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Multiscale Modeling of Membrane
Rearrangement, Drainage, and
Rupture in Evolving Foams
Robert I. Saye1 and James A. Sethian1*

Modeling the physics of foams and foamlike materials, such as soapy froths, fire retardants,
and lightweight crash-absorbent structures, presents challenges, because of the vastly different
time and space scales involved. By separating and coupling these disparate scales, we have
designed a multiscale framework to model dry foam dynamics. This leads to a predictive and
flexible computational methodology linking, with a few simplifying assumptions, foam drainage,
rupture, and topological rearrangement, to coupled interface-fluid motion under surface tension,
gravity, and incompressible fluid dynamics. Our computed results match theoretical analyses and
experimentally observed physical effects, including thin-film drainage and interference, and are
used to study bubble rupture cascades and macroscopic rearrangement. The developed multiscale
model allows quantitative computation of complex foam evolution phenomena.

One of the hallmarks of natural phenome-
na is that they often occur acrossmultiple
space and time scales. An example comes

from climate studies, in which oceanic and at-
mospheric waves spanning hundreds of kilome-
ters are influenced by temperature variations in
localized environments. In such “multiscale
problems,” the unfolding of small-scale processes,
depending on physics, chemistry, and biology,
combine to produce large-scale effects, and these
macroscopic dynamics subsequently affect the in-
terplay of microscopic forces. Traditionally, com-
putational models rely on accurately modeling the
smallest possible space and time scales. However,
in a multiscale problem, this technique may re-
quire such a fine resolution that there is no prac-
tical hope of following a calculation long enough
to observe the macroscale behavior, even with
today’s advanced computing hardware.

Fortunately, the details at one space or time
scale are not necessarily important at another
scale. By devising different models and equations
at different scales, we can “separate scales” and
compute physics at different resolutions, allow-
ing these different models to communicate across

the scales. The challenge is to find such a scale
separation and develop models that are com-
putationally tractable, so that critical information
is communicated between scales without creating
artificial physics.

An everyday example of multiscale physics
can be found in foams, which have a wide variety
of applications in industry and materials design.
Liquid foams, characterized by fluid-filled mem-

branes separating gaseous regions, include soapy
detergents, substances to separate out hydropho-
bic molecules, and even the head on a beer. Solid
foams, formed by solidifying liquid foams, in-
clude lightweight materials such as metallic and
plastic foams. Understanding the dynamics of
foam evolution is a key step in controlling the
structure and properties of foamlike materials.
Deriving models to quantitatively predict foam
evolution is challenging because the underlying
physics takes place over vastly different time and
space scales.

In this work, we use a foam of common soap
bubbles as our prototypical example. A single
bubble consists of a thin membrane of fluid,
known as the lamella, separating the inside gas
from the outside. In a cluster of such bubbles
(Fig. 1A), multiple lamellae meet at junctions
called Plateau borders, forming a network of in-
terconnected thin-film membranes. The dynamics
of this foam cluster are intricate (1) and depend
on a complex interaction between microscale
fluid flow inside the lamellae and Plateau bor-
ders, and the macroscale motion of the gas inside
the bubbles. To illustrate, consider a foam whose
macroscopic configuration appears to be in equi-
librium, such as the foam in Fig. 1A. Although
seemingly stable, liquid inside the films drains
over time, owing to effects of gravity and surfac-
tant. When one of the membranes becomes too

1Department of Mathematics and Lawrence Berkeley National
Laboratory, University of California, Berkeley, CA 94720, USA.

*Corresponding author. E-mail: sethian@math.berkeley.edu

Fig. 1. Physics of foamdrainage. (A) A foam of soap bubbles made with common washing detergent.
(B) Drainage and thin-film interference. A keyring suspended in soap solution makes a film, which then
drains owing to gravity. The subsequent variations in film thickness create interference patterns when lit
with white light. (C and D) Rupture of a lamella. [Reproduced from (2) by permission from Macmillan
Publishers Ltd, Nature, copyright 2010] (E to G) Rearrangement. A lamella [center of (E)] bursts, leading
to macroscopic rearrangement of a foam.
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thin, it ruptures and its liquid contents are re-
distributed, destroying the macroscopic equilib-
rium of the remaining membranes. Driven by
macroscale gas dynamics and surface tension,
these other membranes, as well as their film thick-
nesses, further change as they contort, stretch, and
settle into a new equilibrium, setting the stage for
continued fluid drainage.

