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Abstract

Microbiomes are complex and ubiquitous networks of microorganisms whose seemingly limitless 

chemical transformations could be harnessed to benefit agriculture, medicine, and biotechnology. 

The spatial and temporal changes in microbiome composition and function are influenced by a 

multitude of molecular and ecological factors. This complexity yields both versatility and 

challenges in designing synthetic microbiomes and perturbing natural microbiomes in controlled, 

predictable ways. In this review, we describe factors that give rise to emergent spatial and temporal 

microbiome properties and the meta-omics and computational modeling tools that can be used to 

understand microbiomes at the cellular and system levels. We also describe strategies for 

designing and engineering microbiomes to enhance or build novel functions. Throughout the 

review, we discuss key knowledge and technology gaps for elucidating the networks and 

deciphering key control points for microbiome engineering and highlight examples where multiple 

omics and modeling approaches can be integrated to address these gaps.
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INTRODUCTION

Diverse communities of microorganisms inhabit every known environment, including 

oceans, soil, the surface and proximity of plants, and the intestines of humans, animals, and 

insect wing to the myriad functions they perform, from biogeochemical cycling of nutrients 

to transforming dietary substrates into nutrients for multicellular hosts, microbiomes attract 
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immense attention from industry and academic researchers alike. Efforts to understand and 

engineer microbiomes frequently require integrated approaches that blur the lines between 

microbiology, ecology, medicine, computer science, mathematics, and engineering. Natural 

and synthetic microbiomes that robustly perform target functions could be exploited to 

address grand challenges in human health, agriculture, bioremediation, and bioprocessing 

that face society.

Target microbiome engineering goals include the ability to predictably modulate community 

composition, enhance existing functions, or install novel capabilities. Harnessing the 

properties of microbiomes remains difficult because we do not yet fully understand the 

molecular and ecological mechanisms that govern systems-level behaviors, and therefore we 

lack the capability to predict their multifunctional properties. Microbiomes are immensely 

complex; they can consist of hundreds to thousands of organisms, exhibit spatial and 

temporal variability, and establish dynamic feedback loops with the environment. A detailed 

and quantitative understanding of microbiomes could ultimately inform the design of 

interventions to predictably modify system properties or guiding principles for how to 

construct desired community functions from the bottom up. Exploiting and understanding 

the full functional potential of microbiomes necessitate integration of multiple experimental 

and computational methodologies that bridge many different disciplines.

Here, we describe tools currently used to understand microbiomes in diverse habitats and 

outline how meta-omics tools may be used and integrated to characterize microbiome 

composition and function. We describe representative case studies that showcase the various 

spatial and temporal scales that influence the composition and collective function of 

microbiomes, and we describe how interactions between microorganisms can lead to 

emergent functions that cannot be predicted on the basis of each community member’s 

behaviors in isolation. We discuss the relative advantages of several microbiome modeling 

approaches of varying degrees of coarse-graining and highlight recent efforts to integrate 

multi-omics data and multiscale considerations into a single model. Finally, we present 

recent successes in microbiome engineering and biocontainment of engineered communities 

and provide perspectives on how to move the field closer to wide-scale deployment of 

engineered communities for broad applications in bioenergy, agriculture, and human health. 

Throughout the review, we highlight opportunities to improve our understanding of the 

causal links between microbiome composition and function and our ability to engineer them 

for societal benefit.

Meta-omics: omics analyses (e.g., genomics and transcriptomics) applied to microbial 

communities to characterize numerous organisms or metabolites at once

Multi-omics: the integration and analysis of multiple omics datasets, often for specified 

biological samples under a variety of environmental conditions

Biocontainment: measures to prevent escape of genetically engineered organisms or 

transfer of genes (e.g., antibiotic resistance) to organisms in the environment
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MICROBOMES OPERATE ON MANY SPATIAL AND TEMPORAL SCALES

Microbiome functions are driven by myriad abiotic and biotic forces that span multiple 

length scales and timescales (Figure 1). Abiotic parameters include nutrient availability, 

oxygen, and pH as well as physical properties of the environment; biotic factors include the 

complex interactions between different organisms. Microbial interactions are mediated by 

metabolite transformations, including competition for limited resources and release of 

compounds that benefit (or inhibit) the growth of other organisms. Microbial ecological 

strategies are dictated by intracellular networks that sense and respond to environmental 

parameters and dynamically regulate cellular behaviors. In addition, functional capabilities 

of microbes can be altered due to changes in their genetic information, which enables 

evolutionary adaptation. Although microbial communities can be highly sensitive to 

variations in environmental parameters (e.g., antibiotics or nutrient shifts), the complex web 

of interactions within microbiomes can enhance resilience to environmental perturbations. In 

this section we discuss some of the ecological, structural, and functional aspects of 

microbiomes, spanning from the molecular to the systems level, and the implications for 

microbiome engineering.

Resilience to environmental perturbation: the magnitude of a perturbation that a system 

can tolerate while maintaining specific functional activities

Ecological Niches Govern Structure, Functions, and Resilience of Microbiomes

Microbiome composition in any environment is governed by the availability of ecological 

niches, and microbes have evolved to exploit nearly all imaginable niches. Niche 

diversification within microbiomes coupled with functional redundancy can enhance 

resilience to environmental perturbations. Non-host-associated microbial communities are 

key drivers of biogeochemical cycles and persist in a broad spectrum of environments on an 

astounding diversity of substrates (1–3). In host-associated microbiomes such as the 

mammalian gastrointestinal tract, microbes subsist on dietary substrates consumed by the 

host or use host-derived nutrients such as mucus (4). Similarly, plant-associated microbes 

can utilize plant exudates (5, 6). Although microbiomes can be resilient to specific 

environmental parameters, perturbation in parameters such as nutrient availability can cause 

dramatic shifts in composition and function, leading to a boom-and-bust cycle of growth of 

lower-abundance taxa as microbes seize on resource fluctuations, as evidenced by, for 

example, algal blooms (7). A similar phenomenon is observed when the nutrient landscape 

changes in the gastrointestinal tract owing to environmental disturbances or host 

dysfunctions (8).

Ecological niche: the set of parameters that enables growth and survival of individual 

members of a community

For host-associated microbiomes, millennia of coevolution have established bidirectional 

interactions far beyond the canonical functions of pathogen resistance and the breakdown 

and exchange of nutrients. For example, it has become apparent that the gut microbiome is 

closely associated with neurological disorders such as depression, anxiety, Alzheimer’s 

disease, and schizophrenia, leading to the recognition of a neurointestinal connection known 
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as the gut-brain axis (9–11), although work remains in parsing the causality of these 

observed associations (12). Evolutionary theory informs the hypothesis that although many 

host-associated microbes are symbiotic, they are also under strong selective pressure to 

compete with other community members even at the cost of their beneficial functions to the 

host (13, 14).

Microbial Interactions Determine Microbiome Behavior and Stability

Microbial interactions are multidimensional and diverse mechanisms can combine to 

influence the net effect of one organism on another. At a coarse-grained level, the net effect 

of an organism on another can be represented as competitive (−/−), mutualist (+/+), 

predative (+/−), neutral (0/0), amensal (0/−), or commensal (0/+). Positive and negative 

interactions can be established by diverse molecular mechanisms, including resource 

competition and release of molecules, that affect growth rates and metabolic activities (15). 

Microbial interactions change as a function of time due to intracellular networks that sense 

and respond to environmental shifts. Nevertheless, simplified mathematical models that 

represent single-organism growth parameters and pairwise microbial interactions have been 

shown to predict multispecies community behaviors (16–18). How these microbial 

interaction networks map to community-level properties such as stability, diversity, and 

function remains largely unresolved. Theoretical work has demonstrated that negative 

interactions can drive networks toward stability (19), whereas positive interactions have been 

associated with enhanced diversity and metabolic activities (20, 21). To gain a predictive 

understanding of how microbial interaction networks are shaped by environmental stimuli 

and combine to generate community-level properties, we must consider the molecular 

mechanism of interactions as well as how they change as a function of time and spatial 

proximity.

