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A Single Cell Transcriptomic Atlas Characterizes Aging Tissues 
in the Mouse

The Tabula Muris Consortium*

Abstract

Aging is characterized by a progressive loss of physiological integrity, leading to impaired 

function and increased vulnerability to death1. Despite rapid advances over recent years, many of 

the molecular and cellular processes which underlie progressive loss of healthy physiology are 

poorly understood2. To gain a better insight into these processes we have created a single cell 

transcriptomic atlas across the life span of Mus musculus which includes data from 23 tissues and 

organs. We discovered cell-specific changes occurring across multiple cell types and organs, as 

well as age related changes in the cellular composition of different organs. Using single-cell 

transcriptomic data we were able to assess cell type specific manifestations of different hallmarks 

of aging, such as senescence3, genomic instability4 and changes in the organism’s immune 

system2. This Tabula Muris Senis provides a wealth of new molecular information about how the 

most significant hallmarks of aging are reflected in a broad range of tissues and cell types.

We performed single cell RNA sequencing on more than 350,000 cells from male and 

female C57BL/6JN mice belonging to six age groups ranging from one month (human early 

childhood equivalent) to thirty months (human centenarian equivalent) (Figure 1a). We 

prepared single cell suspensions of the bladder, bone marrow, brain (cerebellum, cortex, 

hippocampus and striatum), fat (brown, gonadal, mesenteric and subcutaneous), heart and 

aorta, kidney, large intestine, limb muscle and diaphragm, liver, lung, mammary gland, 

pancreas, skin, spleen, thymus, tongue and trachea for all mice. Data were collected for all 

six age groups using microfluidic droplets (droplet), while the 3m, 18m and 24m time points 

were also analyzed using single cells sorted in microtiter well plates (FACS) (Extended Data 
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Figures 1-3; Supplementary Tables 1&2). Due to technical constraints, not every tissue was 

analyzed at all timepoints; a complete list is in Extended Data Figure 4a. The droplet data 

allow large numbers of cells to be analyzed using 3’ end counting, while the FACS data 

allow for higher sensitivity measurements over smaller numbers of cells as well as sequence 

information across the entire transcript length. Analyzing multiple organs from the same 

animal enables data controlled for age, environment, and epigenetic effects.

The previously published 3m time point, referred to as the Tabula Muris5, represents ~20% 

of the cells in the entire dataset and was used as a basis to perform semi-automated cell type 

annotation of the additional time points (Figure 1b, Extended Data Figure 4b). Using this 

approach, we were able to automatically annotate over 70% of the cells. All the automated 

cell annotations were reviewed and approved by human experts, and the remaining cells 

were annotated by hand, creating one of the largest manually curated single cell 

transcriptomic resources in existence. Many of these cell types have not previously been 

obtained in pure populations, and these data provide a wealth of new information on their 

characteristic gene-expression profiles. Out of 529,823 total cells sequenced, 110,824 cells 

for FACS and 245,389 cells for droplet passed our strict filtering criteria (Extended Data 

Figure 4b) and were annotated (Extended Data Figure 2a,b), separately for each tissue and 

method; the remaining cells are also included in the on-line dataset but were not used for 

further analysis here. To investigate whether cell annotations were consistent across the 

entire organism, we used bbknn6 to correct for method-associated batch effects 

(Supplementary Table 3). Following batch correction, we clustered all cells using an 

unbiased, graph-based clustering approach7,8 (Figure 1c,d) and assessed the co-occurrence 

of similarly annotated cells in the same clusters. For example, cells annotated as B cells or 

endothelial cells tend to occupy the same clusters irrespectively of their tissue of origin or 

method with which they were processed (Figure 1e,f; Extended Data Figure 1g-l).

Tabula Muris Senis enables discovery of aging related changes in specific cell types. Single 

cell data enables one to resolve whether gene expression changes observed in bulk 

experiments are due to changes in gene expression in each cell of the population, or whether 

the gene expression in each cell stays constant but the number of cells of that type changes, 

or both. In a global analysis of gene expression changes using the Tabula Muris Senis and 

bulk RNAseq from tissues9, we observed that in many cases changes in gene expression are 

due to both changes in the numbers of cells in a population and to changes in the gene 

expression levels in each cell (Extended Data Figure 5a,b). As one specific example, we 

investigated how the fraction of cells expressing of Cdkn2a changes with age. Cdkn2a/p16 is 

one of the most commonly used markers of senescence10 and an important hallmark of 

aging11, and the proportion of cells expressing the gene more than doubled in older animals 

in both FACS (Figure 2a) and droplet (Figure 2b), accompanied by a 2-fold increase in the 

actual expression level of p16 by those cells that did express it (Figure 2c,d). Interestingly, 

the fraction of cells expressing p16 in the 30m mice is smaller than at 24m, perhaps because 

long-living animals have a slower rate of senescence. Using a list of previously characterized 

senescence markers12–15 we plotted the fraction of cells expressing each marker across all 

age groups (Supplementary Table 4). Cdkn2a has the highest correlation between aging and 

fraction, and other genes with positive correlation include E2f216, Lmnb117,18 and Tnf and 

Itgax19. For some genes the fraction of cells expressing decreased with age, including 
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members of the Sirt family (Sirt3, Sirt4 and Sirt5); this is consistent with previous literature 

finding that sirtuin is essential in delaying cellular senescence20,21.