These processes take place over six orders
of magnitude in space and time. The liquid in the
thin films, though only micrometers thick, drains
over tens or hundreds of seconds (Fig. 1B) until a
membrane ruptures (Fig. 1, C and D). Membranes
burst at hundreds of centimeters per second (2),
causing macroscopic rearrangement of bubble
topology through surface and fluid forces oc-
curring over less than a second (Fig. 1, E to G).
Considerable mathematical analyses, as well as
numerical and experimental studies, have focused
on these individual components. These include
studying the geometry of stable foams—for ex-
ample, in Plateau’s laws (3)—and computational
methods to find minimal surfaces (4, 5); evolu-
tionary laws for foam geometry, such as the two-
dimensional (2D) vonNeumann–Mullins law (6, 7),
its extension to three dimensions (8), and statistical
variations (9); thin-film equations for drainage in
stationary films (10, 11), as well as drainage equa-
tions in stationary networks of Plateau borders
(12); and experimental studies of topological
changes in 2D foams (13). In addition, computa-

tional tools aimed at specific aspects of macro-
scopic rearrangement include numerical studies
of multiphase fluid flow separated by massless
and infinitely thin interfaces that do not drain or
rupture (14, 15); foam studies based on 2D hy-
drodynamics (16); and contributions made by
the Surface Evolver software (17) in computing
minimal energy states of complex configurations.

Here, we exploit the idea of scale separation
to introduce a multiscale model that separates
foam dynamics into a cycle of three distinct stages,
coupling different scales across space and time.
These stages are (i) a rearrangement phase, in
which a foam out of macroscopic balance un-
dergoes rearrangement due to surface tension
and gas dynamics, leading to an equilibrium; (ii)
a liquid drainage phase, in which the foam is
essentially in macroscopic equilibrium, and the
microscopic flow of liquid is modeled until a
lamella becomes too thin; and then (iii) a rup-
ture phase, in which a lamella ruptures, sending
the foam out of macroscopic balance, after which
step (i) is invoked and the process repeated. To-
gether, the dynamics of each phase affects the
next, leading to a multiscale model that captures
the key effects of foam rearrangement, liquid
drainage, and rupture.

Our scale-separated model assumes that the
gas and liquid flow are incompressible within
the time and space scales under consideration;
liquid evaporation in the lamellae occurs during

a longer time scale than rearrangement, drainage,
and rupture; and the liquid-gas interface has a
no-slip boundary condition with a uniformly con-
stant surface tension. Additional forces, scales,
and regimes, beyond those included here, play
an important role in foam dynamics, although
they can be added to this framework. Diffusive
coarsening, which results from gas exchange
between bubbles separated by permeable mem-
branes, is important over very long time scales
(minutes to hours) (1); although our macroscale
Navier-Stokes fluid solver easily allows such
permeability effects, our thin-film equations are
derived assuming a static equilibrium, and thus
we do not not include coarsening effects. At the
liquid-gas interface, we idealize that Marangoni
forces, which act to equilibrate surfactant con-
centration, occur quickly enough to produce a uni-
formly constant surface tension, while the no-slip
boundary condition assumption ignores some ef-
fects of surface rheology, which can be important
for surfactant solutions exhibiting mobile bound-
ary conditions. Finally, we focus on dry foams
[i.e., foams with liquid occupying less than
than ~10% of the total volume (1)], though the
methodology below has extensions to wet foam
modeling as well.

Turning to the individual phases, consider
first the rearrangement phase, in which the foam
structure is out of macroscopic equilibrium. Sur-
face tension at the liquid-gas interface influences

Fig. 2. Verification of numerical methodology. (A) A small cluster, ini-
tially in equilibrium, undergoes rearrangement due to the removal of a la-
mella (orange) at time t = 0. Total surface area of the cluster is shown in the
plot; see also movie S1. (B) Comparison of numerical results with experiment.
Two spherical soap bubbles merge at t = 0, subsequently causing surface-
tension–driven oscillations that eventually lead to a larger spherical bubble.
[Experimental results reproduced from (23) by permission of IOP Publishing]