Stability: rate of return to a system’s steady state in response to an environmental 

perturbation

Spatial Organization and Biofilms Are Key Properties of Microbiome Resilience

Microbial populations exhibit heterogenous spatial distributions in natural environments. 

The spatial organization of a microbiome is a major determinant of systems-level properties, 

including community metabolism, and response to environmental perturbations, such as 

antibiotics (22–24). In biofilms, a predominant form of microbial life in nature (25), the 

occurrence of intracolony channels can mediate the transfer of molecules to cells that are 

deeply embedded in the matrix (26). Although biofilms can be exploited for specific 

applications such as lignocellulose valorization (27) and environmental remediation (28), 

they can be detrimental in the context of human disease (29). Beyond biofilms, microbes can 

also self-organize to establish complex physical structures in the environment. For example, 

fungi play an integral role in maintaining the spatial structure of the soil matrix and soil 

bacteria can use fungal phyla to traverse pores in the soil that would otherwise prohibit 

dispersal (30–32). Therefore, the spatial organization of a microbiome can be harnessed or 

targeted to alter system properties.
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At a smaller scale, membrane proteins such as receptors and transporters are key drivers of 

microbiome function and are involved in cellular processes as diverse as sensing and uptake 

of nutrients, secretion of enzymes and small molecules, virulence, motility, and adhesion. 

For example, bacterial two-component systems are involved in quorum sensing (33) and 

chemotaxis (34), and substrate-specific transporter proteins are central to metabolic cross-

feeding and flux through biochemical pathways (35). These proteins enable microbial 

constituents to respond to changes as they enter and exit habitats to which they are well (or 

ill) adapted, all while maintaining a favorable intracellular environment for metabolism, and 

they can be engineered to influence substrate utilization, production of target molecules, and 

formation of biofilms (36–39) (see the sidebar titled Membrane Proteins).

MEMBRANE PROTEINS

Membrane proteins are at the core of how microorganisms interact with each other and 

with their environment. All cells navigate their environment by using membrane-

embedded receptor proteins to sense and respond to changes in their environment. 

Typical receptor proteins, such as bacterial two-component systems, have a domain that 

is exposed to the extracellular environment and that recognizes a ligand with high 

specificity. Ligand binding induces a conformational shift in the receptor protein that 

leads to an intracellular response mediated, for example, by enzymatic cascades or by 

protein–DNA interactions. The extracellular ligands comprise a tremendous variety of 

ions and molecules (215). Motor proteins allow cells to swim toward nutrients and away 

from toxins; adhesion proteins facilitate cell–cell connections and adhesion to the 

environment. Meanwhile, a large variety of transporter proteins enable the efficient and 

highly selective uptake of nutrients as well as secretion of waste products, enzymes, and 

effector molecules. About one-quarter of the genes in any typical organism appear to 

encode integral membrane proteins that are involved in cell development and growth, 

energy conversions, communication, mobility, defense, and virulence (216, 217).

Investigating and Designing Microbiomes from the Bottom Up and Top Down

Microbiomes can be studied and engineered through two different and complementary 

approaches: top down and bottom up (15, 40, 41). A top-down approach investigates natural 

communities by introducing them into highly controlled laboratory environments. Such top-

down manipulations can be used to understand microbiome dynamics and functions in 

response to environmental inputs (e.g., nutrient availability or antibiotic stress) (42). By 

contrast, isolated species can also be assembled in vitro to form synthetic microbial 

communities, which have reduced complexity compared with natural microbiomes and 

greater controllability via manipulation of initial community composition (16, 43). Although 

molecular and ecological mechanisms of synthetic communities can be more easily 

dissected, these simplified systems can display reduced temporal stability in composition 

and/or function, limiting their deployment in real-world environments and for 

biotechnological applications (41). At the core, if we understand the temporal changes in 

“which microbe is there” and “which microbe can do what, when, and how,” we become 

better equipped to tailor microbiomes for, say, medical and agricultural purposes. A 

promising approach is to combine ecological studies, quantitative measurements, and 
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computational modeling to map the functional potential of microbiomes with increasing 

resolution (44).

Synthetic microbial community: combination of three or more individual microorganisms 

(often not isolated from the same habitat) in a single environment

TOOLS FOR UNDERSTANDING MICROBIOMES

To harness the properties of microbiomes, we must develop tools that decipher which 

microbes have the capability and flexibility to perform specific functions, quantify their 

functional activities across space and time, and decipher interactions between organisms and 

between organisms and the environment. High-throughput sequencing has significantly 

enhanced our ability to investigate microbiome composition and functional activities, as 

today’s next-generation and emerging so-called third-generation sequencing tools (45) can 

rapidly process billions of DNA base pairs with continuous read lengths greater than 100 

kbp (46) (>2% of the average bacterial genome size). These technologies enable 

characterization of phylogeny (amplicon sequencing), functional potential (shotgun 

metagenomics), and gene expression (metatranscriptomics) in thousands of species or 

synthetic communities simultaneously. Beyond nucleic acid sequencing, metaproteomics 

and metabolomics can analyze the activities of microbiomes by quantifying the abundance 

of enzymes that perform key chemical transformations and the metabolites that mediate 

interspecies interactions (Figure 2). Such meta-omics tools can be applied to quantify the 

spatial distribution of organisms within microbiomes, characterize low-abundance members 

and assess cellular heterogeneity, identify the organisms that perform key chemical 

transformations, and elucidate the web of metabolic interactions that ultimately drives 

microbiome functions.

Quantifying Microbiome Composition and Functional Potential via Metagenomics

Quantitative measurements of microbial abundance are critical for understanding the spatial 

and temporal behaviors of microbiomes. Microbiome composition is frequently determined 

via highly conserved marker genes for ribosomal RNA (rRNA), usually the 16S rRNA gene 

in prokaryotes and the 18S, 28S, and internal transcribed spacer regions in eukaryotes (47). 

Amplicon sequencing is particularly useful for characterizing community composition in 

systems contaminated by host DNA or in samples with low DNA template concentrations. 

However, these methods provide a genus-level resolution, and sequence-dependent 

variations in (nominally) universal primer affinity between clades, along with extraction 

efficiencies of DNA and variation in gene copy numbers (48, 49), can bias abundance 

results.

In shotgun metagenomics, a library is constructed with all community DNA and the reads 

can be assembled into genomes of individual species called metagenome-assembled 

genomes (MAGs). These genome sequences provide simultaneous quantification of the 

microbiome’s functional potential and its phylogenetic composition. Shotgun metagenomics 

has several advantages, including finer phylogenetic resolution than amplicon-based 

sequencing down to the strain level (50–53) and detection of viral DNA, with the trade-off 

that more reads are needed to confidently quantify more genes. To probe rare microbes with 
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potentially unique functions, researchers have leveraged DNA extraction methodologies 

targeted for different species to assemble near-complete genomes of bacteria present below 

1% relative abundance within a community by employing differential coverage binning (54). 

In addition, the variations in genome copy number in different regions of the chromosome 

have been used to infer the bacterial replication rates in natural environments (55), providing 

key insights into the distribution of metabolic activity states within a community.

