishingly, the larg-
est source of exposure of animals and humans to AhR ligands (synthetic and natural) comes from the
diet. Myriad studies have described that various natural dietary chemicals can directly activate and/or
inhibit the AhR signaling pathway. Of note, numerous natural products contribute to AhR active, of
which dietary flavonoids are the largest class of natural AhR ligands. As interest in AhR and its ligands
increases, it seems sensible to summarize current research on these ligands. In this review, we highlight
the role of AhR in tumorigenesis and focus on the double effect of AhR in cancer therapy. We explored
the molecular mechanism of AhR ligands on cancer through a few AhR agonists/antagonists currently
in clinical practice. Ultimately, we summarize and highlight the latest progression of dietary flavonoids
as AhR ligands in cancer inhibition, including the limitations and deficiencies of it in clinical research.
This review will offer a comprehensive understanding of AhR and its dietary ligands which may dramat-
ically pave the way for targeted cancer treatment.

GRAPHICAL ABSTRACT

Abbreviations: 5F 203: 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole; AhR: Aryl hydrocarbon
receptor; AFP 464: Aminoflavone; AhR-/-: AhR-deficiencies; AhRþ/þ: wild-type; ARNT: AhR nuclear translo-
cator; BaP: benzo[a] pyrene; bHLH-PAS: basic helix-loop-helix-PER-ARNT-SIM; CSCs: Cancer stem cells;
CXCR4: C-X-C chemokine receptor 4; CYP1A1: cytochrome P450 1A1; DF203: 5-fluoro-2-(3,4-dimethoxy-
phenyl)-benzothiazole; DRE: dioxin-responsive element; EROD: ethoxyresorufin-O-deethylase; ERþ: estro-
gen receptor-positive; ER�: estrogen receptor-negative; GW610: 2-(4-amino-3-
methylphenyl)benzothiazole; HSP90: heat shock protein 90; KYN: kynurenine; MCDF: Methyl-1,3,8-tri-
chlorodibenzo-furan; OM: omeprazole; PAHs: polycyclic aromatic hydrocarbons; Phortress: 2-(4-amino-
phenyl)benzothiazole; TCDD: Tetrachlorodibenzo-p-dioxin; TDO2: tryptophan-2,3-dioxygenase; TNBC:
triple negative breast cancer; XAP2: X-associated protein
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1. Introduction

The ubiquitous pollutants in the environment are wantonly
harming the human body. These environmental carcinogens
such as tetrachlorodibenzo-p-dioxin (TCDD) and polycyclic
aromatic hydrocarbons (PAHs) are derived from waste incin-
eration, pulp manufacturing and other industrial processes
(Jiang et al. 2018). Traces of environmental pollutants can be
discovered throughout the world in a variety of sources,
including the air, water, soil. Clinical studies have shown that
these environmental carcinogens are toxic to the body by
binding to AhR and cause cancer in many tissue types, espe-
cially the prostate and breast (Bianchi-Smiraglia et al. 2018;
Yu et al. 2018).

The AhR is a member of the basic helix-loop-helix-PER-
ARNT-SIM (bHLH-PAS) subgroup of the bHLH superfamily of
transcription factors and is the only member of this family
known to be activated by ligands (Figure 1). The unliganded
AhR resides in the cytoplasm of a cell, forming a complex
with a heat shock protein 90 (HSP90) dimer and the co-chap-
erone protein X-associated protein 2 (XAP2). After binding an
agonist, the AhR complex translocates to the nucleus and
AhR nuclear translocator (ARNT) mediates HSP90

displacement, leading to AhR-ARNT heterodimer formation.
This heterodimer is capable of binding to a dioxin-responsive
element (DRE) and both AhR and ARNT can recruit co-activa-
tors, leading to the transcription of a wide variety of genes.
The AhR target gene cytochrome P450 1A1 (CYP1A1) is
almost totally dependent on AhR activity for expression and
is highly induced by AhR activation through multiple DREs
(Murray et al. 2014). CYP1A1 metabolizes a number of pro-
carcinogens, such as BaP, to intermediates that can react
with DNA to form adducts, resulting in mutagenesis and can-
cer (Zapletal et al. 2017). In view of the significant role of
AhR in human physiology and pathophysiology, agonists or
antagonists of AhR have the potential to become new tar-
geted therapeutic agents for cancer.

As interest in the AhR and its ligands increases, it is essen-
tial to discover more high-affinity AhR ligands. In addition to
environmental contaminants, two other sources of AhR
ligands with pharmaceutical potential are currently consid-
ered. Firstly, various dietary phytochemicals were identified
as potential ligands (Busbee et al. 2013; Naganuma et al.
2018). For many polyphenols, especially large amounts of fla-
vonoids have been shown to be involved in immune regula-
tion and AhR activation (Schiering et al. 2017; Bartonkova
and Dvorak 2018; Kerimi and Williamson 2018). Secondly,
some products of amino acid metabolism, such as trypto-
phan-derived ligand 6-formylindolo[3,2-b]carbazole and
kynurenine, also can as potential ligands (Moura-Alves et al.
2014). But natural products are always the biggest asset in
the study of novel anti-cancer agents. Flavonoids represent
the largest group of natural dietary AhR ligands (Iyer et al.
2018). Some flavonoids acted as either AhR agonists or
antagonists to bind AhR and alter CYPs. Ronnekleiv et al.
found that the combination of chrysin and AhR can up-regu-
late pro-apoptotic cytokines tumor necrosis factor a and b
genes to play a chemoprophylactic role in human colorectal
cancer cells (Ronnekleiv-Kelly et al. 2016) dietary nat-
ural flavonoids

The diversity and low toxicity of these dietary natural fla-
vonoids, combined with their various effects on the immune
system through their interaction with AhR, make them inter-
esting candidates for researchers’ research. However, there is
no clear epidemiological evidence to prove the link between
flavonoids and human health. Some studies support the pro-
tective effects of flavonoids on cancer, other studies have
shown no effect, and even some studies have shown that it
may be harmful. Therefore, further research on laboratories
and populations is important (George et al. 2017; Rienks

Figure 1. The functional structure of AhR protein. A bHLH (basic helix-loop-helix) domain that allows the dimerization with its partner ARNT, the binding of DNA
and the interactions with chaperones such as Hsp90. And it also contains sequences important for both nuclear import and export; A PAS (PER–ARNT–SIM) domain
which comprises two structural repeats A and B which are also involved in the dimerization with ARNT (PAS A) but which also allows the ligand binding (PAS B);
Q-rich region (enriched with glutamine), coactivators and co-repressors interact with the AhR via this domain.
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et al. 2018). We searched the PubMed database with the
words “flavonoids”, “cancer” and “AhR” before March 2019,
and excluded duplicate and poor quality literature. In this
review, we will discuss the role of AhR in tumorigenesis and
progression and the potential of targeting AhR for tumor
therapy. At the same time, the latest research progress on
natural and dietary AhR ligands is provided by taking dietary
flavonoids as an example.