Numerical simulation uses identical physical parameters and time scale (see
table S1). (C) Solution of the coupled lamella and Plateau border thin-film
equations on a pyramid of spherical bubbles. Colors indicate thickness h of the
lamella and cross-sectional area l of the Plateau border, and the black lines
are contour lines of h. (D) Evolution during rupture. An internal lamella joining
the two front facing bubbles ruptures and is removed, leading to rearrangement
of bubbles and varying film thicknesses; see movie S2 for an animated view.
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the gas dynamics, which in turn evolve the network
of lamellae and Plateau borders, rearranging the
systemof bubbles. Liquid contained in the thin films
and Plateau borders is conserved and transported
during this readjustment. Because macroscopic
fluid mechanics determine the motion, we idealize
the membranes as massless and vanishingly thin,
thereby approximating their inertial effects as negli-
gible. Mathematically, this leads to the incompres-
sible Navier-Stokes equations for the gas phase,
with continuity of the velocity field across the liquid-
gas interfaceG, and an effective surface tension of
2s (i.e., twice the coefficient of a single liquid-
gas interface). The interface is thus advected by
the velocity field u of the gas, satisfying

rg(ut þ u ⋅ ∇u) ¼ −∇pþ mgDu − 2sknde(G)

where mg is the viscosity of the gas and rg is its
density. We have implemented surface tension
with a continuum approach (18, 19), whereby the
force, existing only at the interface, becomes a
body force 2sknde(G) through the use of a
smoothed Dirac delta function with support con-
centrated at the interface. The resulting dynamics
naturally enforce 120° angle conditions at Plateau
borders obeyed by dry foams and allow the in-
terface to change topology (14, 15).

During rearrangement, the liquid in the lamel-
lae and Plateau borders is transported by the mo-
tion of the interface in such a way that the amount
of liquid is locally conserved. We exploit the thin-
ness of the lamellae and Plateau borders by
describing their “thickness” with a scalar func-
tion, allowed to vary in space and time. For the
lamella, its half-thickness is defined as h, and
for the Plateau border, we define l as the cross-
sectional area at any particular location in space;
see fig. S1. For liquid contained in the lamellae,
conservative transport ismodeled by requiring that

d

dt
∫SðtÞh ¼ 0

where S(t) is any surface patch on G(t) passively
advected by the velocity field u. This model
conserves the mass of liquid in the lamellae by
measuring the amount of stretching in the inter-
face, and it allows surface currents at the inter-
face to move the liquid tangentially. Liquid in
the Plateau borders is conserved with an anal-
ogous conservation law.

During the liquid drainage phase, the foam
is essentially in macroscopic equilibrium, which
means that the dynamics of the gas phase may
be taken as negligible, and the surface area has
been locally minimized, hence individual lamella
have constant mean curvature. We thus require a
model for liquid drainage in the (fixed) network
of lamellae and Plateau borders. By capitalizing
on the inherent scales involved and following the
philosophy of “thin-film approximations” (10, 11),
which describe the evolving membrane thickness
in a single lamella, we build thin-film approxi-
mations for drainage in the curved lamellae, as
well as the Plateau borders, and devise inter-

related boundary conditions that couple the re-
gions together.

For a lamella of constant mean curvature, we
have the partial differential equation (PDE) (see
the supplementary online text for further details
on the derivation),

ht þ
1

3m
∇s ⋅ ðsh3∇s((k

2
1 þ k22 )hþ Dsh) þ

rgsh
3Þ ¼ 0

where m is the viscosity of the liquid, r is its
density, and gs is the component of gravity
tangential to the surface. Here, ∇s is the surface
gradient, ∇s · is the surface divergence, and ∆s

is the surface Laplacian on the curved surface
of the lamella, while k1 and k2 are its principal
curvatures. This is a fourth-order PDE and needs
two boundary conditions on the boundary of the
lamella. One condition is chosen to be that of
zero Neumann: ∂h/∂n = 0, where n is tangent to
the lamella and orthogonal to its boundary. The
other is provided by a flux boundary condition
(20, 21) that implements suction of liquid into
the Plateau borders at its boundary. The amount
of flux is determined by matching the thickness
of the lamella to the cross-sectional curvature
of the Plateau border under a local Stokes flow
argument. In this model, we include effects of
surface tension, the curved surface of the lamel-
la, and gravity. Additional physics, such as dis-

joining pressure and van der Waals forces, which
are important for films exhibiting long lifetimes,
fits into ourmodel by suitablymodifying the PDE.