Differential coverage binning: extraction of nucleic acid samples by multiple techniques to 

improve resolution of species and strains

Sequencing-based methods provide relative abundance or compositional data, which 

presents challenges for statistical analyses and can lead to spurious correlations. Therefore, 

methods to quantify absolute abundance, including determining correlations between 

organisms, growth rates, per-cell metabolic activities, or total microbial loads present in a 

host, are critical for understanding microbiomes. Absolute DNA-based quantification of 

microbiome composition is a major challenge that has been approached with spike-in (56), 

quantitative polymerase chain reaction (PCR) (57), flow cytometry (58), and total DNA 

quantification (59) methods; however, all of these methods have inherent biases and 

limitations. Recently, amplicon sequencing was coupled with digital PCR in a microfluidic 

format for absolute DNA-based quantification of microbiome composition with the 

advantage of evaluating concurrently the limits of both clade detection and clade 

quantification (60).

Researchers use sequencing methods to study the spatial distribution of clades within a 

microbiome by sampling from different locations. This approach has been used to map the 

biogeography of the mammalian gut (61) and to demonstrate how anaerobic digestion 

communities self-assemble into distinct microbiomes when reactors are connected in series 

(62). Although the spatial resolution that can be achieved by sampling different locations is 

limited (~20 μm), micron- and nanometer-level spatial variation can be elucidated by 

imaging approaches (see the sidebar titled Microbiome Imaging). To uncover how spatial 

clustering of clades influences community functions and interactions, researchers must 

elucidate both the spatial distribution of functions and the identity of organisms.

MICROBIOME IMAGING

Fluorescence in situ hybridization (FISH) and mass spectrometry imaging (MSI) 

techniques may be used to visualize localization of phylogenetic groups and specific 

molecules and isotopes, respectively. In FISH, a fluorescent reporter is attached to a 

probe with a nucleic acid sequence complementary to that of a target sequence in the 

microbiome, often for ribosomal RNA. The specificity of the FISH probe can vary, 

targeting an entire kingdom to a single species or genus, and if multiple probes are used 

for one sample, a different fluorescent reporter can be attached to each probe for 

simultaneous resolution of numerous microbial clades at the micron scale (218, 219).

In MSI, the spatial organization of both microbes and small molecules within a 

microbiome can be quantified over nanometer lengths, as reviewed in Reference 220. 

When integrated with FISH (221) or stable isotope probing (SIP) (222; described below), 
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nanoscale secondary ion mass spectrometry (NanoSIMS) can map the location of both 

microbes and specific metabolites. In SIP-NanoSIMS, the fate of specific moieties 

derived from an isotope-labeled substrate can be quantified with nanometer resolution 

and linked to microbial identity, enabling quantification of localized functional activity 

within microbiomes.

In vivo imaging of microbiomes in systems such as the human gut promises to improve 

our understanding of host–microbiota interactions and how these vary in space and time. 

However, in the gut and other anaerobic systems, such as tumor interiors, microbe 

labeling with fluorescent proteins is difficult, as most fluorescent proteins require oxygen 

to develop their chromophores, and anaerobic fluorescent proteins are typically not bright 

enough to be deployed in vivo. Researchers have overcome these limitations by 

fluorescently labeling selected gut bacteria and their polysaccharides with bio-orthogonal 

click chemistry (222a) and by growing and imaging bacterial communities in low oxygen 

concentrations in which obligate anaerobes survive but chromophores still form (222b). 

See References 104 and 222c for reviews and perspectives on live-cell anaerobic imaging 

and related in vivo applications.

By evaluating putative metabolic pathways, as well as which metabolites may be taken up or 

secreted by certain microbes, researchers can use the information in MAGs to predict the 

chemical transformations the system is capable of performing. For example, lignocellulose-

degrading enzymes in the porcupine gut microbiome were identified via shotgun 

metagenomics and expressed in Escherichia coli, leading to the discovery of an active 

endo-1,4-β-xylanase even though the microbe encoding this gene was unknown (63). 

Accurate predictions of functional potential rely heavily on reference genomes and 

metagenomics datasets, available in databases such as those outlined in Table 1.

Our ability to collect metagenomics data has outpaced our ability to functionally annotate 

the data for interpretation of biological context (i.e., which microbe has the capability to do 

what in the microbiome). In genetically tractable organisms, a powerful approach to 

functionally annotate genes involves quantification of strain fitness within pooled genome-

wide mutant libraries that can be grown in monoculture or coculture (64) across many 

different environmental conditions (65). However, because most strains lack genetic tools, 

bioinformatic approaches, including the Integrated Gut Genomes Database and its associated 

IGGsearch tool (66) and the Distilled and Refined Annotation of Metabolism (DRAM) tool 

(67), can be used to analyze large sequencing datasets containing potentially thousands of 

interacting species.

Using Metatranscriptomics to Map Organism Identities to Functional Activities

Metatranscriptomics, by which total community messenger RNA (mRNA) is extracted, 

reverse transcribed to complementary DNA, and sequenced, provides insight into the 

potential functions performed by organisms within a community as well as which microbes 

may be performing them. For example, metagenomics and metatranscriptomics were 

combined to identify sugar-fermenting and fatty-acid-chain-elongating microbes in an 

anaerobic bioreactor and to propose routes of metabolite exchange between the clades (42). 
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By quantifying nitrogen fixation transcripts, Gómez-Godínez et al. (68) reported that 

Azospirillum brasilense was the predominant nitrogen-fixing bacterium in a synthetic 

consortium of plant growth-promoting bacteria on maize roots. Although 

metatranscriptomics also generates many unannotated hypothetical genes, the ability to 

identify genes that change across different conditions greatly facilitates the downstream 

identification of genes involved in microbiome processes, including the breakdown of 

lignocellulose or the biogeochemical cycling of elements. Further, investigating the genome-

wide transcriptional activity of organisms within a community may guide the development 

of hypotheses about mechanisms involved in observed microbiome states (e.g., dysbiosis 

and steady-state recovery after perturbation). For example, a combined metagenomics and 

metatranscriptomics study of the fecal microbiome of 308 adult men revealed that pathways 

that were encoded in the genomes of many members of the microbiome were actually 

transcribed by a small subset of species (69).

Notably, even when reference genomic data are lacking, metatranscriptomics can be used to 

mine microbiomes for enzymes with a desired function. A transcriptomics survey of 

anaerobic gut fungi harvested from the intestinal tract of herbivores revealed that these 

unusual and understudied eukaryotes produce an unrivaled array of biomass-degrading 

enzymes (70), marking these fungi as attractive targets for sourcing of valuable enzymes 

(71). Similarly, He et al. (72) identified 125,252 putative CAZymes in a sheep gut 

microbiome, most of which had less than 75% identity to known proteins in the CAZy 

database or the National Center for Biotechnology Information (NCBI) database, but 19 of 

the 30 tested candidates showed cellulase activity when heterologously expressed.

CAZyme: carbohydrate-active enzyme that degrades biomass into smaller, fermentable 

sugars

In microbes, mRNA transcripts represent less than 10% of the total RNA; therefore, rRNA 

should typically be removed prior to sequencing. Methods for prokaryotic rRNA depletion 

vary in efficacy on the basis of microbiome type (biofilm versus planktonic) and 

composition, and tool development is an active area of research (73). Methods for single-cell 

prokaryotic rRNA depletion are only beginning to show some success (74, 75) and will be 

useful for interrogating the unique activities of low-abundance organisms as well as the cell-

to-cell heterogeneity of gene expression within a given species that is not observable with 

bulk methods. The identification of optimal spatial locations and time points to discover 

ecological driver organisms or novel biochemical pathways mediating microbiome functions 

remains unresolved. Further, because transcript number does not always correlate with 

protein abundance or activity, it is difficult to estimate from metatranscriptomics data alone 

the relative contribution of different metabolic reactions and pathways to the overall function 

of the microbiome.

