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Abstract

Objective: To demonstrate the diagnostic ability of label-free, point-scanning, fiber-based 

Fluorescence Lifetime Imaging (FLIm) as a means of intraoperative guidance during oral and 

oropharyngeal cancer removal surgery.

Methods: FLIm point-measurements acquired from 53 patients (n = 67893 pre-resection in vivo, 

n = 89695 post-resection ex vivo) undergoing oral or oropharyngeal cancer removal surgery 

were used for analysis. Discrimination of healthy tissue and cancer was investigated using 

various FLIm-derived parameter sets and classifiers (Support Vector Machine, Random Forests, 

CNN). Classifier out-put for the acquired set of point-measurements was visualized through an 
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interpolation-based approach to generate a probabilistic heatmap of cancer within the surgical 

field. Classifier output for dysplasia at the resection margins was also investigated.

Results: Statistically significant change (P < 0.01) between healthy and cancer was observed 

in vivo for the acquired FLIm signal parameters (e.g., average lifetime) linked with metabolic 

activity. Superior classification was achieved at the tissue region level using the Random Forests 

method (ROC-AUC: 0.88). Classifier output for dysplasia (% probability of cancer) was observed 

to lie between that of cancer and healthy tissue, highlighting FLIm’s ability to distinguish various 

conditions.

Conclusion: The developed approach demonstrates the potential of FLIm for fast, reliable 

intraoperative margin assessment without the need for contrast agents.

Significance: Fiber-based FLIm has the potential to be used as a diagnostic tool during 

cancer resection surgery, including Transoral Robotic Surgery (TORS), helping ensure complete 

resections and improve the survival rate of oral and oropharyngeal cancer patients.

Keywords

Machine learning; medical robotics; surgical guidance/navigation

I. INTRODUCTION

ORAL and oropharyngeal cancer jointly represent 3.0% of all new cancer cases arising 

in the United States [1]. These pathologies fall within the wider category of head and 

neck (H&N) cancer [2]. Accurate cancer margin assessment (also referred to as margin 

delineation) prior to surgical resection is the key factor influencing the long-term survival of 

oral and oropharyngeal cancer patients, mitigating local reoccurrence due to residual cancer 

[3]. A cancer margin, as defined by the NIH National Cancer Institute, is “the edge or border 

of the tissue removed in cancer surgery.” [4]. If assessed correctly, this border surrounds 

the cancerous tissue as well as a rim of normal tissue in order to subsequently confirm 

a successful resection. Margin assessment is highly challenging in the context of H&N 

cancer due to the relatively complex anatomy of the H&N regions and the associated risk of 

compromising functional and aesthetical features with the resection of additional tissue [5]. 

Another challenge faced during margin assessment is the occurrence of dysplasia (abnormal, 

potentially pre-cancerous cells) within the analyzed epithelial tissue [6], leading to a “gray 

area” between healthy and cancerous tissue. Current approaches for performing margin 

assessment in H&N cancer include white-light visualization, tactile feedback and frozen 

section histopathology (an invasive and time-consuming method with the inherent potential 

for sampling error) [3], [7]. The development of real-time, non-invasive guidance tools 

can lead to more accurate, faster and more consistent margin assessments [3], particularly 

during procedures in which direct tactile feedback from tissue is not possible, such as 

Transoral Robotic Surgery (TORS) [8]–[10]. Accurate discrimination of tissue conditions 

(cancer, healthy) is a necessary first step in the development of a tool for margin assessment 

guidance and that is the focus of this work.

Various technologies have been investigated for their utility in margin assessment, including 

Raman Spectroscopy [11], [12], Optical Coherence Tomography (OCT) [13], [14], and 
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intensity-based fluorescence imaging (with an exogenous contrast agent) [15], [16]. While 

promising, each of these modalities present certain limitations (e.g., time-consuming 

analysis, administration of a contrast agent, controlled lighting environment), which has 

impacted their clinical adoption [3].

Conversely, tissue autofluorescence has been identified as a viable source of non-invasive, 

real-time, endogenous, diagnostic contrast which does not require the administration of 

an exogenous contrast agent [17], [18]. Time-resolved autofluorescence techniques such 

as FLIm (Fluorescence Lifetime Imaging) have been shown to detect variation in the 

molecular composition of tissue (matrix proteins, metabolic co-factors) [19], allowing for 

the discrimination of normal and malignant tissue to be observed for various pathologies 

including oral cancer [15], [19]–[23]. In a recent study, a custom-built fiber-based FLIm unit 

[24] integrated with the da Vinci Surgical Si System (Intuitive Surgical Inc.) was used during 

TORS for interrogation of oropharyngeal cancer in 10 patients [25]. Time-resolved (average 

lifetime, decay dynamics) and spectral (intensity ratio) FLIm parameters derived from 

three fluorescence emission spectral bands provided patient-level contrast between point 

measurements acquired at normal and cancerous regions within the surgical field. However, 

the specific FLIm parameter (or combination of parameters) required for discrimination 

of cancer and healthy varied between patients due to tissue heterogeneity (e.g., variable 

thickness of the epithelial layer, ulcerations within tumor mass, etc). Thus, extending this 

method to provide a generalized diagnostic model through machine learning is a logical next 

step in the development of FLIm-based tissue discrimination for tasks such as cancer margin 

assessment.

The method of feature extraction and choice of classification approach for FLIm-based 

tissue discrimination are two related challenges that need to be addressed together. Previous 

studies have relied on various sets of hand-engineered FLIm signal parameters (i.e., 

calculated or derived from the raw signal) to develop classifiers [26], [27]. In contrast, 

data-driven feature extraction methods (deep learning) may offer advantages such as task-

specific feature learning from fluorescence decay waveforms. Deep learning has been shown 

to lead to superior classification performance in various medical applications [28], [29]. 

While deep learning methods have previously been used for the deconvolution of raw 

fluorescence signals in low photon scenarios [30], to our knowledge this technique has not 

been investigated for fluorescence decay based tissue classification.

