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Cardiac Tissue Engineering Therapeutic Products to Enhance 
Myocardial Contractility

Kathleen M. Broughton1, Mark A. Sussman1,*

1San Diego State University, Department of Biology and Heart Institute, San Diego, California.

Abstract

Researchers continue to develop therapeutic products for the repair and replacement of myocardial 

tissue that demonstrates contractility equivalent to normal physiologic states. As clinical trials 

focused on pure adult stem cell populations undergo meta-analysis for preclinical through clinical 

design, the field of tissue engineering is emerging as a new clinical frontier to repair the 

myocardium and improve cardiac output. This review will first discuss the three primary tissue 

engineering product themes that are advancing in preclinical to clinical models: 1) cell-free 

scaffolds, 2) scaffold-free cellular, and 3) hybrid cell and scaffold products. The review will then 

focus on the products that have advanced from preclinical models to clinical trials. In advancing 

the cardiac regenerative medicine field, long-term gains towards discovering an optimal product to 

generate functional myocardial tissue and eliminate heart failure may be achieved.
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Introduction

The cardiovascular research community continues to expand in basic science and clinical 

application to understand the causes of heart disease, maintenance of healthy functional 

myocardial tissue and approaches to repair and rebuild the heart in response to aging and 

disease. The challenge of generating functional cardiac tissue continues as results from stem 

cell trials yielded modest functional improvement. Some of the challenges faced in cardiac 

regenerative medicine include the general nature of heart failure represented as a geriatric 

disease(Uchmanowicz et al. 2019), the frequency of diagnosed comorbidities in patients 

with heart failure(Mentz et al. 2014), and the disconnect in earlier studies involving 

preclinical animal models compared to the patient population requiring treatment(Grigorian 

Shamagian et al. 2019). Lessons learned from completed clinical studies for cardiac repair 
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and regeneration must be taken into account when developing future potential therapeutics 

and holds particularly true for researchers that create more complicated products and 

collaborative research teams.

Cellular therapies for the treatment of heart failure emerged into the clinic in the early 

2000’s with adult stem cells. Adult stem cells are considered multipotent with the ability to 

commit to a limited number of cellular lineages and typically cover: mononuclear and bone 

marrow (stem) cells, mesenchymal stem cells derived from bone marrow or the heart, 

cardiac stem / progenitor cells, and cardiospheres (Broughton and Sussman 2016; 

Sanganalmath and Bolli 2013; Telukuntla et al. 2013). Mechanisms of action encompass 

anti-fibrotic effects, immunomodulation allowing for allografting, neovascularization, 

stimulation of endogenous repair and blunting of adverse remodeling; functional 

assessments have typically included free wall thickness, ventricle volume load, ejection 

fraction and cardiac output (Bagno et al. 2018; Broughton and Sussman 2018; Golpanian et 

al. 2016b). Current adult stem cell clinical trials for cardiac improvement include: DREAM-
HF that uses allogeneic mesenchymal precursor cells (clinicaltrials.gov NCT02032004), 

ELPIS that uses allogeneic bone marrow-derived mesenchymal stem cells (clinicaltrials.gov 

NCT03525418) and CONCERT-HF that uses mesenchymal and c-kit+ stem cells in a 

combinatory fashion. Meta-analysis is ongoing to determine patient population 

characteristics associated with better functional improvement to improve future clinical 

design, such as different outcomes in patients with dilated, compared to ischemic, 

cardiomyopathy. Researchers are beginning to look to pluripotent products as well as more 

complex products utilizing bioengineering approaches for future directions in the field of 

cellular therapies for the treatment of heart disease.

Bioengineering, specifically cell and tissue engineering, is the integration of engineering and 

biological approaches to understand the structure-function relationship of physiologic and 

pathophysiologic dysfunctional tissue and the development of biological substitutes to 

maintain, restore or improve tissue function. Tissue engineering continues to expand as a 

scientific platform to advance cardiac regenerative medicine. Three platforms can define 

cardiac tissue engineering products: (1) cell-free scaffold approaches, (2) scaffold-free 

cellular approaches, and (3) cell plus scaffold hybrid approaches(Tomov et al. 2019). Each 

platform approach encompasses multiple research directions and products and has 

demonstrated varying levels of success to advance therapeutic products to the clinic, based 

on the products’ strengths and weaknesses (Figure 1). The goal of each research direction is 

to reestablish a healthy structure and function within the failing myocardium.