2. The role of AhR in tumor

Epidemiological and experimental animal data indicate that
AhR dysfunction is significantly associated with cancer. For
example, Iqbal et al. showed that BaP or TCDD interact with
AhR and induce osteoporosis and fracture through the activa-
tion of CYP1A1/CYP1B1 enzymes to react osteoclast bone
resorption (Iqbal et al. 2013). The classical pathway suggests
that AhR promotes the expression of phase I metabolic
enzymes at the initial stage of tumors and leads to the meta-
bolic activation of carcinogens such as TCDD/BaP intermedi-
ates or end products with genetic toxicity, which leads to
DNA damage and promotes tumorigenesis (Romagnolo et al.
2016). At the same time, researchers found that AhR not only
plays a role in the induction stage of tumors, but also plays
an important role in the proliferation, apoptosis, migration,
invasion and other stages of tumors (Feng et al. 2013;
Tummala et al. 2014). In addition, AhR is associated with the
regulation of multiple signal transduction pathways such as
FAK/Src (Tomkiewicz et al. 2013; Wei et al. 2018), PI3K/Akt
(Popolo et al. 2017), TGF-b (Gagliani et al. 2015), and NF-jB
(Galle-Treger et al. 2016) (Figure 2). There have been numer-
ous excellent literature reviews on the specific roles of AhR

in various stages of cancer, and we will not discuss it much
here (Safe et al. 2013; Esser and Rannug 2015; Gutierrez-
Vazquez and Quintana 2018).

It is worth noting that recent studies have shown that
activation of AhR is associated with poor response of chemo-
therapy and target-therapy in cancer. For example, Ye and
colleagues showed that the AhR/CYP1A1 signaling pathway
mediates breast cancer stem cells (CSCs) proliferation and
chemoresistance by inhibiting PTEN and activating of the
b-catenin and Akt pathways (Ye et al. 2018). In addition, the
expression of AhR and CYP1B1 in inflammatory breast cancer
carcinoma tissues is associated with poor prognostic markers,
such as lymphovascular invasion, tumor grade, cellular prolif-
eration and the number of lymph node metastases.
Furthermore, AhR can promote therapeutic resistance to CSC
and inflammatory breast cancer aggressive phenotypes by
stimulating the Wnt5a/b-catenin signaling pathway
(Mohamed et al. 2019). It has now been demonstrated that
AhR is an effective contributor in conferring resistance to
apoptosis against several apoptosis-inducing treatments on
different breast cancer cell lines. Based on the results of the
current study a question arose: why does the AhR act in such
a broad spectrum capacity? A possible explanation by Bekki
et al. is that the AhR has evolved as an overall pro-survival
factor against environmental stress, which is also effective for
stress-induced apoptosis (Bekki et al. 2015). Therefore, it is
important to further determine whether AhR activation also
contributes to resistance to ROS1 TKIs, ALK TKIs and other
targeted therapeutics in non-small-cell carcinoma.

More importantly, AhR is frequently overexpressed in
human or animal tumor tissues even without exogenous
ligands. On the one hand, researchers believe that this may

Figure 2. The signaling pathway of AhR in tumors. In the tumor microenvironment, AhR is involved in the regulation of a variety of signal transduction pathways,
such as JNK/Slug, FAK/Src, PI3K/Akt, NF-jB and TGF-b. JNK: Jun amino-terminal kinases; FAK: Focal Adhesion Kinase; PI3K: phosphoinositide 3-kinase; Akt: protein
kinase; NF-jB: nuclear factor-jB; P: phosphorylation.
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be related to endogenous AhR ligands. Opitz et al. claimed
that tryptophan-2,3-dioxygenase (TDO2)-derived kynurenine
(KYN) inhibits anti-tumor immune responses and promotes
tumor- cell survival and motility through the AhR in an auto-
crine/paracrine manner (Opitz et al. 2011). Subsequently,
D’Amato et al. found that in triple-negative breast cancer
cells, the TDO2-KYN-AhR signaling axis was activated in an
NF-jB-dependent manner to promote anoikis resistance and
metastasis (D’Amato et al. 2015). Rogers et al. further discov-
ered that miR-200c, a gene used to target and inhibit epithe-
lial-mesenchymal transition, can directly TDO2 resulting in
reduced production of the immunosuppressive metabolite
kynurenine (Rogers et al. 2019). This has developed novel
therapeutic strategies for current immunotherapies. These
results indicate that endogenous ligands of AhR play a role
in tumor formation and progression. However, the inference
still has problems. For example, do these endogenous AhR
ligands originate from entire body tissues or local tissues?
Are they produced in the body or by bacteria? Whether they
reached sufficient concentrations to activate AhR in tumor
microenvironment? These issues still need further study. On
the other hand, AhR can interact with some growth factors
to promote the progress of tumors, such as fibroblast growth
factor 9, osteopontin. The promoters of these factors contain
DNA response elements of AhR, which can be enhanced by
AhR agonists. At the same time, as a strong mitogen, they
are likely to further promote the proliferation of cancer cells.
For example, AhR is overexpressed in lung adenocarcinoma
and positively correlated with fibroblast growth factor 9,
which may promote tumor growth by regulating the inter-
action of tumor cells with fibroblasts (Wang, Hang, et al.
2009; Ueng et al. 2010). Chuang et al. found a positive correl-
ation between osteopontin and AhR expression in lung can-
cer specimens. And AhR-deficiencies (AhR�/�) mice indicate
down- or up-regulation of osteopontin expression in lung
cancer cells (Chuang et al. 2012). But interestingly, Kuznetsov
et al. showed that osteopontin is negatively regulated by the
dioxin receptor, and that down-regulation of its expression
correlates with development of stomach tumors in mice
expressing a constitutively active mutant of dioxin receptor
(Kuznetsov et al. 2005). These all illustrate the ability of AhR
to promote tumor progression.