Quantifying Microbiome Functional Capabilities via Metaproteomics

Metaproteomics, which studies all proteins recovered from a microbiome sample, can 

provide critical information about microbiome functional capabilities. Liquid 

chromatography can be coupled with mass spectrometry (LC-MS) or with tandem mass 

spectrometry (LC-MS/MS) to detect tens of thousands of peptides in one sample (76, 77). In 

Leggieri et al. Page 9

Annu Rev Biomed Eng. Author manuscript; available in PMC 2021 July 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



the future, nanopore-based devices hold promise to revolutionize proteomics and 

biotechnology by enabling amino acid sequencing of intact proteins, allowing structural 

characterization of proteins larger than those characterized by LC-MS (78). In addition to 

differential enzyme expression, metaproteomics may be employed to quantify the abundance 

of individual organisms in a microbiome on a biomass basis (79), which offers an alternative 

method for microbiome composition. Indeed, proteinaceous biomass may be a better 

representation of composition for systems composed of eukaryotic and prokaryotic cells 

where the size and weight of organisms vary significantly, but may be perhaps more biased 

in cases where the intracellular protein content varies widely across species.

Beyond prospecting for genes with predicted functions, metaproteomics can be used to 

identify posttranslational modifications as well as directly quantify the abundance of 

proteins in a community, which may not necessarily correlate with transcript abundances 

(80). This approach is greatly improved by integration with metagenomics analysis owing to 

the difficulties of mapping fragmented peptide sequences to genes. In particular, mining 

microbiomes for membrane proteins such as transporters is critical for elucidating molecular 

mechanisms involved in interspecies interactions but remains challenging owing to their low 

abundance compared with soluble proteins and technically and analytically challenging 

owing to their hydrophobicity (81).

Metabolomics Reveals the Chemical Repertoire of Microbiomes

Microbes are exquisite chemists and these chemical mediators produced and utilized by 

constituent community members are a major driving force of microbiome functions. 

Metabolomics can be used to detect small-molecule metabolites, including intermediates and 

end products of cellular metabolism. Integration of metabolomics with metagenomics is 

particularly useful for formulating hypotheses about the role of measured metabolites in 

interspecies interactions and microbiome functions, as metabolites typically cannot be 

assigned to specific organisms. Therefore, the integration of other meta-omics tools is 

necessary to determine which metabolic pathways are active in a community and to 

hypothesize how different metabolites may be utilized, released, and exchanged to form an 

integrated community metabolic network.

Many metabolomics approaches employ gas chromatography (GC) instead of LC to precede 

MS analysis, offering greater chromatographic separation of metabolites. Nuclear magnetic 

resonance spectroscopy offers an alternative, more quantitative measure of metabolites 

without the sample preparation and derivatization steps required in MS studies but typically 

cannot detect metabolites below micromolar concentration (82). Untargeted metabolomics 

seeks to characterize the structures of as many metabolites present in the sample as possible 

that can be identified. However, it is impossible to characterize all classes of metabolites 

with a single solvent and column chemistry, and many metabolites in databases remain 

unannotated (83). Therefore, strategies must be developed to predict unknown chemical 

structures and link them to the microbes and biosynthetic pathways. Recently, researchers 

(84) developed the Pickaxe tool for generating novel metabolites and predicting the enzymes 

and putative pathways based on Enzyme Commission numbers and the MINE (Metabolic In 

Silico Network Expansion) database in Table 1.
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Enzyme Commission number: a numerical classification of a metabolic enzyme based on 

the chemical reaction it performs

Investigating Metabolic Flux in Microbial Communities

Metabolic flux analysis (MFA) can quantify the distribution (flux) of carbon in cellular 

metabolism, directly measuring the activity of metabolic networks. When this method is 

used, cells are typically exposed to 13C-labeled carbon and the degree of labeling of biomass 

components like glycogen and proteins is quantified via GC-MS (85). On the basis of these 

data, researchers use an organism-specific metabolic model to estimate the flux through each 

pathway by using software such as METRAN. Although MFA has been used to study well-

characterized and simplified communities (86), the challenge associated with assigning 

metabolites to microbes in complex communities has stymied the broader application of 

MFA. However, analysis of isotope-labeled peptides, which can be mapped to individual 

microbes with reference genomes by metaproteomics, may unlock MFA for microbiomes 

(87). Nevertheless, this method may perform best on communities composed of microbes 

with dissimilar metabolisms or of microbes that can be spatially separated. To quantify 

interspecies metabolic interactions and community-wide fluxes, researchers must develop 

metafluxomic protocols and software to translate isotopic labeling and multi-omics data to 

quantitative descriptions of community metabolic networks (88).

Stable Isotope Probing in Microbiomes

Stable isotope probing (SIP) has emerged as a promising technique to enrich for rare 

microbes, link microbe identities to functions, and investigate interaction networks within 

microbiomes. In DNA-SIP or RNA-SIP, isotope-labeled substrates are differentially taken up 

and incorporated into nucleic acids by community members. After extraction, nucleic acids 

are fractionated by density to simultaneously enrich for nucleic acids from rare microbes and 

link the affinity for the labeled substrate to microbe identity (89, 90). For example, DNA-SIP 

was used to curate a complete genome of a member of the phylum Saccharibacteria with less 

than 1× coverage in the bulk metagenome and to decipher the metabolite exchange networks 

within the Saccharibacteria’s surrounding community (91).

A major limitation is that the SIP culturing procedure may not mimic a microbiome’s 

natural microenvironment. Although most microbes remain uncultivated, meta-omics 

analyses may elucidate clues for isolating and culturing previously uncharacterized species 

(66). Nucleic acid–SIP requires that isotopes be incorporated directly into nucleic acids, and 

the incubation time with the isotope influences the degree of community labeling. For 

example, short incubation times exclude isotope uptake by slow-growing microbes, and long 

incubation times may lead to nonspecific cross-feeding of isotopes across the community, 

skewing which clades initially metabolized the substrate (92, 93).

In principle, SIP can also be used to quantify incorporation of labels into proteins (protein-

SIP) (94), metabolites (metabolome-SIP), and phospholipid-derived fatty acids (PLFA-SIP), 

though linking these to microbe identity requires excellent reference genomes or concurrent 

metagenomics and/or metatranscriptomics analyses. When integrated with meta-omics 

analyses, SIP may link microbe identity to function and uncover interspecies metabolite 
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exchange mechanisms and community-wide metabolic networks. For example, protein-SIP 

coupled with amplicon sequencing and shotgun metagenomics was used to map acetate 

metabolism to organism identity in anaerobic digester consortia (95). In addition, RNA-SIP, 

metagenomics, and metatranscriptomics have been integrated to characterize the 

predominant CO2 fixation pathways and their transcribing microbes in deep-sea 

hydrothermal vent microbiomes at a range of temperatures (92). Finally, DNA-SIP has been 

combined with differential coverage binning to enhance resolution of MAGs with specific 

activity in anaerobic digesters (96). See Reference 97 for a review of SIP applied to in vivo 

and ex vivo human and animal gut systems.

Microfluidic Devices for Microbiome Fractionation, Analysis, and Cultivation

Microfluidic devices have provided major advances in cell culturing and analysis by 

enabling micron-level spatial precision, temporal control of environmental inputs, and 

ultrahigh-throughput analysis of cellular and molecular systems. For example, physical 

separation of microbes within a microfluidic device can be used to sort clades on the basis of 

function for single-cell analysis or subsequent cultivation. Using droplet microfluidics, 

Schaerli & Hollfelder (98) generated picoliter to nanoliter aqueous droplets at kilohertz rates 

to create millions of compartments to study microbial behaviors. When coupled with DNA 

barcoding, this approach has enabled processing of more than 50,000 cells per run to 

sequence and assemble genomes from single cells (99). Microfluidics-enabled sorting of 

cells with desired genomic traits or metabolic activities is useful for screening strains that 

display greater enzyme productivity while consuming a millionfold fewer reagents (100).