The cellular composition of each tissue tends to vary with age, and we investigated changes 

for tissues with at least three time points (Supplementary Table 5). Since dissociation does 

not affect all cell types in a tissue equally, changes in the relative composition of a given cell 

type with age are more meaningful than comparing proportions of different cell types at a 

single age22–24. The bladder has pronounced changes in cell type composition with age 

(Figure 2e). While the mesenchymal compartment of this tissue decreases by a factor of 

three over the lifetime of the mouse (Figure 2e left), the urothelial compartment increases by 

a similar amount (Figure 2e right). The observation that the bladder urothelial cells increase 

with age is concordant with known age-related urothelial changes25. Differential gene 

expression (DGE) analysis of overall tissue changes with age revealed that stromal-

associated genes (Col1a1, Col1a2, Col3a1, Dcn) are downregulated while epithelial-

associated genes (Krt15, Krt18, Sfn) are upregulated, supporting the compositional 

observations (Figure 2f; Supplementary Table 6). The decline of the endothelial population 

suggests that bladder aging in mice may be associated with lower organ vascularization, 

consistent with recent findings26,27 and with the observed downregulation of vasculature 

associated genes Htra1 and Fos (Figure 2f; Supplementary Table 6). The increase in the 

leukocyte population could indicate an inflammatory tissue microenvironment, a common 

hallmark of aging which is consistent with literature on overactive bladders28 and supported 

by a significant overexpression of Lgals3, Igfbp2 and Ly6d across the tissue (Figure 2f; 

Supplementary Table 6) and by the overexpression of immune response associate genes such 

as Tnfrsf12a and Cdkn1a, by both bladder (mesenchymal) cells and bladder urothelial cells 

(Supplementary Table 6). Moreover, when comparing across ages, we observed that old 

leukocytes show increased expression of pro-inflammatory markers, such as Cd14, Lgals3 

and Tnfrsf12a, and decreased expression of anti-inflammatory ones, such as Cd9 and Cd81 

(Supplementary Table 6).

Age-dependent changes in the kidney include a decrease in the relative abundance of 

mesangial cells, capillary endothelial cells, loop of Henle ascending limb epithelial cells and 

loop of Henle thick ascending limb epithelial cells (Figure 2g). Both mesangial cells and 

capillary endothelial cells are core glomerular cells and their relative abundances reduction 

(Figure 2g top panels), together with a tissue-wide reduction of Egf and Atp1a1 expression 

(Figure 2h; Supplementary Table 6) suggest impaired glomerular filtration rate29,30. 

Interestingly, local Atp1a1 expression actually increases with age in both capillary 

endothelial cells and mesangial cells, suggesting that a compensation mechanism 

counteracts the effects of the cell proportion declining with age. This finding is reinforced by 

differential gene expression results indicating that uromodulin (Umod), the most abundant 

protein in urine31, is also reduced in expression across the tissue. Umod is produced by the 

epithelial cells that line the thick ascending limb, and therefore given the relative decrease in 

the proportion of epithelial cells in the ascending and thick ascending limb, our results 

suggest that normal kidney functions are impaired32 (Figure 2g bottom panels, Figure 2h; 

Supplementary Table 6). As with Atp1a1, we see that Umod expression increases in a cell 

type whose abundance decreases with age, leading to an overall reduction of Umod 

expression in the organ.
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In spleen the proportion of T cells decreases with age while the relative amount of plasma 

cells increases (Figure 2i). This is supported by upregulation of B/plasma cell markers 

(Cd79a, Igj; Figure 2j; Supplementary Table 6) and downregulation of Cd3d (Figure 2j; 

Supplementary Table 6). Similarly, in mammary gland we observed a decline of the T cell 

population (Extended Data Figure 5c). Age-related decline of T cell populations has been 

associated with increased risk of infectious disease and cancer33 and our results suggest this 

may also happen in spleen and mammary gland. Moreover, AP1 transcription factors34 

(Junb, Jund and Fos) were upregulated with age (Extended Data Figure 5d; Supplementary 

Table 6), consistent with the observation that normal involution of the mammary gland is 

accompanied by increased expression of this gene family35.

The liver also displays changing tissue compositions with age, as the relative number of 

hepatocytes decreases with age (Extended Data Figure 6a-d), which is supported by the 

reduction in the expression of albumin (Alb; Extended Data Figure 6e; Supplementary Table 

6). DGE showed an increased immune signature, as illustrated by overexpression of H2-Aa, 

H2-Ab1, H2-D1, H2-Eb1, Cd74, Lyz2 and others (Extended Data Figure 6e). Previous 

findings suggested that pro-inflammatory macrophages drive cellular senescence and 

identified Il1b as a gene whose liver expression was remarkably different with age12 

(Extended Data Figure 6f). We stained liver Kupffer cells (Extended Data Figure 6g) with 

Clec4f and found the number of Clec4f+ cells does not change with age, consistent with the 

results of the tissue composition analysis (Supplementary Table 7; Extended Data Figure 

6h). However, when co-staining with Il1b, we found an increase with age in the number of 

cells expressing Clec4f and Il1b (Extended Data Figure 6h-j). Il1b has low expression in 

normal physiological conditions36. Specific blocking of IL1-RI in hepatocytes has been 

shown to attenuate cell death upon injury, supporting the idea that increased expression of 

Il1b in Kupffer cells is typically a poor prognostic37. Regarding immune defense within the 

liver, sinusoidal endothelial cells (LSECs) play a unique role, being the main carriers of the 

mannose receptor (Mrc1) in the liver38 (Extended Data Figure 6k). Our findings identified 

increased Mrc1 age-related expression in Kupffer cells, while the overall expression of Mrc1 

in liver endothelial cells was reduced with age (Supplementary Table 6). By performing in 

situ RNA staining for Mrc1 alongside classical LSEC marker Pecam1 (Supplementary Table 

7; Extended Data Figure 6l), we found that the number of Mrc1 expressing LSECs increased 

with age (Extended Data Figure 6m-o). While the Mrc1 expression did not increase with age 

in LSECs (Supplementary Table 6), the overall number of cells expressing Mrc1 did 

increase significantly with age (Extended Figure 6n). LSECs have been found to have a 

reduced endocytic capacity in aged livers, while it has been suggested that LSECs proliferate 

after injury or that bone-marrow derived LSECs progenitors are recruited to the liver. This 

suggests that changes in LSEC gene signatures with age are linked closely with their 

function in immune response.