Additional challenges for FLIm-based delineation of H&N cancer margins include 

biochemical differences between anatomical locations (e.g., tongue, tonsil), changes in 

surgical environment (e.g., pre- and post-excision), or the presence of nuanced tissue 

conditions such as dysplasia. Thus, understanding which machine learning approaches can 

account for changes in experimental conditions is important in designing future large-scale 

studies.

The goals of this study are as follows: (i) to identify the key sources of FLIm-based 

diagnostic contrast (time-resolved, spectral properties) that can generalize across patients 

and anatomies in the context of oral and oropharyngeal cancer; (ii) to investigate which 

combination of feature extraction and classification method (hand-engineered vs data-
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driven) leads to superior tissue classification performance during oral and oropharyngeal 

cancer resection surgery in various imaging contexts (in vivo, ex vivo); (iii) to develop a 

visualization method that can be integrated into a surgical workflow to provide diagnostic 

contrast for real-time margin evaluation; and (iv) to compare classifier output for healthy 

tissue, dysplasia at the excision margins, and cancer to observe how FLIm captures the 

gradient between healthy tissue and cancer.

II. METHOD

A. FLIm System

A custom-built, fiber-based, point-scanning FLIm system [24] was used to acquire data for 

this study. This system was designed for real-time intraoperative imaging in which FLIm 

data is augmented onto the surgical field-of-view (FOV) observed by white-light imaging 

cameras. For in vivo intraoperative imaging, this system was integrated into two distinct 

surgical approaches:(i) the da Vinci surgical system equipped with an integrated camera 

[20] and, (ii) a non-robotic approach which combines a hand-held fiber probe (Omniguide 

Laser Handpiece) and endoscopic camera (Stryker). For ex vivo imaging, surgically excised 

tissue specimens were scanned using a hand-held fiberoptic probe and scientific camera 

(Chameleon3, Point Grey). Acquired FLIm data was augmented onto the surgical console 

in real time to ensure a complete scan [20]. In brief, tissue autofluorescence was excited 

with a 355 nm (<600 ps FWHM) pulsed laser (micro Q-switched laser, 120 Hz repetition 

rate, Teem Photonics, France) delivered through a 365 μm core diameter multimode optical 

fiber (Thorlabs Inc, numerical aperture 0.22). Various instruments and workflows were 

used for data acquisition. For robotic surgery cases using the da Vinci Si robot (N = 20) 

the fiber probe was inserted into a fiber introducer instrument. For robotic surgery cases 

using the da Vinci SP robot (N = 16) the fiber probe was held using one of the robot’s 

grasper instruments. For non-robotic surgery cases (N = 17) the fiber probe was held by 

hand by the surgeon. The same fiber optic used for excitation was also used to collect 

autofluorescence from the scanned tissue region. The fiber’s proximal end was coupled 

to a Wavelength Selection Module (WSM) which features a set of four dichroic mirrors 

and bandpass filters (CH1: 390 20 nm; CH2: 470 ± 14 nm; CH3: 542 ± 25 nm; and 

CH4: 629 ± 26.5 nm) used to spectrally resolve the autofluorescence signal. These four 

spectral channels were selected based on the autofluorescence emission maxima of specific 

endogenous fluorophores previously reported as the main contributors to autofluorescence 

emission, specifically collagen, NADH, FAD, and porphyrins respectively [19]. CH1, CH2 

and, CH3 were used for analysis in this study due to the very low signal intensity 

observed in CH4. The optical signal from each spectral band was time-multiplexed onto 

a single microchannel plate photomultiplier tube (MCP-PMT, R3809U-50, 45 ps FWHM, 

Hamamatsu, Japan), amplified (AM-1607–3000, Miteq Inc., USA), and time-resolved by 

a high sampling frequency digitizer (12.5 GS/s, 3 GHz, 8-bit, 512 Mbytes, PXIe-5185, 

National Instruments, Austin, TX, USA). Signal-to-noise ratio (SNR) was calculated for 

each spectral channel for each digitized point measurement.

The lateral resolution of the system is determined by the illumination spot size and 

collection geometry, which is improved when the probe is closer to tissue. A background 
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subtraction step was performed on the acquired waveform using a probe back-ground signal 

acquired at the beginning of each clinical case. A Laguerre expansion based deconvolution 

[31] was performed on the acquired signal using the system Impulse Response Function 

(IRF), producing a fluorescence decay waveform for each spectral channel (following 

reconstruction) and 12 Laguerre coefficients per channel (see Fig. 1).

To localize each FLIm point measurement, a 445 nm continuous-wave aiming beam 

(TECBL-50G-440-USB, World Star Tech, Canada) was employed, as described earlier [24], 

[32]. This aiming beam was integrated into the optical path of the WSM and delivered to the 

specimen through the same optical path used to induce tissue autofluorescence. The aiming 

beam was localized within a 2-D white light image of the surgical field, which is captured 

via the integrated camera (see Fig. 1). More specifically, the center of the beam for a given 

measurement was localized by transforming the image to the HSV color space, thresholding 

the hue and saturation channels, and performing a series of morphological operations 

as described previously [32]. Block-matching based motion tracking was retrospectively 

applied to overcome any errors due to tissue motion encountered during acquisition and to 

ensure that all point measurement locations are corrected with respect to a desired reference 

frame in the video sequence which was used for ground truth annotation of the specimen.

B. Data Acquisition, Histological Coregistration and Preprocessing

Fifty three patients undergoing upper aerodigestive oncologic surgery at the University 

of California Davis Medical Center were recruited after determining their eligibility for 

the research procedure. Research was performed under Institutional Review Board (IRB) 

approval and with patient’s informed consent. During a procedure, the surgeon (DGF, ACB, 

AFB, MA) identified the tissue areas of interest based on preoperative planning. FLIm point 

measurements were then acquired by scanning the fiber probe over this region as well as 

peripheral healthy tissue for comparison. FLIm data was collected during two stages of 

surgical resection (i) in vivo before surgical resection and (ii) ex vivo on the surgically 

excised specimen.