In addition to single-cell screening, droplet microfluidics has enabled massively parallelized, 

compartmentalized culturing of human-associated intestinal organisms to enrich for low-

fitness community members that would otherwise be outcompeted in a well-mixed culture 

(101). In addition, droplet microfluidics has been used to decipher pairwise and higher-order 

interactions in microbial communities across different environmental conditions (102). 

Coupling droplet microfluidics to a microwell array platform, by way of droplet dye 

barcoding and fluorescent reporters for strain abundance or metabolic activities, was used to 

construct and analyze approximately 100,000 subcommunities composed of 19 soil 

microbes (103). Although these methods enable the characterization of many 

subcommunities, they have relied largely on fluorescence labeling of specific strains, which 

is restricted to organisms that can be manipulated with genetic tools. Therefore, label-free 

methods are needed to more broadly apply these techniques to study diverse communities, 

including anaerobic systems (104).

Lower-throughput but higher-precision microfluidic devices have been used to investigate 

the effects of spatial separation on the dynamics of bacterial signaling information 

transmission and metabolic cross-feeding (105). In addition, microfluidic platforms have 

also been developed to study host–microbiome interactions (106). The intestine-on-a-chip 

can recapitulate physiologically relevant microenvironments such as oxygen gradients found 

within the human intestine as well as mechanical forces reflecting peristalsis (107). 

Although these techniques can capture critical features to summarize natural 

microenvironments and enable detailed control of the environment, a major limitation is the 
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complexity of the design of the platforms, which is a barrier to widespread adoption by and 

deployment to end users.

COMPUTATIONAL MODELS TO PREDICT MICROBIOME DYNAMICS AND 

FUNCTIONS

Mathematical models, based on ecological, thermodynamic, and biochemical principles, can 

be used to simulate microbiome population dynamics and metabolic functions on many 

length scales and timescales. These models range from data-driven differential equation–

based models of community composition and interactions to mechanistic genome-scale 

models of metabolic flux and interspecies metabolite exchange (Figure 3). In the sections 

below, we discuss relative advantages and limitations of several modeling approaches and 

how they may be used to enable microbiome engineering.

Ordinary Differential Equation and Evolutionary Game Theory Models of Microbiome 
Population Dynamics and Interactions

Ordinary differential equation (ODE) models, such as the generalized Lotka–Volterra (gLV) 

model (16), have been used to model microbiome population dynamics with time series data 

of absolute organism abundance for parameter estimation and experimental validation (108, 

109). In the gLV model, the temporal changes in the abundance of each species are a 

function of its growth rate and intraspecies and interspecies interactions (110). Modified 

gLV models have been used to analyze dynamic behaviors, including the response to 

perturbations such as dilution rate and the response to antibiotics and temperature 

fluctuations (111, 112). In addition, the inferred parameters of the gLV model can be 

visualized as an interaction network to examine the distribution of negative and positive 

interactions and to identify ecological driver species (16). The gLV model could be used to 

design community cultivation strategies to achieve desired community compositions and 

stability properties.

Evolutionary game theory (EGT) can also be used to model microbiome population 

dynamics (as described in 109, 113, 114). The fitness parameters that dictate the outcome of 

metabolic games in microbiomes can be difficult to estimate, as they are influenced by 

nonlinear environmental and intracellular conditions. For this purpose, EGT can be 

integrated with genome-scale models (GEMs) (described in the next section), enabling 

prediction of interspecies interactions and stable steady-state fluxes and species abundances. 

The system states at which each microbe locally maximizes its own growth, but not 

necessarily the global maximum community growth, can be identified as Nash equilibria and 

evolutionarily steady solutions (a subset of Nash equilibria) (115) or as asymptotically stable 

solutions to dynamic replicator equations, all of which pose candidates for stable 

coexistence states that the microbiome could exhibit. Evolutionary stability is a key factor to 

consider when designing bottom-up communities or altering the composition of a native 

system. Although gLV and EGT models capture context-dependent pairwise interactions, 

these models fail to capture higher-order or metabolite-based interactions in the community. 

Public goods games are, in principle, extendable to multispecies interactions and integrable 
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with other modeling approaches like GEMs; some associated challenges are reviewed in 

Reference 113.

Public goods game: game in which participants can choose to donate their own resources to 

improve the fitness of the community

Predicting Microbiome Fluxes and Interactions with Genome-Scale Models and Machine 
Learning

Mechanistic GEMs can predict microbial behaviors in untested conditions and serve as 

useful platforms for synthesizing multi-omics data into one comprehensible and interactive 

format. GEMs mathematically represent an organism’s metabolic pathways (with gene–

protein–reaction associations in metadata) as a stoichiometric matrix of reactions and 

metabolites (116, 117). Through flux balance analysis (FBA) (118) and related techniques, 

including flux variability analysis (119, 120), GEMs can be used to assess the effects of 

media and substrate changes and genetic edits on fluxes of target compounds; this approach 

has been used extensively to guide metabolic engineering (121–123). As metabolic 

engineers look to cocultures for specialty products (124, 125) and as systems biology is 

applied to medicine (122, 126), genome-scale modeling of microbiomes is becoming 

increasingly useful.

Automated Genome-Scale Reconstructions: Scaffolds for Genome-Scale Models 
Advances in meta-omics tools described above have enabled semiautomated construction of 

metabolic networks for hundreds of species that compose a microbiome (tools reviewed in 

127); however, manual curation is needed to accurately recapitulate metabolism in silico 

(128). For example, Magnúsdóttir et al. (129) published the AGORA (Assembly of Gut 

Organisms through Reconstruction and Analysis) database, complete with 773 genome-scale 

reconstructions of human gut microbes and simulated pairwise microbial interactions when 

fed different diets. Follow-up studies to this report highlight the distinction between a 

reconstruction and a context-specific predictive GEM (see the sidebar titled Metabolic 

Reconstructions and Models) and the importance of identifying and applying appropriate 

constraints before attempting to simulate metabolism in silico (130, 131).

METABOLIC RECONSTRUCTIONS AND MODELS

A metabolic reconstruction (sometimes called a genome-scale network reconstruction) is 

a compact and accessible representation of metabolism linked to the genome and can 

feasibly be created for an entire microbiome at once given high-quality bioinformatic 

data, albeit with some experimental and bioinformatic gap-filling (223). A genome-scale 

model (GEM) based on a reconstruction is used to simulate metabolism. In communities, 

such simulations are limited to a few well-characterized species at a time, as they require 

a high-quality GEM for each constituent member; this necessitates that each member be 

cultivable in isolation in defined media. Importantly, a metabolic simulation will only 

ever be as accurate as the condition-specific constraints applied to it. These constraints 

dictate reaction reversibility and impose upper and lower bounds on the flux through each 
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reaction in an organism or community (including transport and interspecies exchange) on 

the basis of enzyme turnover, nutrient uptake rates, and many other factors (224, 225).

Databases exist for published genome-scale reconstructions such as BiGG (132) and 

ModelSEED (133). Significant progress has been made in cataloging reconstructions for the 

human gut microbiome and human body at large (129, 134, 135). These reconstructions 

serve as templates for context-specific GEMs, such as a known viral infection of a 

macrophage cell (136) or dysbiosis of the gut (137). In an important step toward 

universalizing GEMs over different sequence annotation styles, programming languages, 

and operating systems, Lieven et al. (138) recently published MEMOTE, which scores 

GEMs for completeness and feasibility. However, owing to the highly variable and 

environment-dependent nature of enzyme kinetics and transcriptional regulation, the 

individual constraints that make models predictive cannot yet be generally cataloged this 

way.