In contrast, some scholars have found that in some cases,
AhR is clearly “silent” (i.e. not expressed) during the forma-
tion of some tumors, suggesting that it has anti-cancer func-
tion. In AhR�/� mice, the incidence of liver cancer induced
by diethylnitrosamine (non-AhR ligand) was higher than that
in wild-type (AhRþ/þ) mice, because high levels of oxidative
stress and stable expression of TGF-B promoted tumor devel-
opment in AhR�/� male mice (Fan et al. 2010). Huang, YK
et al. discovered that after experimental autoimmune uveitis
induction, AhR�/� mice had more severe clinical and histo-
pathological findings of uveitis than AhRþ/þ mice (Huang
et al. 2018). More recently, Iu et al. found that AhR can
inhibit inflammation, oxidative stress and apoptosis caused
by cigarette smoke through mechanisms involved in RelB
gene (NF-B member) regulation (Iu et al. 2017). These data
suggest that AhR can act as a tumor suppressor gene under

certain conditions, but the underlying molecular mechanisms
are still unknown.

It is worth mentioning that when AhR is activated by
exogenous ligands, experiments with different cell lines often
result in different, even opposite results. Harrill et al. showed
that rodent cancer bioassays indicate that TCDD activates
AhR and causes increases in both hepatocytic and cholangio-
cytic tumors (Harrill et al. 2015). However, Yamaguchi et al.
found that TCDD can inhibit the growth of liver cancer cells
through various signaling pathways mediated by AhR and its
related cofactors (Yamaguchi and Hankinson 2018). Why and
how to produce contradictory results from these different
work? Some scholars speculate that it may be because AhR
has cell specificity for cell proliferation, and cell type is an
important factor that determines whether AhR promotes or
inhibits cell growth and proliferation (Narasimhan et al.
2018). To sum up, we find that AhR is a double-edged sword
for tumorigenesis. There may be some balancing mechanism
in organisms that will determine whether AhR promotes or
suppresses cancer. Nevertheless, what is the molecular basis
for determining this balancing mechanism associated with a
particular cell type? How do they work? Such institutional
problems are not yet clear. Therefore, it is necessary to fur-
ther study the potential cellular/molecular mechanisms and
finally clarify the contribution of AhR to cancer progression
or prevention.

3. The mechanism of AhR ligands as anti-
cancer drugs

Natural products have been widely used for treatment of
CKD in clinic (Zhao 2013; Tian et al. 2014; Wang, Chen,
Wang, et al. 2017; Chen, Feng, et al. 2018; Chen, Hu, et al.
2018; Chen, Yang, et al. 2018; Hu et al. 2018; Wang et al.
2018; Chen, Feng, et al. 2019). Treatment with ergone (Zhao
et al. 2011, 2012; Zhao, Zhang, et al. 2013), Rhubarb (Zhang
et al. 2015, 2016; Wang, Chen, Liu, et al. 2017; Zhang, Li,
et al. 2018) and the surface layer of Poria cocos (Zhao, Lei,
et al. 2013; Zhao, Li, et al. 2013; Chen, Cao, et al. 2019) could
improve myriad diseases such as cancer, cardiovascular dis-
ease and kidney diseases. At present, targeted drugs research
on AhR ligands mainly includes 2–(4-aminophenyl)benzothia-
zole (Phortress), Aminoflavone (AFP 464), omeprazole (OM)
and NK150460, etc. Phortrees and AF have entered phase I
and II clinical trials and relevant studies on OM and
NK150460 are in progress (Hendriks et al. 2017) (Figure 3(A)).
In this section, we will introduce these drugs in turn and
explain these compounds role as cancer ligands in the treat-
ment of cancer.

3.1. Phortress

Phortress is a metabolically activated pro-drug that
causes the formation of DNA adducts and leads to cancer
cell death (Cui and Li 2014). During early screening,
the researchers found that breast cancer cells MCF-7 and
ovarian cancer cells IGROV-1 were sensitive to Phortress.
Subsequent studies revealed that Phortress and its derivatives

4 T. YANG ET AL.



2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5 F 203),
2-(4-amino-3-methylphenyl)benzothiazole (DF 203), 5-fluoro-
2–(3,4-dimethoxyphenyl)-benzothiazole (GW 610) and the like
can enter the cytoplasm through the cell membrane. They
bind with AhR and translocate to the nucleus and form a
heterodimer with ARNT. Then, they bind to the promoter of
the CYP1A1 gene and promote the expression of CYP1A1
mRNA. Subsequently, the content of CYP1A1 in the cytoplasm
increased and combined with 5F203 to form a substance
with biological activity, which then entered the nucleus and
interacted with DNA to cause the break of single and double
strands of DNA, leading to DNA damage and cell death
(Wang and Guengerich 2012; Stone et al. 2015; Citossi et al.
2018). Phortress are not sensitive in some cells, such as
breast cancer cells MDA-MB-435 and prostate cancer PC-3
cells, and Phortress does not cause DNA damage and trigger
cell death (Rowland et al. 2019).