A similar PDE is derived for the thickness
of a Plateau border

lt þ CD

m
∂
∂l
(− 1

2
(

ffiffiffi

3
p

−
p
2
)1=2sl1=2∂ll þ

l2rgt) ¼ S

where C∆ is a constant associated with the
cross-sectional shape of the Plateau border, gt
is the tangential component of gravity, and S is
a source term representing the incoming liquid
from the three lamellae connected to the Plateau
border. This equation requires boundary condi-
tions where Plateau borders meet at quadruple
junctions, and these are provided by conservation
of liquid mass and quasi-static pressure balance.

The rupture phase occurs when a lamella be-
comes critically thin as a result of drainage. A
small tear appears, and the hole in this curved 2D
sheet rapidly expands as surface tension causes
the membrane to retract. For the bubble sizes
considered here, liquid in the membrane retreats
to the Plateau borders (2), and this occurs over
a time scale that is just a small fraction of the
total time it takes for bubbles to rearrange. Al-
though this rupture could itself be treated as an
evolving interface within our algorithmic frame-
work, albeit with a more restrictive time-step

Fig. 3. Results of the coupledmultiscalemodel for a cluster of bubbles attached to amembrane.
In the top-left frame, a side view of the initial configuration is shown, using semi-opaque lamellae and
emphasizing the Plateau borders, to highlight the 3D structure of the results. In the rest of the frames,
a top-down view is given, showing the lamellae film thickness h, corresponding to the indicated color
scale. The background membrane absorbs some of the drainage, but is chosen not to rupture. As the
system evolves, rupture events can be identified by the localized increases in lamellae thickness. (See
movie S3 for the complete simulation.)
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requirement in the numerical calculation, we sim-
plify and assume that rupture, once initiated through
a prescribed threshold, is instantaneous and that
liquid in a ruptured lamella is uniformly distributed
to the neighboring Plateau borders.

We now introduce a collection of numerical
technologies to accurately compute the solution
of these coupled scale-separated equations; more
details are given in (19). We solve the incom-
pressible Navier-Stokes equations using a finite
differencemethod implemented on a fixed Eulerian
grid, together with a projection method (22) that
uses a type of Hodge decomposition to enforce
incompressibilitywhen updating the velocity field.
The interfaces are tracked with the “Voronoi
Implicit Interface Method (VIIM)” (14, 15), which
alternates between a finite-difference PDE level
set advancement of a single unsigned distance
function and a geometric Voronoi reconstruction
step, and robustly captures topological change,
including transitions at multiple junctions.

To solve the thin-film flow equations, we
discretize (i) lamellae as a collection of connected
triangulated manifolds, constructed with a new
meshing algorithm devised to produce high-
quality triangulations, and (ii) the Plateau borders
as a network of connected line segments at the
junctions of the mesh; see fig. S2. Within each,
we design a finite element method to approximate
the equations in weak form, using a biharmonic-
modified forward time-stepping scheme that ame-
liorates time-step constraints typically associated
with fourth-order nonlinear PDEs. The solutions
from the individual lamellae and Plateau borders
are coupled together though discretized forms of
the flux and quadruple-point boundary conditions.
Finally, rupture occurs when the film thickness
falls below a chosen minimum value, followed by
the macroscopic rearrangement phase.

Before applying our framework to modeling
the complete system, we first test and verify in-
dividual components, using physical parameters
corresponding to a typical gas and typical soap
solution; precise values are given in table S1.

We first consider a cluster of bubbles, initially
in equilibrium, and then remove a specific lamella
(Fig. 2A). After removal, surface tension drives the
cluster into a new configuration, undergoing var-
ious topological changes in the process. Figure 2A
(top) plots the total surface area as a function of
time and shows that it reaches a local minimum;
Fig. 2A (bottom) (see alsomovie S1) illustrates how
the “hole”made by removing the lamella is filled
in, generating capillary waves as it does so, with
120° angle conditions satisfied throughout the
process, ultimately leading to an equilibrium where
each lamella has constant mean curvature.

To test the accuracy of our Navier-Stokes
solver, we compared numerical results with that
of an experiment (23), whereby two spherical
soap bubbles merge into one bubble, causing
surface-tension–driven oscillations (Fig. 2B).
Good agreement between the numerical model
and experiment is obtained.

Next, we verify that our finite element thin-
film equation solvers correctly model liquid drain-
age (Fig. 2C). A pyramid of four spheres forms a
network of six lamellae and 10 Plateau borders.
The lamellae are initialized at time t = 0 with a
uniform thickness of h = 5 mm and the Plateau
borders with uniform cross-sectional area l =
0.05 mm2. Figure 2C shows the thickness after
draining for 16.1 s. The effect of gravity is seenwith
the accumulation of liquid at the bottom of the
lamellae and Plateau borders, while the effect
of the flux boundary condition can be observed
with the reduced thickness of the lamellae at the
junctions.