Constraining and Optimizing Community Genome-Scale Models

When a GEM is curated from a genome-scale network reconstruction, integration of multi-

omics data and experimental metabolite concentrations (139) facilitates filling in pathway 

gaps, constraining the solution space (140), and validating and improving simulations of 

microbiome function. To this end, Pandey et al. (141) published in 2019 REMI (Relative 

Expression and Metabolomic Integrations) for integrating transcriptomics, thermodynamic, 

and metabolomics data from differential expression analyses into GEMs, which Hadadi et al. 

(142) used to simulate the transition of Pseudomonas veronii from exponential to stationary 

phase, as well as from culture in liquid media to soil, demonstrating advancement in our 

ability to model microbial adaptation to environmental perturbations.

In addition to flux constraints, choosing and defining the objective function to be optimized 

are particularly challenging for community models (119). In single-organism FBA systems, 

the objective function is usually to maximize flux through a biomass-forming reaction based 

on the organism’s macromolecular composition (i.e., to grow as fast as possible). For 

multispecies FBA systems, many optimization strategies exist. In so-called supraorganism 

approaches, the metabolic pathways in all organisms are combined into one stoichiometric 

matrix, and organisms are partitioned into separate compartments that exchange metabolites 

(109, 143). Optimization of the weighted community growth rate may require individual 

species to grow at suboptimal growth rates, which is not always an accurate assumption 

(especially in competitively interacting systems). Bi-level optimization has been 

implemented to maximize both individual and community growth rates in algorithms such as 

OptCom (144) and CASINO (Community and System-Level Interactive Optimization) 

(145).

Objective function: the function to be optimized to select for particular solutions within a 

multidimensional solution space

To model microbiome fluxes at steady state, community FBA (cFBA) (146) and SteadyCom 

(147) impose a fixed community growth rate that is adopted by all organisms; however, this 
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is not always achievable in practice. Alternatively, EGT can be integrated with FBA to 

predict evolutionarily stable interactions and steady-state flux distributions (148). In other 

bi-level optimization strategies, a microbe may be predicted to produce a metabolite that 

benefits the community but does not necessarily maximize its own growth rate. To avoid 

imposing this forced altruism, Cai et al. (149) developed NECom, which predicts steady-

state community fluxes and pairwise interactions by identifying Nash equilibria and removes 

any influence by the community optimization problem on a microbe’s incentive to secrete a 

metabolite in community GEMs.

Although highly useful for predicting and describing microbial fluxes and interactions, 

GEMs require significant time and resources to construct and curate predictive models from 

automated reconstructions. Because a microbiome’s composition must be fully defined to 

accurately apply FBA, GEMs are currently limited to bottom-up microbiomes with a few 

representative species, which often lack long-term stability. Further, experimental 

measurements of community growth rates and fluxes are critical to GEM validation 

improvement but remain a challenge to obtain for large (more than three members) 

communities.

Machine Learning Can Identify Complex Mappings Between Microbiome Inputs and 
Outputs

Machine learning can be employed to predict and link microbiome composition and 

functions by using multi-omics data (as reviewed in 150, 151). Machine learning can learn 

complex and nonlinear relationships between microbiome inputs (e.g., cultivation conditions 

and initial species compositions) and outputs (e.g., metabolite concentrations, gene 

expression profiles, and community structure) that may enable design of novel microbial 

consortia with target functions without the need to rigorously characterize each organism in 

isolation. A major limitation is that these models may not provide insight into the biological 

mechanisms that generate the observed microbiome states. To address this challenge, 

researchers have integrated machine learning with GEMs to extract information from multi-

omics experiments and metabolic simulations that is relevant to the engineering objective at 

hand (152).

Dynamic Models of Microbiome Flux

Dynamic computational models are particularly useful when the time-varying microbiome 

fluxes or 3D structure is of interest (153). Dynamic FBA (dFBA) has been used extensively 

to model transient compositions and flux distributions in small (two to three members) 

microbial communities (see 119 for a review). In these cases, estimation of metabolite 

uptake and secretion kinetics is particularly important for accurately simulating growth and 

fluxes. Characterization of transporter membrane protein specificity and influx/efflux 

kinetics promises to significantly improve both dynamic and steady-state FBA simulations 

(154, 155) but remains a major challenge (156).

Spatial heterogeneity can be incorporated into community GEMs (153, 157, 158), typically 

by means of FBA to find each species’ growth rate at each time step in numerical solutions 

of reaction–diffusion partial differential equations (159). Biofilms, in particular, are 
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increasingly being modeled with spatiotemporal GEMs (21, 158, 160, 161). With the goal of 

accounting for their moving boundary conditions brought on by film growth and expansion, 

it is useful to simulate biofilms as collections of individual microbes in so-called agent-

based models (AbMs).

Agent-Based Models Simulate Predefined Physical and Metabolic Interactions in 
Microbiomes

In AbMs, microbes are treated as individuals with specified traits rather than as 

concentration state variables as in other methods. AbMs can capture gene regulation (162) 

and metabolic and mechanical interactions between microbes in a community, and they are 

well suited to model biofilm formation, deformation, and disruption (163). Metabolism can 

be coarse-grained to allow only for reactions involving exchange with the environment, or 

AbMs can integrate genome-scale metabolism to compute fluxes with FBA. The latter 

approach is taken in BacArena, an R package that was demonstrated to model 

spatiotemporal metabolic interactions among seven human gut microbes (164).

Although they are computationally demanding, AbMs are versatile models that suggest 

priority experiments for answering specific questions of microbiome function. For example, 

van Hoek et al. (165) simulated metabolism in the human large intestine with a coupled 

dFBA–mass transport model of individuals from a supraorganism metabacterium. Although 

they did not include experimental validation, their model generated hypotheses for the 

effects of diarrhea (a macroscale system state) on the microscale spatial organization and 

relative abundance of microbes with various flux profiles, which can be explored 

experimentally. Similarly, Doloman et al. (166) used a multispecies AbM (without genome-

scale metabolism) to predict cultivation conditions that maximize methane productivity in 

spatially structured anaerobic sludge granules.

ENGINEERING MICROBIOMES

As microbiomes are complex, dynamic, and yet often resistant to change, how can we best 

modulate and design functional and predictable microbiomes for targeted use? Combining 

diverse omics tools with computational modeling facilitates the identification of microbial 

and molecular targets as well as the prediction of system behaviors. The widespread interest 

in engineering microbiomes for diverse applications is evidenced by the increasing number 

of biotechnology companies that seek to design microbiome interventions for human health, 

livestock fitness, and agriculture (Table 2). The approaches through which microbial 

populations, interactions, and biochemical fluxes may be tuned can be summarized as either 

modifying existing functional activities or engineering novel functions (Figure 4).

Microbiome Functions Can Be Modified by External Inputs

Manipulation of environmental factors has been widely used to modify the composition and 

functions of microbiomes. This strategy has attracted interest from the medical and 

nutritional fields that aim to tailor microbiomes to enhance host health. In gut models, 

prebiotics have been used to enrich for specific beneficial microbes. It is well established 

that diet affects the composition of intestinal microbes (167, 168), and prebiotics are used to 
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increase the abundance of specific organisms associated with beneficial health outcomes, 

typically by modulating the intake of ingested fermentable dietary fibers (169).

Prebiotics: chemical compounds that promote growth and metabolism of certain microbes 

to benefit host health

Beyond chemical inputs, microorganisms can be administered to microbiomes with the goal 

of altering a target function. Several probiotics products, containing selected nonpathogenic 

and predicted beneficial bacterial strains, mitigate symptoms of gastrointestinal dysbiosis 

and protect against pathogens (170, 171). In addition to human health, probiotics have been 

used in animal feed (172), and the addition of rhizobacteria to fertilizer has been shown to 

promote plant growth (173). However, the efficacy of probiotics remains unclear due to 

challenges in the stable engraftment into the resident community (174) and to the 

unpredictable activities of beneficial biochemical pathways within probiotics that are 

continuously modified by the environment.