This indicates that Phortress has a selective tumor sup-
pressor effect in tumor cells, and its anti-tumor activity is
linked to CYP1A1 activity. In addition, some new ideas about
the role of 5 F 203 in cancer treatment have been reported
recently. Luzzani et al. demonstrated that 5 F 203 can inhibit
c-Met receptor phosphorylation in human renal cancer cell
lines (TK-10 cells). And c-Met receptor signaling is important
in the migration and metastasis of tumor cells (Luzzani et al.
2017). And McLean et al. demonstrate that 5 F 203 induces
reactive oxygen species mediated DNA damage at least in
part via AhR, c-Jun-N-terminal kinase, or p38 mitogen-acti-
vated protein kinase activation and modulates the expression
of oxidative stress-responsive genes such as cytoglobin to
confer its anticancer effect (McLean et al. 2015). In addition,
Rowland et al. previously demonstrated that 5 F 203 induce
the expression of tumor suppressor gene cell albumin in
breast cancer cells. And they recently discovered that 5 F 203
not only induces apoptosis but also induces caspase-3 activa-
tion in triple negative breast cancer (TNBC) cells and breast
cancer cells. It is suggested that 5 F 203 has the potential to
restore cytoglobin expression as a novel strategy for the
treatment of TNBC (Rowland et al. 2019).

3.2. AFP 464

AFP 464 is a novel anticancer drug that has entered phase II
clinical trials. The mechanism of action of AFP 464 and
Phortress in estrogen receptor-positive (ERþ) breast cancer
cells such as MCF-7 is similar, but there are still some differ-
ences (Luzzani et al. 2017). When AFP 464 acted on estrogen
receptor-negative (ER-) alpha TNBC cells and prostate cancer
cells, it was not drug-induced ethoxyresorufin-O-deethylase
(EROD) activity and no increase the expression of CYP1A1
and CYP1B1 gene (Loaiza-Perez et al. 2004). And AFP 464 can
cause DNA damage, S phase arrest and senescence in TNBC
cells, but its regulation of growth inhibition does not require
the expression of endogenous AhR or downstream AhR tar-
get genes CYP1A1 and CYP1B1. That is to say, whether AhR
is expressed or whether AhR signaling pathway is normal,
which does not affect the function of AFP 464 to inhibit cell
growth (Brinkman et al. 2014).

In addition, AFP 464 has excellent applications in other
fields. The emergence of drug resistance is one of the prob-
lems that plague researchers. For example, more than 40% of
patients with luminal breast cancer treated with endocrine
therapy agent tamoxifen demonstrate resistance.
Interestingly, Rowland et al. found that elevated a6-integrin
expression is associated with tamoxifen resistance and AFP
464 suppresses a6-integrin-Src-Akt signaling activation to
confer activity against tamoxifen-resistant breast cancer
(Rowland et al. 2019). In addition, Brantley et al.discovery
that a6-integrin promotes initiating cells growth. And AhR
signaling activation impedes the formation of mammo-
spheres (clusters of cells enriched for tumor initiating Cells)
(Brantley et al. 2016).

At the same time, with the emerging role of AhR in
immune tolerance, Callero et al. explored the effects of
AFP464 on the immune system. They concluded that AFP
464 increased splenic cytotoxic activity, diminished the num-
ber of systemic/local Treg lymphocytes and myeloid-derived
suppressor cells. It is assumed that AFP464 regulates the
immune response which collaborates with its anti-tumor
activity (Callero et al. 2017). It is well known that one of the
main challenges of cancer treatment is accurate. In order to
enhance the targeting of drugs, researchers have introduced
nanotechnology in anticancer drug development. A quan-
tum-dot-based micelle conjugated with an anti-epidermal
growth factor receptor nanobody and loaded with AFP 464,
has been engineered for EGFR-overexpressing cancer thera-
peutics. Wang et al. Reported that this quantum-dot-based
nanobody-conjugated micelle is more effective in the treat-
ment of tumors and no side effects have been observed
(Wang, Wang, et al. 2017).

3.3. Omeprazole

Omeprazole (OM) is an AhR agonist and a proton pump
inhibitor that is used to treat people with gastric acid related
diseases. For example, Dutta et al. demonstrated that OM
can alleviate cough caused by acid reflux in patients with
pulmonary fibrosis by randomized double-blind test, and is
well tolerated and has fewer adverse reactions (Dutta
et al. 2019).

OM as an AhR ligand depends not only on their structure
but also on target organs and downstream reactions and
genes. In the classical nuclear AhR/ARNT-mediated reaction,
OM recruited AhR into the region of the c-x-c chemokine
receptor 4 (CXCR4) promoter containing DRE, which was
accompanied by loss of pol II on the promoter and
decreased expression of CXCR4. Therefore, omeprazole inhib-
its tumor invasion and regulates metabolism in vivo by inhib-
iting CXCR4 transcription (Jin et al. 2014).

In addition, the non-genomic AhR pathway was also
reported, and Shimoyama et al. found that TCDD or OM
caused PP2A-mediated dephosphorylation of Sp1 at Ser-59
and induced CYP1A1 transcription. This signaling pathway did
not depend on the AhR-mediated pathway. Similarly, Jin
et al. suggested that in the most highly invasive subtype of
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pancreatic cancer cells, OM invasion through the non-gen-
omic AhR pathway (Jin et al. 2015).

It is worth noting that Patel et al. initially assumed that
OM-mediated activation of AhR attenuated acute hyperoxia-
induced lung injury in newborn mice, but the results of the
trial reversed their hypothesis. The results showed that hyper-
oxia-induced alveolar and pulmonary vascular simplification,
inflammation, oxidative stress, and vascular injury were
increased in OM-treated animals. In other words, OM
decreases functional activation of pulmonary AhR and poten-
tiates hyperoxia-induced lung injury in newborn mice
(Shivanna et al. 2015). This indicates that there are still tox-
icity and side effects of OM that cannot be ignored, which
should be paid attention to in clinical treatment.

3.4. NK150460 and MCDF

In breast cancer, AhR regulates the level of estrogen in the
body through the following two ways [34]. One is to induce
the expression of estrogen metabolism genes in the CYP1
family as a transcription factor, and the other is to inhibit
estrogen signaling pathway and degrade estrogen receptor.
Therefore, inhibition of the AhR- ER signaling pathway plays
a role in anti-estrogen activity (Marques et al. 2013; Popolo
et al. 2017).