This review will first discuss in detail these three primary cardiac tissue engineering 

approaches with a focus on preclinical models. Discussions will focus on approaches with 

products that can advance to the clinic, and will not include approaches or platforms used for 

basic scientific discovery or disease modeling, such as organ-on-a-chip(Ahadian et al. 2018; 

An et al. 2015) or BioMEMS devices (Broughton and Russell 2015; Roberts et al. 2019; 

Serpooshan et al. 2017). The review will then discuss tissue engineering products that have 

advanced to the clinic. A discussion will compare clinical results involving adult stem cells 

as compared to clinical trials that utilized tissue engineering approaches for the repair and 

regeneration of the failing myocardium. By utilizing multi-disciplinary techniques, the field 

Broughton and Sussman Page 2

J Muscle Res Cell Motil. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://clinicaltrials.gov
http://clinicaltrials.gov


of cardiac regenerative medicine may continue to advance research strategies forward 

towards genuine repair of the myocardium and increased functional activity within the heart.

Cardiac Tissue Engineering Products in Preclinical Models

Tissue engineering may encompass several experimental research topics as applied to basic 

cardiovascular research such as biological microelectromechanical systems (BioMEMS) to 

study the mechanical or electrical activity of cardiomyocytes(Akintewe et al. 2017; Tandon 

et al. 2009), microfluidics for mimicking and studying the vascularization and 

angiogenesis(Chen and Kaji 2017), or the collective heart-on-a-chip system for predictive 

modeling of drug screening towards personalized medicine initiatives(Conant et al. 2017). 

Although ex vivo modeling remains a useful area of cardiac research, this review will focus 

on devices and drugs that are applicable as cardiac reparative therapeutics with the potential 

to directly improve cardiac function in patient populations.

The Food and Drug Administration (FDA) classification of cardiac regenerative products is a 

drug, device, biological product, or combination product in the Federal Food, Drug and 

Cosmetic Act (FD&C Act). Part 1271 of the Code of Federal Regulations Title 21 provides 

guidelines specific to regenerative products in the body, with a practical guideline for 

industry(Administration 2007). Cardiac tissue engineering products are highly complex and 

require FDA review on a case-by-case basis with many different variables considered in the 

collective to define the product for FDA regulation and oversight. Three primary platforms 

are identified as cardiac tissue engineering approaches to repair and regenerate the failing 

myocardium and discussed from a preclinical standpoint.

Cell-free scaffold products

Mimicking replacement cardiac extracellular matrix (ECM) is one tissue engineering 

approach that may rejuvenate the myocardium and improve contractility. Cardiac ECM 

undergoes a gradual assembly of matrix proteins during the maturation of cardiomyocytes 

(CMs) during development(Schwach and Passier 2019). As the CMs develop, both electric 

coupling and mechanical anchorage and elasticity integrate within the ECM in addition to 

cellular communication, migration, proliferation, maturation, and differentiation of the 

surrounding cardiac interstitial cells (CICs). In the adult heart, elastin fibers, including 

collagens I, III, IV and VI, fibrillin, fibronectin, and laminin are expressed in various 

patterns, ratios, and abundance among the four chambers(Schwach and Passier 2019). For 

example, collagen fibrils are thick near the heart base near atrioventricular valves, with 

declines in thickness towards the apex(Jackson et al. 1993). Collagen I and III are more 

abundant in the atria, compared to the ventricles, and more abundant in the right, compared 

to left, ventricle, which may result from the pressure differential between the 

chambers(Oken and Boucek 1957; Smorodinova et al. 2015). Matrix changes are associated 

with aging(Dworatzek et al. 2016; Horn 2015; Meschiari et al. 2017) and 

disease(Frangogiannis 2017), particularly an increase of collagen deposition and cross-

linking resulting in loss of elasticity and increased stiffness. Scaffold replacement 

therapeutic approaches target the replacement of inelastic, stiff ECM.
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Several natural and synthetic polymers are available for ECM constructs. Natural polymers 

include gelatin, matrigel, fibrin, vitronectin, hyaluronic acid, and alginate, while FDA-