Probiotics: live bacteria that promote human gastrointestinal tract health when consumed

The introduction of microbial communities, as opposed to isolated strains, into the intestinal 

tract of animals or into the roots of crops is an alternative method that has attracted 

considerable interest from the medical and agricultural communities. For example, fecal 

microbiota transplantation (FMT), the procedure of transferring a fecal sample from a 

healthy donor to a patient with dysbiosis to reestablish a functioning microbial community, 

is highly effective against recurrent Clostridium difficile infections (175). However, FMT 

remains an investigational procedure and is associated with potential health risks, including 

transfer of antibiotic-resistant pathogens in the samples, though these are typically screened 

for in samples from human donors (176). In other words, using black box natural 

microbiomes may result in the inadvertent transfer of multidrug-resistant organisms and 

other pathogens (177), spurring interest in exploring carefully designed microbial consortia.

Rationally designed consortia comprise organisms that maintain stability in desired 

functions over long periods of time. A potentially powerful approach involves using top-

down and bottom-up approaches to characterize system properties and responses to 

environmental inputs and to exploit these insights to guide the design of consortia that 

perform target functions (15). Both top-down and bottom-up approaches, with the aid of 

computational and statistical modeling (178), have had some success in introducing 

desirable functions in animals and plants (179, 180). Several microbiome biotechnology 

companies, including Vedanta and Seres, have designed microbial consortia in various stages 

of clinical trials, targeting human-gut-related diseases, from C. difficile infection to 

ulcerative colitis. (180a) However, the efficacy and effects of prebiotics and probiotics are 

not yet predictable, as many complex factors, including abiotic factors and interactions 

between gut bacteria, ultimately determine how an individual microbiome responds to 

different interventions.
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Rewiring Microbial Functions by Genetic Engineering and Laboratory Evolution

Genetic engineering involves modification of the genome of a given organism. These 

modifications include, for example, deletion of genes to redirect metabolic fluxes and 

introduction of exogenous genes or entire pathways that allow the organism to make a 

valuable molecule or utilize a novel substrate. Genetically engineered microorganisms have 

been deployed into microbial communities associated with both plants and animals (181–

183). In addition to metabolic pathway engineering, novel genetic circuits are introduced 

into engineered bacteria to sense and report disease-associated biomarkers in animal models 

and the human gut (recently reviewed in 183a). Further, engineered microbes are explored 

for the prevention and treatment of cancer, for example, through the targeted delivery of 

enzymes and toxins that inhibit tumor growth (reviewed in 183b). Another method activates 

the stimulator of interferon genes (STING) pathways for localized immune activation and 

impact on tumor growth (183c), which is currently in phase I of a clinal trial by Synlogic 

Therapeutics.

Although many molecular tools exist to modify genomic content of microorganisms, the 

clustered regularly interspaced short palindromic repeat (CRISPR)/Cas9 system has recently 

gained momentum as a particularly versatile tool (reviewed in 184). An alternative strategy 

exploits microbial horizontal gene transfer (HGT), which has the potential to influence the 

functional potential of organisms in situ (185). As revealed by high-resolution genomic data, 

HGT events occur not only between prokaryotes but also between prokaryotes and 

eukaryotes (186). HGT can be used to deliver genetic payloads encoding, for example, 

CRISPR machinery for destruction or incorporation of genes in target cells (187, 188). 

Lysogenic phages have been similarly explored for the integration of genes into bacterial 

chromosomes in order to subsequently alter target microbial communities (189, 190). The 

use of HGT or phage-delivered payloads is particularly attractive for nonmodel 

microorganisms for which established molecular engineering tools are lacking. Furthermore, 

the use of established genetic engineering tools that rely on given nucleotide motifs (e.g., 

CRISPR) may be hampered in microbes that have extreme AT or GC richness (191). 

Challenges of HGT and phage-based tools for microbiome engineering include mechanisms 

to enable stable propagation of circuits over time and regulatory elements for the control of 

gene expression within diverse organisms in response to specific environmental cues.

Horizontal gene transfer (HGT): transfer of genetic material between organisms with 

different genomes, often aided by membrane proteins and transfer origins

Evolution continuously shapes the properties of microbiomes in unpredictable ways, but 

efforts aim to harness adaptive laboratory evolution for microbial engineering. Laboratory 

evolution can be used to select for single strains or communities with desired traits, 

including improved substrate utilization (192), product titer (193), stress tolerance (194), and 

controlled shift in host characteristics (e.g., flowering time of host plant) (195). A major 

challenge in applying directed evolution strategies to modify properties of communities is 

developing capabilities to predict how microbial communities’ functions evolve toward 

specific discrete states or a continuum of different states in response to environmental inputs 

(196). Indeed, there is evidence that community context shapes the evolutionary dynamic 
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trajectories, indicating the critical role of biotic interactions in driving evolutionary 

processes (197).

Biocontainment Strategies for Microbiome Engineering

All microbiome engineering strategies involving genetically engineered organisms require 

biocontainment mechanisms that restrict the growth of the organisms within a given 

environment for a designated period of time. Whereas for some applications long-term 

colonization may be needed to achieve the desired outcome, in other cases the transient 

presence of a nonnative organism or community may be sufficient and also provides 

biocontainment (198). To prevent engineered organisms from escaping into the surrounding 

ecosystem, researchers can use auxotrophy as a biocontainment strategy (199). One 

emerging method involves engineering metabolic niches by introducing unique metabolic 

capabilities and novel molecules that cannot otherwise be metabolized by native members of 

the microbiome (200). The discovery of unique metabolic niches can be aided by genome 

sequencing, metabolomics, and detailed characterization of novel metabolic pathways within 

microbial communities.

CONCLUSION AND PERSPECTIVES

Microbiome engineering should consider the complex interplay and feedback loops between 

the environment and the resident microbiome, which together drive community dynamics 

and multifunctional properties. Advancements in our understanding of microbiomes gleaned 

from ecology and systems biology must be leveraged to develop new strategies to program 

prescribed functions by using tools from synthetic biology. Top-down design of 

microbiomes presents challenges in predictably modifying composition and function, and 

the engineering of stable and highly functional synthetic microbial communities from the 

bottom up also remains difficult. Development of microbiome engineering that can achieve 

high-precision, robust, and predictable outcomes hold promise for diverse applications in 

biotechnology, medicine, agriculture, and the environment. A comprehensive understanding 

of microbiomes necessitates an integration of multi-omics data as well as quantification of 

the spatial and ecological factors that contribute to community functions.
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SUMMARY POINTS

1. Leveraging microbiomes for environmental and societal benefit in agriculture, 

medicine, and bioproduction demands holistic understanding of the various 

biochemical, molecular, spatial, and ecological factors that dictate their 

composition and function.

2. Continuously improving meta-omics tools allow comprehensive 

characterization of environmental and cultured samples and elucidate 

strategies for tailoring the performance of microbial communities.

3. Computational models of microbiomes can synthesize and explain vast 

empirical data, as well as predict new strategies to accentuate desired 

microbiome functions, by varying chemical, biological, and physical 

parameters such as initial species composition, media composition, and 

culture parameters.

4. Experimental validation is irreplaceable for microbiome model validation and 

improvement; obtaining key metrics such as the stability of target functions 

over time, growth rates, and fluxes remains a major challenge.