As a novel AhR agonist, NK150460 has selective antitumor
activity against breast cancer cell lines. Moreover, NK150460
inhibits 17b-estradiol (E2)-dependent transcription without
affecting the binding of E2 to ER. The mechanism seems
completely different from the existing anti-hormone drugs,
indicating that NK150460 may become the fourth class of
anti-hormone therapy drugs in the future (Fukasawa et al.
2015). Methyl-1,3,8-trichlorodibenzo-furan (MCDF), a relatively
nontoxic selective AhR that induces CYP1A1-EROD activity
and inhibited proliferation of ER-breast cancer cell lines
(Chitrala and Yeguvapalli 2014). In short, NK150460 and
MCDF have antitumor activity depending on AhR/ARNT and
the target protein CYP1A1. However, NK150460 inhibits the
growth and proliferation of tumor cells by inducing the
expression of CYP1A1 and CYP1B1 at the mRNA level. MCDF
can activate CYP1A1-dependent EROD activity and inhibit the
proliferation of ER- MDA-MB-231. Furthermore, MCDF inhibits
cell growth and invasion by inducing expression of miR-335,
which is usually accompanied by downregulation of SOX4, a
miR-335 regulated (inhibited) gene (Zhang et al. 2012).

In conclusion, AhR ligands can prevent tumorigenesis in
two main ways. (1) AhR ligand activation mediates the
expression of downstream target genes (such as CYP1A1,
CYP1A2, and CYP1B1) of AhR, which can promote the metab-
olism of exogenous toxins and protect the body from the
influence of exogenous substances (Maayah et al. 2013; Minh
Truong et al. 2014). (2) AhR ligands indirectly interfere the
interaction between AhR and other tumor-related signaling
pathways (such as AhR-ER and AhR-mitogen-activated protein
kinases) to prevent the occurrence of tumors (Salisbury and
Tomblin 2015). Current research results show that targeting
AhR drugs are mainly focused on breast cancer research, but
also involve other tumors. However, AhR ligand has the

specificity of tumor and tumor cells, which makes it more dif-
ficult to screen AhR targeted drugs. Therefore, the author
hopes to find out the reasons for the specificity of AhR
ligands in tumors on the basis of a comprehensive under-
standing of the relationship between AhR and tumors, so
that AhR targeting drugs can be widely used in the treat-
ment of tumors.

4. The potential of dietary flavonoids as a cancer-
targeted drug

As discussed above, AhR ligands are expected to be devel-
oped as new cancer-targeting drugs. In addition to these
classical synthetic AhR ligands, scientists have begun to dis-
cover non-classical natural ligands. These natural compounds
have been shown to be less toxic, but they can still trigger
reactions via the AhR pathway. Most natural AhR ligands are
introduced into biological systems by oral administration of
food and herbal medicines, the most notable of which are
flavonoids. Flavonoids are the most common plant polyphe-
nols that provide a great deal of flavor and color to fruits
and vegetables. More than 8000 different flavonoids have
been identified. The seven main subclasses of flavonoids
include the chalcones, flavonols, isoflavones, anthocyanidins,
flavanonols, flavanones and flavanols (Dong et al. 2016).
Many reports indicate a link between flavonoid consumption
and health benefits (or risk) due to its antioxidant, antiproli-
ferative, estrogenic or anti-estrogenic properties (Mozaffarian
and Wu 2018; Scarmeas et al. 2018). The low toxicity of these
dietary flavonoids, combined with their various effects on
tumorigenesis via the interaction with the AhR, makes them
interesting candidates for researchers to investigate.

4.1. The role of dietary flavonoids as AhR ligands
in cancer

From independent screening of phytochemicals, certain flavo-
noids exhibit AhR agonist or antagonist activity in a cell line-
specific manner. Numerous flavonoids were found to activate
the AhR, including apigenin, baicalein, chrysin, diosmetin,
daidzein, galangin, genistein and quercetin (Jin et al. 2018)
(Figure 3(B)). Apart from this, Androutsopoulos et al. reported
earlier that both CYP1A1 and CYP1B1 mRNA levels and CYP1
enzyme activity marker EROD were increased in a dose-
dependent manner upon treatment with eupatorin-5-methyl
ether and luteolin (Androutsopoulos and Tsatsakis 2014). In
addition, Choi et al. claimed that b-naphthoflavone, as a non-
toxic flavonoid, can induce the detoxification potential of the
representative detoxification enzyme cytochrome P4501A1
(Chuang et al. 2012). Subsequently, Bolton et al. reported
that a potent AhR agonist 6-Prenylnarigenin in hops, result-
ing in a selective up-regulation of the P450 1A1-mediated
estrogen detoxification pathway (Bolton et al. 2019). Of note,
some flavonoids that bind to AhR elicit antagonism rather
than increase CYP1 activity. Regarding the antagonistic activ-
ity of flavonoids, kaempferol, galangin, quercetin, apigenin,
and naringenin inhibited the activation of AhR induced by
TCDD (Wang et al. 2012). Tan et al. found that hesperetin, a
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flavonoid widely present in citrus fruits, inhibits TCDD-
induced nuclear translocation of AhR. And further reporter-
gene assay indicated that the effect of hesperetin attenuated
the induced XRE activation (Tan et al. 2018). And Froyen
et al. found that genistein significantly decreased basal hep-
atic microsomal Cyp1A1 protein expression and activity but
did not alter the expression of AhR protein. Furthermore,
genistein-treated cells exhibited inhibition ARNT and ER-a
bindings to the Cyp1A1 promoter region (Froyen and
Steinberg 2016). Interestingly, despite the structural similarity
between quercetin and kaempferol, they combined with AhR
produced different effects. After the active site of AhR occu-
pied by kaempferol, it could prevent TCDD from binding
with AhR, which leads to a decrease in TCDD-induced
CYP1A1 expression. And their differential effect may be
due to the absence of additional hydroxyl groups on
kaempferol, preventing it from achieving the best fit to the
binding site on AhR to produce transcriptional activation
(Androutsopoulos and Tsatsakis 2014). In a cell-free system
using rat hepatic cytosol, it was also found that their antag-
onistic effects were dependent on their subclasses. And the
order of the antagonistic activity was flavones¼ flavonols>
flavanones> catechins � isoflavones (Nishiumi et al. 2011).