Genomic instability is among the most widely studied aging hallmarks1 and the full-length 

transcript data enables analysis of somatic mutation accumulation with age. We used the 

Genome Analysis ToolKit (GATK)39 to perform SNP discovery across all FACS samples 

simultaneously (Supplementary Table 8)40,41. We focused on genes expressed in at least 

75% of cells for each age group within a particular tissue and observed an age-related 

increase in the number of mutations across all of the organs we analyzed (Figure 3; 
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Extended Data Figure 7a,c,e), with tongue and bladder being the most affected. We 

controlled for sequencing coverage and gene expression levels (Extended Data Figure 

8a,c,e), and verified that the number of mutations exceeded technical errors due to 

amplification and sequencing errors, which can be estimated using ERCC controls that were 

spiked into each well42 (Figure 3; Extended Data Figure 7b,d,f; Extended Data Figure 

8b,d,f). Despite the fact that it is difficult to infer absolute genome-wide mutation rates from 

the transcriptome, which is known to inflate apparent mutational rates for a variety of 

reasons42, the observed trend is a useful indirect estimate of mutational frequency and 

genome stability.

Aging also affects the immune system2, and we analyzed clonal relationships between B-

cells and T-cells throughout the organism. We computationally reconstructed the sequence of 

the B-cell receptor (BCR) and T-cell receptor (TCR) for B and T cells present in the FACS 

data using singlecell-ige and TraCeR, respectively43,44. BCRs were assembled for 6,050 

cells (Figure 4a, Extended Data Figure 9a) and TCRs for 6,000 cells (Figure 4b, Extended 

Data Figure 9a). The number of cells with assembled BCRs was 1,818 for 3m, 1,356 for 

18m and 2,876 for 24m old mice. We parsed the singlecell-ige43 output to define B-cell 

clonotypes based on the sequence of the assembled BCR (Supplementary Table 9) and found 

that while most of the cells at 3m were not part of a clone (9% were part of a clonal family), 

the number of B-cells belonging to a clonotype doubled at 18m (20%) when compared to 

3m and doubled again from 18m to 24m (~38%). The number of cells with assembled TCRs 

were roughly equal between 3m, 18m and 24m (2,076, 2,056 and 1,868 cells, respectively). 

Clonotype assignment is part of the output obtained by TraCeR44 (Supplementary Table 9). 

Interestingly, only ~3% (55 out of 1,895) of the cells at 3m were part of a clone. For 18m 

and 24m, ~23% (479 out of 2,056) and ~20% (348 out of 1,780) of the cells, respectively, 

were part of a clone, indicating again an increase in clonality of the T-cell repertoire at later 

ages. These changes in clonality for both B and T cell repertoires are noteworthy because 

they suggest that the immune system of a 24m mouse is less likely to respond to new 

pathogens, corroborating literature suggesting that older individuals have higher 

vulnerability to new infections and lower benefits from vacination45,46.

Finally, we computed an overall diversity score to identify which cell types were more 

susceptible to changes with age (Extended Data Figure 10). The diversity score is computed 

as the Shannon entropy of the cluster assignment and then regressed against age to provide a 

p-value (see Methods). We observed significant changes in diversity affecting cells of the 

immune system originating from the brain and the kidney (Figure 4c, Extended Data Figure 

11a,b). These results were not confounded by the number of genes expressed per cell 

(Extended Data Figure 11c,d). In brain myeloid microglial cells, the majority of young (3m) 

microglia occupy clusters 1 and 6, while old (18m, 24m) microglia constitute the vast 

majority of cells in clusters 10, 12 and 14 (Figure 4d). Trajectory analysis suggests that 

young microglia go through an intermediate state, represented by the clusters mostly 

occupied by 18m microglial cells before acquiring the signature of old microglia (Extended 

Data Figure 11e). Clusters 10, 12 and 14 are mainly comprised of 18- and 24-month old 

microglia. These cells up-regulate MHC class I genes (H2-D1, H2-K1, B2m), along with 

genes associated with degenerative disease (e.g. Fth1)47,48. When contrasting with clusters 1 

and 6, which contain mostly 3m microglia, clusters 10, 12 and 14 gene expression is 
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enriched with interferon responsive or regulatory genes (e.g. Oasl2, Oas1a, Ifit3, Rtp4, Bst2, 

Stat1, Irf7, Ifitm3, Usp18, Ifi204, Ifit2), suggesting an expansion of this small pro-

inflammatory subset of microglia in the aging brain49. Moreover, the list of differentially 

expressed genes between “young” and “old” clusters resembled the Alzheimer’s disease 

specific microglial signature previously reported47, with 55 out of the top 200 differential 

expressed genes being shared between the two differential gene expression lists (Figure 4e; 

Supplementary Table 10). Regarding kidney macrophages, we found two clusters that 

remarkably changed their composition with age. Cluster 10 is primarily composed of cells of 

1m- and 3-month old mice while cluster 13 is mostly composed of cells of 18-, 21-, 24- and 

30-month old mice (Figure 4f). Differential gene expression revealed that cluster 10 is 

enriched for an M2-macrophage gene signature (e.g. Il10, H2-Eb1, H2-Ab1, H2-Aa, Cd74, 

C1qa, Cxcl16, Hexb, Cd81, C1qb, Cd72) while cluster 13 resembles a M1-proinflammatory 

macrophage state50 (e.g. Hp, Itgal, Spex1, Gngt2) (Extended Data Figure 11f; 

Supplementary Table 10).