Immediately following the ex vivo scan, the resected specimen was sent for sectioning 

and histopathology staining (Hematoxylin and Eosin (H&E) and P16 immunostaining 

when required). The fixed sections were placed on slides and annotated (Fig. 2(a)) for 

healthy, dysplasia and cancerous regions by a pathologist (RFG). These histology slide 

annotations were then used to provide labeling of different tissue regions within the white 

light images of each ex vivo specimen (Fig. 2(c)). This labeling was performed by localizing 

each histology slide within the ex vivo image using gross sectioning cut locations and 

morphological landmarks. This set of annotations was then translated to the in vivo images 

of the specimen by accounting for sample orientation information (obtained from clinical 

notes taken by the research personnel, surgeons, and pathologist) and the matching of 

morphological features visible in the surgical field as well as on the excised specimen. 

Two tissue classes, “healthy” and “cancer”, were considered for classification purposes, 

while regions of dysplasia (abnormal, possibly pre-cancerous cells) marked at the resected 

margins were analyzed separately. All white light images were acquired at 720 × 1280 

pixel resolution. A pixel/mm scale was derived from the known dimensions of surgical 
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instruments visible in the surgical field. Measured specimen dimensions found in the 

associated tissue grossing report were used to validate this estimated scale.

To account for potential errors in ground truth coregistration (e.g., in vivo motion 

artifacts, non-uniform shrinkage of tissue after excision, tissue condition boundaries) point 

measurements centered at a boundary between distinct tissue conditions (i.e., healthy and 

cancer), specifically within a 15px radius of multiple tissue labels (approx. 2 mm), were 

excluded from classifier training due to their ambiguous ground truth (Fig. 2(d)). This 2 mm 

radius was selected to ensure no intermediate tissue conditions (e.g., healthy-cancer tissue 

interface) at the margins were included when training a binary classifier. Measurements 

acquired at heterogenous tissue label boundaries were however included when generating 

a heatmap visualization to qualitatively evaluate classifier output. Data-points located more 

than 2 mm from an annotated pixel, coregistered with dysplasia or acquired with a signal-to-

noise ratio (SNR) lower than 30 dB for any of the three channels were excluded from model 

training and validation. This SNR threshold was selected as a trade-off between good signal 

quality and an overly aggressive removal of training data which would limit the robustness 

of a trained classifier. FLIm data-points for which a correct aiming beam localization and 

registration was not possible were also excluded from analysis.

C. Classifiers Trained Using Time-resolved and Spectral FLIm Parameters

Support Vector Machine (SVM) [33] and Random Forests (RF) [34] classifiers were trained 

using hand-engineered FLIm features from three spectral channels. For each channel, 

average lifetime and spectral intensity ratio parameter values were combined with 12 

Laguerre coefficients calculated during the deconvolution process (Fig. 1) [20]. These 

coefficients capture the decay dynamics of the fluorescence waveform. This results in a 

total of 42 features per point measurement. Various subsets of this feature vector were 

investigated. A Radial Basis Function (RBF) kernel was employed for SVM training with 

the regularization parameter (i.e., C parameter) set to 1.0 as is commonly employed in the 

field [35], [36]. This C value was not experimented with in this study. The RF model uses 

100 decision trees/estimators, each with a max depth of 10. A random forest ensemble 

size of 100 was selected as the classifier performance reached an upper limit and did not 

increase further beyond this ensemble size. Class-level weights were applied during training 

to mitigate class imbalance problems. Equations for average fluorescence lifetime (LT) and 

spectral intensity ratio (IR) are presented in Fig. 1, with ik referring to the deconvolved 

decay waveform for a given channel k. A comprehensive description of the deconvolution 

and parameter extraction process is described in a prior work [31].

D. CNN-Based Feature Extraction and Classification

A 6-layer 1-D convolutional neural network (CNN), consisting of four convolutional 

layers (12, 24, 48 and 64 kernels respectively) and two fully connected layers (32 and 2 

neurons), was trained to classify a given multi-channel fluorescence decay waveform. All 

1-D convolutional kernels were 3 units in length. Max pooling (stride: 2, kernel length: 3) 

was performed following each convolutional layer. A rectified linear unit (ReLU) activation 

[37] was applied following each network layer (apart from the last). Average pooling was 

then performed across the entire signal length prior to the first fully connected layer, 
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producing a flattened 64-D input vector. The final fully connected layer was followed by 

a softmax activation to produce the classification output. An intensity scaling factor was 

applied to each channel within a given decay waveform based on the relative differences in 

signal intensity (area under the curve of the original waveform). This ensures only relative 

differences in spectral intensity are used for classification, rather than the absolute intensity 

which is largely determined by probe to tissue distance.

Classifier training was performed using Stochastic Gradient Descent (SGD) with 

backpropagation [38] for 20,000 iterations with a momentum of 0.9, a learning rate of 

0.001, a batch size of 64 and an L2 weight decay of 5e-4. This CNN training configuration 

was employed as it lead to smooth convergence during training. Cross-entropy loss, given 

in equation 1, was used as the objective function. Weighted batch sampling was performed 

during model training in order to address any class imbalance within the training data.

CE Sij, Sij = − 1 ∑
i = 1

N
∑
j = 1

K
Sijlog Sij (1)

Due to the limited training data available, CNN pre-training was performed for a 

related regression task, average fluorescence lifetime estimation, on synthetic data before 

fine-tuning the model for classification. 100,000 synthetic 3-channel fluorescence decay 

measurements were generated through the convolution of synthetic multi-exponential decay 

waveforms with a measured instrument impulse response function (IRF) as described 

previously [31]. Each synthetic waveform has a random number of exponential components 

(between 1 and 6) [31]. Random channel level weights (summing to 1.0) were applied to 

simulate relative difference in intensity between spectral bands. This dataset was used to 

pre-train the CNN model for average lifetime estimation using the same configuration as 

classifier training. An alternate final fully connected layer with 3 neurons was included 

to perform average lifetime estimation and is removed prior to classifier training. Mean 

squared error was minimized to train this regression task. Performing CNN classifier 

training in this study without pre-training often results in the model failing to converge 

and ultimately very poor performance.