After the above comparative analysis, the author found
that the effect of flavonoid-mediated CYP1 induction on
physiological functions is very complicated. On the one hand,
enhanced CYP1 activity may lead to metabolic activation of
pro-carcinogens, production of genotoxic metabolites, and
then covalent binding of DNA and causing carcinogenesis.
On the other hand, the induction of CYP1s and some other
metabolic enzymes such as glutathione S-transferase and
UDP-glucuronyltransferase may accelerate the rate of detoxi-
fication of xenobiotics (Kalthoff et al. 2017). Perhaps the con-
tribution of dietary flavonoids to the initiation or prevention
of cancer depends on the balance between pro-carcinogen
activation and detoxification (Bock 2014). In order to further
explore more potential natural AhR ligands, researchers tried
to reveal why flavonoids are the largest source of AhR
ligands. Generally, substrates for AhR are planar aromatic
compounds with few bulky substituent groups. That might
partly explain the activity of flavonoids, which have similar
planar structures as AhR ligands. In addition, some research-
ers further analyzed the characteristics of dietary flavones as
AhR ligands. Jin et al. indicated that a major structural deter-
minant for AhR activation was the number of hydroxyl
groups where pentahydroxyflavonoids (with the exception of
morin)> hexahydroxyflavonoids> tetra-/trihydroxyflavonoids
(Jin et al. 2018). And Wang et al. proposed that the preny-
lated naringenin derivative exhibited unique activity com-
pared to the parent naringenin. They found that the
significant CYP1A1/1B1 induction by 6-prenylnarigenin com-
pared to 8- prenylnarigenin may suggest that the positioning
of the prenyl group is important for AhR activation (Wang
et al. 2016). But Calvo et al. suggested that the oral bioavail-
ability of 8-prenylnaringenin in healthy women and men was
significantly higher than 6-prenylnaringin in a randomized
crossover trial (Calvo-Castro, Burkard, et al. 2018). Obviously
there are still mysteries still to be discovered.

In addition, the author noticed two important points
when sorting out the literature. (1) Generally, at lower con-
centrations, these ligands functioned more often as AhR
antagonists. However, this antagonistic effect may be
reversed at higher concentrations (Puppala et al. 2007). (2)
Interestingly, some flavonoids exert their effect on AhR in a
species-dependent manner. For example, 3’- Methoxy-4’-
nitroflavone, a synthetic flavonoid, has an agonistic effect on
guinea pig AhR activity, while it shows antagonistic effects
on mouse AhR (Stejskalova et al. 2011). These are of great
significance for the further development of flavonoids. There
is growing evidence that dietary compounds in fruits and
vegetables can reduce the incidence of cancer. As a highly
conserved transcription factor, AhR is positively regulated by
environmental toxins, while dietary antagonists are negatively
regulated. However, more research is needed to confirm the
species and tissue-specific effects of AhR and dietary com-
pounds that interact with receptors in cancer initiation and
progression (Figure 4).

4.2. Epidemiological evidences on the role of dietary
flavonoids on carcinogenesis

In recent decades, the proportion of scientific studies based
on non-nutritive components of the diet has increased. These
natural ingredients are present in diet and have the ability to
protect the body from the harmful effects of degenerative
diseases, tumor, cancer and cardiovascular ailments (Dhouafli
et al. 2018; Carrera and Cacabelos 2019). Although it is still
unknown which of the complex plant components is respon-
sible for the protection of the body. At present, the most
studied phytochemicals with anti-cancer potential are flavo-
noids, which play an important role in cancer prevention
(Table 1). After absorption with or without metabolic conju-
gation, flavonoids are transported to target organs where
they exert their anticarcinogenic activity. The molecular
mechanisms of the anticarcinogenic effects of flavonoids
include their antagonistic effect on the AhR, and regulation
of phase I and II drug metabolizing enzymes and phase III
transporters (Kawai 2018; Wang et al. 2019). In addition,
these anticancer effects may be partly due to the antioxidant
properties of the flavonoids, and recent studies suggest that
interactions with essential signal transduction pathways may
be more important (Alaklabi et al. 2018; Ojelabi et al. 2018).
As well, flavonoids may also interact with chemotherapeutic
drugs used in cancer treatment through the induction or
inhibition of their metabolism (Budisan et al. 2019).

However, the data from epidemiological studies regarding
flavonoids in human health are far from convincing.
Currently, there are many prospective studies to investigate
the association between flavonoid intake and cancer devel-
opment. Quercetin and kaempferol are two of the most com-
mon flavonoids in the human diet. For endometrial cancer, a
35% a reduction in the risk of developing tumors was found
among American women consuming high amounts of quer-
cetin indicating beneficial effects for this type of cancer
(Rezvan et al. 2017). Although Paller et al. found a negative
correlation between high intake of quercetin and prostate
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cancer risk is described, this effect is not statistically signifi-
cant (Paller et al. 2015). Moreover, these were not repro-
duced by other effects about the role of quercetin in
prostate carcinogenesis (Geybels et al. 2013; Sen et al. 2019).
Similarly, a case-control study conducted with Italian women
and a prospective investigation among American women
revealed a 37–43% reduction in ovarian cancer incidence,
including serous tumors (Gates et al. 2007). On the contrary,
three other studies conducted in the US reported no signifi-
cant relationships between consumption of diets rich in
kaempferol and incidence of ovarian cancer (Gates et al.
2009; Wang, Lee, et al. 2009; Cassidy et al. 2014). In addition,
Gates et al. studied the relationship between the intake of
five common dietary flavonoids and the incidence of ovarian
cancer in an earlier prospective study review. These five fla-
vonoids include myricetin, kaempferol, quercetin, luteolin,
and apigenin (Gates et al. 2007; Koper et al. 2019).
Unfortunately, there was no clear correlation between the
total intake of the five flavonoids examined and the inci-
dence of ovarian cancer (Kawai 2018). Cassidy et al. further
analyzed the associations between flavonoid subclasses and
risk of ovarian cancer, suggesting that higher intake of flavo-
nols and flavanones and consumption of black tea may be
associated with lower risk of ovarian cancer (Cassidy
et al. 2014).