The Tabula Muris Senis is a comprehensive resource for the cell biology community which 

offers a detailed molecular and cell-type specific portrait of aging. We view such cell atlas as 

an essential companion to the genome: the genome provides a blueprint for the organism but 

does not explain how genes are used in a cell type specific manner or how the usage of genes 

changes over the lifetime of the organism. The cell atlas provides a deep characterization of 

phenotype and physiology and serves as a reference for understanding many aspects of the 

cell biological changes that mammals undergo during their lifespan.

Methods

All data, protocols, analysis scripts and an interactive data browser are publicly available.

Experimental Procedures

Mice and organ collection

Male and virgin female C57BL/6JN mice were shipped from the National Institute on Aging 

colony at Charles River (housed at 67–73 °F) to the Veterinary Medical Unit (VMU; housed 

at 68–76 °F)) at the VA Palo Alto (VA). At both locations, mice were housed on a 12-h light/

dark cycle and provided food and water ad libitum. The diet at Charles River was NIH-31, 

and Teklad 2918 at the VA VMU. Littermates were not recorded or tracked, and mice were 

housed at the VA VMU for no longer than 2 weeks before euthanasia, with the exception of 

mice older than 18 months, which were housed at the VA VMU beginning at 18 months of 

age. Before tissue collection, mice were placed in sterile collection chambers at 8 am for 15 

min to collect fresh fecal pellets. After anaesthetization with 2.5% v/v Avertin, mice were 

weighed, shaved, and blood was drawn via cardiac puncture before transcardial perfusion 

with 20 ml PBS. Mesenteric adipose tissue was then immediately collected to avoid 

exposure to the liver and pancreas perfusate, which negatively affects cell sorting. Isolating 

viable single cells from both the pancreas and the liver of the same mouse was not possible; 

therefore, two males and two females were used for each. Whole organs were then dissected 

in the following order: large intestine, spleen, thymus, trachea, tongue, brain, heart, lung, 

kidney, gonadal adipose tissue, bladder, diaphragm, limb muscle (tibialis anterior), skin 
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(dorsal), subcutaneous adipose tissue (inguinal pad), mammary glands (fat pads 2, 3 and 4), 

brown adipose tissue (interscapular pad), aorta and bone marrow (spine and limb bones). 

Organ collection concluded by 10 am. After single-cell dissociation as described below, cell 

suspensions were either used for FACS of individual cells into 384-well plates, or for 

preparation of the microfluidic droplet library. All animal care and procedures were carried 

out in accordance with institutional guidelines approved by the VA Palo Alto Committee on 

Animal Research.

Tissue dissociation and sample preparation

All tissues were processed as previously described5.

Sample size, randomization and blinding

No sample size choice was performed before the study. Randomization and blinding were 

not performed: the authors were aware of all data and metadata-related variables during the 

entire course of the study.

Single-cell methods

All protocols used in this study are described in detail elsewhere5. Those include: i) 

preparation of lysis plates, ii) FACS sorting, iii) cDNA synthesis using the Smart-seq2 

protocol51,52, iv) library preparation using an in-house version of Tn553,54,v) library pooling 

and Quality control and vi) sequencing. For further details please refer to http://dx.doi.org/

10.17504/protocols.io.2uwgexe

Microfluidic droplet single-cell analysis

Single cells were captured in droplet emulsions using the GemCode Single-Cell Instrument 

(10x Genomics) and scRNA-seq libraries were constructed as per the 10x Genomics 

protocol using GemCode Single-Cell 3′ Gel Bead and Library V2 Kit. In brief, single cell 

suspensions were examined using an inverted microscope, and if sample quality was deemed 

satisfactory, the sample was diluted in PBS with 2% FBS to a concentration of 1000 cells 

per μl. If cell suspensions contained cell aggregates or debris, two additional washes in PBS 

with 2% FBS at 300gfor 5 min at 4 °C were performed. Cell concentration was measured 

either with a Moxi GO II (Orflo Technologies) or a haemocytometer. Cells were loaded in 

each channel with a target output of 5,000 cells per sample. All reactions were performed in 

the Biorad C1000 Touch Thermal cycler with 96-Deep Well Reaction Module. 12 cycles 

were used for cDNA amplification and sample index PCR. Amplified cDNA and final 

libraries were evaluated on a Fragment Analyzer using a High Sensitivity NGS Analysis Kit 

(Advanced Analytical). The average fragment length of 10x cDNA libraries was quantitated 

on a Fragment Analyzer (AATI), and by qPCR with the Kapa Library Quantification kit for 

Illumina. Each library was diluted to 2 nM, and equal volumes of 16 libraries were pooled 

for each NovaSeq sequencing run. Pools were sequenced with 100 cycle run kits with 26 

bases for Read 1, 8 bases for Index 1, and 90 bases for Read 2 (Illumina 20012862). A PhiX 

control library was spiked in at 0.2 to 1%. Libraries were sequenced on the NovaSeq 6000 

Sequencing System (Illumina).
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Computational methods

Data extraction

Sequences from the NovaSeq were de-multiplexed using bcl2fastq version 2.19.0.316. Reads 

were aligned using to the mm10plus genome using STAR version 2.5.2b with parameters 

TK. Gene counts were produced using HTSEQ version 0.6.1p1 with default parameters, 

except ‘stranded’ was set to ‘false’, and ‘mode’ was set to ‘intersection-nonempty’. 

Sequences from the microfluidic droplet platform were de-multiplexed and aligned using 

CellRanger version 2.0.1, available from 10x Genomics with default parameters.

Data pre-processing

Gene count tables were combined with the metadata variables using the Scanpy55 Python 

package version 1.4.2. We removed genes not expressed in at least 3 cells and then cells that 

did not have at least 250 detected genes. For FACS we removed cells with less than 5000 

counts and for droplet cells with less than 2500 UMIs. The data was then normalized using 

size factor normalization such that every cell has 10,000 counts and log transformed. We 

computed highly variable genes using default parameters and then scaled the data to a 

maximum value of 10. After we computed PCA, neighborhood graph and clustered the data 

using Louvain7 and Leiden8 methods. The data was visualized using UMAP projection. 