5. Owing to its complexity, microbiome engineering requires versatile tools that 

allow the precise introduction of targeted traits into a complex community 

with predictable outcomes.
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Figure 1. 
(a) Microbiome stability is a function of the community’s ability to recover its original 

functions following a disturbance. Functions could include the production of specific 

molecules over time. (b) Microbiome composition and function are shaped by multiple 

spatial and temporal factors. (i) At the broadest scale, availability of carbon and energy 

defines possible ecological niches within each environment. (ii) Within a community, 

interspecies interactions, including social behaviors, modulate how cells respond to their 

environment by modifying substrate availability (i.e., syntrophy or competition), releasing 

effectors, or occupying available space. Biofilms, in particular, provide resilience to specific 

environmental perturbations. (iii) Within each cell, function is constrained by individual 

metabolic capacity, which can be altered through genetic mutations or horizontal gene 

transfer. Membrane-bound proteins transduce signals and molecules from the environment 

to the cytosol as well as facilitate secretion of products from the cell to the environment. 

Figure adapted from images created with BioRender.com.
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Figure 2. 
Different meta-omics tools are suited to answer different questions about microbiome 

composition and function. Amplicon metagenomics can reveal which organisms are present 

in a microbiome but not necessarily what each microbe’s role in the community is. Shotgun 

metagenomics elucidates which microbes are present in the community and what functions 

they have the capacity to perform. Metatranscriptomics and metaproteomics are necessary to 

uncover which functions are actually being performed in the community; assigning these 

transcripts and proteins to the microbes that produced them typically requires high-quality 

reference genomes or concurrent metagenomics analyses. Metabolomics and fluxomics 

quantify the chemical composition of the microbiome environment; however, linking 

metabolites to the microbes that produce or consume them is challenging, even with 

reference genomes. Linking microbiome composition and function is facilitated by 

integrating multiple meta-omics techniques, for example, concurrent shotgun metagenomics, 

metaproteomics, and metabolomics studies to assess which enzymes are producing an 

observed small molecule of interest and which microbes could produce those enzymes.
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Figure 3. 
Microbiomes can be modeled on many scales, and the choice of modeling technique 

depends on the question at hand. At the most mechanistic level, molecular simulations may 

be used to model the thermodynamics and kinetics of individual enzymes identified through 

metaproteomics; however, these are not scalable to encompass the entire microbiome. GEMs 

enable prediction of the metabolic fluxes and end-product profiles within a microbiome and 

can offer mechanistic insight into metabolomic observations given high-quality genomic 

reconstructions and sufficient experimental model validation. Evolutionary game theory 

models and differential equation–based models are particularly useful when microbiome 

population dynamics are of the greatest interest, because detailed metabolic reconstructions 

are not needed for each organism to be modeled. AbMs offer flexibility in that the user may 

define which inputs and outputs to include in the model and are often the technique of 

choice when integrating both metabolic and physical interactions between microbes. Data-

driven models, including emerging machine learning–based models, offer empirical 

predictions of microbiome behaviors under specified conditions given appropriate training 

data. Although less mechanistic than GEMs, machine learning–based models are a 

pragmatic approach to synthesizing large amounts of different data types into interpretable 

conclusions, for example, rate constant estimations for process-level models of microbiome 

function. The structure of the molecular enzyme model is from PDB ID 4QLK. The 

structure of the AbM is reproduced with permission from Reference 162. The microbes in 

the evolutionary game theory models panel and the entire machine learning–based models 

panel were adapted from images created with BioRender.com. Abbreviations: AbM, agent-

based model; EGT, evolutionary game theory; GEM, genome-scale model; ODE, ordinary 

differential equation; PDB, Protein Data Bank.
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Figure 4. 
Microbiome engineering tools can be used to modify existing functions within the 

community or to introduce novel functions. These tools vary substantially in scale, from 

modification of the genome of a single organism to introduction of an entirely new 

engineered community into the microbiome. Highlighted methods include environmental 

perturbations such as the addition of a molecular antibiotic or a wild-type or engineered 

strain or community to an existing microbiome. More recently, genetic engineering efforts 

and adaptive laboratory evolution, including bacteriophage-assisted gene transfer, 

increasingly sophisticated synthetic biology tools, and targeted horizontal gene transfer, have 

gained traction.
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Table 1.

Bioinformatic databases and tools for reference genomes, metabolite databases, genome browsers, and 

sequence-based membrane protein predictors

Database/tool Notes Reference

Primary sequence databases

NCBI (GenBank)
a

Primary American sequence database NCBI includes more specific 
databases such as dbSNP for human SNPs, dbVar for larger human 
variants, and the Sequence Read Archive for raw sequence data, 
among others.

201

RefSeq NCBI-maintained and annotated versions of GenBank assemblies 202

ENA
a Primary European sequence database 203

DDBJ
a Primary Japanese sequence database 204

Collections of bioinformatic data 
with links to primary databases

National 
Bioscience 
Database Center

Contains portals to many databases with specific focuses 205

KEGG
Searchable for links to genomic information in primary databases; 
includes genomes and metagenomes as well as pathway and 
reaction information

206

MINE
Metabolite reference database searchable by name or structure; 
shows related biochemical reactions and pathways involving each 
metabolite

84

Annotated genome browsers

IMG Includes microbiome metagenome browser and is linked to 
genomic data stored in NCBI 207

JGI MycoCosm
Genome browser for annotated fungal genomes Contains functional 
annotation browsing with an emphasis on CAZymes, secondary 
metabolism clusters, transporters, and transcription factors

208

JGI PhycoCosm Similar to MycoCosm for algal genomes; newer 209

JGI Phytozome Genome browser for annotated plant genomes 210

Sequencebased membrane protein 
predictors

SignalP5.0 Predicts canonical signal peptides in protein sequences 211

TMHMM Predicts transmembrane helices in protein sequences 212

TOPCONS Consensus prediction of transmembrane helices in protein 
sequences 213

a
Part of the International Nucleotide Sequence Database Collaboration (INSDC). BioProject, for collections of biological data related to single 

efforts like HMP, is shared among the INSDC. Individual projects are accessible through one of the repositories (214).

Abbreviations:DDBJ, DNA Data Bank of Japan; ENA, European Nucleotide Archive; HMP, Human Microbiome Project; IMG, Integrated 
Microbial Genomes and Microbiomes; JGI, Joint Genome Institute; KEGG, Kyoto Encyclopedia of Genes and Genomes; MINE, Metabolic In 
Silico Network Expansion; NCBI, National Center for Biotechnology Information; SNP, single nucleotide polymorphism; TMHMM; TOPCONS.
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Table 2.

Selected microbiome biotech startups and ongoing projects

Microbiome Company Overview Project Stages

Plant

Pivot Bio Nitrogen fixation Corn supplement Commercialized

AgBiome Pest control Fungicide Commercialized

Boost Biomes Manage disease of high-value crops Reduce crop loss in the field and post-
harvest In development

Animal
Native Microbials Restore highfunctioning lumen

Dairy Commercialized

Other animals In development

AnimalBiome Personalized FMT Pet dogs and cats Commercialized

Human

Evelo Biosciences Monoclonal microbials

COVID-19 Phase II/III

Psoriasis Phase II

Triple-negative breast cancer Preclinical

Vedanta Biosciences Defined consortia

Clostridium difficile infection Phase II

Inflammatory bowel disease Phase I

Cancer immunotherapy Phase I

Food allergy Phase I

Seres Therapeutics Defined consortia

C. difficile infection Phase III

Ulcerative colitis Phase II

Metastatic melanoma Phase I

Synlogic Therapeutics Smart living biotherapeutics
Phenylketonuria Phase II

Immune-oncology solid tumors Phase I

Abbreviation: COVID-19, coronavirus disease 2019; FMT, fecal microbiota transplantation.
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