approved synthetic polymers are more numerous and classified under the categories of 

polyesters, polylactones, elastomers, and polyethers(Schwach and Passier 2019). Natural 

materials have better biocompatibility and construction capability to mimic endogenous 

tissue compared to synthetic. Weaknesses of using natural materials include batch 

variability, limited shelf-life, and higher cost to manufacture compared to synthetic 

materials. Synthetic polymers have the additional feature of tunable mechanical and 

degradation properties, which is fundamental when considering the optimum ECM tissue 

reconstruction requiring durability, conductivity, and elasticity. Tissue engineering 

approaches to recreate healthy ECM have pursued both natural and synthetic approaches in 

preclinical studies towards repairing the dysfunctional myocardium.

A natural ECM approach utilizes an endogenous donor tissue. Repopulating decellularized 

native tissue begins with the removal of cells from intact tissue and using the allogeneic 

scaffold, with preserved architecture and mechanical properties, for repopulation with 

autologous cells(Ott et al. 2008; Robinson et al. 2005). The experimental model of a 

decellularized rat heart with reseeded cardiomyocytes and endothelial cells demonstrated 

contractile properties, but not nearly sufficient to serve as functionally normal(Ott et al. 

2008). The benefit of this approach is the native extracellular matrix composition, which 

allows for the natural vascular network and exchange of nutrients, paracrine factors, and 

oxygen throughout the tissue. Additional research regarding pulse synchronization, creation 

of cardiac patches through native scaffolds, and mimicking native tissue for synthetic tissue 

creation are all opportunities using this methodology.

Synthetic porous scaffolds that cells can populate are created using a biomimetic approach 

with scaffolds that allow for oxygen diffusion as well as culture medium and the necessary 

biochemical reactions found in healthy native tissue(Engelmayr et al. 2008; Radisic et al. 

2006). Researchers have been able to mimic the level of oxygen content in culture medium 

using perfluorocarbon(Radisic et al. 2005), which has enabled for viable scaffolds 

millimeters-thick with physiologic-like cellular density and response to electrical 

stimulation(Radisic et al. 2005; Radisic et al. 2006). Biomaterials, including hydrogels and 

elastomers, can create scaffolds of various porosity and stiffness(Kolewe et al. 2013; Lu et 

al. 2004; Shin et al. 2013). Research continues with understanding how to better develop and 

integrate porous scaffolds into healthy, functional myocardium with such research as 

electrical conduction(Martins et al. 2014), biodegradable scaffolds(Bobe et al. 2013), 

electro-spun nanofibers(Kai et al. 2013; Qasim et al. 2019), 3D printed scaffolds(Gaetani et 

al. 2012; Qasim et al. 2019), and the use of adult stem cells(Gaetani et al. 2012; Pagliari et 

al. 2014; Rajabi-Zeleti et al. 2014).

Scaffold-free cellular products

One of the most direct methods explored for replacing damaged cardiac tissue with healthy, 

functional tissue was with the transplantation of cardiomyocytes or muscle cells. In this 

method using myocytes, cultured allogeneic cardiomyocytes are transplanted into damaged 

scar tissue region and embed into the endogenous tissue. Researchers have studied the 
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feasibility of this method using a four-week-old cryoinjury heart model in adult male 

Sprague-Dawley rats with the transplantation of cardiomyocytes from fetal Sprague-Dawley 

rat hearts(Li et al. 1996). Results assessed four weeks after transplantation included a 

smaller scar size (43%) in the treatment group compared to control (55%) and the 

transplanted cardiomyocytes had successfully embedded and formed cardiac tissue within 

the scar tissue. A similar study using female adult Sprague-Dawley rats with a left coronary 

artery occlusion, causing MI and the transplantation of 14–15 day old embryonic rat 

cardiomyocytes, cultured for three days, was conducted seven days post-MI(Etzion et al. 

2001). Cardiac function and cellular engraftment were measured approximately two months 

after transplantation; findings revealed most embryonic cardiomyocytes did not engraft into 

the host myocardium, but better left ventricular contractility resulted in the rats with 

transplanted cardiomyocytes compared to control rats.

Another study using neonatal cardiomyocyte transplantation into adult rats found that nearly 

half of the cardiomyocytes did not survive the initial transplantation and that, by twelve 

weeks, only fifteen percent of the cells remained engrafted(Muller-Ehmsen et al. 2002). 