When performing batch correction to remove the technical artifacts introduced by the 

technologies, we replaced the neighborhood graph computation with bbknn6. Step-by-step 

instructions to reproduce the pre-processing of the data are available from GitHub.

Cell type annotation

To define cell types we analyzed each organ independently but combining all ages. In a 

nutshell, we performed principal component analysis on the most variable genes between 

cells, followed by Louvain and Leiden graph-based clustering. Next we subset the data for 

3m (Tabula Muris5) and compute how many cell types map to each individual cluster. For 

the clusters that we had a single 1:1 mapping (cluster:cell type) we propagate the 

annotations for all ages; in case there is a 1:many mapping we flagged that cluster for 

manual validation. Step-by-step instructions to reproduce this method are available from 

GitHub. For each cluster, we provide annotations in the controlled vocabulary of the cell 

ontology56 to facilitate inter-experiment comparisons. Using this method, we were able to 

annotate automatically (~1min per tissue) over 70% of the dataset. The automatic 

annotations were then reviewed by each of the tissue experts leading to a fully curated 

dataset for all the cell types in Tabula Muris Senis.

Tissue cell composition analysis

For each tissue and age, we computed the relative proportion of each cell type. Next we used 

scipy.stats linregress to regress the relative tissue-cell type changes against age and 

considered significant the changes with p-value<0.05 for a hypothesis test whose null 

hypothesis is that the slope is zero, using two-sided Wald Test with t-distribution of the test 

statistic and a r2>0.5.
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Differential gene expression

We performed differential gene expression analysis on each tissue with a well-powered 

sample size (>100 cells in both young (1m and 3m) and old age group (18m, 21m, 24m and 

30m)). We used a linear model57 treating age as a numerical variable while controlling for 

sex and technology. We applied a false-discovery rate (FDR) threshold of 0.01 and an age 

coefficient threshold of 0.005 (corresponding to ~10% fold change).

In Situ RNA Hybridization and quantification.

In situ RNA hybridization was performed using the Advanced Cell Diagnostics RNAscope® 

Multiplex Fluorescent Detection kit v2 (323110, Bio-techne) according to the 

manufacturer’s instructions. Staining of mouse liver specimens was performed using 5μm 

paraffin-embedded thick sessions. Mouse livers were fixed in 10% formalin buffer saline 

(HT501128, Sigma Aldrich) for 24h at room temperature before paraffin embedding. For 

multiplex staining the following probes were used; Clec4f (Mm-Clec4f 480421, Il1b (Mm-

Il1b 316891-C2), Pecam1 (Mm-Pecam-1 316721), Mrc1 (Mm-Mrc1 437511-C3). Slides 

were counter stained with Prolong gold antifade reagent with DAPI (P36931, Life 

technologies). Mounted slides were imaged on a Leica DM6 B fluorescent microscope 

(Leica Biosystems). Image quantification was performed using the starfish open source 

image-based transcriptomics pipeline (please refer to Starfish: Open Source Image Based 

Transcriptomics and Proteomics Tools available from http://github.com/spacetx/starfish and 
58)

Comparison between bulk and single-cell datasets

The differential gene analysis was defined on a per tissue basis. First, we investigated genes 

based on the single-cell data. We only considered cells from male animals and perform our 

analysis on the log (1 + CPM) transformed single-cell count matrices. Note that 

normalization of the single-cell data was done on a per cell basis. We defined two groups of 

cells based on age: young cells with age <= 3 months (Y) and old cells with age > 3 months 

(O). For each gene we compute the log2 fold-change of cell and read counts between O and 

Y. We defined cell count as the fraction of cells that express the gene. Similarly, we defined 

read count as the mean read count of the gene in the cells that express it. The calculated log2 

fold-changes of a gene reflect its expression changes with aging within the single-cell data. 

Next we analyze each gene based on the bulk data. We computed the Spearman (Sp) 

correlation of bulk DESeq2 normalized gene expression with aging. We defined two groups 

of genes based on the bulk data, increasing with age Sp > 0.7 (U) and decreasing with age 

Sp < −0.7 (D). Finally, we compared the single-cell data based log2 fold-changes between 

the bulk data defined groups U and D. Specifically, we run Wilcoxon–Mann–Whitney test in 

order to understand if log2 fold-changes of cell or read counts could distinguish between the 

two groups. We used the U statistic for effect size.

T-Cell processing

We used TraCeR44 version 0.5 to identify T-Cell clonal populations. We ran tracer assemble 

with --species Mmus set. We then ran tracer summarise with –species Mmus to create the 

final results. We used the following versions for TraCeR dependencies: igblast version 1.7.0, 
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kallisto version v0.43.1, Salmon version 0.8.2, Trinity version v2.4.0, GRCm38 reference 

genome. Step-by-step instructions to reproduce the processing of the data are available from 

GitHub.

B-Cell processing

We used singlecell-ige43 version eafb6d126cc2d6511faae3efbd442abd7c6dc8ef (https://

github.com/dcroote/singlecell-ige) to identify B-Cell clonal populations. We used the default 

configuration settings except we set the species to mouse. Step-by-step instructions to 

reproduce the processing of the data are available from GitHub.