Several epidemiological findings have demonstrated that
specific flavonoids can be responsible for reduction of the

risk of certain cancer types. However, these results are still
rather limited, inconclusive and controversial. The contradict-
ory results of in vitro and in vivo data may be related to a
variety of factors. For example, in plant-derived dietary prod-
ucts, phytochemicals are present in various different combi-
nations in the context of food matrix and mutual interactions
of dietary ingredients cannot be excluded leading probably
to additive, synergistic or antagonistic biological effects,
which are difficult to model in experimental in vitro studies.
In addition, longer follow-up times, different populations,
various doses and exposure timing, as well as diverse well-
controlled confounders, also make it difficult to define the
effects of flavonoids on cancer. Although it is currently diffi-
cult to determine whether dietary flavonoids are beneficial to
our health by preventing carcinogenic effects, according to
epidemiological studies, the possible adverse effects of flavo-
noids on human health are rare, so it may be present as a
dietary supplement (Andres et al. 2018).

4.3. The limitations of dietary flavonoids in clinical
application

Besides the innumerable number of evidences supporting
the candidate role of dietary flavonoids as a potent thera-
peutic agent, there are also some facts that might limit the
widespread acceptance of dietary flavonoids in cancer treat-
ment. These include: (a) low bioavailability, (b) no conclusive
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Table 1. Epidemiological findings on intake of dietary flavones and risk of different cancers.

Flavonoids Cohort Dose Results Classification Reference

Fisetin Colorectal cancer patients 100mg/day Reduced plasma levels of
IL-8 and hs-CRP and
inhibition the value of
MMP-7 levels.

Probable relation
(medium/
high evidence)

(Farsad-Naeimi et al. 2018)

Xanthohumol Healthy human 12mg /d Reduction of B(a)P
induced DNA damage
after consumption of
the beverage;

(Pichler et al. 2017)

Quercetin Polycystic ovary
syndrome patients

1 g /d Improve adiponectin-
mediated insulin
resistance and
hormone levels

(Rezvan et al. 2017)

Obese women with
polycystic
ovary syndrome

1000mg/d Decreased resistin plasma
levels and gene
expression, and
testosterone and LH
concentration

(Khorshidi et al. 2018)

Silymarin Hand-foot
syndrome patients

silymarin gel 1% Reduce the severity of
capecitabine-induced
hand-foot syndrome
and delay its
occurrence in patients
with gastrointestinal
cancer.

Possible relation
(low evidence)

(Elyasi et al. 2016)

Head and neck
cancer patients

420mg/d Delay the development
and progress
of mucositis

(Elyasi et al. 2017)

Red clover extract Women with
postmenopausal
osteopenic

Red clover extract (60mg
isoflavone aglycones)/d

Reduce bone mineral
density loss, improve
bone turnover, and
promote
equol production

(Lambert et al. 2017)

Genistein Patients before
prostatectomy

30mg/d Reduce MYC activity and
increase PTEN activity

(Bilir et al. 2017)

Soy isoflavones Women with polycystic
ovary syndrome

50mg/d Improved markers of
insulin resistance,
hormonal status,
triglycerides, and
biomarkers of
oxidative stress.

(Jamilian and Asemi 2016)

Silybin-
phosphatidylcholine

breast cancer patients 2.8 g/d Deliver high blood
concentrations and
selectively accumulates
in breast tumor tissue

(Lazzeroni et al. 2016)

AXP107-11 patients with inoperable
pancreatic carcinoma.

400–1600mg/d Improved physiochemical
properties and oral
bioavailability increased
the effect and reduce
chemoresistance

(Lohr et al. 2016)

Green tea extract (GTE) Healthy
postmenopausal
women

4 Green tea
extract capsules

No significant effect on
mammography density
measures in all women

Suggestive no association (Samavat et al. 2017)

Polyphenon E Patients prior to bladder
cancer surgery

Polyphenon E capsule No obvious strong
difference in EGCG
tissue levels between
Polyphenon E dosage
groups combined
versus placebo.

(Gee et al. 2017)

Dietary flavones male smokers aged
50–69 years

Dietary intake Dietary flavones may not
play a large role in the
etiology of renal cell
carcinoma in
male smokers

(Bertoia et al. 2010)

Green tea extract Healthy women Green tea extract capsule 5.1% women in GTE
developed moderate or
more severe
abnormalities in any
liver function measure

Suggested side effects (Yu ZM et al. 2017)
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evidence from animal or human studies, (c) no effect on
spontaneous neoplasia formation (Bae et al. 2017), (d) poor
water solubility and oral bioavailability. These factors have
limited the use of dietary flavonoids in the pharmaceutical
field. The half-life of flavonoids in the human body is rela-
tively short and dietary exposure to these compounds should
be regular so that plasma concentrations are maintained at
levels sufficient to express certain biological activities (Zabela
et al. 2016). In addition, flavonoids undergo extensive meta-
bolic biotransformation in the intestine and liver, which
mean that different conjugates circulate in the body with
probably substantially altered biological activities and only
traces of the parent flavonoids can enter the bloodstream
(Bo et al. 2016). In addition, considering that flavonoids are
mainly present in food in the form of glycosides (Popova and
Hincha 2016), the absorption of flavonoids from the diet was
believed negligible. However, recent studies have demon-
strated that the bioavailability of specific flavonoids is much
higher than previously thought. Several human studies have
investigated the absorption and bioavailability of flavonoids.
In a clinical study of healthy people, Mart�ınez et al. found
that processing tomatoes into sauces improve the bioavail-
ability of flavanones, flavanols, and some hydroxycinnamic
acids, as reflected by the increase in the area under the
plasma concentration versus time curve (Martinez-Huelamo
et al. 2016). It has likewise been observed that their plasma
half-life was increased, especially after ingesting refined olive
oil, indicating that the processing experienced by raw toma-
toes improves their absorption. Analogously, Diosmin is a fla-
vonoid that is primarily used as adjuvant treatment for
circulatory disorders. lSminPlus is a micronized diosmin fla-
vonoid complex standardized in diosmin. Russo et al. com-
pared this with an unformulated micronized diosmin in 16

healthy volunteers. Their data indicate that lSminPlus was
rapidly and well absorbed into systemic circulation (Russo
et al. 2018).