Findings also revealed that surviving neonate cardiomyocytes transplanted developed visible 

sarcomeres, which may have aided in ventricular function in the experimental group 

compared to controls. Although transplantation of neonatal cardiomyocytes was studied in 

preclinical models using rodents, this method is now expanding to examine the use of human 

induced pluripotent stem cells derived cardiomyocytes (hIPSC-CMs)(Ishida et al. 2019). 

Currently, one clinical trial utilizing hIPSC-CM is registered (clinicaltrials.gov, 

NCT03763136) Treating Heart Failure with hIPSC-CMs (HEAL-CHF), which is an open-
label Phase I trial and is planned to treat five ischemic cardiomyopathy heart failure patients. 
This trial is estimated to run from May 2019 till December 2020.

Scaffold-free cellular sheets is another cellular engineering approach to improve cardiac 

function, which begins with monolayers of cells cultured on temperature-sensitive polymer 

surfaces that detach from the surface without enzymes(Shimizu et al. 2002; Shimizu et al. 

2003). The monolayers are then stacked, and the cells form junctions, establish signal 

propagation, and develop contractile properties. Research has also shown the development of 

microvascular networks through the use of endothelial cellular sheets(Sekiya et al. 2006). 

The cell type employed in developing scaffold-free cellular sheets for cardiac regeneration 

has spanned from cardiomyocytes to endothelial cell(Sekiya et al. 2006; Shimizu et al. 2002; 

Shimizu et al. 2003) to myoblast (Memon et al. 2005), adult stem cells(Miyahara et al. 2006; 

Wang et al. 2008), pluripotent(Masumoto et al. 2012), and embryonic stem cells(Matsuura et 

al. 2011; Stevens et al. 2009). Scaffold-free cellular sheets remain under investigation for 

electrical synchronization, survival, and integration into natural tissue.

Self-assembling cellular clusters is a more recent approach, which expands the concept of 

scaffold-free cellular sheets. In this combinatory cell approach, cell combinations can be 

selectively chosen and optimized for the number of cells, type of cells, and self-assembly 

method to control the size and architecture of the cluster. The benefit of using a self-

assembled cellular structure is enhanced engraftment and persistence after injection. One 

reason these cells may perform superior to single-cell injection is the biological properties 

returning to a more endogenous state after self-assembly rather than modified profile cells 
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experience upon typical culture conditions(Kim et al. 2018). The second benefit of cellular 

clusters is the potential to use an autologous cellular approach(Monsanto et al. 2017) and 

minimize an autoimmune response.

Scaffold-free cellular approach and cellular-free scaffold approach both demonstrate 

strengths and weaknesses (Figure 1). As it remains challenging for measurable cardiac repair 

and regeneration in mammalian models, the hybrid approach of using cells plus scaffolds 

remains a reasonable direction to enhance tissue engineering therapeutics.

Hybrid cell plus scaffold products

Products utilizing the benefits from both cellular and scaffold platforms can advance a more 

complex but delicately tuned product. Natural scaffold products combined with autologous 

cells may experience the least immune response.

The product design of cells with scaffold may provide a needed balance to improve 

vascularization, preserve myocardial muscle tissue, and reduce fibrous tissue inhibiting 

contractility and cardiac output. 3D multiphoton-excited (3D-MPE) advances the use of 

conventional 3D printing technique printing to better mimic natural tissue with ECM 

architecture at more natural sizes(Gao et al. 2017). In this design, the 3D-MPE ECM was 

created using gelatin methacrylate and crosslinked to mimic fibronectin. Human cardiac 

fibroblasts were reprogrammed into pluripotent stem cells then differentiated into 

cardiomyocytes, smooth muscle cells, and endothelial cells before seeding onto the 3D-MPE 

ECM. These human cardiac muscle patches (hCMPs) were then tested on adult mice with 

surgically induced myocardial infarction and measured for cardiac function, vascularization, 

and scar size, among other parameters at one and four weeks after treatment. Results 

demonstrated an engraftment rate of 24% at one week and 11% by four weeks and a slightly 

improved ejection fraction and fractional shortening between one- and four-weeks post-MI 

in the hCMP group compared to sham or scaffold-alone. An alternative to 3D printing, 

polymer cast constructions can also be used to create ECM and a cardiac patch.