Mutation analysis

We used samtools59 version 1.9 and GATK39 version v4.1.1.0 for mutation analysis. We 

used samtools faidx to create our index file. Then we used GATK CreateSequenceDictionary 

and GRCm38, as the reference, to create our sequence dictionary. Next we used GATK 

AddOrReplaceReadGroups to create a single read group using parameters -RGID 4 -RGLB 

lib1 -RGPL illumina -RGPU unit1 -RGSM 20. Finally we used GATK HaplotypeCaller to 

call the mutations. We disabled the following read filters: MappingQualityReadFilter, 

GoodCigarReadFilter, NotSecondaryAlignmentReadFilter, MappedReadFilter, 

MappingQualityAvailableReadFilter, NonZeroReferenceLengthAlignmentReadFilter, 

NotDuplicateReadFilter, PassesVendorQualityCheckReadFilter, and WellformedReadFilter, 

but kept all other default settings. The results were summarized per gene in the form of a 

mutation count per cell table. We started by removing genes mutated in over 60% of cells, to 

eliminate the possible bias of germline mutations. Then for each tissue we selected genes 

expressed in at least 75% of the cells for all the time points to avoid confounding the 

mutation results with differential gene expression associated with age. Next we computed 

the average number of mutations in the gene set (or ERCC spike-in controls) per cell and 

also the average number of raw counts (Supplementary Table 8) and plotted the different 

distributions. Step-by-step instructions to reproduce the processing of the data are available 

from GitHub.

Trajectory analysis

We used partition-based graph abstraction (PAGA60) to reconstruct the aging trajectory in 

brain microglial cells. Step-by-step instructions to reproduce the processing of the data are 

available from GitHub.

Diversity score

The raw FACS or droplet dataset were used as the input. We filtered genes expressed in 

fewer than 5 cells, filtered cells if expressing fewer than 500 genes and discarded cells with 

total number of counts less than 5000. Next we performed size factor normalization such 

that every cell had 1e4 counts and performed a log1p transformation. This was followed by 

clustering, where we clustered every tissue and every tissue-cell type for every mouse 

separately using 6 different configurations: resolution parameters (0.3, 0.5, 0.7) * clustering 

method (Louvain, Leiden). This is to provide a robust clustering result. For each 

combination (each tissue-mouse and each tissue-cell_type-mouse), we computed the 
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clustering diversity score as the Shannon entropy of the cluster assignment. We then 

regressed the diversity score against age to detect the systematic increase/decrease of 

clustering diversity with respect to age. FDR was used to correct for multiple comparisons. 

A tissue or a tissue-cell type was selected if the slope was consistent (having the same sign) 

in all 6 clustering configurations and at least 2 out of 6 clustering configurations had 

FDR<0.3. For each selected tissue or tissue-cell type, a separate UMAP was computed using 

cells from all mice for visualization using Leiden clustering with resolution parameter 0.7.

Interactive Data Browsers

http://tabula-muris-senis.ds.czbiohub.org/

https://tabula-maris-senis.cells.ucsc.edu
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Extended Data

Extended Data Figure 1. Overview of Tabula Muris Senis (cont.)
a,b, UMAP plot of all cells collected for FACS colored by tissue (a) or age (b). c, UMAP 

plot of all cells collected by FACS, colored by organ (Extended Data Figure 4c), overlaid 

with the Louvain cluster numbers. n = 110,824 individual cells for FACS. d,e, UMAP plot of 

all cells collected for droplet colored by tissue (d) or age (e). f, UMAP plot of all cells 

collected by droplet, colored by organ (Extended Data Figure 4c), overlaid with the Louvain 

cluster numbers. n = 245,389 individual cells for droplet. g, B cells (top) and endothelial 

cells (bottom) in FACS independently annotated for each organ cluster together by unbiased 

whole-transcriptome Louvain clustering, irrespectively of the organ they originate from. h, B 

cells (and endothelial cells) in droplet independently annotated for each organ cluster 

together by unbiased whole-transcriptome Louvain clustering, irrespectively of the organ 

where they were found. i,j, UMAP plot of all cells collected colored by method (i) or tissue 
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(j). n = 356,213 individual cells for FACS and droplet combined. k,l, B cells (k) and 

endothelial cells (l) cluster together by unbiased whole-transcriptome Louvain clustering, 

irrespectively of the technology with which they were found.

Extended Data Figure 2. Overview of Tabula Muris Senis (cont.)
a, Pie chart with the summary statistics for FACS. b, Pie chart with the summary statistics 

for droplet. c, Box plot of the number of genes detected per cell for each organ and age for 

FACS d, Box plot of the number of reads per cell (log-scale) for each organ and age for 

FACS. For c and d, all data are expressed as mean ± s.d. The sample size (number of cells 

for each tissue and age) is available in Supplementary Table 1.
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Extended Data Figure 3. Overview of Tabula Muris Senis (cont.)
a, Box plot of the number of genes detected per cell for each organ and age for droplet. b, 

Box plot of the number of UMIs per cell (log-scale) for each organ and age for droplet. All 

data are expressed as mean ± s.d. The sample size (number of cells for each tissue and age) 

is available in Supplementary Table 2.
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Extended Data Figure 4. Overview of Tabula Muris Senis (cont.)
a, Balloon plot showing the number of sequenced cells per sequencing method per organ per 

sex per age. b, Schematic analysis workflow. c,d, Tabula Muris Senis color dictionary for 

organs and tissues (c) and ages (d).
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Extended Data Figure 5. Comparison of bulk and single-cell datasets and Tissue cell 
compositions.
a,b, Aging patterns from bulk and single-cell data are consistent. Strong changes in bulk 

gene expression with aging can be either explained by cell or read count-based changes in 

single-cell data FACS (a) and droplet (b). Two-sided Wilcoxon–Mann–Whitney indicates 

that single-cell data based log2 fold-changes of cell or read counts distinguish between up 

and down regulated genes in bulk data. n = 110,824 individual cells for FACS and n = 

245,389 individual cells for droplet. c, Mammary gland T cell relative abundances change 

significantly with age (p-value<0.05 and r2>0.7 for a hypothesis test whose null hypothesis 

is that the slope is zero, using two-sided Wald Test with t-distribution of the test statistic). d, 

Top 20 upregulated and downregulated genes in mammary gland computed using MAST57, 

treating age as a continuous covariate while controlling for sex and technology. Genes were 

classified as significant under an FDR threshold of 0.01 and an age coefficient threshold of 