The proposed classification method was developed using the PyTorch numerical library [39]. 

Network optimization was accelerated using an Nvidia GeForce GTX 1050 GPU (Graphics 

Processing Unit).

E. Visualization Approach

A classification heatmap was generated for the FLIm scan of a given specimen through a 

combination of inverse distance weighted interpolation [40] and SNR weighting to aggregate 

nearby cancer probability scores. Any pixel location within a 4 mm radius of at least 5 

data-point centers was included in the heatmap to focus the visualization on the more 

densely scanned regions. For each heatmap pixel xi, the N cancer classification scores 

centered within a 4 mm radius were aggregated together using equations 2–4.
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F xi = 1
2 ∑

i = 1

N
aifi + bifi (2)

ai = di
−P

∑j = 1
N dj

−P (3)

bi = min si
P

∑j = 1
N min sj

P (4)

N is the number of data-points within the 4 mm radius a given pixel location xi, fi 

corresponds to the predicted probability of cancer for data-point i, di is the Euclidean 

distance between the influencing data-point i and the pixel of interest xi. si is the set of 

channel level SNR values recorded for the influencing data-point i. P is the weighting 

exponent. Greater values of P assign a greater influence to the data-points closest to the 

pixel of interest (x, y) as well as data-points with higher SNR. A P alue of 1.0 was used 

in this study as it results in smooth heatmaps which do not highlight small local variations 

related to noise. After performing this aggregation for an entire specimen scan, the generated 

heatmap was colorized using an RGB colormap which interpolates between green (0 255 0), 

white (255 255 255) and red (255 0 0), with green corresponding to 0.0% predicted cancer 

probability and red corresponding to 100%. The heatmap was then overlaid onto the white 

light image of the specimen. An example of this visualization output is shown in Fig. 1 and 

Fig. 6. The developed visualization method was implemented in the Python programming 

language and employs the OpenCV image processing library [41].

F. Evaluation Metrics

Classifier evaluation was performed at the tissue region level to evaluate the diagnostic 

capability of the method and then at the point-measurement level to assess the capability 

for margin assessment over an entire tissue surface. A tissue region in this context refers an 

entire cancer or healthy region within the surgical field for a given patient. Both evaluations 

were performed via a leave-one-out cross-validation.

For tissue region evaluation, a mean probability of cancer was calculated for all point-

measurements acquired within a given tissue region producing an overall binary prediction 

(cancer or healthy). These region level predictions were then used to compute region-level 

sensitivity, specificity and receiver operator characteristic area-under-the-curve (ROC-AUC) 

for the entire dataset using equations 5, 6 and 7. An ROC curve based threshold selection 

step was performed to find the optimal trade-off of sensitivity and specificity for region-level 

evaluation. TP, FN, TN and FP correspond to the number of true positives, false negatives, 

true negatives, and false positives respectively. TPR and FPR refer to the true positive rate 

and false positive rate as a function of decision threshold.
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sensitivity = TP
TP + FN (5)

specificity = TN
TN + FP (6)

ROC−AUC = ∫
x = 0

1
TPR FPR−1(x) dx (7)

For point-measurement level evaluation, sensitivity, specificity and ROC-AUC were 

computed for a given patient using all acquired point-measurements before an evenly 

weighted mean and 95% confidence interval were calculated across all patients. ROC-AUC 

was only computed at the point-measurement level for cases in which at least 100 data 

points from healthy and 100 from cancer were acquired in order to prevent misleading 

patient level scores caused by highly imbalanced data. Sensitivity and specificity were 

calculated using all patients in which cancer or healthy point measurements were acquired 

respectively.

G. Statistical Analysis

The Shapiro-Wilk normality test [42] was used to assess whether parametric statistical 

tests should be used for the FLIm data acquired in this study. Application of this test 

demonstrated a non-normal distribution at the patient and inter-patient level, therefore 

the non-parametric Mann-Whitney U test [43] was performed when comparing FLIm 

parameters for distinct tissue conditions (healthy, cancer).

III. EXPERIMENTAL RESULTS

A. Dataset and Histopathology Breakdown

Table I presents a breakdown of the in vivo and ex vivo FLIm datasets used for analysis in 

terms of acquired pixels/point measurements following preprocessing. This dataset has the 

following anatomical breakdown: 20 tonsil, 23 tongue, 1 glossotonsillar sulcus, 1 floor of 

the mouth, 1 palate, 1 pharynx, 1 left posterior maxilla, 1 gingiva, 1 lip and 3 patient with 

unknown primary cancer (multiple locations imaged). An in vivo scan was not available for 

3 patients due to either acquisition or coregistration challenges; ex vivo scans were however 

acquired for these cases.

For classification purposes, the dataset was split into two general classes, “healthy” and 

“cancer”, with a range of conditions found in each class. Healthy epithelium is made up 

of a variety of features, including epithelium of varying thickness as well as keratinized 

epithelium, stratified epithelium and ulcerated tissue. The cancer class consists of invasive, 

basaloid, verrucous and ulcerated squamous cell carcinoma (SCC). In certain cases tissue 

from only one of the two general classes (“healthy” and “cancer”) was imaged, either due 

to prominent dysplasia within the imaged tissue region or a given tumor being identified 

as benign in histology and deemed “healthy”. Dysplasia at the resection margins was 
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identified in 44 cases. Certain anatomies and conditions (floor of the mouth, pharynx, 

posterior maxilla, gingiva, ulceration, filiform papillae, lip, palate, excessive bleeding) occur 

in single patients resulting in these patients being omitted from classifier cross-validation 

experiments. The ability of the trained classifier to generalize to these cases was then 

investigated.