To demonstrate rupture and redistribution of
liquid mass, in Fig. 2D, a cluster of bubbles with
nonuniform thickness has been draining, and the
internal lamella separating the two front-facing
bubbles ruptures immediately after time t = 0. The
liquid originally contained in the lamella, together
with the Plateau borders it was once connected
to, is locally distributed to the remaining lamel-
lae, as shown by the sudden increase in thickness.
The system, driven by macroscopic rearrange-
ment, quickly moves into a new configuration.

We now turn to the complete physical sys-
tem, and use the multiscale model to predict the
evolution of foam cluster dynamics under the
combined effects of rearrangement, drainage, and
rupture. In the first example, suppose that the
lamellae start with a uniform thickness of h0.
Scaling arguments (see supplementary online text)
applied to the lamella thin-film equation together
with the flux boundary condition, suggest that the
lamellae thicknesses develop a boundary layer,
whose width after a fixed amount of time is
Oðh1=2

0
l1=4
0

Þ, where l0 is a typical thickness of
the Plateau border. For typical film thicknesses
and drainage times, the length predicted by the
scaling is on the order of 0.1 mm and was con-
firmed by numerical tests, as is the result that
Plateau borders tend to have the same order of
magnitude thickness across the entire network.
It follows that for a cluster of bubbles that initially
have the same lamellae thickness, all lamellae
drain at approximately the same rate, and thus
those bubbles smaller than the boundary layer
will thin more rapidly and rupture first.

To demonstrate this behavior, and how it ef-
fects rearrangement of bubbles, an example is
shown in Fig. 3 (see also movie S3 and table S1
for additional details). A cluster of 17 bubbles
is suspended by a membrane, so that bubbles
protrude below and above the membrane. We
designed this configuration in order to make the
rearrangement simpler to visualize with a top-
down perspective. The cluster has a range of
bubble sizes, from 0.1 to 0.5 mm in diameter, and
at time t = 0 is initially in equilibrium, such that
each lamella has a uniform thickness of 10 mm,
and each Plateau border a uniform cross-sectional
area of 0.002 mm2. After draining for a time of
182 ms, some of the smallest lamellae rupture in
quick succession. As this occurs, adjacent bubbles
grow in size and increase in thickness. Initially,
much of the rupture events are associated with
the smaller lamellae, but because rupture affects
the macroscopic dynamics of the bubbles, in some
cases, larger lamellae rupture as a result of mem-
brane stretching. On this small spatial scale, the
rearrangement phase typically takes 0.1 ms to
equilibrate, whereas drainage steps takes tens of
milliseconds. The results show how a nontrivial
sequence of rupture events is obtained, in that bub-
ble rearrangement affects rupture events, both
locally and globally, owing to changes in film
thickness and macroscopic hydrodynamics.

In another example, we consider a cluster of
27 bubbles, with a larger typical bubble diameter

Fig. 4. Collapse of a foam cluster. Results shown with physically accurate thin-film interference, using
a beach scene to provide environment lighting. (See movie S4 for the complete simulation.)
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of 3 mm (Fig. 4; see also movie S4). In the fig-
ures, thin-film interference is used to show the
evolution, by using the lamellae thickness h to
solve the Fresnel equations that determine the
constructive and destructive interference of re-
flected light. After draining for 6.4 s, a single
bubble bursts, which causes a rapid collapse of
the foam structure. Compared to the case in Fig. 3,
in this example the typical bubble size is much
larger, which makes a priori prediction of rup-
ture events less predictable.

In this work, we have developed a multi-
scale model of the interplay between gas, liquid,
and interface forces for a dry foam, permitting
the study of the effects of fluid properties, to-
pology, bubble shape, and distribution on drain-
age, rupture, and rearrangement.We demonstrated
the model by analyzing cascading properties of
bubble rupture together with large-scale hydro-
dynamics. Both the scale-separated model and
the underlying numerical algorithms are gen-
eral enough to allow extension of the physics at
individual scales to include other phenomena,
such as disjoining pressure, diffusive coarsening,
and different types of surface rheology, including
liquid-gas interfaces with mobile/stress-free bound-
ary conditions, surface viscosity, evaporation dy-
namics, and heating. The multiscale modeling

and numerical methodologies presented here sug-
gest a wide variety of related applications, such
as in plastic and metal foam formation.
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Spin-Optical Metamaterial Route
to Spin-Controlled Photonics
Nir Shitrit, Igor Yulevich, Elhanan Maguid, Dror Ozeri, Dekel Veksler,
Vladimir Kleiner, Erez Hasman*