0.005 (corresponding to ~10% fold change). n=6,393; 3,635; and 5,549 individual cells for 
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mammary gland 3m; 18m and 21m, respectively. e, Marrow precursor B cell relative 

abundances change significantly with age (p-value<0.05 and r2>0.7 for a hypothesis test 

whose null hypothesis is that the slope is zero, using two-sided Wald Test with t-distribution 

of the test statistic). f, Top 20 upregulated and downregulated genes in marrow computed 

using MAST57, treating age as a continuous covariate while controlling for sex and 

technology. Genes were classified as significant under an FDR threshold of 0.01 and an age 

coefficient threshold of 0.005 (corresponding to ~10% fold change). n=3,027; 8,559; 11,496; 

5,216; 12,943 and 13,496 individual cells for marrow 1m; 3m; 18m; 21m; 24m and 30m, 

respectively. g, Skin keratinocyte stem cell relative abundances change significantly with age 

(p-value<0.05 and r2>0.7 for a hypothesis test whose null hypothesis is that the slope is zero, 

using two-sided Wald Test with t-distribution of the test statistic). h, Top 20 upregulated and 

downregulated genes in skin computed using MAST57, treating age as a continuous 

covariate while controlling for sex and technology. Genes were classified as significant 

under an FDR threshold of 0.01 and an age coefficient threshold of 0.005 (corresponding to 

~10% fold change). n=2,346; 1,494; 4,352= and 1,122 individual cells for skin 3m; 18m; 

21m and 24m, respectively. The p-values for the cell type compositional changes are shown 

in Supplementary Table 5.
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Extended Data Figure 6. Cellular changes during aging in the liver.
a, Liver hepatocyte relative abundances change significantly with age (p-value<0.05 and 

r2>0.7 for a hypothesis test whose null hypothesis is that the slope is zero, using two-sided 

Wald Test with t-distribution of the test statistic). n=2,791; 2,832; 3,806; 2,257; 6,384 and 

5,713 individual cells for liver 1m; 3m; 18m; 21m; 24m and 30m, respectively. The p-values 

for the cell type compositional changes are shown in Supplementary Table 5. b-d, 
Brightfield imaging of hepatocytes across age (b) and respective quantification (c-d). e, Top 

10 upregulated and downregulated genes in liver computed using MAST57, treating age as a 

continuous covariate while controlling for sex and technology. Genes were classified as 

significant under an FDR threshold of 0.01 and an age coefficient threshold of 0.005 

(corresponding to ~10% fold change). The sample size is the same as for panel a. f,k, Gene 

expression of Il1b and Clec4f (f) and Pecam1 and Mrc1 (k) in the liver droplet dataset for 

the six ages. g-j, Staining of Kupffer cells across age (g) and respective quantification (h-j). 
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l-o, Staining of liver endothelial cells across ages (l) and respective quantification (m-o). The 

white scale bar corresponds to 100µm. For panels c-d, h-j and m-o, all data are expressed as 

mean ± s.d. and p-values were obtained using a Welch’s test. The sample size for each group 

is available in Supplementary Table 7.

Extended Data Figure 7. Mutational burden across tissues in the aging mice (cont.).
a,b, Mean number of somatic mutations in genes and ERCC spike-in controls across all 

tissues per age group (3m and 24m (a), 3m and 18m (b), 18m and 24 (c)). Mutations are 

presented as the mean number of mutations per gene or ERCC spike-inn per cell.
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Extended Data Figure 8. Mutational burden across tissues in the aging mice (cont.).
a,b,c, Gene raw expression and ERCC spike-inn control raw expression across all tissues per 

age group (3m and 24m (a), 3m and 18m (b), 18m and 24 (c)). Raw expression are 

presented as the mean number of counts per gene or ERCC spike-inn control per cell.
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Extended Data Figure 9. Immune repertoire clonality analysis.
a, B-cell clonal families. For each time point, the clonal families are represented in a tree 

structure for which the central node is age. Connected to the age node there is an additional 

node (dark gray) that represents each animal and the clonal families are depicted for each 

animal. For each clonal family, cells that are part of that family are colored by the organ of 

origin. b, T-cell clonal families. For each time point, clonal families are represented in a tree 

structure for which the central node is age. Connected to the age node there is an additional 

node (dark gray) that represents each animal and the clonal families are depicted for each 

animal. For each clonal family, cells that are part of that family are colored by the organ of 

origin.
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Extended Data Figure 10. Diversity score summary.
a,b, Heatmap summary of the overall tissue diversity score for FACS (a) and droplet (b). 

c,d, Heatmap summary of the tissue cell-type diversity score for FACS (c) and droplet (d).
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Extended Data Figure 11. The aging immune system (cont.)
a,b, Diversity score at different cluster resolutions for FACS brain myeloid microglia cell (a) 

and droplet kidney macrophage (b). n = 14 mice for a and n = 16 mice for b. All data are 

expressed as quantiles. The p-values were obtained using a linear regression and two-sided 

F-test, adjusted for multiple comparison using the Benjamini-Hochberg procedure (i.e., bh-p 

value). c,d, Diversity score correlation with the number of genes expressed per tissue (c) or 

tissue cell-type (d). The red line corresponds to the linear regression curve. e, Trajectory 

analysis for brain myeloid microglia cell. f, Heatmap showing differential gene expression 

analysis of cluster 10 (mostly young macrophages) versus clusters 13 (mostly old 

macrophages). For the complete gene list please refer to Supplementary Table 10.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Overview of Tabula Muris Senis.
a, 23 organs from 19 male and 11 female mice were analyzed at 6 different time points. The 

bar plot shows the number of sequenced cells per organ prepared by FACS (n=23 organs) 

and microfluidic droplets (n=16 organs). For the droplet dataset the Fat sub-tissues were 

processed together (Fat = BAT+GAT+MAT+SCAT). BAT, Brown Adipose Tissue; GAT, 

Gonadal Adipose Tissue; MAT, Mesenteric Adipose Tissue; SCAT, Subcutaneous Adipose 