B. Univariate Statistics

Fig. 3 compares median lifetime and intensity ratio values for cancer and healthy data for all 

anatomies (in vivo and ex vivo) for the three spectral channels. Statistical significance was 

investigated using the Mann-Whitney U test, with a greater number of significant parameters 

observed for in vivo compared to ex vivo, suggesting the additional variation caused by 

removing tissue from the body (cauterization, loss of blood flow influencing metabolism) 

has limited the contrast between conditions. The key sources of in vivo contrast include 

CH2 lifetime and CH3 lifetime. Overall, cancerous tissue presented shorter lifetime values 

compared to the surrounding healthy tissue. A spectral shift was also observed in cancer (in 
vivo and ex vivo), with increased CH2 and CH3 intensity relative to CH1.

Fig. 4 presents the difference in median FLIm parameter values between healthy tongue 

and tonsil patients imaged in vivo. Greater variation between anatomies is observed in 

CH3 lifetime for healthy tissue relative to CH2 suggesting CH2 may provide more robust 

diagnostic contrast for intraoperative scanning. An increase in fluorescence lifetime with 

wavelength was observed for healthy tonsil, while the opposite was seen for healthy tongue, 

suggesting the biochemical differences between these anatomies can be highlighted with 

FLIm. An ex vivo comparison of healthy tissue by anatomy was not presented due to the 

inferior contrast observed in this context and given that intraoperative in vivo scanning is the 

focus of this study. However, this result is included in the supplementary materials (S1).

C. Region-Level Classifier Evaluation

Table II presents region-level cancer vs. healthy classification performance of the hand-

engineered feature methods (SVM, RF) and deep learning methods (1-D CNN) for in vivo 
and ex vivo scans, respectively. All three spectral channels were used for training. This 

leave-one-out cross validation experiment was limited to tongue and tonsil patients only. 

Classification of in vivo scans was observed to be noticeably superior to ex vivo, while 

the Random Forests method lead to superior region-level discrimination with an in vivo 
ROC-AUC of 0.88, sensitivity of 86% and specificity of 87%.

D. Point-Measurement Level Classifier Evaluation

Tables III and IV compare point-measurement level cancer vs. healthy classification 

performance of the hand-engineered feature methods (SVM, RF) and deep learning methods 

(1-D CNN) for in vivo and ex vivo scans, respectively. This experiment was limited to 

tongue and tonsil patients only. The Random Forests method was observed to produce the 

strongest classification performance for both in vivo and ex vivo, even compared to the 1-D 

CNN, achieving a mean AUC of 0.79 ± 0.04 and 0.65 ± 0.08 respectively. Fig. 5 presents 

the ROC curves for in vivo and ex vivo classification. Performance is notably superior for in 
vivo scans compared to ex vivo, which is consistent with the statistical results reported in the 

Marsden et al. Page 10

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2022 March 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



previous subsection. The remainder of the results will focus on in vivo imaging given that 

this is the target application of the method.

E. Contribution of FLIm Parameters to Classification Performance

Table V compares in vivo point-measurement level classification performance for various 

subsets of the 42 FLIm parameters used. Time-resolved parameters, and in particular 

the Laguerre coefficients from CH2, were observed to contribute the most towards 

discrimination, with only a marginal decrease in mean AUC compared to using all FLIm 

parameters (0.78 ± 0.7 vs. 0.79 ± 0.04). This is consistent with the statistical results 

from earlier which highlighted CH2 time-resolved parameters as a robust source of 

contrast. Laguerre coefficients provide a more granular representation of fluorescence decay 

dynamics than the concise average lifetime representation, leading to superior classification 

performance.

F. Generalization to Unseen Anatomies and Conditions

Table VI presents the AUC score observed when a Random Forests classifier trained on in 
vivo tongue and tonsil patients with commonly occurring conditions was used to classify 

previously unseen anatomies and conditions. Discrimination performance similar to that 

of tongue and tonsil patients (AUC > 0.65, specificity > 0.60) was observed for unseen 

anatomies (pharynx, lip, palate, floor of mouth, gingiva) as well as unknown primary 

cases in which several anatomies were scanned. In certain cases only healthy tissue was 

imaged resulting in specificity being presented. The posterior maxilla and glossotonsillar 

sulcus cases were only imaged ex vivo. The presence of prominent ulceration on the 

tissue also does not appear to result in a noticeable decrease in performance. A situation 

where discrimination is challenging is the occurrence of excessive tissue bleeding within 

the scanned region. This is due to the absorption of UV excitation light by blood, which 

attenuates the signal and influences calculated FLIm parameter values. Significant bleeding 

within the scanned region only occurred in 1/53 patients enrolled in this study. The 

substantial presence of filiform papillae on one of the tongue specimens results in very 

poor discrimination, however this patient was noted to be very old (82 years) relative 

to the median age (65) at the time of surgery. This may lead to additional confounding 

factors relative to the other cases which were not captured by histopathology. Classification 

performance for ex vivo imaging of these one-off cases was observed to be inferior and is 

included in the supplementary materials (S2).

G. Comparison of AUC Score and Visualized Output

Fig. 6 presents the visualized classifier output and AUC score for four in vivo patients. 

The Random Forests classifier method with all 42 FLIm parameters was employed. In 

all cases there is clear contrast between the cancer and heathy regions, however, there is 

no clearly observable relationship with the quality of the associated visualization and the 

point-measurement level AUC score. This is partially due to the presence of dysplasia which 

is included in visualization but not in cross-validation. Even for the worst performing of 

the four (AUC: 0.68) the cancer and healthy regions are clearly delineated. This reduced 

AUC performance may be related to minor (<1 mm) coregistration errors when labelling the 

tissue as well as variation in fiber-tissue distance and angle during acquisition. A qualitative 
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evaluation by a physician will be required to ultimately determine the utility of this tool for 

surgical guidance.