At the same time, metabolic conversion must be consid-
ered when estimating the bioavailability and efficacy of flavo-
noids for pharmacological use. The combination of
xenobiotics attenuates their reactivity, however, some conju-
gated metabolites of flavonoids possess biological activity
and active aglycone may be generated by the site-specific
activation of hydrolytic enzymes (Guillermo Gormaz et al.
2015). A number of molecular targets have been proposed to
explain the chemopreventive effects of flavonoids aglycones.
For example, quercetin aglycone has been demonstrated to
interact with some receptors, particularly an AhR, which is
involved in the development of cancers induced by certain
chemicals (Kawabata et al. 2015; Andres et al. 2018).

Structurally different flavonoids have different bioavailabil-
ities, so that the most abundant compounds in food may not
be compounds that enter circulation and reach target tissues.
For instance, bioavailabilities of tea flavonoids (0.2–0.9%) are
significantly lower than those of quercetin (20%) or isofla-
vones (Mohammadi-Bardbori et al. 2012; Annunziata et al.
2018; Oyagbemi et al. 2018). In addition, the bioavailability of
flavonoids is also affected by the food matrix, background
diet, frequency of ingestion and certain food sources sug-
gesting that the preventive action of specific flavonoids from
diverse dietary sources may be different. In summary, the
chemical structure, absorption, metabolism, bioavailability
and biological properties of different flavonoids are different.
Therefore, it may be more informative and relevant to evalu-
ate the effect by intake of individual flavonoid rather than
total flavonoids or flavonoid subclasses (Woo et al. 2014; Xu
et al. 2016).

Figure 4. Several major subclasses of flavonoids and antitumor mechanisms of flavonoids. Complicated mechanisms implicated in the anticancer effect of flavo-
noids generally include modulation of the metabolism and disposition of foreign compounds.
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In order to enhance the solubility and bioavailability of fla-
vonoids inside a human body, various scientific approaches
have been taken into consideration, including the application
of novel drug delivery systems such as nanoparticles and lip-
osomes (Kulbacka et al. 2016; Zhang, Wang, et al. 2018;
Oskouie et al. 2019). These and additional approaches may
enable us to understand the full potential of flavonoids in
cancer prevention and therapy. Calvo et al. improved oral
bioavailability of resveratrol from vineatrol by micelle solubil-
ization. The study found that the oral bioavailability of trans-
resveratrol from the grapevine-shoot extract Vineatrol30 was
significantly increased using a liquid micellar formulation,
without any treatment-related side effects, making it a suit-
able system for improved trans-resveratrol supplementation
(Calvo-Castro, Schiborr, et al. 2018). However, several key
points must be considered when considering the potential
therapeutic use of the molecule: (a) pharmacological versus
nutraceutical doses applied, (b) specificity of its mechanism
of action compared to other phytochemicals, and (c) identify
“direct” cellular targets. We consider that these methods can
help us understand the full potential of dietary flavonoids in
cancer prevention and treatment.

5. Conclusion

The occurrence and development of tumors are related to
various factors such as genetic factors, external environment,
dietary habits, etc. In order to achieve personalized treatment
of tumors, it is necessary to fully understand the mechanism
of tumors in cell and molecular biology and to use targeted
compounds for targeted therapy. Multiple studies have
shown that AhR is a potential novel drug target for tumor
treatment. The original discovery of this ancient AhR chem-
ical sensing circuit has barely attracted interest outside the
circle of environmental toxicologists. However, it is now clear
that AhR plays a major role in the development and preven-
tion of cancer. AhR has dual regulatory effects on tumor
development, which means that AhR can both promote and
inhibit tumor. These compounds, as AhR agonist or antagon-
ist, can’t all play an effective tumor inhibition role. Therefore,
in different pathological stages of different tumors, an in-
depth study of the molecular mechanism of AhR will be a
new challenge.

Many antineoplastic as exogenous ligands with high affin-
ity to AhR, participate in the classical AhR pathway for cancer
treatment. They can also function through the interaction of
AhR-ER signaling pathways, and reduce drug toxicity and
side effects through CYP1 family metabolic enzymes regu-
lated by AhR (Hyzd’alova et al. 2018). Natural products are
always the largest asset in the research of new anti-cancer
agents. In order to design an efficacious cancer treatment
strategy, it is necessary to understand the interactions of nat-
ural molecules with their corresponding cellular targets. And
some studies have shown that in addition to flavonoids,
other phytochemicals, such as curcumin and resveratrol,
exhibit anti-inflammatory, cytoprotective, and DNA-protective
effects (Banerjee et al. 2016; Sinha et al. 2016). The low tox-
icity of these naturally occurring compounds, combined with

their various effects on the immune system through the
interaction with AhR, makes them intriguing candidates for
researchers to investigate.

The epidemiologic data concerning the health benefits of
flavonoids in the development of cancer are not convincing.
Whereas the case-control studies may suggest some positive
benefit, the lack of an inverse association observed in the
large cohort studies diminishes confidence in interpretation.
Given that clear associations have been observed between
fruit and vegetable intake and numerous types of cancer,
and that fruit and vegetable intake is likely strongly corre-
lated with flavonoid intake, the results of these epidemiologic
studies are somewhat surprising. Whereas the lack of an
association may be real, other explanations could include a
lack of an adequate measure to assess flavonoid intake (most
food frequency questionnaires employed in epidemiologic
studies have not been designed to assess phytochemical
intake specifically) and the multitude of factors affecting fla-
vonoid content in foods and bioavailability. At the same
time, when flavonoid supplements are used to prevent can-
cer, potential side effects should be considered to determine
the safe level of flavonoid intake.

Many compounds (such as Phrotress, AF, etc.) have been
targeted to AhR for the treatment of breast cancer, but the
effects of the same compound are different for different can-
cer cells. In order to achieve multiple tumor therapies with
AhR as a drug target, it is necessary to further study the
mechanism of AhR in tumors. On the basis of previous stud-
ies, researchers need to further optimize the drug structure
and explore new targeted drugs so that different types of
AhR ligands can be utilized for specific treatment.
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