Hydrogel rings are designed with cells, such as neonate cardiomyocytes, liquid type I 

collagen, matrigel, and growth supplements, which collectively set in a circular 

mold(Zimmermann et al. 2006; Zimmermann et al. 2002). After the hydrogel sets, the rings 

are then mechanically stimulated to develop the neonate cardiomyocytes into more matured 

cardiac cells with increased force contractility and mitochondrial density. The rings can be 

adhered to each other in a layered approach and engrafted into host tissue, as shown with 

neonate rat ventricular myocytes onto a rat heart, post-myocardial infarction(Zimmermann 

et al. 2006). Results indicated no electrical signal delay on the engrafted rings without 

arrhythmia as well as improved ventricular wall thickening in the infarct region of the heart. 

Cardiac patches have incorporated human dermal fibroblast sheets with co-cultured MSCs 

and endothelial cells(Qian et al. 2019), collagen/alginate-chitosan scaffolds with human 

umbilical vein endothelial cells(Zhang et al. 2017), microgroove collagen scaffolds with 

myoblasts(Chen et al. 2015) and porous polyglycerol sebacate (PGS) with endothelial 

cells(Maidhof et al. 2010). Further understandings of the engraftment, use of alternative 
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cells, and comparison of cast patches to other hybrid tissue engineering products or cardiac 

cellular therapeutics will assist in determining substantive benefit.

Injectable, biodegradable hydrogels with cells is another approach in cardiovascular 

regeneration approaches. This method is closely related to biological approaches discussed 

below, which also focuses on the injection of suspended cells. The unique tissue engineering 

approach, however, is suspending the cells in a matrix, which may improve the engraftment, 

survival, and persistence of the injected cells. Researchers are currently investigating how to 

match hydrogel to patient profiles in an autologous fashion to improve immune 

compatibility(Edri et al. 2019). Hydrogels are utilized to suspend cells in a position that 

increases engraftment and survival while contributing to improving functional activity in the 

myocardium post-injection(Christman et al. 2004; Li et al. 2015; Malafaya et al. 2007; 

Martens et al. 2009; Nicodemus and Bryant 2008; Zhang et al. 2019). Research on how to 

improve products to increase cellular engraftment, survival, and contractility of damaged 

myocardium continues to be a challenge for the bioengineering research community.

Cardiac Tissue Engineering Products Advancing to the Clinic

Clinical trials using cellular therapies for cardiac repair have advanced over the past twenty 

years, as discussed in many reviews(Broughton and Sussman 2016; Sanganalmath and Bolli 

2013; Telukuntla et al. 2013). Functional outcomes have demonstrated modest 

improvements, however, and researchers are reflecting upon the preclinical model 

design(Grigorian Shamagian et al. 2019), the elaborate medical complications of the human 

patient population with heart failure(Broughton 2019), and future strategies to improve 

cardiac cellular therapies in the clinic(Golpanian et al. 2016a; Vrtovec and Bolli 2019). One 

strategy which may improve functional outcomes is the use of tissue engineering strategies 

and products. Preclinical models using tissue engineering-based products have demonstrated 

varying levels of advancement and success. Most of the products that have advanced into the 

clinic are hybrid cells plus scaffold products and are Phase I clinical trials.

One of the earliest tissue engineering-based cardiac clinical trials focused on pediatric 

patients with univentricular physiology. In this USA-based trial (clinicaltrials.gov 

NCT01034007), patients underwent implantation of tissue-engineered vascular grafts 

(TEVGs) seeded with autologous bone marrow mononuclear cells(Hibino et al. 2010; 

Sugiura et al. 2018). The TEVGs were composed of fabric poly-l-lactide acid or 

polyglycolic acid and a 50:50 poly (l-lactic-co-ε-caprolactone copolymer. The average 

patient age was 5.5 years old, and the average follow-up period was 11.1 years in 25 

patients(Sugiura et al. 2018). Results demonstrated that seven patients (28%) had graft 

stenosis requiring balloon angioplasty and one patient (4%) having graft thrombosis 

requiring anticoagulation therapy after implantation and no graft-related deaths. This trial 

was the first TEVG study in humans and demonstrated feasibility, safety, and the potential 

for long-term implantation success. The challenge with many heart failure patients is older 

age and lack of sufficient ventricular contractile function.