H. Comparison of Classifier Output for Healthy Tissue, Dysplasia and Cancer

Fig. 7 presents the distribution of classifier output (probability of cancer) for healthy, 

dysplasia and cancer point measurements taken from all in vivo tongue and tonsil patients. 

Histology examples of the various conditions are also highlighted. This output was recorded 

during cross-validation using the Random Forests method (all 3 channels used). Two 

patients with tissue registered to dysplasia were investigated as case studies due to their 

predicted cancer probability being consistently low (case study (i)) and high (case study 

(ii)) respectively. Under the pathologist’s guidance (RGE), closer review showed that the 

patient in case study (i) contained tissue which was hyperplasic and deemed to be in an 

earlier stage than the typical dysplasia observed in the dataset. The patient in case study (ii) 

had significantly higher proportions of lymphatic tissue within the penetration depth of the 

laser (<250 μm) relative to the typical dysplasia case, likely skewing the classifier to predict 

high cancer probability. The remaining dysplasia cases consist of probability values spread 

across the probability distribution suggesting a range of dysplasia gradings are present in the 

dataset. These results suggest classifier output for FLIm point measurements can potentially 

be linked with dysplasia grading and various sub-conditions.

I. Effect of Ensemble Learning

Table VII presents the effect of varying the number of estimators/decision trees on in 
vivo point-measurement level classification performance for tongue and tonsil patients 

(three spectral channels used). An increased number of RF estimators results in improved 

generalization, with superior performance to CNN and SVM achieved with just 10 

estimators. This increase however plateaus at 100 estimators. These results suggest ensemble 

learning methods, enabled by the rapid training time of decision trees, leads to reduced 

overfitting of FLIm data compared to the regularization methods used for CNN and SVM 

training.

IV. DISCUSSION

This study highlights FLIm’s potential for performing intraoperative discrimination of tissue 

types (cancer, healthy) through a combination of machine learning and visualization. Strong 

diagnostic contrast across various anatomies of the oral cavity and oropharynx was observed 

with a region-level ROC-AUC of 0.88, sensitivity of 86% and specificity of 87% achieved 

for intraoperative in vivo scans. For the more challenging point-measurement level in vivo 
evaluation, an ROC-AUC of 0.79 ± 0.04, a sensitivity of 72 ± 11% and a specificity of 69 

± 10% is observed. The free-hand scanning method employed allows for local diagnostic 

contrast to be obtained for a desired region of interest within the surgical field. The strong 

discrimination observed using FLIm highlights the potential for this device to be utilized for 

label-free margin assessment in a larger study in the future.

The use of a Random Forests classifier results in the strongest discrimination when 

compared to SVM and 1-D CNN methods. FLIm based tissue classification using Random 
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Forests has previously been observed to achieve strong classification performance for ex 
vivo breast tissue [27], suggesting this method for modelling/classification is well suited to 

this data type. FLIm data acquired in a clinical setting is observed to have high variability 

due to inherent patient-level differences and local heterogeneity within tissue, increasing 

the likelihood of overfitting. The ensemble approach of Random Forests demonstrates 

superior generalization to the regularization methods of CNN and SVM. Performing a 

similar ensemble method using an SVM or CNN is possible [44], [45] but would be 

incredibly demanding in terms of training time on this dataset, with a single SVM/CNN 

classifier in this study taking at least 10x longer to train than a full random forest (made 

up of 100 decision tree classifiers).With robust, real-time classification a requirement of this 

application, a more in-depth investigation of efficient ensemble classification methods for 

FLIm will be carried out in a future study.

The key source of diagnostic contrast observed in this study is the time-resolved FLIm 

parameters acquired from CH2 (470 ± 14 nm), specifically the 12 Laguerre coefficients. 

This result highlights the value of capturing time-resolved fluorescence decay dynamics, 

especially given the noticeably inferior classification performance observed using purely 

spectral intensity parameters. CH2 targets the emission maxima of the metabolic co-factor 

NADH (Nicotinamide Adenine Dinucleotide (reduced form)) and while there are likely 

several other fluorophores contributing to the contrast observed in tissue, this spectral band 

and the biochemical properties it relates to (i.e., the ratio of bound and unbound NADH 

[19], the Warburg Effect [46]) provide a robust source of diagnostic contrast in oral and 

Oropharyngeal cancer.

in vivo tissue discrimination is shown to be far superior to ex vivo, both in terms of 

univariate statistics and classifier performance. The effects of tumor excision (cauterization, 

loss of blood supply, changes to protein expression) [47]–[50] introduce additional 

biochemical variability, and in particular metabolic changes, which limits diagnostic 

contrast. These effects can also vary with resection time during a procedure. The effects 

of cauterization on FLIm has been demonstrated in an earlier study [47]. Given that the 

key source of in vivo contrast for these anatomies is CH2 and that this band is linked 

closely with the metabolic activity, it is not surprising that a loss of oxygenation impacts this 

source of contrast greatly. Other intrinsic sources of patient-level variation include distinct 

anatomies, patient age, smoking history and distinct cancer phenotypes. These factors may 

explain the variation in classification performance between patients. However, none of these 

factors have the same limiting effect on diagnostic contrast as tumor excision and loss of 

blood flow. This result suggests that studies of this type which rely on metabolic activity 

must be performed in vivo and therefore intraoperatively.

It is important to note the distinction between region-level evaluation and point-

measurement level evaluation of the developed FLIm method, particularly when comparing 

to other imaging methods employed in the assessment of head and neck tumour margins. 

A region-level evaluation, performed through the aggregation of point-measurements, was 

included to allow for more direct comparisons with other imaging approaches in terms of 

diagnostic capability. Gao et al. [51] use near-infrared (NIR) fluorescence imaging and a 

molecular probe (panitumumab-IRDye800CW) to detect cancer in oral and Oropharyngeal 
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tissue specimens, with a sensitivity of 92 ± 2.7% and a specificity of 91 ± 1.5% achieved 

through a similar region-level evaluation of tissue slices. This performance was achieved 

with a panitumumab-IRDye800CW dosage of 1.0 mg/kg. Using a lower dosage of 0.5 

mg/kg, however, specificity falls to 78 ± 10.3% [51]. The label-free FLIm method reported 

here achieves competitive diagnostic performance without an exogenous molecular probe or 

the controlled lighting environment needed for NIR. This lack of restrictions increases the 

feasibility of FLIm for intraoperative use.