Tissue. b, Annotation workflow. Data were clustered together across all time points. We 

used the Tabula Muris (3m time point) as a reference for the automated pipeline and the 

annotations were manually curated by tissue experts. c,d, UMAP plot of all cells, colored by 

organ and overlaid with the Louvain cluster numbers (c) and age (d); n = 356,213 individual 

cells. For the color dictionaries please refer to Extended Data Figure 2c. e, B cells (top) and 

endothelial cells (bottom) independently annotated for each organ cluster together by 

unbiased whole-transcriptome Louvain clustering, irrespectively of the organ they were 

found.
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Figure 2. Cellular changes during aging.
a,b, Bar plot showing the fractions of cells expressing Cdkn2a at each age group for FACS 

(a) and droplet (b). c,d, Bar plot of the median expression of Cdkn2a for the cells that do 

express the gene at each age group for FACS (c) and droplet (d). The y-axis corresponds to 

log-transformed and scaled values. All data are expressed as mean ± s.d. with individual data 

points shown. p-values were obtained using a Mann-Whitney-Wilcoxon rank-sum two-sided 

test. n=44,518; 34,027 and 31,551 individual cells for FACS 3m; 18m and 24m, respectively. 

n=25,980; 45,602; 44,645; 35,828; 37,660 and 55,674 individual cells for droplet 1m; 3m; 

18m; 21m; 24m and 30m, respectively. e, Bladder cell (left) and bladder urothelial cell 

(right) relative abundances change significantly with age (p-value<0.05 and r2>0.7 for a 

hypothesis test whose null hypothesis is that the slope is zero, using two-sided Wald Test 

with t-distribution of the test statistic). f, Top 20 upregulated and downregulated genes in 

bladder computed using MAST57, treating age as a continuous covariate while controlling 

for sex and technology. Genes were classified as significant under an FDR threshold of 0.01 

and an age coefficient threshold of 0.005 (corresponding to ~10% fold change). n=970; 

3,804; 2,739 and 3,864 individual cells for bladder 1m; 3m; 18m and 24m, respectively. g, 

Kidney capillary endothelial cell (top-left), mesangial cell (top-right), loop of Henle 

ascending limb epithelial cell (bottom-left) and loop of Henle thick ascending limb 

epithelial cell (bottom-right) relative abundances change significantly with age (p-

value<0.05 and r2>0.7 for a hypothesis test whose null hypothesis is that the slope is zero, 
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using two-sided Wald Test with t-distribution of the test statistic). h, Top 20 upregulated and 

downregulated genes in kidney computed using MAST57, treating age as a continuous 

covariate while controlling for sex and technology. Genes were classified as significant 

under an FDR threshold of 0.01 and an age coefficient threshold of 0.005 (corresponding to 

~10% fold change). n=2,488; 2,832; 3,806; 2,257; 6,384 and 5,713 individual cells for 

kidney 1m; 3m; 18m; 21m; 24m and 30m, respectively. i, Spleen plasma cell (left) and T 

cell (right) relative abundances change significantly with age (p-value<0.05 and r2>0.7 for a 

hypothesis test whose null hypothesis is that the slope is zero, using two-sided Wald Test 

with t-distribution of the test statistic). j, Top 20 upregulated and downregulated genes in 

spleen computed using MAST57, treating age as a continuous covariate while controlling for 

sex and technology. Genes were classified as significant under an FDR threshold of 0.01 and 

an age coefficient threshold of 0.005 (corresponding to ~10% fold change). n=2,986; 8,839; 

7,141; 6,395; 5,245 and 8,946 individual cells for spleen 1m; 3m; 18m; 21m; 24m and 30m, 

respectively. The p-values for the cell type compositional changes are shown in 

Supplementary Table 5.
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Figure 3. Mutational burden across tissues in the aging mice.
Distribution of the difference of the mean mutation in the gene set (and ERCC spike-in 

controls) per cell between 24m and 3m and 18m and 3m for all tissues and cells (a) and with 

the cell types split in five functional groups, endothelial (b), immune (c), parenchymal (d), 

stem/progenitor cell (e) and stromal (f). Filled and solid line distributions correspond to the 

mean mutation difference in gene set. White and dashed line distributions correspond to the 

mean mutation difference in ERCC spike-in controls. Please note that the mean mutation 

difference in ERCC spike-in controls overlaps for both age groups.
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Figure 4. The aging immune system.
a, B-cell clonal families. The pie chart shows the proportion of singleton B cells and B cells 

that are part of clonal families at 3m, 18m and 24m. Please refer to Extended Data Figure 9 

for the clonal networks. b, T-cell clonal families. The pie chart shows the proportion of 

singleton T cells and T cells that are part of clonal families at 3m, 18m and 24m. Please 

refer to Extended Data Figure 9 for the clonal networks. c, Diversity score for the two cell 

types that significantly change with age. d, UMAP plot of the brain myeloid microglial cell 

Leiden clusters (numbers) colored by age. Faded clusters do not change their relative age 

cell composition; colored clusters change their relative cell composition. e, UMAP plot of 

the brain myeloid microglial cells when scored using the microglia Alzheimer’s disease 

signature (Supplementary Table 10). n = 4,532; 4,461 and 4,424 individual microglia cells 

for brain myeloid 3m, 18m and 24m, respectively. f, UMAP plot of the kidney macrophage 

Leiden clusters (numbers) colored by age group. n = 62; 139; 264; 105; 284 and 553 

individual macrophage cells for kidney 1m, 3m, 18m, 21m, 24m and 30m, respectively.
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