Another early tissue engineering-based cardiac clinical trial was aimed to determine if a 

bioabsorbable cardiac matrix (BCM) would attenuate left ventricular remodeling after a 
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large myocardial infarction. This study, A Placebo Controlled, Multicenter, Randomized 
Double Blind Trial to Evaluate the Safety and Effectiveness of IK-5001 for the Prevention of 
Remodeling of the Ventricle and Congestive Heart Failure After Acute Myocardial 
Infarction (clinicaltrials.gov NCT01226563; PRESERVATION I), focused on a device that 

replaces the damaged ECM and halt the remodeling process following acute MI(Frey et al. 

2014; Rao et al. 2016). The product was an injectable bioabsorbable alginate, which was to 

provide temporary structural support in the infarction region by cross-linking to reduce 

myocyte death and reduce remodeling. The BCM product degrades and is naturally excreted 

in three to six months post-injection. Results demonstrated no significant difference in left 

ventricular end diastolic volume between baseline and six months after treatment. These 

results demonstrated the challenge in a successful small study(Frey et al. 2014) followed by 

less successful outcomes when upscaling the patient population, surgical intervention team 

and follow-up care (Rao et al. 2016).

The Phase I clinical trial Transplantation of Human Embryonic Stem Cell-derived 
Progenitors in Severe Heart Failure (ESCORT) (clinicaltrials.gov NCT02057900), focused 

on the treatment of ischemic cardiomyopathy heart failure and utilized a fibrin patch seeded 

with human embryonic stem cell-derived stage-specific embryonic antigen (SSEA)-1 

positive, Insulin gene enhancer protein ISL-1 positive cardiac progenitors (Menasche et al. 

2018). In this study, six patients with median age 66.5 and left ventricular ejection 

fraction(LVEF) of 26% received a median dose of 8.2 million hESC-derived cardiac 

progenitors embedded in a fibrin patch and epicardially delivered during a coronary artery 

bypass procedure. On average 1.5 years after surgery, no tumors were detected, and no 

patients presented arrhythmias. One patient died from unrelated comorbidities early 

postoperatively, and one patient died of heart failure twenty-two months after treatment (81 

years old at the time of surgery). The remaining four patients demonstrated a decrease in 

New York Heart Association function class from a baseline value of III to I/II and an 

increase in LVEF from 26% to 38.5% by the 1-year follow-up. Although this trial had a 

relatively small patient population, the trial demonstrated the technical feasibility and short- 

and medium-term safety points after transplant. As this is the first clinical study involving a 

fibrin patch with seeded cells, it is yet to be determined if the patch, cell-choice or the hybrid 

combination contributed to the reported 12.5% LVEF functional improvement.

Multiple tissue-engineering based clinical Phase I or Phase I/II trials are reported on 

clinicaltrials.gov, all of which utilize hybrid products (Table 1). A study based in China, 

Human Umbilical Cord-derived Mesenchymal Stem Cells With Injectable Collagen Scaffold 
Transplantation for Chronic Ischemic Cardiomyopathy (clinicaltrials.gov NCT02635464), is 

scheduled from October 2015 – December 2019 with an enrollment estimate of 45 patients 

diagnosed with ischemic cardiomyopathy. Another study, Pericardial Matrix With 
Mesenchymal Stem Cells for the Treatment of Patients With Infarcted Myocardial Tissue 
(PERISCOPE) (clinicaltrials.gov NCT03798353), is a Phase I trial, based in Spain, with an 

estimated enrollment of 12 patients with a history of myocardial infarction. Another planned 

trial is based out of Columbia and expected to run from July 2019 to June 2023. This trial, 

Randomized Study of Coronary Revascularization Surgery With Injection of WJ-MSCs and 
Placement of an Epicardial Extracellular Matrix (scorem-cells) (clinicaltrials.gov 

NCT04011059), is a Phase I/II trial with an estimated enrollment of 40 patients, all with 
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history of myocardial infarction. Each trial utilizes a hybrid tissue engineering product, 

composed of a natural scaffold material combined with stem cell treatment. Parallel to 

completed stem cell cardiac clinical trials, the complex medical conditions of the patients 

may hinder functional improvements. However, a fundamental difference in the use of a 

scaffold plus cellular therapeutic may demonstrate an increased performance of myocardial 

repair, decreased scar tissue, and improved cardiac output. It is in the outcomes of these 

trials that researchers will have a better understanding of specific scaffold materials or 

cellular therapeutics yield superior results, compared to prior trials, and give hope to future 

studies.