For the task of intraoperative cancer margin assessment the entire tissue surface must be 

accurately classified, resulting in the need for a point-measurement level evaluation where 

any individual misclassifications are penalized. This more challenging validation results in 

a decrease in the various performance metrics (ROC-AUC, sensitivity and specificity) due 

to individual point-measurement classification errors which must be overcome. Possible 

sources of such error within a given scan include tissue heterogeneity, variation in the 

distance and angle of the fiber probe and minor coregistration errors.

One of the key challenges of this study is the generation of accurate tissue condition labels 

for the in vivo imaging data. This relies on the coregistration of histopathology annotations 

with the excised specimen, followed by the coregistration of the excised specimen with the 

interrogated region in the surgical field. Challenges for this last step include differences 

in sample orientation and limited presence of morphological landmarks easily identified 

in the white light video as well as grossing pictures. This is further complicated by the 

changing size, orientation and shape of the specimen once excised and has resulted in some 

in vivo cases being rejected due to the inability to generate accurate labels. The use of image 

analysis based registration tools may lead to more consistent and accelerated data labelling. 

The use of such tools does however present additional challenges (i.e., the possibility 

of mismatched landmarks). In an earlier study using the same FLIm instrument, ex vivo 
breast lumpectomy specimens were imaged using a raster scanning scheme (rather than 

free hand scanning) and annotated using a marker-based coregistration method resulting in 

very high cancer classification performance (sensitivity and specificity > 97%) [26]. While 

FLIm-based breast tissue classification may rely on a different source of diagnostic contrast 

less affected by excision, the standardized annotation and imaging approach are likely key 

contributors to the strong performance observed.

Other limitations include the varying fiber-tissue distance, leading to variable lateral 

resolution and excitation-collection efficiency across the field of view. This is one of the 

down-sides of the free-hand scanning approach employed. A greater fiber-tissue distance can 

result in fluorescence contributions from multiple adjacent tissue locations being collected 

and influencing classifier output. A potential approach to overcome this local variation, 

is the addition of a classification refinement step whereby a given point-measurement 

prediction is updated based on neighbouring point-measurement predictions. In future 

studies, we will evaluate such a step as it can mitigate local errors and produce a more 

robust classification method. Furthermore, an optimized design of the FLIm instrument itself 

(currently under development) is expected to improve SNR and to generate more consistent 

signal in future clinical cases.
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The developed visualization approach shows great promise as a diagnostic aid, producing 

smooth probability heatmaps in which one-off misclassifications are mitigated and the 

distinct tissue regions are clearly visible. However, the level of classifier uncertainty needs 

to be communicated to the surgeon to allow for informed decision making. A Bayesian 

machine learning approach [52] could be used to visualize classifier uncertainty levels (e.g., 

via color transparency level).

When investigating classifier output for dysplasia a wide range of cancer probability scores 

were observed, suggesting a range of tissue conditions are present within the dysplasia 

group. These results suggest that FLIm can potentially capture the gradient between healthy 

and cancerous tissue. With a large enough dataset and more detailed grading of dysplasia 

there is also the possibility of developing an ordinal regression model which can predict 

dysplasia grading using FLIm parameters and allows for the detection of potentially pre-

cancerous cells.

CONCLUSION

In this work the diagnostic capability of label-free, fiber-based Fluorescence Lifetime 

Imaging (FLIm) during oral and Oropharyngeal cancer surgery was highlighted. Robust 

classification of healthy tissue and cancer was observed during intraoperative scans, with the 

key source of contrast coming from time-resolved FLIm parameters linked with metabolic 

activity. However, inferior contrast was observed for post-resection imaging of specimens. 

This lack of contrast for excised specimens suggests metabolic activity is a key contributor 

to the FLIm-based discrimination observed in these anatomies, highlighting the need for 

imaging studies which rely on biochemical changes to be performed in vivo. Ensemble 

methods, specifically in the form of the Random Forests approach, result in superior 

generalization across patients and tissue conditions, even when compared to CNN-based 

classification. This highlights the high variability of clinical FLIm data and the need 

for robust classification methods which prevent overfitting. The developed visualization 

approach produces smooth cancer probability maps within the surgical field that can 

mitigate local classification errors and highlight the distinct regions. Classifier output 

observed for dysplasia at the excision margins suggests that FLIm can capture the gradient 

between healthy and cancerous tissue, and potentially identify absnormal or pre-cancerous 

cells. Overall, the results of this study highlight the potential for label-free FLIm to be 

utilized clinically for margin assessment in a future study.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
(Top) Overview of the FLIm-based tissue classification methods used for intraoperative 

cancer margin assessment. For clinical data collection, a custom-built Fluorescence Lifetime 

Imaging (FLIm) point-scanning system was integrated with either a robotic surgery platform 

(da Vinci) or an endoscopic camera. Multi-channel fluorescence decay waveforms were 

acquired and localized within the white light image of the specimen using the aiming 

beam (blue). Deconvolution and classification were performed before classifier output was 

visualized using a distance and signal-to-noise ratio (SNR) based interpolation method. 