Spin optics provides a route to control light, whereby the photon helicity (spin angular momentum)
degeneracy is removed due to a geometric gradient onto a metasurface. The alliance of spin optics
and metamaterials offers the dispersion engineering of a structured matter in a polarization
helicity–dependent manner. We show that polarization-controlled optical modes of metamaterials arise
where the spatial inversion symmetry is violated. The emerged spin-split dispersion of spontaneous
emission originates from the spin-orbit interaction of light, generating a selection rule based on
symmetry restrictions in a spin-optical metamaterial. The inversion asymmetric metasurface is obtained
via anisotropic optical antenna patterns. This type of metamaterial provides a route for spin-controlled
nanophotonic applications based on the design of the metasurface symmetry properties.

Metamaterials are artificial matter struc-
tured on a size scale generally smaller
than the wavelength of external stimu-

li that enables a custom-tailored electromagnetic
response of the medium and functionalities such
as negative refraction (1), imaging without an in-
trinsic limit to resolution (2), invisibility cloaking
(3), and giant chirality (4, 5). An additional twist
in this field originates from dispersion-engineered
metamaterials (6, 7). A peculiar route to modify
the dispersion relation of an anisotropic inhomoge-
neous metamaterial is the spin-orbit interaction

(SOI) of light; that is, a coupling of the intrinsic
angular momentum (photon spin) and the extrinsic
momentum (8–10). Consequently, the optical spin
provides an additional degree of freedom in nano-
optics for spin degeneracy removal phenomena
such as the spin Hall effect of light (9, 11–14).
The chiral behavior originates from a geometric
gradient associated with a closed loop traverse
upon the Poincaré sphere generating the geo-
metric Pancharatnam-Berry phase (15, 16), not
from the intrinsic local chirality of a meta-atom
(4, 5, 17). Specifically, spin optics enables the
design of a metamaterial with spin-controlled
modes, as in the Rashba effect in solids (18–21).

The Rashba effect is a manifestation of the
SOI under broken inversion symmetry [i.e., the
inversion transformation r → –r does not pre-

serve the structure (r is a position vector)], where
the electron spin-degenerate parabolic bands split
into dispersions with oppositely spin-polarized
states. This effect can be illustrated via a relativistic
electron in an asymmetric quantum well experienc-
ing an effective magnetic field in its rest frame,
induced by a perpendicular potential gradient ∇V, as
represented by the spin-polarized momentum offset
Dk º T∇V (18–21). In terms of symmetries, the
spin degeneracy associated with the spatial inversion
symmetry is lifted due to a symmetry-breaking
electric field normal to the heterointerface. Similar
to the role of a potential gradient in the electronic
Rashba effect, the space-variant orientation angle
f(x,y) of optical nanoantennas induces a spin-split
dispersion of Dk = s∇f (22–24), where sT = T1 is
the photon spin corresponding to right and left
circularly polarized light, respectively. We report on
the design and fabrication of spin-optical meta-
material that gives rise to a spin-controlled disper-
sion due to the optical Rashba effect. The inversion
asymmetry is obtained in artificial kagome struc-
tures with anisotropic achiral antenna configu-
rations (Fig. 1, A and B) modeling the uniform
(q = 0) and staggered (

ffiffiffi

3
p � ffiffiffi

3
p

) chirality spin-
folding modes in the kagome antiferromagnet
(25–27). In the geometrically frustrated kagome
lattice (KL), the reorder of the local magnetic
moments transforms the lattice from an inversion
symmetric (IS) to an inversion asymmetric (IaS)
structure. Hence, we selected the KL as a platform
for investigating the symmetry influence on spin-
based manipulation of metamaterial dispersion.

It was previously shown that the localized
mode resonance of an anisotropic void antenna
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coupling the flux boundary conditions.
foam dynamics by decomposing the process into rearrangement, drainage, and rupture phases that are then linked by 

) describe the mathematical simulation ofWeaire (p. 720; see the Perspective by Saye and Sethianquickly poured beer. 
Foams are easily made whether in the kitchen sink in the form of soap bubbles or a frothy head on the top of a
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