Discussion

The development of a robust cellular therapeutic for the repair of cardiac muscle remains a 

challenge in the cardiovascular community. Researchers have demonstrated the potential of 

cellular therapeutics to improve vascularization in the myocardium, reduce scar tissue, and 

increase the free wall thickness. These changes are essential to reduce environmental stress 

upon the heart and increase endogenous repair. However, the fundamental aspect of the 

generation of new cardiomyocytes remains a primary hurdle to increase contractility and 

return cardiac output to a normal physiologic state.

Researchers have repeatedly demonstrated cardiomyocyte turnover, and new myocyte 

generation in adult mammalian hearts occurs at a painstakingly low frequency(Ali et al. 

2014; Bergmann et al. 2015; Senyo et al. 2013), and is not sufficient to endogenously repair 

the functionally failing myocardium with new cardiac muscle. Evidence also supports the 

point that using cell cycle factors to encourage reentry into cell-cycle does not lead to 

generation of new myocytes(Liu et al. 2010; Ponnusamy et al. 2017). As shown in mouse 

models, environmental stress leads to an increase in cell-cycle activity in myocytes(Alvarez 

et al. 2019; Patterson et al. 2017; Ponnusamy et al. 2017). Adult mouse myocytes complete 

karyokinesis but fail to symmetrically divide with incomplete cytokinesis(Hesse et al. 2018; 

Leone et al. 2018), resulting in an increased frequency of binucleation. Human myocytes are 

even more challenged, compared to the mouse model, as adult myocytes from the failing 

myocardium are frequently mononuclear with higher levels of chromosomal content(Herget 

et al. 1997), demonstrating human myocytes undergo DNA synthesis, fail karyokinesis and 

do not attempt cytokinesis. These challenges in endogenous cardiomyocyte division, 

therefore, require researchers to design products that enhance the replacement of scar tissue 

with functional muscle.

Since the discovery of induced pluripotent stem cells and derivation to cardiomyocytes, the 

potential of these cells has brought new hope as a therapeutic option. Researchers have 

continued to improve the efficiency of inducing committed cells to stem cells as well as 

enhanced the maturation and functional characteristics of the iPSC-CM(Pianezzi et al. 2019; 

Ronaldson-Bouchard et al. 2018; Waas et al. 2019). The use of iPSC-CMs as a therapeutic 

product for the treatment of heart failure may demonstrate improved contractility beyond 

enhancement found in clinical trials using adult stem cells.

Broughton and Sussman Page 9

J Muscle Res Cell Motil. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Enhancing adult stem cell products, such as self-assembling cellular clusters, may 

demonstrate better effectiveness for engraftment and survival(Broughton and Sussman 2018) 

to enrich the paracrine activity identified as a crucial element to the effectiveness of the 

intervention. Likewise, stackable cellular sheets may provide structural integrity for the 

myocardium to increase contractility(Kaynak Bayrak and Gumusderelioglu 2019; Roberts et 

al. 2019). Alternatively, cell-free scaffolds may provide the necessary structure for cellular 

integration(Becker et al. 2018; Jang et al. 2017), with ongoing studies to determine 

improvement in functional myocardium. The combinatorial approach of a scaffold plus 

cellular component may demonstrate the benefits of both elements (Figure 1) as these hybrid 

products are more frequently advancing to the clinic (Table 1). Results from the ESCORT 

trial, for example, have demonstrated enhanced functional activity of the myocardium by a 

year after transplant(Menasche et al. 2018). Mechanisms of improvement may be from 

structural integrity of the patch or paracrine and secretome from the hESC-derived cardiac 

progenitors triggering cell-cell communication and activation. This study, although 

promising, requires expansion to a broader patient population as five patients is too small of 

a patient sample size to demonstrate myocardial functional enhancement beyond studies 

previously conducted using single cell or combinatory cell approaches.