(Bottom) Feature extraction and classification process: A Laguerre expansion based 

deconvolution was performed using the system impulse response function (IRF) producing 

a set of 12 Laguerre coefficients per channel. Feature extraction and classifier training was 

performed for three distinct classification approaches including Support Vector Machine 

(SVM) and Random Forests (RF) classifiers (both trained on extracted FLIm parameters 

and Laguerre coefficients) as well as a 1-D CNN classifier trained on fluorescence decay 

waveforms. The deconvolved waveforms were reconstructed using Laguerre basis functions 

and the associated set of 12 coefficients computed for each channel.
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Fig. 2. 
Tissue annotation and training data selection process. (a) The ground truth for classifier 

training was derived directly from histopathology via H+E staining. Each annotated slice 

was coregistered with white light images of the specimen (in vivo and ex vivo), (b) 

Surgical FOV for in vivo imaging of a given specimen and (c) Corresponding registration of 

pathology (in vivo). Homogenous regions of a single tissue label (healthy, cancer, dysplasia) 

were annotated in a region-based fashion. (d) Point measurements centered at a boundary 

between disparate tissue conditions, specifically within a 15-pixel radius of multiple tissue 

labels (approx. 2.0 mm), were excluded from classifier training due to their ambiguous 

ground truth. The scale bar for white light images corresponds to 5 mm.
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Fig. 3. 
Average fluorescence lifetime and spectral intensity ratio changes between healthy tissue 

and cancer observed for (a) in vivo and (b) ex vivo FLIm. All anatomies imaged in this 

study are included while dysplasia point measurements were omitted. Median parameter 

values were taken from each patient for healthy and cancer, with a 95% confidence 

interval calculated. The Mann-Whitney U test (*p<0.05 **p<0.01) was applied, with a 

greater number of significant FLIm parameters observed for in vivo compared to ex vivo, 

particularly CH2 and CH3 lifetime.
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Fig. 4. 
Average fluorescence lifetime and spectral intensity ratio medians (with 95% confidence 

interval) for healthy tongue and tonsil specimens (in vivo). Higher variability was observed 

in CH3 lifetime as well as CH1 and CH2 intensity ratio, suggesting these parameters do not 

generalize well across anatomies due to differences in biochemistry captured by FLIm.
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Fig. 5. 
ROC curves for healthy/cancer classification of (a) in vivo and (b) ex vivo FLIm scans 

at the point-measurement level. Each curve is color coded by anatomy. Only tongue and 

tonsil patients for which 100 healthy and 100 cancer point measurements were acquired was 

included in this analysis. The Random Forests classification method (using all three spectral 

channels) was used in all cases. Superior classification performance was observed for in vivo 
specimens compared to ex vivo as well as for in vivo tonsil cases relative to in vivo tongue.
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Fig. 6. 
Classification visualizations and histological slice annotations for four in vivo patient scans 

(RF method used). Only labels derived directly from histology are shown with cancer 

outlined in white. Additional labels for homogeneous regions (healthy/cancer only) were 

also employed for model training. Clear deliniation of cancer regions is observed, even for 

patients with a lower AUC score. This is due partially to the presence of dysplasia which 

is omitted from training/validation as well as a small margin of error with histological 

coregistration. The scale bar corresponds to 5 mm in all cases.
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Fig. 7. 
Distribution of classifier output (% probability of cancer) for in vivo point measurements 

registered with healthy, dysplasia and cancer from tongue and tonsil specimens. (a) 

Histograms of classier output for the three conditions including two patient case studies 

of dysplasia. The tissue condition for each case study was independently verified by a 

pathologist to prevent bias. The trained classifier predicts low probability of cancer for 

case study (i) (deemed to be hyperplasia) and high probability of cancer for case study 

(ii) (shown to be lymphatic tissue). Dysplasia point measurements from other patients 

are evenly spread across the probability scale. This suggests classifier output for FLIm 

point measurements can be linked with dysplasia grading. (b) H&E examples showing the 

gradient between healthy, dysplasia and cancer including the two case study patients. The 

scale bar in all cases corresponds to 0.5 mm.
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TABLE I

COMPOSITION OF ORAL AND OROPHARYNGEAL CANCER DATASET

Imaging Context Healthy (pixels) Dysplasia (pixels) Cancer (pixels)

in vivo (N=50) 27904 16329 23660

ex vivo (N=53) 21396 26135 32164
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TABLE III

POINT-MEASUREMENT LEVEL HEALTHY VS. CANCER CLASSIFICATION PERFORMANCE FOR IN VIVO TONGUE AND TONSIL 

FLIM SCANS (±95% CI)

Method ROC-AUC Sensitivity(%) (n=18291) Specificity(%) (n=23012)

1-D CNN 0.70±0.03 62±17 67±10

SVM 0.71±0.07 59±13 69±10

RF 0.79±0.04 72±11 69±10
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TABLE IV

POINT-MEASUREMENT LEVEL HEALTHY VS. CANCER CLASSIFICATION PERFORMANCE FOR EX VIVO TONGUE AND TONSIL 

FLIM SCANS (±95% CI)

Method ROC-AUC Sensitivity(%) (n=26512) Specificity(%) (n=17526)

1-D CNN 0.61±0.08 60±11 60±9

SVM 0.60±0.07 59±13 62±9

RF 0.65±0.09 67±11 60±10
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TABLE VI

TISSUE CLASSIFICATION PERFORMANCE FOR ONE-OFF ANATOMIES AND CONDITIONS (IN VIVO) USING RANDOM FORESTS

Anatomy/Condition ROC-AUC

Excessive Bleeding 0.51

Ulceration 0.73

Pharynx 0.78

Floor of Mouth Specificity: 0.66

Gingiva 0.85

Lip Specificity : 0.75

Palate 0.86

Filiform Papillae 0.44

Unknown Primary A 0.68

Unknown Primary B Specificity: 0.67

Unknown Primary C Specificity: 0.95
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TABLE VII

THE EFFECT OF VARYING THE NUMBER OF RF ESTIMATORS ON IN VIVO TONGUE AND TONSIL CLASSIFICATION (±95% CI)

Method ROC-AUC Sensitivity(%) (n=18291) Specificity(%) (n=23012)

RF (200 trees) 0.79±0.06 72±16 70±11

RF (100 trees) 0.79±0.04 72±11 69±10

RF (10 trees) 0.77±0.05 70±14 68±11

RF (1 tree) 0.68±0.05 59±13 64±9
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