As cardiac regenerative medicine studies continue onward, a primary goal should remain 

focused upon the generation of products that will enhance functional myocardial muscle. 

The methodology of tissue engineering incorporates structural, mechanical and electrical in 

scaffolds, biological and chemical in cellular and a blend in hybrid products. Future 

experiments may also incorporate the combinatorial approach of pluripotent-derived cells 

with cells or exosome product that promote paracrine effects, such as iPSC-CMs with MSCs 

or cardiac stem cells. The upcoming shift in cardiac clinical trials focused on the use of 

tissue engineering products should be viewed as the ongoing quest of the research 

community to discover and unbiasedly evaluate ways in which heart failure may become a 

curable disease of the past.
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Figure 1: 
Tissue Engineering Therapeutic Products to Enhance Cardiac Repair and Function. Tissue 

engineering based products can be categorized in three primary categories, each category of 

products demonstrating strengths and weaknesses towards cardiac repair and improving 

physiologic function in the failing myocardium.
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Table 1

Cardiac Tissue Engineering-Based Products in the Clinic

Trial Number Trial Name
Clinical 

Trial Phase
Patient 

Enrollment Disease
Therapeutic 

Strategy Country Reference

NCT01034007

A Pilot Study 
Investigating the 

Clinical Use of Tissue 
Engineered Vascular 
Grafts in Congenital 

Heart Surgery

Phase I; 
start / 

completion: 
Dec 2009 - 
Dec 2017 4 patients

Single Ventricle 
Cardiac 

Anomaly

Tissue 
engineered 

vascular grafts 
seeded with 
autologous 

bone-marrow 
mononuclear 

cells USA

Hibino et 
al. 2010; 

Sugiura et 
al. 2018

NCT01226563

IK-5001 for the 
Prevention of 

Remodeling of the 
Ventricle and 

Congestive Heart 
Failure After Acute 

Myocardial Infarction 
(PRESERVATION-1)

Multi-
center; start / 
completion: 
Apr 2012 - 
Dec 2015

303 
patients; 

201 treated

Myocardial 
Infarction before 
onset of adverse 

remodeling

Bioabsorbable 
cardiac matrix 
for reducing 
adverse LV 
remodeling

USA / 
multi-

country

Frey et al. 
2014; Rao 
et al. 2016

NCT02057900

Transplantation of 
Human Embryonic 
Stem Cell-derived 

Progenitors in Severe 
Heart Failure 
(ESCORT)

Phase I; 
start / 

completion: 
May 2013 - 
Mar 2018 10 enrolled

Ischemic 
Cardiomyopathy 

HF
ESCs in fibrin 

patch France
Menasche 
et al. 2018

NCT02635464

Human Umbilical 
Cord-derived 

Mesenchymal Stem 
Cells With Injectable 

Collagen Scaffold 
Transplantation for 
Chronic Ischemic 
Cardiomyopathy

Phase I/II; 
start / 

completion: 
Oct 2015 - 
Dec 2019

45 
(estimate)

Ischemic 
Cardiomyopathy

human 
umbilical cord-
derived MSCs 
with collagen 

scaffold 
injection China

NCT03798353

Pericardial Matrix 
With Mesenchymal 
Stem Cells for the 

Treatment of Patients 
With Infarcted 

Myocardial Tissue 
(PERISCOPE)

Phase I; 
expected 

start / 
completion: 
May 2019 - 
May 2021

12 
(estimated)

Myocardial 
Infarction

PeriCord: 
Expanded and 
cryopreserved 

allogeneic 
umbilical cord 

Wharton’s 
jelly-derived 

adult 
mesenchymal 

stem cells 
colonized on 

human 
pericardial 

matrix. Spain

NCT04011059

Randomized Study of 
Coronary 

Revascularization 
Surgery With Injection 

of WJ-MSCs and 
Placement of an 

Epicardial 
Extracellular Matrix 

(scorem-cells)

Phase I/II; 
start / 

completion: 
July 2019 - 
Jun 2023

40 
(estimated)

Previous 
myocardial 
infarction

ECM patch 
seeded with 
Wharton’s 

jelly-derived 
MSCs (WJ-

MSCs) isolated 
from human 

umbillical cord 
plus injection 
of WJ-MSCs Columbia
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